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Hydrogen atom in a magnetic field: Ghost orbits, catastrophes,
and uniform semiclassical approximations
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Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can
interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conven-
tional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical
divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain
resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits
exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform
semiclassical approximations and demonstrate that these solutions are completely determined by classical
parameters of the real orbits and complex ghd84050-294{@7)07002-9

PACS numbes): 32.60+i, 03.65.Sq, 05.45:b, 32.70.Cs

I. INTRODUCTION theory but are well-known phenomena in various fields of
physics, e.g., in semiclassical scattering thedrg, 13, dif-
Rydberg atoms in external magnetic fields are nontriviaffraction theory in optic§14], or periodic orbit theory15].
systems possessing a classically chaotic counterpart, with g)dff_erent kinds of catastrophes exist and are characterized by
least two nonseparable, strongly coupled degrees of freedonf@rious forms of caustics of a bundle of lings, more spe-
Ever since the discovery of quasi-Landau type modulation ific, in physical systems a bundle of classical trajectories or

: . ight rays. A systematic mathematical classification and
n t.he. spectra qf b"?‘””rf‘l] and hydrpger[2,$] gtoms,_and analysis of structurally stable caustics was achieved by the
their interpretation in terms of classical periodic motion, at-

! o development otatastrophe theory16].

oms in magnetic fields have served as prototype systems for The givergences in semiclassical theories can be removed
studying quantum manifestations of classical chaos in regdy the construction ofuniform semiclassical solutions
physical systemgor reviews se¢4—6|). As the correspond- [12,13. Their calculation is generally not unique because the
ing classical dynamics of Rydberg atoms is chaotic, thaopological structure of the related catastrophe must be con-
quantitative description of their quantum features in terms osidered. Uniform semiclassical approximations have been
classical orbits was, and still is, a big challenge to theory agonstructed, e.g., for atomic and molecular scattering prob-

regards the development and application of semiclassica®Ms[12,13,17,18 photodetachment of Hin parallel elec-
methods. tric and magnetic field$19], time-dependent wave-packet

A decisive advance for a semiclassical interpretation opropagatlor[ZO], and for continuum Stark specffal]. In an

structures in the photoabsorption cross section was achiev%? plication of periodic orbit theory to a kicked t9@2] it

. as demonstrated that prebifurcation periodhwost orbits
by the development aflosed-orbit theory7,8]. The method  gyict “and are of importance in the semiclassical interpreta-

allows, at least in low resolution, not only a simple interpre-tion of that system.

tation but also a quantitative calculation of spectra in terms |t js the purpose of this paper to investigate the role of
of few parameters of the set of closed classical orbits startinghost orbits and their relation to catastrophes and uniform
at and returning to the nucleus. Semiclassical results are isemiclassical approximations in more detail. As a specific
good agreement with experimental data, e.g., of the hydrosystem we study the hydrogen atom in a magnetic field and
gen atom 9]. demonstrate that around the singular points of standard

Closed-orbit theory fails, however, at energies where orclosed-orbit theory, i.e., at the bifurcations of orbits, uniform

bits undergo bifurcations, i.e., where closed or periodic orsemiclassical approximations can be obtained from only a
bits are born or vanish. Bifurcation is a phenomenon typicaféew parameters of closed orbits, provided the type of catas-
of classical periodic orbits in chaotic systems with nonhyperdrophe is known, and not only real but also complex ghost
bolic Hamiltonian dynamics, such as the hydrogen atom irPrbits are considered. The paper is organized as follows: In

magnetic fields, which undergoes a transition from regularity>€¢- !l We discuss the classical dynamics and the continua-

to chaotic dynamics with increasing energy. The bifurcationion Of closed orbits to complex phase space, i.e., the ghost

scheme of this system has been analyzefil11]. Near orbits. In Sec. Ill we derive uniform semiclassical approxi-
bifurcations closed-orbit theory fails, the semiclassical for-Mations for three different kinds of catastrophes. A discus-

mulas diverge and are singular exactly at the bifurcatior'?io(;1 of results and concluding remarks follow in Secs. IV
points. Such “catastrophes” not only occur in closed-orbitand V-

Il. CLASSICAL DYNAMICS AND GHOST ORBITS

*Present address: Dept. of Chemistry, University of Southern The basic equations for the calculation of classical trajec-
California, Los Angeles, CA 90089. tories and a periodic orbit search for the hydrogen atom in a
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magnetic field are given in many papésee, e.g.[4]). Here w( O, m)=v(9,75)=0 (2.7
we briefly review the main ideas only, and concentrate on the

peculiarities of a complex continuation of phase space, thavhen integrating Hamilton’s equatiori2.6) with the initial
search for ghost orbits, and the calculation of tbemplex conditions(at 7=0)

ghost orbit parameters.

The nonrelativistic Hamiltonian for the hydrogen atom in u(0)=0, p,(0)=2cog/2)
a magnetic field of strengtB directed along the axis has
the well-known form [in atomic units, y=B/ v(0)=0, p,(0)=2sin(9/2). (2.8
(2.35x10° T)] _ _ _
Here ¥, is the starting angle, i.e., the angle between the
1,11 1., initial velocity of the electron and the field axis. Equation
H=3p" = +57L. T gre =k (2.1)  (2.7) can be solved numerically with the help of an iterative

Newton algorithm, and its rootsd( , ;) are thereal closed
The component of the angular momentum parallel to thedrbits[3,9] when all parameters are defined real.
field axis is conserved and we chodsg=m# =0 in all clas- The analytic structure of the equations of moti¢h6)
sical calculations. allows a direct analytic continuation of the real phase space
A special feature of the Hamiltonian is its scaling prop-(u«,v,p,,p,) to complex numbers. To search for complex
erty with respect to the magnetic-field strength. In scaled:losed orbits we choose the same initial conditich$§) but

coordinates and momenta, with complex starting anglé;, i.e., the momenta,(0) and
~ op =~ _ip p,(0) become complex, but the conditiét=2 in Eq.(2.5
r=y=1,. p=y =P, is still satisfied. With these complex initial conditions Hamil-

ton’s equations of motiofR.6) can be integrated numerically
from 7=0 to 7= 7. It should be noted that in genera
also must be chosen as a complex number to find ghost orbits
1~2~ f Eq(2.7). In thi integrate trajectori
+ -Pp%=E. (2.2  as roots of q.(_ 7). In this case we integrate trajectories
8 along straight lines in the complex plane from=0 to

. . . . . 7=14, but the final parameters of ghost orbits such as the
The classical trajectories obtained from the scaled equations,mplex recurrence time

of motion do not depend on both energy and magnetic-field
strength, but only on one parameter, the scaled energy fff

E=Ey 23 Note that the classical action scales as T= o

the classical Hamiltonian assumes the form

~ 1_
H= 7*2/3H — Epz_

=P

(u?+v3)dr (2.9

— 9. G- 1/3
S=2mSy™ ™ (23 and the action
The Coulomb singularity presents an obstacle to the numeri- .
cal integration of the equations of motion that follow from s:f (p2+p,2,)d7' (2.10
the Hamiltonian(2.2). The way out of this problem is a o “

transformation of timeé— 7, with dt=2rd r, called regular- i i .
ization [23], together with a coordinate transformation to do not depend on any special choice of this path because of

semiparabolical coordinates the analytic structure of the equations of motion. This is also
true for the monodromy matri¥, i.e., the stability matrix
u=\r+z, v=\r-z (2.4)  restricted to deviations perpendicular to a periodic orbit after

periodT. To be more specific, ibq(0) is a small deviation
These transformations lead to the regularized Hamiltonian perpendicular to the orbit in coordinate space at tirae)
and 6p(0) an initial deviation in momentum space, the cor-

H=3(p5+p2) —E(u>+ 1) + 52 u®v?(p’+v?) =2, responding deviations at tinte=T are related to the mono-
dromy matrix[8], viz.
from which we obtain Hamilton's equations of motigiine Sa(T S5 S5
primes denote derivatives/dr) ( a )) _ ( q(O)) - ( Mu1 le)( q(O)).
op(T) op(0) My Myy/ \ 6p(0)
m' =Py, P,=2Eu— Y2222+ uvila),
V'=p,, p.=2Ev—A(Pull2+vutld). (2.6 It is not our intention in this paper to carry out a complete

search for all real and complex closed orbits. Rather, our

These equations are free of singularities, and were integratedftention will be focused on the occurrence of ghost orbits in
numerically with the help of a high-order predictor-correctorthe vicinity of bifurcations of real orbits, and we shall dis-
multistep algorithm. cuss three specific examples, viz. the saddle node bifurcation
In a semiclassical approximation to photoabsorption specef orbit X;, the period doubling o¥3, and a more complex
tra(see Sec. Il closed orbits, which start at and return to the bifurcation of the perpendicular orbR,. Shapes of orbits
nucleus, are of fundamental importance. The closed-orbinear these bifurcations are shown in Fig. 1. For the classifi-
search can be formulated as finding roots (r;) of the two  cation of closed orbits we adopt the nomenclaturg3gfi.e.,
equations orbitsR, bifurcate from the motion perpendicular to the field
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FIG. 1. Closed orbits(in semiparabolic coordinateg,v) at
scaled energies near bifurcation pointa) Orbits X and x® at

