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Hydrogen atom in a magnetic field: Ghost orbits, catastrophes,
and uniform semiclassical approximations

Jörg Main* and Günter Wunner
Institut für Theoretische Physik I, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany

~Received 11 September 1996!

Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can
interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conven-
tional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical
divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain
resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits
exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform
semiclassical approximations and demonstrate that these solutions are completely determined by classical
parameters of the real orbits and complex ghosts.@S1050-2947~97!07002-9#

PACS number~s!: 32.60.1i, 03.65.Sq, 05.45.1b, 32.70.Cs
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I. INTRODUCTION

Rydberg atoms in external magnetic fields are nontriv
systems possessing a classically chaotic counterpart, wi
least two nonseparable, strongly coupled degrees of freed
Ever since the discovery of quasi-Landau type modulati
in the spectra of barium@1# and hydrogen@2,3# atoms, and
their interpretation in terms of classical periodic motion,
oms in magnetic fields have served as prototype system
studying quantum manifestations of classical chaos in
physical systems~for reviews see@4–6#!. As the correspond-
ing classical dynamics of Rydberg atoms is chaotic,
quantitative description of their quantum features in terms
classical orbits was, and still is, a big challenge to theory
regards the development and application of semiclass
methods.

A decisive advance for a semiclassical interpretation
structures in the photoabsorption cross section was achi
by the development ofclosed-orbit theory@7,8#. The method
allows, at least in low resolution, not only a simple interp
tation but also a quantitative calculation of spectra in ter
of few parameters of the set of closed classical orbits star
at and returning to the nucleus. Semiclassical results ar
good agreement with experimental data, e.g., of the hyd
gen atom@9#.

Closed-orbit theory fails, however, at energies where
bits undergo bifurcations, i.e., where closed or periodic
bits are born or vanish. Bifurcation is a phenomenon typi
of classical periodic orbits in chaotic systems with nonhyp
bolic Hamiltonian dynamics, such as the hydrogen atom
magnetic fields, which undergoes a transition from regula
to chaotic dynamics with increasing energy. The bifurcat
scheme of this system has been analyzed in@10,11#. Near
bifurcations closed-orbit theory fails, the semiclassical f
mulas diverge and are singular exactly at the bifurcat
points. Such ‘‘catastrophes’’ not only occur in closed-or

*Present address: Dept. of Chemistry, University of South
California, Los Angeles, CA 90089.
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theory but are well-known phenomena in various fields
physics, e.g., in semiclassical scattering theory@12,13#, dif-
fraction theory in optics@14#, or periodic orbit theory@15#.
Different kinds of catastrophes exist and are characterized
various forms of caustics of a bundle of lines~or, more spe-
cific, in physical systems a bundle of classical trajectories
light rays!. A systematic mathematical classification a
analysis of structurally stable caustics was achieved by
development ofcatastrophe theory@16#.

The divergences in semiclassical theories can be remo
by the construction ofuniform semiclassical solutions
@12,13#. Their calculation is generally not unique because
topological structure of the related catastrophe must be c
sidered. Uniform semiclassical approximations have b
constructed, e.g., for atomic and molecular scattering pr
lems@12,13,17,18#, photodetachment of H2 in parallel elec-
tric and magnetic fields@19#, time-dependent wave-packe
propagation@20#, and for continuum Stark spectra@21#. In an
application of periodic orbit theory to a kicked top@22# it
was demonstrated that prebifurcation periodicghost orbits
exist, and are of importance in the semiclassical interpre
tion of that system.

It is the purpose of this paper to investigate the role
ghost orbits and their relation to catastrophes and unifo
semiclassical approximations in more detail. As a spec
system we study the hydrogen atom in a magnetic field
demonstrate that around the singular points of stand
closed-orbit theory, i.e., at the bifurcations of orbits, unifor
semiclassical approximations can be obtained from onl
few parameters of closed orbits, provided the type of ca
trophe is known, and not only real but also complex gh
orbits are considered. The paper is organized as follows
Sec. II we discuss the classical dynamics and the contin
tion of closed orbits to complex phase space, i.e., the gh
orbits. In Sec. III we derive uniform semiclassical appro
mations for three different kinds of catastrophes. A disc
sion of results and concluding remarks follow in Secs.
and V.

II. CLASSICAL DYNAMICS AND GHOST ORBITS

The basic equations for the calculation of classical traj
tories and a periodic orbit search for the hydrogen atom i
n

1743 © 1997 The American Physical Society
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1744 55JÖRG MAIN AND GÜNTER WUNNER
magnetic field are given in many papers~see, e.g.,@4#!. Here
we briefly review the main ideas only, and concentrate on
peculiarities of a complex continuation of phase space,
search for ghost orbits, and the calculation of the~complex!
ghost orbit parameters.

The nonrelativistic Hamiltonian for the hydrogen atom
a magnetic field of strengthB directed along thez axis has
the well-known form @in atomic units, g5B/
(2.353105 T)#

H5
1

2
p22

1

r
1
1

2
gLz1

1

8
g2%25E. ~2.1!

The component of the angular momentum parallel to
field axis is conserved and we chooseLz5m\50 in all clas-
sical calculations.

A special feature of the Hamiltonian is its scaling pro
erty with respect to the magnetic-field strength. In sca
coordinates and momenta,

r̃5g2/3r , p̃5g21/3p,

the classical Hamiltonian assumes the form

H̃5g22/3H5
1

2
p̃22

1

r̃
1
1

8
%̃25Ẽ. ~2.2!

The classical trajectories obtained from the scaled equat
of motion do not depend on both energy and magnetic-fi
strength, but only on one parameter, the scaled ene
Ẽ5Eg22/3. Note that the classical action scales as

S52pS̃g21/3. ~2.3!

The Coulomb singularity presents an obstacle to the num
cal integration of the equations of motion that follow fro
the Hamiltonian~2.2!. The way out of this problem is a
transformation of timet°t, with dt52rdt, called regular-
ization @23#, together with a coordinate transformation
semiparabolical coordinates

m5Ar1z, n5Ar2z. ~2.4!

These transformations lead to the regularized Hamiltonia

H5 1
2 ~pm

21pn
2!2E~m21n2!1 1

8g2m2n2~m21n2!52,
~2.5!

from which we obtain Hamilton’s equations of motion~the
primes denote derivativesd/dt)

m85pm , pm8 52Em2g2~m3n2/21mn4/4!,

n85pn , pn852En2g2~n3m2/21nm4/4!. ~2.6!

These equations are free of singularities, and were integr
numerically with the help of a high-order predictor-correc
multistep algorithm.

In a semiclassical approximation to photoabsorption sp
tra ~see Sec. III! closed orbits, which start at and return to t
nucleus, are of fundamental importance. The closed-o
search can be formulated as finding roots (q i ,t f) of the two
equations
e
e

e

d

ns
ld
gy

ri-
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r

c-

it

m~q i ,t f !5n~q i ,t f !50 ~2.7!

when integrating Hamilton’s equations~2.6! with the initial
conditions~at t50)

m~0!50, pm~0!52cos~q i /2!

n~0!50, pn~0!52sin~q i /2!. ~2.8!