A. Saddle-node bifurcation of the orbit X,

The first example we discuss in detail is the orKit,
which is created in a saddle-node bifurcation at scaled en-
ergy Ep=—0.115442 16 and with initial and final angles
9;=1.2271,9;=2.4232[10]. At higher energies E>E)
this orbit immediately splits up into two different real closed
orbits (X§ and Xkl’) with slightly different shapes, examples

of which are shown in Fig. (B) for energyE=—0.11. With
decreasing energy, both orbits are found to vanish exactly at
trle Eifurcation point, and below the bifurcation energy
(E<Ey) no real closed orbit with similar shape exists. How-
ever, the closed-orbit search extended to the complex con-
tinuation of phase space indeed reveals the existence of pre-
bifurcation ghost orbits. For iIIustrationj\I purposes the ghost
orbit is presented in Fig. () at energyE=—0.2. The real
parts of semiparabolic coordinatésmlid line) look similar to
orbits found above the bifurcation energyig. 1(a)] and the
imaginary parts(dashed ling are usually relatively small.
Note that the complex conjugatéf, i ) of each ghost orbit

is also a solution of Eq(2.7), i.e., there exist two closed

energyE = —0.11. Both orbits are born in a saddle-node bifurcationorbits above and below the bifurcation energy which are de-

at E,=—0.115 442 16.(b) Ghost orbit X; at energyE=—O.2.
Solid line: Reuw vs Rev. Dashed line: Inx vs Imy. (c) Balloon
orbit V! at energyE=—0.32 (solid line) and orbitV3* (dashed
line) bifurcating in a period doubling aE,=—0.342 025 8.(d)
Perpendicular orbiR, (solid line), orbit Ri(dashed ling and orbit

R1P (dashed dotted lineat scaled energg=—0.317.

generate exactly at the bifurcation point.

For the construction of uniform semiclassical approxima-
tions in Sec. lll some closed-orbit parameters, namely, the
initial and final angles, the classical action, and the element
m,, of the monodromy matrix, are of fundamental impor-
tance. The energy dependence of these parameters show
characteristics around the bifurcation point which are related

axis, V*. denotes orbits bifurcating directly from the motion t0 the various types of bifurcations. In Fig. 2 we present the
parallel to the field, with higher-order bifurcations marked byresults for the saddle-node bifurcation of the orbifsand
an asterisk, and orbitX , are created “out of nowhere,” X® . The energy dependence of the starting angles given
mostly in saddle-node bifurcations.

Re AS

1.15

0.015

0.01

-0.16 -0.14 012 -0.1

scaled energy

-0.08

-0.06

Im o

Im AS

-0.015

in Fig. 2(a). Both angles are real above the bifurcation en-
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FIG. 2. (a) Real and imaginary
part of starting anglé); for closed

orbits around the saddle-node bi-

({)) furcation of X; at scaled energy
] E,=—0.115 442 16G: Complex
ghost orbit. (b)~ Difference in
scaled actionAS= *(S,—S;)/2
with S, , the action of the two real
and ghost orbits respectivelyc)
Real and imaginary part of mono-

dromy matrix elementm,, for

(Ic)_ closed orbits around the saddle-
node bifurcation ofX;. Dashed
lines: Analytical fits(see text
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0.0014 : : TS FIG. 3. (a) Real and imaginary
0.0012 ¢ 1 part of starting angle); for closed
0.001 [ 1 orbits around the period doubling
0.0008 I\ 1 bifurcation ofvi at scaled energy
< 00006 1\ 1 Ep,=—0.342 025 8.G: Ghost or-
00004 1\ 1 bit. (b) DifferenceA 'S between the
0.0002 1 ‘ 1 classical action of the(period
doubled balloon orbitV3 and real
and ghost orbits bifurcating from
it. (¢) Monodromy matrix element
my, of the balloon orbitV3 and
orbits bifurcating from it. Al-
though the ghost orbiG lives in
complex phase space its action
and monodromy matrix element

. . . . . . remain real. Dashed lines: Ana-
036 035 0.34 -0.33 0.32 36 -0.35 0.34 0.33 0.32 Ivtical fits (see te
scaled energy scaled energy y ( X

Re %;

(=1

Im
f=]
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0.1
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ergy, form a saddle at the bifurcation point, and become We searched for complex orbits in the vicinity of this
complex for the ghost orbits below the bifurcation energy.bifurcation and found a ghost orhiand its complex conju-
Figure 2b) shows the deviation of the classical action fromgate at energies below the bifurcation. The energy depen-
the mean vaIueAS +(82 Sl)/2 whereSl and82 are the dence of closed-orbit parametefs, AS andm,, is pre-
classical actions of the orbit? and Xb Close to bifurca- sented in Fig. 3. There exist three real starting andleat
tion points the energy dependence of closed-orbit paramete5> Eb, and one real and two complex angle€at E,, [see
can be approximated by analytical functions. BS we ob- Fig. 3(@)]. The classical action and the monodromy matrix
tain elementm,, show a strange and unexpected behavior in the
_ L following sense. Although the ghost orbit is embedded in
AS=*(o/2m)(E—Ep)®? (2.12 complex phase space, these parameters remain exactly real
o o even far away from the bifurcation point. The difference
with ¢=4.96[see the dashed line in _F'gﬁfﬂ]- Thbe MONO- A5 in action between orbity/2* and V3 is approximately
dromy matrix elements,, of both orbitsX] and X7 vanish ?lven by a parabola
exactly at the bifurcation point, and can be approxmated a

E~E, by S=(5/27)(E—Ep)? (2.14

M= *=M(E—E,)*? (2.13  with 0=18.27[see Fig ®)], and the monodromy matrix

elementsm,, of orbits V3 andV3* are approximately linear

with M =175, as is illustrated by the solid and dashed linesunctions of the energy d|stance from the bifurcation point
in Fig. 2(c). Note that the behavior of ghost orbit parameters

AS andm,, at energieEE<E, is simply the analytic con- m;,=—M(E—E,) (orbit V2 5,
tinuation of Eqs(2.12 and(2.13. Vice versa, a study of the o
behavior of solely the real orbit parameters already suggests m;,=2M(E—E,) (orbit V3* and ghost (2.15

the existence of ghost orbits with properties revealed by the
more sophisticated search for ghost orbits in complex phaseith M =91 [see Fig. &)]. Note that, as for the saddle-node
space. bifurcation(Sec. I A), the energy dependence of ghost orbit
parameterd S andm,, is simply the analytic continuation of
B. Period doubling of the balloon orbit Vi Egs.(2.14 and(2. 15) for the real orblt\/ , i.e., the param-

The second example of a bifurcation we study in detail isSters remain real &E<Ep.
the period doubling of the balloon orbit; at scaled energy
E,=—0.342 025 8. The balloon orbit itself is already cre- ~ C- Bifurcation of the orbit perpendicular to the field
ated at lower energfg=—0.3913 in a bifurcation from the In this section we investigate real and ghost orbits related
orbit parallel to the field10]. A special feature of its shape is to the period doubling of the perpendicular orB. This
the symmetry in the initial and final angle, i.e};=3;. It third example of closed-orbit bifurcations is more compli-
exists below and above the period-doubling energy withoutated because various orbits with similar periods undergo
any spectacular change of this shape. Above the periodwo different elementary types of bifurcations at nearly the
doubling energy a new orb\lz* which breaks this symme- same energy. The shapes of the real orbits at scaled energy
try (9;# 9¢) separates fronV1 and is closed roughly after E=-0.317 are plotted in Fig.(#l), R, (solid line u=7v) is
two times the period ovl Examples of the shapes of the the orbit perpendicular to the magnetic-field axis, and the
balloon orbit and its period-doubling bifurcatiois* are dashed and dashed-dotted lines represent the (R@lt'snd
shown in Fig. 1c). Ri® (“Pacmen” in [10]).
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FIG. 4. (a) Real and imaginary
12t 02y part of starting angle¥; for closed
' . , , orbits related to the bifurcating
0.0005 0.0002 F (b) 1 scenario of the(period doubleyl
0.0004 ¢ perpendicular orbiR;. (b) Differ-
L, ooy W enceAS between the classical ac-
g 00002 p 0 = tion of the (period doubleyl per-
= 0'000(1) I a 00001 | 2 pendicular orbitR, and real and
00001 F L ghost orbits bifurcating from it.
-o:oooz -0.0002 1 (c) Monodromy matrix element
015 ' . m;, of thg per.pendi(.:ular orbiRzl
03 | (©) and orbits bifurcating from it
ozl | Dashed lines: Analytical fit§see
L o text).
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The structure of bifurcations and the appearance of ghodiowever, both functions can be fitted well by the more com-
orbits can be seen clearly in the energy dependence of thadicated formulas
starting angles?; in Fig. 4(@). OrbitsR} andR3" are created

in a saddle-node bifurcation aE{"=—0.317 353 45, A"S‘:L((;(E_EEJD)JF 21+ [FHE-E@)+1)%3)
¥,=1.3465. Below the bifurcation energy we fitich anal- 2
ogy to the saddle-node bifurcation discussed in Sec) ki (2.1

associated ghost orbit and its complex conjugate. CRb?t
is real only in a very short energy interva1E~0.001), and o
is then involved in the next bifurcation at M= —M(E—E®) (orbit Ry)
E{¥=—0.316 185 37,9,= w/2. This is the period-doubling

and

bifurcation of the perpendicular orbiR;, which exists at all = = 4M = &
energieg 9, = /2 in Fig. 4a)]. The period doubling is simi- M= 4M(E-Ey") + =[1*Vo(E-E;7) +1]

lar to the bifurcation ofv] discussed in Sec. Il B but with a

reversed energy dependence. The real dﬂéﬁ separates (Ré, R%b, and ghosts  (2.17)

from R; at energiedelowthe bifurcation point, i.e., a real _

orbit vanishes with increasing energy. Consequently associvith k=3.768<10 4, 5=763.6, andM =13.52 [see the

ated ghost orbits are expected at energiesvethe bifurca-  dashed lines in Figs.(8) and 4c)]. Note that Eqs(2.16) and

tion, i.e., E>E{®, and indeed such “postbifurcation” (2.17) describe the complete scenario for the real and the

ghosts have been found. Its complex starting angles are alghost orbits including both the saddle-node and period-

shown in Fig. 4a). doubling bifurcations. We also mention that orbits with
The energy dependence of scaled actions, or, more pré@nglesd;# ¥ have to be counted twice because they corre-

cisely, the difference\’s with respect to the action of the spond to different orbits when traversed in either direction,

period-doubled perpendicular orti,, is presented in Fig. and therefore a total number @¥e closed orbits, including

4A(b) (solid liney, and the graph for the monodromy matrix 9hosts, is considered here in the bifurcaton scenario around

elementmy, is given in Fig. 4c). It can be seen that the the period doubling of the perpendicular orbit.

actions and the monodromy matrix elements of the ghost

orbits related to the saddle-node bifurcationR}f become lll. UNIFORM SEMICLASSICAL APPROXIMATIONS

complex atE<E{"”, while these parameters remain real for | s section we investigate in which way bifurcations of
the postbifurcation ghosts &>E{?. The two bifurcations classical orbits and the existence of ghost orbits manifest
are so closely adjacent that neither E@12 and(2.13, for  themselves in quantum mechanics. More specifically we
the saddle-node bifurcation, nor Eq8.14 and (2.19, for  shall study the related quantum effects that can be observed
the period doubling, yield a reasonable approximation tdn the photoabsorption spectra of the hydrogen atom in mag-
AS(E) andm,(E) in the neighborhood of the bifurcations. netic fields. The link between classical trajectories and pho-
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toabsorption spectra is established by a semiclassios¢d- by the nucleus. For a given point,) in the neighborhood
orbit theory[7,8]. In its original version, the element;, of  of the nucleus, one can find an almost-closed of@dsisoci-
the monodromy matrix appears in the denominator of semiated with a given closed orbik) that passes through
classical expressions, and therefore the theory breaks down, ). The almost-closed orbit contributes to the semiclassi-
at the bifurcation points of orbits, wherem;,=0. In the cal wave function atr(,) with two terms, one belonging to
following we briefly review the general ideas of closed-orbitthe “incoming” and one belonging to the “outgoing” tra-
theory and then derive uniform semiclassical approximationgectory along the almost-closed orbfjpassage through
valid around the bifurcation energies of closed-orbit bifurca-(r,®) before or after the perihelion, respectivgly

tions. We demonstrate that the uniform solutions are directly

related to various types afatastropheg16] formed by the K (r, ) = — 2wsing Ym(9)

bundle of returning trajectories and study three examples,

namely, the fold, cusp, and butterfly catastrophe. The final | ank T ok, T
. ] . " : exp i| SM(r,9) TR
uniform expressions are free of singularities. In particular, > 2 4
the analysis will reveal the importance of classical ghost or- ~ TIKt g1
bits to quantum photoabsorption spectra. houtin |t 9y)]
3.3

A. The ansatz Here ¥; is the starting angle of the closed orbit, and

The rationale of the semiclassical description of photoab-

sorption by atoms in strong magnetic fields is the following: SMK(r, ) =SK+ ASMK(r, 9), (3.9
An electron in a low-lying initial statéy;) is excited to a
Rydberg state, or a continuum state above the ionization wMK= R A MK (3.5

threshold. One finds a distancgfrom the nucleus where the
semiclassical description of the wave functions becomes é\ = out, in) are the classical actions and Maslov indices of
good approximation, but the Lorentz forces are still negligi-the incoming and outgoing trajectory, respectively, where
bly small compared to the Coulomb attraction forces. Be-

ondr g, the outgoing Coulomb wave describing the electron
iyn theofinal statge isgpropagated along classicgl trajectories. Sm= %C'-O-k(p#d“ +p,dv)+m
These trajectories obey the complete classical dynamics of
the Hamiltonian(2.1), i.e., with the effects of the magnetic denotes the classical action of the exactly closed dlit-
field included. The latter become important at large distancesluding the action of the separabe motion. In Eq.(3.6),
from the nucleus, and the combined action of the magneticT, is the recurrence time, amy, , the total number of cross-
field forces and the Coulomb forces may cause trajectories tings of the orbitk with the z axis. The Maslov indexuX
return to the nucleus. The returning waves interfere with thecounts the total number of caustics along the closed orbit,
initial state in the dipole matrix element, and this interfer-and ASM(r,9) and A ™ represent the differences of the
ence gives rise to characteristic modulations in the photoalactions and Maslov indices of the incoming and outgoing
sorption cross section. Consequently, the semiclassical exrajectory at the given pointr(9) relative to the exactly
pression for the oscillator strength is found to be compose@losed orbitk. The quantityJ™* in Eq. (3.3 is the Jacobi

of two parts, a smoothly varying continuous backgrodfd determinant of the incoming and outgoing trajectory,

related to the initially excite@dutgoingCoulomb wave, and

1
E’}/Tk+ an,k) (36)

an oscillatory part from the contributions of akturning N ) A, v) \ MK
wavesye** related to closed orbits (m designates the con- IHHL, 9y =rsindde a(r9,) 3.7

served magnetic quantum numper
The angular functiod),,(19) in Eq. (3.3) can be expressed in

f=f04 >, fo5¢ (3.1 terms of the matrix elements of the dipole operator with the
cl.ok initial state|;) and spherical harmonidsee Appendix A
The wave function3.3) is the starting point for our con-
with struction of uniform semiclassical solutions. At valuesrof

where the semiclassical approximation is valid but the ef-
osc 2 retk fects of the magnetic field can still be neglected, the semi-
K =~ ;(E—Ei)|m<l//i|D| U ") (32 (lassical returning wavés.3 must be expandable in the ba-

sis of the exact quantum-mechanical Coulomb wave

The derivation of the semiclassical wave function has beefHnctions. Taking for the latter their form &~0 we can
described in detail in the literatutsee, e.g[7-9]). Here we ~ Wrte
only recapitulate the essential points that are necessary to an "
understanding of what follows. The basic observation is that retk _

in the vicinity of the nucleus the orbits behave like regular Ym (r’ﬁ)_/;:m‘ Crm\2I %/ 1(VBN)Y /(9,0),
Keplerian orbits, and every closed orkigturning exactly to (3.8
the nucleus at an angk&; with respect to the axis) will be

surrounded by an ensemble of similar, almost-closed orbitsyhere the expansion coefficients,, can be determined
which approach the nucleus at the same ariglebut swing  from
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C/mV2Ir g, 41 (VB —c
r—oo

3
><21/477_1/2r_3/4(—1)/C0{ /8r_ Zﬂ_) = 0
=27 f PEK(r, 9)Y m(9,0)sind O .
0
3

~ — (27)%2{sin®;siN V(91 Y m( 9¢,0)

X ex;{ i
Ak T Ak
ASYY(r, ) — = Au™ B. The standard situation: Isolated returning orbits

Wexp{i 5
X
x:%t,in fo | de I, v) |\ MK
(7,8;)
(3.9  drop the indexk for simplicity in what follows. In semipa-
rabolic coordinates the returning trajectories are straight lines