Here q i is the starting angle, i.e., the angle between
initial velocity of the electron and the field axis. Equatio
~2.7! can be solved numerically with the help of an iterati
Newton algorithm, and its roots (q i ,t f) are thereal closed
orbits @3,9# when all parameters are defined real.

The analytic structure of the equations of motion~2.6!
allows a direct analytic continuation of the real phase sp
(m,n,pm ,pn) to complex numbers. To search for comple
closed orbits we choose the same initial conditions~2.8! but
with complex starting angleq i , i.e., the momentapm(0) and
pn(0) become complex, but the conditionH52 in Eq. ~2.5!
is still satisfied. With these complex initial conditions Ham
ton’s equations of motion~2.6! can be integrated numericall
from t50 to t5t f . It should be noted that in generalt f
also must be chosen as a complex number to find ghost o
as roots of Eq.~2.7!. In this case we integrate trajectorie
along straight lines in the complex plane fromt50 to
t5t f , but the final parameters of ghost orbits such as
complex recurrence time

T5E
0

t f
~m21n2!dt ~2.9!

and the action

S5E
0

t f
~pm

21pn
2!dt ~2.10!

do not depend on any special choice of this path becaus
the analytic structure of the equations of motion. This is a
true for the monodromy matrixM , i.e., the stability matrix
restricted to deviations perpendicular to a periodic orbit a
periodT. To be more specific, ifdq(0) is a small deviation
perpendicular to the orbit in coordinate space at timet50
anddp(0) an initial deviation in momentum space, the co
responding deviations at timet5T are related to the mono
dromy matrix@8#, viz.

S dq~T!

dp~T!
D 5M S dq~0!

dp~0!
D 5Sm11 m12

m21 m22
D S dq~0!

dp~0!
D .

~2.11!

It is not our intention in this paper to carry out a comple
search for all real and complex closed orbits. Rather,
attention will be focused on the occurrence of ghost orbits
the vicinity of bifurcations of real orbits, and we shall di
cuss three specific examples, viz. the saddle node bifurca
of orbit X1, the period doubling ofV1

1, and a more complex
bifurcation of the perpendicular orbitR1. Shapes of orbits
near these bifurcations are shown in Fig. 1. For the clas
cation of closed orbits we adopt the nomenclature of@3#, i.e.,
orbitsRm

n bifurcate from the motion perpendicular to the fie
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55 1745HYDROGEN ATOM IN A MAGNETIC FIELD: GHOST . . .
axis,Vm
n denotes orbits bifurcating directly from the motio

parallel to the field, with higher-order bifurcations marked
an asterisk, and orbitsXm are created ‘‘out of nowhere,’
mostly in saddle-node bifurcations.

FIG. 1. Closed orbits~in semiparabolic coordinatesm,n) at
scaled energies near bifurcation points.~a! Orbits X1

a and X1
b at

energyẼ520.11. Both orbits are born in a saddle-node bifurcat
at Ẽb520.115 442 16.~b! Ghost orbitX1 at energyẼ520.2.
Solid line: Rem vs Ren. Dashed line: Imm vs Imn. ~c! Balloon
orbit V1

1 at energyẼ520.32 ~solid line! and orbitV2
2* ~dashed

line! bifurcating in a period doubling atẼb520.342 025 8.~d!
Perpendicular orbitR2 ~solid line!, orbitR2

1 ~dashed line!, and orbit
R2
1b ~dashed dotted line! at scaled energyẼ520.317.
A. Saddle-node bifurcation of the orbit X1

The first example we discuss in detail is the orbitX1,
which is created in a saddle-node bifurcation at scaled
ergy Ẽb520.115 442 16 and with initial and final angle
q i51.2271,q f52.4232 @10#. At higher energies (Ẽ.Ẽb)
this orbit immediately splits up into two different real close
orbits (X1

a andX1
b) with slightly different shapes, example

of which are shown in Fig. 1~a! for energyẼ520.11. With
decreasing energy, both orbits are found to vanish exactl
the bifurcation point, and below the bifurcation ener
(Ẽ,Ẽb) no real closed orbit with similar shape exists. How
ever, the closed-orbit search extended to the complex c
tinuation of phase space indeed reveals the existence of
bifurcation ghost orbits. For illustrational purposes the gh
orbit is presented in Fig. 1~b! at energyẼ520.2. The real
parts of semiparabolic coordinates~solid line! look similar to
orbits found above the bifurcation energy@Fig. 1~a!# and the
imaginary parts~dashed line! are usually relatively small.
Note that the complex conjugate (q i* ,t f* ) of each ghost orbit
is also a solution of Eq.~2.7!, i.e., there exist two closed
orbits above and below the bifurcation energy which are
generate exactly at the bifurcation point.

For the construction of uniform semiclassical approxim
tions in Sec. III some closed-orbit parameters, namely,
initial and final angles, the classical action, and the elem
m12 of the monodromy matrix, are of fundamental impo
tance. The energy dependence of these parameters
characteristics around the bifurcation point which are rela
to the various types of bifurcations. In Fig. 2 we present
results for the saddle-node bifurcation of the orbitsX1

a and
X1
b . The energy dependence of the starting anglesq i is given

in Fig. 2~a!. Both angles are real above the bifurcation e
i-

-

-

FIG. 2. ~a! Real and imaginary
part of starting angleq i for closed
orbits around the saddle-node b
furcation of X1 at scaled energy
Ẽb520.115 442 16.G: Complex
ghost orbit. ~b! Difference in
scaled actionDS̃56(S̃22S̃1)/2
with S̃1,2 the action of the two real
and ghost orbits respectively.~c!
Real and imaginary part of mono
dromy matrix elementm̃12 for
closed orbits around the saddle
node bifurcation ofX1. Dashed
lines: Analytical fits~see text!.
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FIG. 3. ~a! Real and imaginary
part of starting angleq i for closed
orbits around the period doubling
bifurcation ofV1

1 at scaled energy
Ẽb520.342 025 8.G: Ghost or-
bit. ~b! DifferenceDS̃between the
classical action of the~period
doubled! balloon orbitV2

2 and real
and ghost orbits bifurcating from
it. ~c! Monodromy matrix element
m̃12 of the balloon orbitV2

2 and
orbits bifurcating from it. Al-
though the ghost orbitG lives in
complex phase space its actio
and monodromy matrix elemen
remain real. Dashed lines: Ana
lytical fits ~see text!.
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ergy, form a saddle at the bifurcation point, and beco
complex for the ghost orbits below the bifurcation energ
Figure 2~b! shows the deviation of the classical action fro
the mean value,DS̃56(S̃22S̃1)/2, whereS̃1 andS̃2 are the
classical actions of the orbitsX1

a andX1
b . Close to bifurca-

tion points the energy dependence of closed-orbit parame
can be approximated by analytical functions. ForDS̃we ob-
tain

DS̃56~ s̃/2p!~Ẽ2Ẽb!
3/2 ~2.12!

with s̃54.96 @see the dashed line in Fig. 2~b!#. The mono-
dromy matrix elementsm̃12 of both orbitsX1

a andX1
b vanish

exactly at the bifurcation point, and can be approximated
Ẽ'Ẽb by

m̃1256M̃ ~Ẽ2Ẽb!
1/2 ~2.13!

with M̃5175, as is illustrated by the solid and dashed lin
in Fig. 2~c!. Note that the behavior of ghost orbit paramete
DS̃ and m̃12 at energiesẼ,Ẽb is simply the analytic con-
tinuation of Eqs.~2.12! and~2.13!. Vice versa, a study of the
behavior of solely the real orbit parameters already sugg
the existence of ghost orbits with properties revealed by
more sophisticated search for ghost orbits in complex ph
space.