In Eq. (3.9 we have exploited the asymptotic form of the in the vicinity of tr_]e ori.gin, inclined at an angléflz with
Bessel function, and the fact that the phase integral has if€SPect to the. axis. It is most convenient to introduce the
main contribution around the angig~ 9, of the returning rotated semiparabolic coordinates

FIG. 5. Returning orbits close to the nucleus in the standard
situation(monodromy matrix elememh,;,#0) in rotated semipara-
bolic coordinates §, ). Neighboring orbits are straight lines paral-
lel to the ¢ axis.

aw o

K k
— +

do discussion with the standard situation of nonbifurcating iso-

}1/2 dd. For completeness, and illustrative purposes, we start our
lated returning orbits. We pick some closed okgitand will

orbit, and that spherical harmonics with lofv-quantum 9 9 -9
numbers are smooth functions 6f The form(3.8) is cor- §=,ucos—f+ VSin— = \/Ecos—f, (3.12
rect, in particular, in the region of the initial state, where the 2 2 2
dipole matrix element has to be evaluated. Therefore we can
insert Eq.(3.9) into Eq.(3.2), and obtain Ul U  U=0
a3 a.(3-2 n= VCOS?f—,LLSIH?f: \@smTf, (3.13

fﬁsc: 2(E— E|) \/mym( 19l)\ym( 19f)

where thet and 5 axes are now parallel and perpendicular to

Jek ™ W, T the returning orbit(see Fig. % All orbits satisfy the
x1m) A EX[{I Sm o M + 4 ) ’ (3.10 Hamilton-Jacobi equations
where the complex amplitudd is defined by 93 93
p§=&—§=2, pnzﬁzo. (3.19
exp[i ASMK(r,9)— ZAMM” The central returningi.e., exactly closedorbit is given by
I(r)= 2 f” xzk - do 7n(£)=0, while for the neighboring trajectories we have
N=outin JO de M, v) \ ™
a(7,9) 7(§)=mpAd;, (3.19
- \/8—r—§1-r) where my, is an element of the monodromy matrix, and
4 A ¥9; is the deviation of the starting angle of the neighboring
=A 2m(2r)A (311 trajectory. We immediately obtain
. 9 — Uy
(Eq. (3.9) guarantees that the quantityr) will always fac- ASMr,9)=%2|& == \/ﬁcosT
torize in this form. Thus.4 can be determined by evaluating
I(r) at some value of where, again, the semiclassical ap- — 7 /8r — Jr/8(9— 9.)2 G~ 31
proximation is valid but magnetic-field effects are still neg- [ Ve —T/8( 07 i (316
ligible. N N
Equation(3.11) is the basis for the subsequent uniform de( ’9('“"’)) =de( ’9(5”7)) —om (3.17)
. . : . " . i 12- .
approximations of the amplitudd. The decisive quantities a(7,9) (1, 9)

entering intoA are AS, Ay, and the Jacobi matrix in the

neighborhood of a returningexactly closell orbit. In the  The Maslov index increases by 2 when the orbit passes the
case of bifurcations, i.e., catastrophes, the behavior of thes#igin, i.e., the Maslov indices of the incoming and outgoing
guantities differs significantly from that in the standard situ-trajectory differ by

ation of isolated returning orbits, as will become evident in

the following sections. Apr=+1. (3.18
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Inserting Eqs(3.16) to (3.18 into Eq.(3.11) we obtain(with

the integration range of the stationary phase integral formally 10 N
extended ta*+ «) 2400 R
2 12 1o 0
I(r)=[—} f sin[ /8r — \r/8(9— 9¢)2]dd = 2406 %4
|m12| —w 4076 o S :‘ S "‘,"' 4
1 3 6106 F \“ \‘ N :‘::“’3’:’:’:"“""""
— 725y~ U4 co{ Jer—> 77) . (319 ) S RSSSIRIH I
04 03 -02 -01 g 01 02 03 04
1
=A=2(2m)%——. (3.20
m| FIG. 6. Fold catastrophe of returning orbitae rotated semipa-

rabolic coordinate)srelatgd to the saddle-node bifurcation of orbit
The contribution of a nonbifurcating isolated returning orbit X, at bifurcation energf,= —0.115 442 16.
to the oscillator strength then reaflsith the scaled mono-

: =3
dromy matrix elementn;,= ym;,) If D>0 there exist two real solutions fakd;, i.e., two

osc_ BN e cing. _ 312, 1/6 orbits return to these points, but no orbit returns to these
= 2(E-E) Vsind;sind il 9:) Yl §1)2(2m)7% points if D<0. The border line belonging D=0 between

the allowed and forbidden area is a caustic which has the
. (3.21 shape of a parabol@ee Fig. 6. The Hamilton-Jacobi equa-
tions (3.22 of the fold can be solved analytically. However,
in the following derivations it is more convenient to use an
approximate solution valid in the neighborhood of the central
returning orbit

1

VImyy)

This is exactly the result of conventionalbsed-orbittheory
[7,8]. Obviously the oscillator strength diverges, i.e., conven
tional closed-orbit theory fails, at bifurcations of orbits,
wherem,;,=0. The reason for the occurrence of the diver-

gence is that, in such a case, E§.15 does not correctly c

represent the behavior in the neighborhood of the central AS\(r,9)==|/8r — 5o(9— ) — —= (93— 9¢)3|,
returning orbit. Thus the decisive point in the construction of 12

a uniform semiclassical approximation in the vicinity of bi-

furcating points is an adequate expansion of E315 to

higher orders iM ;. The order of the expansion required I=~;. (3.29
depends on the type of catastrophe, and therefore each case

has to be treated separately. We shall investigate the fold,

v a
sin( S L Ay

X
4

cusp, and butterfly catastrophes. The determinant in the denominator of E§.11) is found to
be given by
C. The fold catastrophe
An example for the occurrence of a fold catastophe in the I, v) | a(Em) |\ N
hydrogen atom in a magnetic field is the creation of the de(—') =de< ! )
closed orbitX, through a saddle-node bifurcation at the a(7,9;) a(7,9;)
scaled energyE,=—0.115 442 16 discussed in Sec. I A. = *2a\E2+4c(n—ng) —
The family of corresponding returning orbits satisfy the >0
Hamilton-Jacobi equation@n rotated semiparabolic coordi-
nates, withp,= dS/9¢ andp, = dS/d7) Tay8r, I~ (3.26

P35+ PLEP,— Pe( 7= 70)]=0,
i.e., in the direction of the returning orbit it exhibits the be-

p§+ pf]=4 (3.22 havior of a focus of orbits at the origin. This focus causes an
additional increase of the Maslov index of outgoing trajecto-
from which we obtain(with p,, /p,~aAd;) ries; i.e., we have
7(§)=mo+a’c(A®)*+a(A9)E. (3.23 .
Aplt=+2, Apn=-1. (3.27

Here 74, @, andc are constants which will be specified later.
The fold is illustrated in Fig. 6. At any poin&(#) Eq.(3.23
is a quadratic equation in;, with the discriminant We now insert Eqs(3.25), (3.26), and(3.27) into Eq.(3.11).
Extending formally again the integration range of the station-
_ 2 _ ary phase integral ta-~, we can express the integral in
D (2ac)2{§ +4c(n=m0)}- (329 terms of the Airy functior{26]:
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|(r) =214~ V] 172 Myp= = 2m*ac?®— e P= =y M (E-Ep) 2
(3.33
) [ cod var-2 9-9
xexg —ig) | co r= g ™= mo(¥=13) With the help of these relations the semiclassical oscillator
strength(3.30 can be expressed in terms of the parameters
B 3(19_,3 2| do o and M that follow directly from the classical trajectory
12 f calculations. The final result for the contribution of a fold
3 catastrophe thus reads
— ol/4. —1/4 5| —1/2 _'z — —
=2 "Hal ex‘( '2 C°5< Var 4”) £0S¢= 2(E— E;) \/SIND; SINT ¢ Vi 87) Vi 94) 272
X 277 (41c) Y3Ai ((4lc) Y3y,) (3.28 X w2y HO(35/2) 16 M |~ 12
= A= 25272 3| 112 XAi((35/2)2%y~2%(E,—E))
T ; SO T o
xexp( —iz)(4/c)1’3Ai ((4lc)n0).  (3.29 xSin Sm= 547 (3.34

It is also illustrative to investigate the asymptotic behavior

After inserting the amp|ltude4 into Eq (31@, the contri- of Eqs(sgq and(33® in the ||m|tcn0>0' i_e_’ at energies

bution of a fold catastrophe to the total semiclassical oscilE below the bifurcation energg, , where no orbit returns to
lator strength(3.1) reads o

the origin, because this reveals the role of the complex

i i ““ghost” orbits discussed in Sec. B 1. In the cas&E, the
£95°=2(E— E;) Vsing;sing V() V( 94) 2% asymptotic form of the Airy functiotsee Appendix B Lcan

be used in Eq(3.34) to obtain

f9SC=2(E— E;) VSIiN®;Sind V(97 Y F¢) 2(277) 32
% ,yl/6| |\7| | —1/2(Eb_’é)— 1/4

X |a| =Y 4/c)V3Ai ((4/c)1/3770)sin( 0 - g MO) .
(3.30

In Eq. (3.30 the parametera, ¢, and 7, are still undeter-

. o~ ~ ~ o
mined. In the following we demonstrate that these param- XIm EXF{' ShHiTy Y(E,—E)¥2- E’MOD]'
eters are directly related to closed classical trajectories. As
can be seen from Eq3.24) no orbit returns to the origin (3.39

(é=7=0) for cny>0 while two closed orbits exist for _ ) . )
Cc70<0, i.e., at energies above the bifurcation energy. In thd-ormally this equation coincides with E(8.21), but for a
limit c7y<<0, therefore, Eq(3.30 should lead to the result glosed Orb'F W'lth a complex action and imaginary mono-
of the standard situatiofEqg. 3.22, applied to the two closed dromy matrix element
orbits. Taking the asymptotic forms of the Airy functi¢see 0 e =iap
Appendix B 1 in the limit c 7o<0 we obtain from Eq(3.30 S=Sptiy To(By—E)™ (3.36
—i~— 3B _E\12
fose=2(E— E) \/Wym( 9Vl 19f)23/277_—1/2 my=1y M(E,—E)™< (3.37)
X|a| " Y3 — cpold) ~ V4 This is precisely the behavior found in the investigation of
ghost orbits at energies below a saddle-node bifurcaten

2 T T Sec. Il A). Obviously, as one moves away from the bifurca-
; 0_ = /_ 3/~ 0, . X ! . " . .
X S'”( SmmgVT4mlc St tion point to smaller energies, the positive imaginary part of
S grows, and thus the contribution of the ghost orbit to the
2 ™ ™ semiclassical oscillator strength is damped exponentially.
H = 3/~ 0 _
+sin 521+ 3 4mlC 2 (w1 4) : In the classical calculations, the complex-conjugate ghost,

3.3 with negative imaginary part of the action, also exists. In the
(3.3D above semiclassical formulas this complex-conjugate ghost
would produce an unphysical exponential increase of the am-

Comparing this expression with E8.21) we can identify  jide at energies below the bifurcation point. Thus we have
the contributions of two closed orbits with the Maslov indi- 55 4 by-product of the derivation of uniform semiclassical

O O . .
cespu” andu”+1. The classical actionS and monodromy  formulas that ghost orbits of this type have no physical
matrix elementsn;, of these orbits, expressed in terms of the meaning. In other words, they must not be included in the
parameterss, ¢, and 7, in Eq. (3.31), must be identical 10 standard formula3.21) since they do not appear in the as-
those obtained directly from classical trajectory calculatlong,mptotiC expansion of the uniform approximation of the os-

(see Sec. Il A, from which we find the relations cillator strength.
o The uniform solution(3.34 for the fold catastrophe has
S=S0F2\-4n)lc=SF v Lo (E-E,)®? the benefit of connecting both asymptotic situations, the con-

(3.32  tribution of the physical ghost orbit at energies below the
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6106 ASNr,3) =+ \Br + 1&(F— 9¢)2— Ec(9— 9)*

(3.4)
44076 F
2106 1 and for the determinant in the denominator of E2j11) we
- 0 have
2406 i d(p,v) (&, m)
[ —— — +

+10¢ i e (a(r a)) —de (cxr ﬁ)) aer, 9=d.
-6:40° N (3.42

-0.008  -0.004 0 0.004 0.008 . I . .

13 After summing up the contributions of the incoming and

outgoing orbit (with the correct Maslov indices
FIG. 7. Cusp catastrophe of returning orHits rotated semipa- AMOUt— +2,Au"=—1), the stationary phase integral in Eq.
rabolic coordinatesrelated to the period-doubling bifurcation of the (3,11) for the cusp catastrophe rea@gith t=9— 9;)
balloon orb|tVl at bifurcation energy,= —0.342 025 8.

T 3
saddle-node bifurcation and the two real orbits at energies  |(r)=2Y"Y4a| Y2%expg —i—|cog \8r— -
. . . e . . 4 4
above the bifurcation, without exhibiting any singularity at

the bifurcation point. +oo
X f exp(i[ (£0/4)t%2— (c/16)t*]}dt. (3.43

D. The cusp catastrophe

The second fundamental catastrophe is the cusp, as it oérom Eq.(3.11) we now obtain the amplitude
curs, for example, at the period-doubling bifurcation of the

balloon orbitV] at scaled energf,=—0.342 025 8(see 52 _y LT\ 4 1
Sec. 1l B. The Hamilton-Jacobi equations for the returning A=2%ma| " exp —i 7 |cTH0(—c ),
orbits at the cusp rea@vith p,=dS/9¢ andp,,= dS/dn) (3.49
2cpS+ pZl(£—£0)p,— 7P =0, where
pi+pi=4, (3.39 too o
@(X)EJ exp —i[xt°+t*])dt (3.4H

and we obtair(with p, /p,~aA; and parametera, c, and
&, specified later _ . _
is a special case of Pearcey’s intedi2B] that can be solved
n(€)=2a%c(A9)3+a(A0)(E—&). (3.39  analytically (see Appendix B 2 Inserting the amplituded
[Eg. (3.49] into Eq.(3.10 we finally obtain the contribution
The bunch of orbits forming the cusp is shown in Fig. 7.of the cusp to the total oscillator strengtBi1)
Equation (3.39 is a cubic polynomial inA<; with one or

three real zeros, depending on the sign of fOSC— 2(E— E;) /SN SINd Vi 97) Vi ) 25277

D=27cn?+2(&—&y)°. 3.4
cy +2(E— &) (3.40 ><|a|‘1’2(:‘1’4lm(ex;{i

o_ T o ~112
Smmou || P(=C o)
Both regions are separated by a caustic givedyo0, i.e.,

7°=(2/27c)(&,— €)°. In contrast to the fold catastrophe (3.46
there is no classical forbidden region without any real solu-
tion of Eq. (3.39. To find the relation between the parametere, and&, and

We shall now derive a uniform semiclassical approxima-parameters of the closed classical orbits we proceed in an
tion for the cusp catastrophe. The decisive point is again t@nalogous manner as for the fold, and discuss the asymptotic
find a solution for the classical action and the determinant ibehavior of Eq.(3.46) in the limit {,<0 and£y>0, i.e., at
Eq. (3.11). Solving the Hamilton-Jacobi equatio.39 in  scaled energies far from the bifurcation point. Applying the
the vicinity of the central returning orbir &0, 9~9;) we  asymptotic formulas fob(x) [Eqg. (B9) of Appendix B 2
obtain the classical action we obtain

|
£05C= 2(E—E;) V/Sin®;Sind Vin(97) Vi 99)2(277) ¥ agy| ~ 22

o o
sin Sﬂ’_E(MOJrlHZ . £<0

X 2 (3.47

+\/—S|r{ g SO+ 7] &0,

sin( 0 — 727
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By comparing with Eq(3.22) and with the classical dynam- . :

ics at the period-doubling bifurcatidisee Sec. Il Bwe find 0.08 ¢
the following physical interpretation of E43.47). There is 0.06 5
one real closed orbit with classical acti@], which exists 0.04
both below and above the bifurcation point. The Maslov in- 0.02
dex of this orbit changes by one when the orbit undergoes = 0
the bifurcation and the monodromy matrix element must -0.02
obey the relation -0.04
. s T T -0.06 3
Mmp=—ag=—7y ~M(E—-Ey). (3.48 0.08 L .
The remaining term a§,>0 can be interpreted as the sum of 0.4 -0.2 0 02 04
two real orbit contributions with the Maslov index®+ 1 g
and classical action and monodromy matrix element 0015 . . . .
1 ~ ~ ,
S=Su+ go =Sty YG(E-Ep)® (349 001 1 , ‘
0.005 )
my,=2aé,=2y **M(E—E,). (3.50 = 0
In the investigation of closed orbits around the period- ~ -0-005 ;
doubling bifurcation'Sec. Il B, in addition to the real orbits, 001 [ 4
two ghost orbits have been found at energies below the bi-
furcation energy with the somewhat strange property that the ~ -0.015 - - . AN

classical actior§ and monodromy matrix element;, both -0.1 0 0.1 02
remain real, although the coordinates and momenta in phase g

space are complex. Contrary to the fold catastrophe, in the
asymptotic expansiof8.47) of the uniform solution(3.46 semiparabolic coordinateselated to the bifurcation of the perpen-

for a cusp, no ghost contribution appears; i.e., these twQ. . B e
ghost orbits are both without physical meaning in the photo(-g“cUIar orbit at E,=-0.316 18537.(b) Magnification of the