B. Period doubling of the balloon orbit V1
1

The second example of a bifurcation we study in detai
the period doubling of the balloon orbitV1

1 at scaled energy
Ẽb520.342 025 8. The balloon orbit itself is already cr
ated at lower energyẼ520.3913 in a bifurcation from the
orbit parallel to the field@10#. A special feature of its shape i
the symmetry in the initial and final angle, i.e.,q i5q f . It
exists below and above the period-doubling energy with
any spectacular change of this shape. Above the per
doubling energy a new orbitV2

2* which breaks this symme
try (q iÞq f) separates fromV1

1 and is closed roughly afte
two times the period ofV1

1. Examples of the shapes of th
balloon orbit and its period-doubling bifurcationV2

2* are
shown in Fig. 1~c!.
e
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We searched for complex orbits in the vicinity of th
bifurcation and found a ghost orbit~and its complex conju-
gate! at energies below the bifurcation. The energy dep
dence of closed-orbit parametersq i , DS̃, and m̃12 is pre-
sented in Fig. 3. There exist three real starting anglesq i at
Ẽ.Ẽb , and one real and two complex angles atẼ,Ẽb @see
Fig. 3~a!#. The classical action and the monodromy mat
elementm12 show a strange and unexpected behavior in
following sense. Although the ghost orbit is embedded
complex phase space, these parameters remain exactly
even far away from the bifurcation point. The differen
DS̃ in action between orbitsV2

2* andV2
2 is approximately

given by a parabola

DS̃5~ s̃/2p!~Ẽ2Ẽb!
2 ~2.14!

with s̃518.27 @see Fig. 3~b!#, and the monodromy matrix
elementsm̃12 of orbitsV2

2 andV2
2* are approximately linear

functions of the energy distance from the bifurcation poin

m̃1252M̃ ~Ẽ2Ẽb! ~orbit V2
2!,

m̃1252M̃ ~Ẽ2Ẽb! ~orbit V2
2* and ghost! ~2.15!

with M̃591 @see Fig. 3~c!#. Note that, as for the saddle-nod
bifurcation~Sec. II A!, the energy dependence of ghost or
parametersDS̃ andm̃12 is simply the analytic continuation o
Eqs.~2.14! and~2.15! for the real orbitV2

2* , i.e., the param-
eters remain real atẼ,Ẽb .

C. Bifurcation of the orbit perpendicular to the field

In this section we investigate real and ghost orbits rela
to the period doubling of the perpendicular orbitR1. This
third example of closed-orbit bifurcations is more comp
cated because various orbits with similar periods unde
two different elementary types of bifurcations at nearly t
same energy. The shapes of the real orbits at scaled en
Ẽ520.317 are plotted in Fig. 1~d!, R1 ~solid linem5n) is
the orbit perpendicular to the magnetic-field axis, and
dashed and dashed-dotted lines represent the orbitsR2

1 and
R2
1b ~‘‘Pacmen’’ in @10#!.
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FIG. 4. ~a! Real and imaginary
part of starting angleq i for closed
orbits related to the bifurcating
scenario of the~period doubled!
perpendicular orbitR2. ~b! Differ-
enceDS̃ between the classical ac
tion of the ~period doubled! per-
pendicular orbitR2 and real and
ghost orbits bifurcating from it.
~c! Monodromy matrix element
m̃12 of the perpendicular orbitR2

and orbits bifurcating from it.
Dashed lines: Analytical fits~see
text!.
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The structure of bifurcations and the appearance of gh
orbits can be seen clearly in the energy dependence o
starting anglesq i in Fig. 4~a!. OrbitsR2

1 andR2
1b are created

in a saddle-node bifurcation atẼb
(1)520.317 353 45,

q i51.3465. Below the bifurcation energy we find~in anal-
ogy to the saddle-node bifurcation discussed in Sec. II A! an
associated ghost orbit and its complex conjugate. OrbitR2

1b

is real only in a very short energy interval (DẼ'0.001), and
is then involved in the next bifurcation a
Ẽb
(2)520.316 185 37,q i5p/2. This is the period-doubling

bifurcation of the perpendicular orbitR1, which exists at all
energies@q i5p/2 in Fig. 4~a!#. The period doubling is simi-
lar to the bifurcation ofV1

1 discussed in Sec. II B but with a
reversed energy dependence. The real orbitR2

1b separates
from R1 at energiesbelow the bifurcation point, i.e., a rea
orbit vanishes with increasing energy. Consequently ass
ated ghost orbits are expected at energiesabovethe bifurca-
tion, i.e., Ẽ.Ẽb

(2) , and indeed such ‘‘postbifurcation’
ghosts have been found. Its complex starting angles are
shown in Fig. 4~a!.

The energy dependence of scaled actions, or, more
cisely, the differenceDS̃ with respect to the action of th
period-doubled perpendicular orbitR2, is presented in Fig
4~b! ~solid lines!, and the graph for the monodromy matr
elementm̃12 is given in Fig. 4~c!. It can be seen that th
actions and the monodromy matrix elements of the gh
orbits related to the saddle-node bifurcation ofR2

1 become
complex atẼ,Ẽb

(1) , while these parameters remain real f
the postbifurcation ghosts atẼ.Ẽb

(2) . The two bifurcations
are so closely adjacent that neither Eqs.~2.12! and~2.13!, for
the saddle-node bifurcation, nor Eqs.~2.14! and ~2.15!, for
the period doubling, yield a reasonable approximation
DS̃(Ẽ) andm̃12(Ẽ) in the neighborhood of the bifurcations
st
he

ci-

lso

e-

st

o

However, both functions can be fitted well by the more co
plicated formulas

DS̃5
k

2p
„s̃~Ẽ2Ẽb

~2!!1 2
3 $16@s̃~Ẽ2Ẽb

~2!!11#3/2%…

~2.16!

and

m̃1252M̃ ~Ẽ2Ẽb
~2!! ~orbit R2!

m̃1254M̃ ~Ẽ2Ẽb
~2!!1

4M̃

s̃
@16As̃~Ẽ2Ẽb

~2!!11#

~R2
1 , R2

1b , and ghosts! ~2.17!

with k53.76831024, s̃5763.6, andM̃513.52 @see the
dashed lines in Figs. 4~b! and 4~c!#. Note that Eqs.~2.16! and
~2.17! describe the complete scenario for the real and
ghost orbits including both the saddle-node and peri
doubling bifurcations. We also mention that orbits wi
anglesq iÞq f have to be counted twice because they cor
spond to different orbits when traversed in either directio
and therefore a total number offive closed orbits, including
ghosts, is considered here in the bifurcaton scenario aro
the period doubling of the perpendicular orbit.