. . marked region close to the nucleus. There are one, three, or five
absorptlor_1 process. With the he_Ip of E(q3.49) and(3.50 orbits returning to each poing(#) in phase space.
we can finally express the uniform solutid8.46 com-

Elljelggr:g terms which are accessible from closed-orbit cal—(3_34) for the fold and Eq(3.51 for the cusp, can be applied

in a semiclassical calculation of oscillator strengths. The cor-
osc_ _ o oo 112~1/4 rect uniform approximation must describe both bifurcations
P=2(E=Ey) Vsindisind V() Yl 91)8 7y o simultaneously, i.e., a more complicated type of catastrophe,
~ T viz. a butterfly catastrophe, must be investigated.
XM7Y Im( ex;{i S~ E’“OD The bunch of trajectories forming the butterfly is given by
the Hamilton-Jacobi equationgwith p,=dS/9¢ and
p,=dS/dn)

FIG. 8. (a) Butterfly catastrophe of returning orbits rotated

X @[251/2y—1’6(Eb—E)]] . (3.5))
3dpd+2cpipS+ Pl (£ &P, 7Pe]=0,

E. The butterfly catastrophe

y P. p§+ pfi=4, (3.52
As an example of even more complicated catastrophes we

investigate in this section the bifurcation®§, i.e., the sec- \ynere the parameters, d, and &, will be specified later.

ond return of the perpendicular orbit around the scaled engy;i, p,/pe~aAd; we obiain

ergyE=—0.316. A detailed classical analysgee Sec. || € 7

exhibits a sequence of two different elementary types of bi- =3a5d(A9)5+ 2a3c(A 9 )3+ alAd ) (é—

furcations at almost the same point. At the scaled energy 7(é) (A9 (A9)"+a(Ad)(¢ 50(2'53)

E{Y=-0.317 353 45 two closed orbits, namelg; and a

second orbit with similar shape, which we cRY’, are cre-  The putterfly is illustrated in Fig. 8. Depending on the num-
ated by a saddle-node bifurcation related to a fold catastroper of real solutiona 9; of Eq. (3.53 there exist one, three,
phe. At the only slightly higher energyEE,Z)= or five orbits returning to each point (). The different
—0.316 185 37 the orbiR%b already vanishes again in a regions are separated by caustics.

period-doubling bifurcation with the second return of the To find a uniform semiclassical approximation for the
perpendicular orbiR,, i.e., in a catastrophe where neighbor- butterfly catastrophe, we have to solve the Hamilton-Jacobi
ing returning orbits form a cusp. The energy spacing beequationg3.52), at least in the vicinity of the central return-
tween both bifurcations is so small that they cannot beng orbit, and to insert the actio®(r,?) into Eq.(3.11). For
treated as isolated, and none of the uniform formulas Eqthe classical action we obtain
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ASNr,0) =% \Br + 1 £o(9— 9¢) >+ fc(§— 9¢)* FO5=2(E — Ey) Vsing,sind n( 9) Vin( 91)2(2) ¥
—Ld(9— 998, 3.5
sad( £) ( 4) ><|a§0|1’2[sin S%— gMO+%

and for the determinant in the denominator of E3j11) we -1/2

find +a+/8r in the limit r>0 and 9~ 9, i.e., the same +
result (3.42 as for the cusp. Summing up in E@.11) the

2
1+ 3;—g[1+\/(3d/c2)go+1]
0

contributions of the incoming and the outgoing orbitith . c3 (3d 2 3d \3°?
Maslov indicesA . as for the cuspwe obtain the integral Xsin Syt gq2] bt 31t |1+ =z
[(r) and the amplitudeA for the butterfly catastrophe
(t=39—10y) T ) 1 T 35
—o W EDE L) (3.59
I(r)=21"‘r1’4|a|1’2exp< i Z) cos( J8r— Ew) Comparing this with Eq(3.21) we can identify the contribu-
4 4 tions of three real closed orbits. The classical action of orbit
too lis 521 its Maslov index isu® and the monodromy matrix
xf expli[ (&0/4)t2— (c/16)t*— (d/64)t8]}dt, elementm,, is given by

(3.55 mil=—ag=—y YM(E-Ep), (3.60

where the parametd’ﬁ can be determined by closed-orbit
5n _y T\ 13 iy calculations(see Sec. Il € Orbits 2 and 3 are symmetric
= A=2"*n]al Zexp(—|z d™ W (—d" Y, —cd ™), i respect to thez=0 plane and have the same orbital
(3.56 parameters, i.e., Maslov indg®®+ 1 and the classical action
and the monodromy matrix element

where 5(2‘3)=S%+AS
L+ ¢ (Sdg +2 1+(3 &+l 3/2_]
+ — ] _— . -
\If(x,y)zf exp(—i[xt?+yt*+t®]dt  (3.57 m'9d?| 20" 3 c2 =0 |
- (3.61
. . L . N o2 .
is an analytic function in both variablesandy. Its numeri m(122'3):4a§o 1+ — 1+ _2_(3(“0 yoenl}
0 4

cal calculation and asymptotic properties are discussed in
Appendix B 3. The uniform result for the oscillatory part of (3.62

the transition strength now reads ) ]
In the example of the bifurcation of orldR, at scaled energy

_ E{)=—0.316 185 37, orbit 1 is the ortR, perpendicular to
£95%= 2(E — E;) Vsing;Sind V() Ym( 94) 227 the magnetic-field axis, while orbits 2 and 3 can be identified
X |a|~L2d -V with R% traversed in both directionsd( ;= 7— ¥, ;). With

the help of Eqs(3.60 to (3.62 and classical scaling prop-
ex;{i

< T o 1 o erties of the action and the monodromy matrix the param-
m™ o5 M W(—d" ", —cd ). etersa, ¢, d, and&, in the uniform approximatiofi3.58 can

It is very illustrative to study the asymptotic behavior of the

uniform approximatior(3.58 as we obtain, on the one hand,

X 1m

now be expressed completely in terms of closed-orbit param-
(3.58 etersk, o, andM (see Sec. Il

| a| — 129~ 16— 31/6,}/1/18k1/3('5_ / ,\7| )1/2’

the relation between the parametarsc, d, and&, and the d™ M3, =3"Ry 2% (E~EY), (3.63
actions and the monodromy matrix elements of closed clas-

sical orbits, and, on the other hand, the role of complex ghost cd 2B=(9k) By 1",

orbits related to this type of bifurcation is revealed. In the . _ . _
following we discuss both limitsy>0, i.e., scaled energy ~ In the classical analysis complex ghost orbits were dis-

covered both below and above the bifurcation energy. At

E>E(? they have the property that the classical action and

the monodromy matrix remain real, although coordinates and

momenta in phase space are complex. These ghost orbits do
Applying Eqg.(B13) from Appendix B 3 to thél function  not appear in the asymptotic expansi@b9 of the uniform

in the uniform approximatiori3.58, we obtain the asymp- approximation3.58, and therefore, in analogy with the cusp

totic formula for &,>0 catastrophe, they do not have a physical meaning. The situ-

E>E®, and&y<0, i.e., E<E.

1. Asymptotic behavior at scaled energyfE 2
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ation is different at energig <E(" where a “hidden ghost”
with physical meaning will be revealed in Sec. Il E 2.

2. Asymptotic behavior and “hidden ghost”
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Finally, after inserting Eq(3.63 in Eg. (3.58, the uni-
form approximation for the butterfly catastrophe reads

f95=2(E— E;) vSiN®;Sin® Vi 97) V(1)

o EEW
at scaled energy KE; « wy1’1831/6k1/3(325/M)1/2

exp{ i| S — g,uOD

X (— 31’3k2’3y‘2/95(E—E§)2)), —(9K) 1/37— 1/9) _

At scaled energies below the bifurcation point we can
apply the asymptotic formul@B15) from Appendix B 3 to
the ¥ function in the uniform approximatio(8.58 and ob-
tain

F95%= 2(E — E;) \/SIN,SIND Y 9)) Vil 1) 2(277)32

X1m

(3.67

) T T
X |a§o|llz( S'“( Sh— E(MO+ 1+ 7
IV. RESULTS AND DISCUSSION

2 —-1/2
1+ 33—5[14 \/—(3d/cz)§o—l]}
0

-

xexp{i

1+i

We now discuss the effects of bifurcations and ghost or-
bits on photoabsorption spectra of the hydrogen atom in a
c? magnetic field and compare the uniform semiclassical results

derived in the preceding chapter to solutions of standard
closed-orbit theory. Semiclassically each closed orbit gener-
ates a modulation in the photoabsorption cross section. Here
' we are not interested in the energy and field dependence of
these modulations, which are directly related to the classical
action S of closed orbits, but in the behavior of theimpli-

Snt oa
3/2
4]
(3.69
The first term in Eq(3.64 can be identified as a real orbit tudes especially in the vicinity of bifurcations. In the follow-
ing we also drop the common prefactor:

with the same classical action and monodromy matrix ele-
ment as in Eq(3.59, but with a Maslov index increased by
one. The second term in E(B.64) is a ghost orbit contribu-

tion resulting from a superposition of two closed orbits with . . osc
complex action and monodromy matrix element, In formulas for_ the os_cnlatory part™ of the photoa_b_sorp
tion cross section. This prefactor depends on the inital state

3d
?fo

a O+’7T
2M T

L2
3

2(E—E;)(sin®;sind) Y2V ( 97) Ym( 9+)

c3 (3d 3d 312 and excitation procesésee Appendix A and is, for low-
S29=80 + | &gt o 1+i| — = &1 , lying initial states, a slowly varying function of the initial

m od“| ¢ 3 c ' . =

and final angles of closed orbits. The amplituigE, y) can
(3.69 X
now be defined as
m{3¥=4a¢, 1+—C2 [1—i\/—(3d/cz)§o—l]}, ~ - k= T T
3dg, 566 AE7=|Z AE e SHEn-5u'+ 7|

4.1

traversed in both directions. The positive imaginary part of ] ) ] ] .
the classical action results in an exponential damping of th&Y taking the absolute value instead of the imaginary part in
ghost orbit contribution to the oscillator strength amplitudeEd- (4.1 we suppress, for the graphical presentation of re-
with decreasing energy similar to the situation at a fold caSults, the high oscillatory modulations caused by the energy
tastrophe discussed above. In contrast to the fold, howeveand field dependence of the classical actBffE, y). Nev-
the ghost orbit related to a butterfly catastrophe is alwaysertheless, the exponential function in H4.1) is important
accompanied by a real orbit with almost the same classicavhen applying Eq(4.1) to nonuniform standard solutions of
action. Because the contribution of the real orbit is not exclosed-orbit theory with coefficientd, given by Eq.(3.20),
ponentially damped its amplitude at energies where the ad-., (in scaled variables
ymptotic formula(3.64 is valid is much stronger than the
ghost contribution. Therefore we call the ghost orbit in Eq.
(3.64 a “hidden ghost,” and it might be rather difficult to
find evidence for such a hidden ghost orbit related to a butin this case we add, in E¢4.1), the contributions of all real
terfly catastrophe in the Fourier transform of, e.g., experi<losed orbits and ghosts which are included in the corre-
mental scaled energy spectra. sponding uniform approximation. Interference effects be-

Note that, classically, the complex conjugate of the hid-tween these orbits are now taken care of by the exponential
den ghost orbit also exists. The negative imaginary part of itfunction. Furthermore, the classical action of ghost orbits
classical action would result in an unphysical exponentiainay be complex, which results, for a positive imaginary part
increase of amplitude with decreasing energy, and consesf the action, in an exponential damping of ghost orbit con-
guently the complex-conjugate ghost orbit does not appear itributions. Note that the energy dependence of amplitudes
the asymptotic formul&3.64). (4.1 can be measured experimentally dnaled energy spec-

Ax=2(2m) 3V, (E)] 2 4.2
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3 , , — , , tors, the uniform approximation to the amplitude is an Airy
25t @ | function in terms of the energy differenég,— E. Both the
PR ] oscillatory structure of the amplitude &t>E, and the ex-
£ 5t o ponentially damped ghost orbit tail are well reproduced, but,
E b in addition, the singularity at the bifurcation point is now
05 completely removed. Note that the maximum of the ampli-
0 , , , A2 tude is not located at the bifurcation poikt=E, but is
018 -0.16 -0.14 012 -01 -0.08 -006 -0.04 shifted to a slightly higher energy.
— , The results for the cusp catastrophe related to the period-
% ® doubling bifurcation of the balloon orbit; are illustrated in

Fig. 9Ab) (magnetic-field strengthy=10""). The nonuni-
form amplitude is plotted as a dashed line. Above the bifur-
cation energy, three real orbits, the period-doubled balloon,
V2, and the bifurcated orbity3* , traversed in both direc-
tions, are considered in E@4.1), and the interference of

amplitude
S =W R N 0

-0.36 -0.35 -0.34 -0.33 -032 0.31 -03 -029 -0.28 these three orbits produces the oscillatory fluctuations of the
18 F : " : : ] amplitude. As discussed in Sec. Il D the ghost orbits related
16 | © to the cusp catastrophe have no physical meaning and, there-
ol ] fore, only the real orbit, i.e., the period doubled balloon

V2, is considered aE<E,. The nonuniform solution is
characterized by an unphysical divergence of the amplitude
around the bifurcation energy, but the singularity is removed
in the uniform approximatiofisolid line in Fig. 9b)]

amplitude

-034  -033 -032 -031 -03 -029 028
scaled energy

A(E, ¥)=8 77_7,1/125_1/4| M |- 1/2| ® (2'5_1/27— 1/6(Eb_ E))|

FIG. 9. Semiclassical amplitudega) X; (fold catastrophg (4.4)

magnetic field strengty=4x10"° a.u.;(b) V3 (cusp catastrophe
y=10"7; (¢) R, (butterfly catastrophe y=10"". Dashed lines:
Amplitudes in the standard model. Dashed-dotted [iime (a)]:
Ghost orbit contribution. Solid lines: Uniform approximations.

_thained from Eq(3.5)), and with the classical parameters

E,, o, andM determined in Sec. Il B. The energy depen-
dence is given by a special case of Pearcey's integral,
®(x) (see Appendix B 2 In contrast to the fold catastrophe
troscopy[3,9,21] when following the peak hights of reso- [Fig. 9a)] there is a real orbit, instead of a ghost orbit, below
nances. in theEg) diagram of Fourier transform action the bifurcation point and therefore the amplitude decreases
spectra. ’ ~(Ep—E) Y2 rather than exponentially with decreasing en-
First we discuss the fold catastrophe related to the saddl€rgy. The modulations of amplitudes Bt-E, are also less
node bifurcation of orbiX;. The amplitudesA\(E, y) at con- pronounced, and, in particular, there are no energies with
stant magnetic-field strength=4x10"% are presented in vanishing amplitude, i.e., with complete destructive interfer-
Fig. 9@). The dashed line shows the superposition of the twdNce between all closed-orbit contributions. Oscillations in
real orbitsX$ and X? at energies§>Eb. The oscillatory penodm Orb'.t conmbur;uons relateld tt? a cuspf.ce(ljtastrop_he of
structure of the amplitude is the result of a strong interfer-rgltlurir]r']ngtgﬁgiaggt?; o?\llif[ahirl?r%egioy rr[gei]n veritied expenmen-
ence between these two orbits. At the bifurcation energy thé y b ’

amplitude diverges. Note that the amplitude at energies beD-utl?erl]’fll”yC\;thSdtI:)CUhses g?iea}[m?‘li';wﬁz.g;rgﬁg:Iﬁ'ﬁgsbﬁ[etr?le
low the bifurcation point is zero in the standard formulation catastr())/ he is relgted to a moregcomj licated b'f rcation sc)(/a-
of the closed-orbit theory, i.e., when only real orbits are con-__: P 1Pl diturcatl
sidered. The dashed-dotted line is the extension when ghogf’mg.asl fount()j., e.g.,saroulrlld tq_eh per|.ofd doubling (.)f th? per-
orbit contributions are also included. We only consider thepenh cutar IQr dlt(se_e SC'. %f € uni 06rm approximation
ghost with a positive imaginary part of complex action be-t0 the amplitudes is obtained from E&.67),

cause only this ghost has a physical mearigeg the discus-

T A\ — o 1/1831/6,1/3 a5z 10\ 1/2
sion in Sec. lll §. The amplitude decreases exponentially in A(E,7)=my 84320/ M)