III. UNIFORM SEMICLASSICAL APPROXIMATIONS

In this section we investigate in which way bifurcations
classical orbits and the existence of ghost orbits mani
themselves in quantum mechanics. More specifically
shall study the related quantum effects that can be obse
in the photoabsorption spectra of the hydrogen atom in m
netic fields. The link between classical trajectories and p
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1748 55JÖRG MAIN AND GÜNTER WUNNER
toabsorption spectra is established by a semiclassicalclosed-
orbit theory@7,8#. In its original version, the elementm12 of
the monodromy matrix appears in the denominator of se
classical expressions, and therefore the theory breaks d
at the bifurcation points of orbits, wherem1250. In the
following we briefly review the general ideas of closed-or
theory and then derive uniform semiclassical approximati
valid around the bifurcation energies of closed-orbit bifurc
tions. We demonstrate that the uniform solutions are dire
related to various types ofcatastrophes@16# formed by the
bundle of returning trajectories and study three examp
namely, the fold, cusp, and butterfly catastrophe. The fi
uniform expressions are free of singularities. In particu
the analysis will reveal the importance of classical ghost
bits to quantum photoabsorption spectra.

A. The ansatz

The rationale of the semiclassical description of photo
sorption by atoms in strong magnetic fields is the followin
An electron in a low-lying initial stateuc i& is excited to a
Rydberg state, or a continuum state above the ioniza
threshold. One finds a distancer 0 from the nucleus where th
semiclassical description of the wave functions become
good approximation, but the Lorentz forces are still negli
bly small compared to the Coulomb attraction forces. B
yond r 0, the outgoing Coulomb wave describing the electr
in the final state is propagated along classical trajector
These trajectories obey the complete classical dynamic
the Hamiltonian~2.1!, i.e., with the effects of the magneti
field included. The latter become important at large distan
from the nucleus, and the combined action of the magne
field forces and the Coulomb forces may cause trajectorie
return to the nucleus. The returning waves interfere with
initial state in the dipole matrix element, and this interfe
ence gives rise to characteristic modulations in the photo
sorption cross section. Consequently, the semiclassical
pression for the oscillator strength is found to be compo
of two parts, a smoothly varying continuous backgroundf 0

related to the initially excitedoutgoingCoulomb wave, and
an oscillatory part from the contributions of allreturning
wavescm

ret,k related to closed orbitsk (m designates the con
served magnetic quantum number!

f5 f 01 (
cl.o.k

f k
osc, ~3.1!

with

f k
osc52

2

p
~E2Ei !Im^c i uDucm

ret,k&. ~3.2!

The derivation of the semiclassical wave function has b
described in detail in the literature~see, e.g.,@7–9#!. Here we
only recapitulate the essential points that are necessary t
understanding of what follows. The basic observation is t
in the vicinity of the nucleus the orbits behave like regu
Keplerian orbits, and every closed orbit~returning exactly to
the nucleus at an angleq f with respect to thez axis! will be
surrounded by an ensemble of similar, almost-closed orb
which approach the nucleus at the same angleq f , but swing
i-
wn

t
s
-
ly

s,
al
,
r-

-
:

n

a
-
-
n
s.
of

s
c-
to
e
-
b-
x-
d

n

an
t
r

s,

by the nucleus. For a given point (r ,q) in the neighborhood
of the nucleus, one can find an almost-closed orbit~associ-
ated with a given closed orbitk) that passes through
(r ,q). The almost-closed orbit contributes to the semiclas
cal wave function at (r ,q) with two terms, one belonging to
the ‘‘incoming’’ and one belonging to the ‘‘outgoing’’ tra
jectory along the almost-closed orbit@passage through
(r ,q) before or after the perihelion, respectively#

cm
ret,k~r ,q!52A2psinq iYm~q i !

3 (
l5out,in

expH i FSl,k~r ,q!2
p

2
ml,k1

p

4 G J
AuJl,k~ t,q i !u

.

~3.3!

Hereq i is the starting angle of the closed orbit, and

Sl,k~r ,q!5Sm
k 1DSl,k~r ,q!, ~3.4!

ml,k5mk1Dml,k ~3.5!

(l 5 out, in! are the classical actions and Maslov indices
the incoming and outgoing trajectory, respectively, where

Sm
k 5 R cl.o.k~pmdm1pndn!1mS 12 gTk1pnz,kD ~3.6!

denotes the classical action of the exactly closed orbitk in-
cluding the action of the separablew motion. In Eq.~3.6!,
Tk is the recurrence time, andnz,k the total number of cross
ings of the orbitk with the z axis. The Maslov indexmk

counts the total number of caustics along the closed or
andDSl,k(r ,q) andDml,k represent the differences of th
actions and Maslov indices of the incoming and outgo
trajectory at the given point (r ,q) relative to the exactly
closed orbitk. The quantityJl,k in Eq. ~3.3! is the Jacobi
determinant of the incoming and outgoing trajectory,

Jl,k~ t,q i !5rsinqdetS ]~m,n!

]~t,q i !
D l,k

. ~3.7!

The angular functionYm(q) in Eq. ~3.3! can be expressed in
terms of the matrix elements of the dipole operator with
initial stateuc i& and spherical harmonics~see Appendix A!.

The wave function~3.3! is the starting point for our con
struction of uniform semiclassical solutions. At values ofr
where the semiclassical approximation is valid but the
fects of the magnetic field can still be neglected, the se
classical returning wave~3.3! must be expandable in the ba
sis of the exact quantum-mechanical Coulomb wa
functions. Taking for the latter their form atE'0 we can
write

cm
ret,k~r ,q!5 (

l 5umu

`

cl mA2/rJ2l 11~A8r !Yl m~q,0!,

~3.8!

where the expansion coefficientscl m can be determined
from
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cl mA2/rJ2l 11~A8r !¥
r→`

cl m

321/4p21/2r23/4~21! l cosSA8r2
3

4
p D

52pE
0

p

cm
ret,k~r ,q!Yl m~q,0!sinqdq

'2~2p!3/2Asinq isinq fYm~q i !Yl m~q f ,0!

3expS i FSmk 2
p

2
mk1

p

4 G D

3 (
l5out,in

E
0

p
expH i FDSl,k~r ,q!2

p

2
Dml,kG J

F rUdetS ]~m,n!

]~t,q i !
D l,kUdqG1/2 dq.

~3.9!

In Eq. ~3.9! we have exploited the asymptotic form of th
Bessel function, and the fact that the phase integral ha
main contribution around the angleq'q f of the returning
orbit, and that spherical harmonics with low-l quantum
numbers are smooth functions ofq. The form ~3.8! is cor-
rect, in particular, in the region of the initial state, where t
dipole matrix element has to be evaluated. Therefore we
insert Eq.~3.8! into Eq. ~3.2!, and obtain

f k
osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !

3ImHA expS i FSmk 2
p

2
mk1

p

4 G D J , ~3.10!

where the complex amplitudeA is defined by

I ~r ![ (
l5out,in

E
0

p
expH i FDSl,k~r ,q!2

p

2
Dml,kG J

FUdetS ]~m,n!

]~t,q i !
D l,kUG1/2 dq

5A
cosSA8r2

3

4
p D

2p~2r !1/4
~3.11!

~Eq. ~3.9! guarantees that the quantityI (r ) will always fac-
torize in this form!. ThusA can be determined by evaluatin
I (r ) at some value ofr where, again, the semiclassical a
proximation is valid but magnetic-field effects are still ne
ligible.

Equation~3.11! is the basis for the subsequent unifor
approximations of the amplitudeA. The decisive quantities
entering intoA areDS, Dm, and the Jacobi matrix in the
neighborhood of a returning~exactly closed! orbit. In the
case of bifurcations, i.e., catastrophes, the behavior of th
quantities differs significantly from that in the standard si
ation of isolated returning orbits, as will become evident
the following sections.
its

an

se
-

B. The standard situation: Isolated returning orbits

For completeness, and illustrative purposes, we start
discussion with the standard situation of nonbifurcating i
lated returning orbits. We pick some closed orbitk, and will
drop the indexk for simplicity in what follows. In semipa-
rabolic coordinates the returning trajectories are straight li
in the vicinity of the origin, inclined at an angleq f /2 with
respect to them axis. It is most convenient to introduce th
rotated semiparabolic coordinates

j5mcos
q f

2
1nsin

q f

2
5A2rcos

q2q f

2
, ~3.12!

h5ncos
q f

2
2msin

q f

2
5A2rsin

q2q f

2
, ~3.13!

where thej andh axes are now parallel and perpendicular
the returning orbit ~see Fig. 5!. All orbits satisfy the
Hamilton-Jacobi equations

pj5
]S

]j
52, ph5

]S

]h
50. ~3.14!

The central returning~i.e., exactly closed! orbit is given by
h(j)50, while for the neighboring trajectories we have

h~j!5m12Dq i , ~3.15!

wherem12 is an element of the monodromy matrix, an
Dq i is the deviation of the starting angle of the neighbori
trajectory. We immediately obtain

DSl~r ,q!562uju56A8rcos
q2q f

2

56@A8r2Ar /8~q2q f !
2#, q'q f ~3.16!

detS ]~m,n!

]~t,q i !
D l

5detS ]~j,h!

]~t,q i !
D l

52m12. ~3.17!

The Maslov index increases by 2 when the orbit passes
origin, i.e., the Maslov indices of the incoming and outgoi
trajectory differ by

Dml561. ~3.18!

FIG. 5. Returning orbits close to the nucleus in the stand
situation~monodromy matrix elementm12Þ0) in rotated semipara-
bolic coordinates (j,h). Neighboring orbits are straight lines para
lel to thej axis.
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1750 55JÖRG MAIN AND GÜNTER WUNNER
Inserting Eqs.~3.16! to ~3.18! into Eq.~3.11! we obtain~with
the integration range of the stationary phase integral form
extended to6`)

I ~r !5F 2

um12u
G1/2E

2`

1`

sin@A8r2Ar /8~q2q f !
2#dq

5Ap25/4r21/4
1

Aum12u
cosSA8r2

3

4
p D , ~3.19!

⇒A52~2p!3/2
1

Aum12u
. ~3.20!

The contribution of a nonbifurcating isolated returning or
to the oscillator strength then reads~with the scaled mono-
dromy matrix elementm̃125g1/3m12)

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2~2p!3/2g1/6

3
1

Aum̃12u
sinSSm0 2

p

2
m01

p

4 D . ~3.21!

This is exactly the result of conventionalclosed-orbittheory
@7,8#. Obviously the oscillator strength diverges, i.e., conve
tional closed-orbit theory fails, at bifurcations of orbit
wherem̃1250. The reason for the occurrence of the dive
gence is that, in such a case, Eq.~3.15! does not correctly
represent the behavior in the neighborhood of the cen
returning orbit. Thus the decisive point in the construction
a uniform semiclassical approximation in the vicinity of b
furcating points is an adequate expansion of Eq.~3.15! to
higher orders inDq i . The order of the expansion require
depends on the type of catastrophe, and therefore each
has to be treated separately. We shall investigate the
cusp, and butterfly catastrophes.

C. The fold catastrophe

An example for the occurrence of a fold catastophe in
hydrogen atom in a magnetic field is the creation of
closed orbitX1 through a saddle-node bifurcation at th
scaled energyẼb520.115 442 16 discussed in Sec. II A
The family of corresponding returning orbits satisfy t
Hamilton-Jacobi equations~in rotated semiparabolic coord
nates, withpj5]S/]j andph5]S/]h)

cph
21pj@jph2pj~h2h0!#50,

pj
21ph

254 ~3.22!

from which we obtain~with ph /pj'aDq i)

h~j!5h01a2c~Dq i !
21a~Dq i !j. ~3.23!

Hereh0, a, andc are constants which will be specified late
The fold is illustrated in Fig. 6. At any point (j,h) Eq. ~3.23!
is a quadratic equation inDq i , with the discriminant

D5
1

~2ac!2
$j214c~h2h0!%. ~3.24!
ly

t

-

-

al
f

ase
ld,

e
e

If D.0 there exist two real solutions forDq i , i.e., two
orbits return to these points, but no orbit returns to the
points ifD,0. The border line belonging toD50 between
the allowed and forbidden area is a caustic which has
shape of a parabola~see Fig. 6!. The Hamilton-Jacobi equa
tions ~3.22! of the fold can be solved analytically. Howeve
in the following derivations it is more convenient to use
approximate solution valid in the neighborhood of the cen
returning orbit

DSl~r ,q!56FA8r2h0~q2q f !2
c

12
~q2q f !

3G ,
q'q f . ~3.25!

The determinant in the denominator of Eq.~3.11! is found to
be given by

detS ]~m,n!

]~t,q i !
D l

5detS ]~j,h!

]~t,q i !
D l

562aAj214c~h2h0!¥
r@0

6aA8r , q'q f ~3.26!

i.e., in the direction of the returning orbit it exhibits the b
havior of a focus of orbits at the origin. This focus causes
additional increase of the Maslov index of outgoing trajec
ries; i.e., we have

Dmout512, Dm in521. ~3.27!

We now insert Eqs.~3.25!, ~3.26!, and~3.27! into Eq.~3.11!.
Extending formally again the integration range of the statio
ary phase integral to6`, we can express the integral i
terms of the Airy function@26#:

FIG. 6. Fold catastrophe of returning orbits~in rotated semipa-
rabolic coordinates! related to the saddle-node bifurcation of orb
X1 at bifurcation energyẼb520.115 442 16.
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I ~r !521/4r21/4uau21/2

3expS 2 i
p

4 D E
2`

1`

cosSA8r2
3

4
p2h0~q2q f !

2
c

12
~q2q f !

3Ddq

521/4r21/4uau21/2expS 2 i
p

4 D cosSA8r2
3

4
p D

32p~4/c!1/3Ai „~4/c!1/3h0… ~3.28!