—(E,—E)®? with decreasing energy, but also exhibits an X | W[ — 34323~ 2% (E-EP),
unphysical divergence at the bifurcation point. The solid line Py
in Fig. 9(a) is the uniform approximation for the amplitude —(9k) 3y, (4.9

which we obtain from Eq(3.34) as _ _
with the closed-orbit parameteis o, M, and E{?) deter-
A(E, y) = 27272 y19(35/2) Ve M |~ 12 mined in Sec. Il C and the integri#t(x,y) solved in Appen-
- dix B 3. Results fory=10"" are presented in Fig(8. The
X|Ai((35/2)*RPy"?(Ey—E))|, (4.3  solid line is the uniform approximatiof4.5), and for com-
_ _ parison the dashed line shows the nonuniform solution of the
with parameter&, , o, andM determined from the classical standard closed-orbit theory. The modulations of amplitudes
trajectory calculations in Sec. Il A. Apart from constant fac-at energies above the bifurcation point are caused by the
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interference of three closed orbits, namely, the periodclose to the origin, and the corresponding uniform approxi-
doubled perpendicular orbiR,, and the “Pacman” orbit, mations can be applied to semiclassical calculations of the
R%, traversed in both directions. Ghost orbits exist at thesg@hotoabsorption cross section.
energies but have no physical meanisge Sec. Il E Be- However, the set of catastrophes discussed in this paper is
low the bifurcation point one real orbiR,, and, in addition, ~certainly not complete. The possible geometries of elemen-
a ghost orbifand its time reversed counterpatbntribute to  tary catastrophes are systematically studied in catastrophe
the semiclassical photoabsorption spectrum. As in the case #ieory(see, e.9.[16]). A complete investigation of all types
a fold catastrophe the amplitude of the ghost orbit is dampe@f catastrophes existing in atoms in external fields and the
exponentially with decreasing energy, but now the ghost iglerivation of related uniform semiclassical approximations is
not isolated and its contribution is surpassed by that of theubject to future work. For example, closed-orbit bifurca-
perpendicular orbit, i.e., the ghost is “hidden” behind the tions might exist where the returning trajectories form a
real orbit. swallowtail. We also do not study bifurcations of the parallel
orbit in this paper. The parallel orbit requires special treat-
V. CONCLUSIONS ment because of a symmetry property of nearby orbits which
are invariant under rotations of the azimuthal angle,
Photoabsorption spectra of hydrogen in a magnetic field, The application of uniform semiclassical approximations
calculated semiclassically by application of closed-orbitmust not be restricted to the hydrogen atom. Investigations
theory in its original versiori7,8], suffer from singularities  of nonhydrogenic atoms have revealed the importance of
at energies where orbits undergo bifurcations. The unifornglassical trajectories scattered at the ionic ¢@. The core
approximations derived in this paper significantly improvescattering results in a dramatic increase in the number of
on those calculations and remove unphysical singularitieglosed orbit bifurcations which are related to singularities in
from the spectra. The total oscillator streng®nl) is divided  the semiclassical photoabsorption spectra. Thus we expect

into three parts, uniform approximations to be a powerful tool to remove un-
physical singularities from semiclassical spectra, not only of
f—f04 2 fosc E fosc (5.1) hydrogen but of nonhydrogenic atoms as well.
kstandard kslandard kuniform kuniform'
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tastrophe at the origin. The uniform approximations depend

on the_ specifip type Qf the catastrophe. In this paper we have APPENDIX A: ANGULAR FUNCTION Y,,(9)
investigated, in detail, the fold, cusp, and butterfly catastro-

phe, wheref S im IS given by Egs.(3.34, (3.51), and The angular functio,,(9) solely depends on the initial
(3.58, respectively. Note that each of these terms usuallytatey; and the dipole operatdd and is a linear superposi-
represents the contributions of several strongly interactingion of spherical harmonics

closed orbits including ghosts.

We believe that a large variety of singularities in semi- = p

classical photoabsorption spectra of the hydrogen atom in a Vm(0)= /;m‘ (=1 B/mY, m(9,0). (A1)
magnetic field can be removed by one of the uniform formu- '

las ment_|oned above. The “QXO“C”. orb|[§._%,9] are usgally . The coefficients3,,, are defined by the overlap integrals
created in a saddle-node bifurcation, with the trajectories
forming a fold close to the origin. As an example we have
studied the shortest exotic orb#;, but obviously the uni- B/m:f d3x(D ;) (X) \/ﬁJz/+l(\/8—r)ij(1?,cp)
form result for the fold catastrophe can be applied in all
analogous situations. Also the uniform solution for the cusp
catastrophe is not at all restricted to a period-doubling bifur{with J

cation of orbits(e.g., the period doubling of the balloon orbit cally [8]. For excitations of the ground stae=|1s0) with

V1) but is valid for any periodk bifurcation whenever re- m-polarized light(i.e., dipole operatob = z) the explicit re-
turning orbits form a cusp. Last, but not least, the perpeng; is

dicular orbitR; undergoes an organized sequence of period-

n bifurcations at energieE<<—0.1273, at which energy the Vo(9)=— 7 Y2230 20059 (A3)
orbit finally becomes unstable. The systematics of this se-

quence is explained ifll] by application of the normal and for ¢;=|2p0); i.e., the initial state in many spectro-
form theory. The creation and annihilation of orbRg is  scopic measurements on hydrod@:3,9 we obtain

similar to the bifurcation scenario of orbii, and R} dis-

cussed in this paper, the returning orbits form a butterfly Vo(9)=(27) Y227 4(4cod9—1). (Ad)

(A2)

,(X) Bessel functionsand can be calculated analyti-
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APPENDIX B: UNIFORM PHASE INTEGRALS For largex we obtain asymptotic formulas by expanding the
1. The Airy function Ai (x) phase; around their stationary points or by applying the as-
ymptotic formula

In the case of a fold catastrophe the uniform phase inte-
ral is an Airy function[26 TV
g y [26] J,(X) ~ \/(2/7-rx)cos( X— >~ Z) (B8)
X— 0

+
f cog t3+xt)dt=3"27Ai(37 ) (B1)
- of the Bessel functions to E4B8)

Mex;{—i%
\/m( ex;{i %

with the asymptotic behavior

Wl N
S
|
o

1
571_1/2)(1/4(3)(;{ _ 2y

2o o]}

Ai(£Xx) ~ 2 (B2)
X 12— taci| Sz, T (B9)
T X S|n(3x + 2
3. The function W(x,y)
2. The function ®(x) The uniform phase integralf (x,y) of the butterfly catas-
For a cusp catastrophe the uniform phase integral trophe is expanded in a two-parametric Taylor series around
x=y=0
+ 00
@(X)Ef exf —i(xt?+t#)]dt (B3) +oo
- \I’(x,y)=f exfd —i(xt?+yt*+t6)]dt
is a special case of Pearcey’s intedr2$,17,18 o
1 xX"yM [+
. => > e e | Mexd —it]dt.
P(x,y)=J exfi (t*+xt2+yt)]dt, (B4) n=om=0 T
- (B10)
ie., With the substitutiorz=t2"**"*1 we obtain[27]
®(x)=P* (x,y=0). (B5) f”thMmexq_itGJdt
With the help of the integralsp(>q>0) [27] 5
— __i5,6/(2n+4m+1)
. 2n+4m+1fo exil —iz laz
J exd —i(xP+tx9)]dx
0 1 F{ 2n+4m+1 (2n+4m+1
o =zexp —1 v ,
1 o 1 [(kg+1 3 12 6
=—exXp —I 2— E k_l r
P Plk=o P and finally
X| —texgi——m ) (B6) 1 .m 1 2n+4m+1
2p Yxy)=zexq-ig Eo P 6
we obtain an absolutely convergent Taylor series®gx) 2 n 5 m
X| xex —|§7r yex —|67r , (B11
1 K i 1 [2n+1 3 \"
PO)=zexg-ig “on! 4 XeXH =g ™| - which is a convergent series for allandy.
(B7) The asymptotic behavior o¥ (x,y) for x— *« is ob-

tained in a stationary phase approximation to @&4.0), with
Alternatively ®(x) can be expressed in closed form in termsthe stationary points, being defined by
of Bessel function$27]

to(6tg+4yti+2x)=0. (B12)
2
@(ix)zg x/2exp{i% (a) x— —: There are three real stationary points given by
12
LT X2 LT X2 th=0 d IZZ_E _’_(E 2_})
Xiex;{—l5}3_1/4(§>16XF{I§}J1/4 g)} 0 an 0 3y 9y 3X '

(B8) and we obtain
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+o _ In the case ofy<0 andx=31y? the complex zeros
P(x,y) ~ J exf —ixt?]dt
X— —ood =X

1/2
+2exg —i(xt3+ytg+t)] to=+ _%yii(%x_%yZ)UZ

+
xf exf —i(x+6yt3+ 15)t2]dt _ ,
— of Eq. (B12) are situated close to the real axis. When one
12 considers these complex zeros in a stationary phase approxi-
_(1) ex;{i Z} mation Eq.(B14) is modified by an additional term exponen-
4

- tially damped for large
. - 12 "
1 1 1% v(xy) ~ (Z) exp{—iz}
et §y2_y(§y2_ §X> ) = |5 2
[ (1, 1\ 1 (2, . . m vz
Xexp[l 2(9y 3X) 3y(9y X) 4“ x—l 2_iyuly_1y,2\12
3V Ty (3X=5y9)
(B13
. . 1 1 3/2
(b) x— +<0: The only real solution of EqB12) ist;=0 and % ex;{ _ 2(—x— —y2> }
P (x,y) is approximated as 379
too 1/2 11 (2 T
V(xy) ~ f exq—ixtz]dtz(;) exp{—iﬂ. XeXp{"[gY(gyz—X)—ZH-
X— 4o —®
(B14) (B15)
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