⇒A525/2p2uau21/2

3expS 2 i
p

4 D ~4/c!1/3Ai „~4/c!1/3h0…. ~3.29!

After inserting the amplitudeA into Eq. ~3.10!, the contri-
bution of a fold catastrophe to the total semiclassical os
lator strength~3.1! reads

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2
5/2

3uau21/2~4/c!1/3Ai „~4/c!1/3h0…sinSSm0 2
p

2
m0D .

~3.30!

In Eq. ~3.30! the parametersa, c, andh0 are still undeter-
mined. In the following we demonstrate that these para
eters are directly related to closed classical trajectories.
can be seen from Eq.~3.24! no orbit returns to the origin
(j5h50) for ch0.0 while two closed orbits exist fo
ch0,0, i.e., at energies above the bifurcation energy. In
limit ch0!0, therefore, Eq.~3.30! should lead to the resul
of the standard situation~Eq. 3.21!, applied to the two closed
orbits. Taking the asymptotic forms of the Airy function~see
Appendix B 1! in the limit ch0!0 we obtain from Eq.~3.30!

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2
3/2p21/2

3uau21/2~2ch0/4!21/4

3FsinSSm0 2
2

3
A24h0

3/c2
p

2
m01

p

4 D
1sinSSm0 1

2

3
A24h0

3/c2
p

2
~m011!1

p

4 D G .
~3.31!

Comparing this expression with Eq.~3.21! we can identify
the contributions of two closed orbits with the Maslov ind
cesm0 andm011. The classical actionsS and monodromy
matrix elementsm12 of these orbits, expressed in terms of t
parametersa, c, andh0 in Eq. ~3.31!, must be identical to
those obtained directly from classical trajectory calculatio
~see Sec. II A!, from which we find the relations

S5Sm
0 7 2

3A24h0
3/c[Sm

0 7g21/3s̃~Ẽ2Ẽb!
3/2,

~3.32!
l-

-
s

e

s

m12562p4ac2/3A2h0c
21/3[6g21/3M̃ ~Ẽ2Ẽb!

1/2.
~3.33!

With the help of these relations the semiclassical oscilla
strength~3.30! can be expressed in terms of the paramet
s̃ and M̃ that follow directly from the classical trajector
calculations. The final result for the contribution of a fo
catastrophe thus reads

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2
7/2

3p2g1/9~3s̃/2!1/6uM̃ u21/2

3Ai „~3s̃/2!2/3g22/9~Ẽb2Ẽ!…

3sinSSm0 2
p

2
m0D . ~3.34!

It is also illustrative to investigate the asymptotic behav
of Eqs.~3.30! and~3.34! in the limit ch0@0; i.e., at energies
Ẽ below the bifurcation energyẼb , where no orbit returns to
the origin, because this reveals the role of the comp
‘‘ghost’’ orbits discussed in Sec. B 1. In the caseẼ!Ẽb the
asymptotic form of the Airy function~see Appendix B 1! can
be used in Eq.~3.34! to obtain

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2~2p!3/2

3g1/6uM̃ u21/2~Ẽb2Ẽ!21/4

3ImH expS i FSm0 1 i s̃g21/3~Ẽb2Ẽ!3/22
p

2
m0G D J .

~3.35!

Formally this equation coincides with Eq.~3.21!, but for a
closed orbit with a complex action and imaginary mon
dromy matrix element

S5Sm
0 1 ig21/3s̃~Ẽb2Ẽ!3/2, ~3.36!

m125 ig21/3M̃ ~Ẽb2Ẽ!1/2. ~3.37!

This is precisely the behavior found in the investigation
ghost orbits at energies below a saddle-node bifurcation~see
Sec. II A!. Obviously, as one moves away from the bifurc
tion point to smaller energies, the positive imaginary part
S grows, and thus the contribution of the ghost orbit to t
semiclassical oscillator strength is damped exponentially

In the classical calculations, the complex-conjugate gh
with negative imaginary part of the action, also exists. In
above semiclassical formulas this complex-conjugate gh
would produce an unphysical exponential increase of the
plitude at energies below the bifurcation point. Thus we ha
as a by-product of the derivation of uniform semiclassi
formulas that ghost orbits of this type have no physi
meaning. In other words, they must not be included in
standard formula~3.21! since they do not appear in the a
ymptotic expansion of the uniform approximation of the o
cillator strength.

The uniform solution~3.34! for the fold catastrophe ha
the benefit of connecting both asymptotic situations, the c
tribution of the physical ghost orbit at energies below t
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saddle-node bifurcation and the two real orbits at energ
above the bifurcation, without exhibiting any singularity
the bifurcation point.

D. The cusp catastrophe

The second fundamental catastrophe is the cusp, as i
curs, for example, at the period-doubling bifurcation of t
balloon orbit V1

1 at scaled energyẼb520.342 025 8~see
Sec. II B!. The Hamilton-Jacobi equations for the returni
orbits at the cusp read~with pj5]S/]j andph5]S/]h)

2cph
31pj

2@~j2j0!ph2hpj#50,

pj
21ph

254, ~3.38!

and we obtain~with ph /pj'aDq i and parametersa, c, and
j0 specified later!

h~j!52a3c~Dq i !
31a~Dq i !~j2j0!. ~3.39!

The bunch of orbits forming the cusp is shown in Fig.
Equation ~3.39! is a cubic polynomial inDq i with one or
three real zeros, depending on the sign of

D527ch212~j2j0!
3. ~3.40!

Both regions are separated by a caustic given byD50, i.e.,
h25(2/27c)(j02j)3. In contrast to the fold catastroph
there is no classical forbidden region without any real so
tion of Eq. ~3.39!.

We shall now derive a uniform semiclassical approxim
tion for the cusp catastrophe. The decisive point is again
find a solution for the classical action and the determinan
Eq. ~3.11!. Solving the Hamilton-Jacobi equations~3.38! in
the vicinity of the central returning orbit (r@0, q'q f) we
obtain the classical action

FIG. 7. Cusp catastrophe of returning orbits~in rotated semipa-
rabolic coordinates! related to the period-doubling bifurcation of th
balloon orbitV1

1 at bifurcation energyẼb520.342 025 8.
s

c-

.

-

-
to
n

DSl~r ,q!56A8r1 1
4 j0~q2q f !

22 1
16c~q2q f !

4

~3.41!

and for the determinant in the denominator of Eq.~3.11! we
have

detS ]~m,n!

]~t,q i !
D l

5detS ]~j,h!

]~t,q i !
D l

¥

r@0
6aA8r , q'q f .

~3.42!

After summing up the contributions of the incoming an
outgoing orbit ~with the correct Maslov indices
Dmout512,Dm in521), the stationary phase integral in E
~3.11! for the cusp catastrophe reads~with t[q2q f)

I ~r !521/4r21/4uau21/2expS 2 i
p

4 D cosSA8r2
3

4
p D

3E
2`

1`

exp$ i @~j0/4!t22~c/16!t4#%dt. ~3.43!

From Eq.~3.11! we now obtain the amplitude

A525/2puau21/2expS 2 i
p

4 D c21/4F~2c21/2j0!,

~3.44!

where

F~x![E
2`

1`

exp~2 i @xt21t4# !dt ~3.45!

is a special case of Pearcey’s integral@25# that can be solved
analytically ~see Appendix B 2!. Inserting the amplitudeA
@Eq. ~3.44!# into Eq.~3.10! we finally obtain the contribution
of the cusp to the total oscillator strength~3.1!

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2
5/2p

3uau21/2c21/4ImH expS i FSm0 2
p

2
m0G DF~2c21/2j0!J .

~3.46!

To find the relation between the parametersa, c, andj0 and
parameters of the closed classical orbits we proceed in
analogous manner as for the fold, and discuss the asymp
behavior of Eq.~3.46! in the limit j0!0 andj0@0, i.e., at
scaled energies far from the bifurcation point. Applying t
asymptotic formulas forF(x) @Eq. ~B9! of Appendix B 2#
we obtain
f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2~2p!3/2uaj0u21/2

3H sinFSm0 2
p

2
~m011!1

p

4 G ; j0!0

sinSSm0 2
p

2
m01

p

4 D 1A2sinFSm0 1
j0
2

4c
2

p

2
~m011!1

p

4 G ; j0@0.

~3.47!
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By comparing with Eq.~3.21! and with the classical dynam
ics at the period-doubling bifurcation~see Sec. II B! we find
the following physical interpretation of Eq.~3.47!. There is
one real closed orbit with classical actionSm

0 which exists
both below and above the bifurcation point. The Maslov
dex of this orbit changes by one when the orbit underg
the bifurcation and the monodromy matrix elementm12 must
obey the relation

m1252aj0[2g21/3M̃ ~Ẽ2Ẽb!. ~3.48!

The remaining term atj0@0 can be interpreted as the sum
two real orbit contributions with the Maslov indexm011
and classical action and monodromy matrix element

S5Sm
0 1

1

4c
j0
2[Sm

0 1g21/3s̃~Ẽ2Ẽb!
2, ~3.49!

m1252aj0[2g21/3M̃ ~Ẽ2Ẽb!. ~3.50!

In the investigation of closed orbits around the perio
doubling bifurcation~Sec. II B!, in addition to the real orbits
two ghost orbits have been found at energies below the
furcation energy with the somewhat strange property that
classical actionS and monodromy matrix elementm12 both
remain real, although the coordinates and momenta in ph
space are complex. Contrary to the fold catastrophe, in
asymptotic expansion~3.47! of the uniform solution~3.46!
for a cusp, no ghost contribution appears; i.e., these
ghost orbits are both without physical meaning in the pho
absorption process. With the help of Eqs.~3.49! and ~3.50!
we can finally express the uniform solution~3.46! com-
pletely in terms which are accessible from closed-orbit c
culations

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !8pg1/12s̃1/4

3uM̃ u21/2 ImH expS i FSm0 2
p

2
m0G D

3F@2s̃1/2g21/6~Ẽb2Ẽ!#J . ~3.51!

E. The butterfly catastrophe

As an example of even more complicated catastrophes
investigate in this section the bifurcation ofR2, i.e., the sec-
ond return of the perpendicular orbit around the scaled
ergyẼ520.316. A detailed classical analysis~see Sec. II C!
exhibits a sequence of two different elementary types of
furcations at almost the same point. At the scaled ene
Ẽb
(1)520.317 353 45 two closed orbits, namely,R2

1 and a
second orbit with similar shape, which we callR2

1b, are cre-
ated by a saddle-node bifurcation related to a fold catas
phe. At the only slightly higher energy Ẽb

(2)5

20.316 185 37 the orbitR2
1b already vanishes again in

period-doubling bifurcation with the second return of t
perpendicular orbitR2, i.e., in a catastrophe where neighbo
ing returning orbits form a cusp. The energy spacing
tween both bifurcations is so small that they cannot
treated as isolated, and none of the uniform formulas
-
s

-

i-
e

se
e

o
-

l-

e

n-

i-
y

o-

-
e
q.

~3.34! for the fold and Eq.~3.51! for the cusp, can be applie
in a semiclassical calculation of oscillator strengths. The c
rect uniform approximation must describe both bifurcatio
simultaneously, i.e., a more complicated type of catastrop
viz. a butterfly catastrophe, must be investigated.

The bunch of trajectories forming the butterfly is given
the Hamilton-Jacobi equations~with pj5]S/]j and
ph5]S/]h)

3dph
512cpj

2ph
31pj

4@~j2j0!ph2hpj#50,

pj
21ph

254, ~3.52!

where the parametersc, d, and j0 will be specified later.
With ph /pj'aDq i we obtain

h~j!53a5d~Dq i !
512a3c~Dq i !

31a~Dq i !~j2j0!.
~3.53!

The butterfly is illustrated in Fig. 8. Depending on the nu
ber of real solutionsDq i of Eq. ~3.53! there exist one, three
or five orbits returning to each point (j,h). The different
regions are separated by caustics.

To find a uniform semiclassical approximation for th
butterfly catastrophe, we have to solve the Hamilton-Jac
equations~3.52!, at least in the vicinity of the central return
ing orbit, and to insert the actionS(r ,q) into Eq.~3.11!. For
the classical action we obtain

FIG. 8. ~a! Butterfly catastrophe of returning orbits~in rotated
semiparabolic coordinates! related to the bifurcation of the perpen
dicular orbit at Ẽb520.316 185 37. ~b! Magnification of the
marked region close to the nucleus. There are one, three, or
orbits returning to each point (j,h) in phase space.
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DSl~r ,q!56A8r1 1
4 j0~q2q f !

21 1
16c~q2q f !

4

2 1
64d~q2q f !

6, ~3.54!

and for the determinant in the denominator of Eq.~3.11! we
find 6aA8r in the limit r@0 andq'q f , i.e., the same
result ~3.42! as for the cusp. Summing up in Eq.~3.11! the
contributions of the incoming and the outgoing orbit~with
Maslov indicesDml as for the cusp! we obtain the integra
I (r ) and the amplitudeA for the butterfly catastrophe
(t[q2q f)

I ~r !521/4r21/4uau21/2expS 2 i
p

4 D cosSA8r2
3

4
p D

3E
2`

1`

exp$ i @~j0/4!t22~c/16!t42~d/64!t6#%dt,

~3.55!

⇒A525/2puau21/2expS 2 i
p

4 Dd21/6C~2d21/3j0 ,2cd22/3!,

~3.56!

where

C~x,y![E
2`

1`

exp~2 i @xt21yt41t6# !dt ~3.57!

is an analytic function in both variablesx andy. Its numeri-
cal calculation and asymptotic properties are discusse
Appendix B 3. The uniform result for the oscillatory part
the transition strength now reads

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2
5/2p

3uau21/2d21/6

3ImH expS i FSm0 2
p

2
m0G DC~2d21/3j0 ,2cd22/3!J .

~3.58!

It is very illustrative to study the asymptotic behavior of t
uniform approximation~3.58! as we obtain, on the one han
the relation between the parametersa, c, d, andj0 and the
actions and the monodromy matrix elements of closed c
sical orbits, and, on the other hand, the role of complex gh
orbits related to this type of bifurcation is revealed. In t
following we discuss both limitsj0@0, i.e., scaled energy
Ẽ@Ẽb

(2) , andj0!0, i.e., Ẽ!Ẽb
(1) .

1. Asymptotic behavior at scaled energy E˜@Ẽb
„2…

Applying Eq.~B13! from Appendix B 3 to theC function
in the uniform approximation~3.58!, we obtain the asymp
totic formula forj0@0
in

s-
st

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2~2p!3/2

3uaj0u21/2H sinSSm0 2
p

2
m01

p

4 D
1F11

c2

3dj0
@11A~3d/c2!j011#G21/2

3sinSSm0 1
c3

9d2 H 3dc2 j01
2

3F11S 11
3d

c2
j0D 3/2G J

2
p

2
~m011!1

p

4 D J . ~3.59!

Comparing this with Eq.~3.21! we can identify the contribu-
tions of three real closed orbits. The classical action of o
1 is Sm

0 , its Maslov index ism0 and the monodromy matrix
elementm12 is given by

m12
~1!52aj0[2g21/3M̃ ~Ẽ2Ẽb!, ~3.60!

where the parameterM̃ can be determined by closed-orb
calculations~see Sec. II C!. Orbits 2 and 3 are symmetri
with respect to thez50 plane and have the same orbit
parameters, i.e., Maslov indexm011 and the classical action
and the monodromy matrix element

S~2,3!5Sm
0 1DS

5Sm
0 1

c3

9d2 H 3dc2 j01
2

3F11S 3dc2 j011D 3/2G J ,
~3.61!

m12
~2,3!54aj0F11

c2

3dj0
@11A~3d/c2!j011#G .

~3.62!

In the example of the bifurcation of orbitR2 at scaled energy
Ẽb
(2)520.316 185 37, orbit 1 is the orbitR2 perpendicular to

the magnetic-field axis, while orbits 2 and 3 can be identifi
with R2

1 traversed in both directions (q i ,35p2q i ,2). With
the help of Eqs.~3.60! to ~3.62! and classical scaling prop
erties of the action and the monodromy matrix the para
etersa, c, d, andj0 in the uniform approximation~3.58! can
now be expressed completely in terms of closed-orbit par
etersk, s̃, andM̃ ~see Sec. II C!,

uau21/2d21/6531/6g1/18k1/3~ s̃/M̃ !1/2,

d21/3j0531/3k2/3g22/9s̃~Ẽ2Ẽb
~2!!, ~3.63!

cd22/35~9k!1/3g21/9.

In the classical analysis complex ghost orbits were d
covered both below and above the bifurcation energy.
Ẽ.Ẽb

(2) they have the property that the classical action a
the monodromy matrix remain real, although coordinates
momenta in phase space are complex. These ghost orbi
not appear in the asymptotic expansion~3.59! of the uniform
approximation~3.58!, and therefore, in analogy with the cus
catastrophe, they do not have a physical meaning. The
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ation is different at energyẼ,Ẽb
(1) where a ‘‘hidden ghost’’

with physical meaning will be revealed in Sec. III E 2.

2. Asymptotic behavior and ‘‘hidden ghost’’
at scaled energy E˜!Ẽb

„1…

At scaled energies below the bifurcation point we c
apply the asymptotic formula~B15! from Appendix B 3 to
theC function in the uniform approximation~3.58! and ob-
tain

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !2~2p!3/2

3uaj0u21/2H sinSSm0 2
p

2
~m011!1

p

4 D
1ImH F11

c2

3dj0
@12 iA2~3d/c2!j021#G21/2

3expS i FSm0 1
c3

9d2 H 3dc2 j0

1
2

3F11 i S 2
3d

c2
j021D 3/2G J 2

p

2
m01

p

4 G D J J .
~3.64!

The first term in Eq.~3.64! can be identified as a real orb
with the same classical action and monodromy matrix e
ment as in Eq.~3.59!, but with a Maslov index increased b
one. The second term in Eq.~3.64! is a ghost orbit contribu-
tion resulting from a superposition of two closed orbits w
complex action and monodromy matrix element,

S~2,3!5Sm
0 1

c3

9d2 H 3dc2 j01
2

3F11 i S 2
3d

c2
j021D 3/2G J ,

~3.65!

m12
~2,3!54aj0F11

c2

3dj0
@12 iA2~3d/c2!j021#G ,

~3.66!

traversed in both directions. The positive imaginary part
the classical action results in an exponential damping of
ghost orbit contribution to the oscillator strength amplitu
with decreasing energy similar to the situation at a fold
tastrophe discussed above. In contrast to the fold, howe
the ghost orbit related to a butterfly catastrophe is alw
accompanied by a real orbit with almost the same class
action. Because the contribution of the real orbit is not
ponentially damped its amplitude at energies where the
ymptotic formula~3.64! is valid is much stronger than th
ghost contribution. Therefore we call the ghost orbit in E
~3.64! a ‘‘hidden ghost,’’ and it might be rather difficult to
find evidence for such a hidden ghost orbit related to a b
terfly catastrophe in the Fourier transform of, e.g., exp
mental scaled energy spectra.

Note that, classically, the complex conjugate of the h
den ghost orbit also exists. The negative imaginary part o
classical action would result in an unphysical exponen
increase of amplitude with decreasing energy, and con
quently the complex-conjugate ghost orbit does not appea
the asymptotic formula~3.64!.
-
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Finally, after inserting Eq.~3.63! in Eq. ~3.58!, the uni-
form approximation for the butterfly catastrophe reads

f osc52~E2Ei !Asinq isinq fYm~q i !Ym~q f !

3pg1/1831/6k1/3~32s̃/M̃ !1/2

3ImH expS i FSm0 2
p

2
m0G D

3C„231/3k2/3g22/9s̃~Ẽ2Ẽb
~2!!,2~9k!1/3g21/9

…J .
~3.67!

IV. RESULTS AND DISCUSSION

We now discuss the effects of bifurcations and ghost
bits on photoabsorption spectra of the hydrogen atom i
magnetic field and compare the uniform semiclassical res
derived in the preceding chapter to solutions of stand
closed-orbit theory. Semiclassically each closed orbit gen
ates a modulation in the photoabsorption cross section. H
we are not interested in the energy and field dependenc
these modulations, which are directly related to the class
actionS of closed orbits, but in the behavior of theirampli-
tudes, especially in the vicinity of bifurcations. In the follow
ing we also drop the common prefactor:

2~E2Ei !~sinq isinq f !
1/2Ym~q i !Ym~q f !

in formulas for the oscillatory partf osc of the photoabsorp-
tion cross section. This prefactor depends on the inital s
and excitation process~see Appendix A! and is, for low-
lying initial states, a slowly varying function of the initia
and final angles of closed orbits. The amplitudeA(Ẽ,g) can
now be defined as

A~Ẽ,g!5U(
k
Ak~Ẽ,g!expS i FSmk ~Ẽ,g!2

p

2
mk1

p

4 G DU.
~4.1!

By taking the absolute value instead of the imaginary par
Eq. ~4.1! we suppress, for the graphical presentation of
sults, the high oscillatory modulations caused by the ene
and field dependence of the classical actionSm

k (Ẽ,g). Nev-
ertheless, the exponential function in Eq.~4.1! is important
when applying Eq.~4.1! to nonuniform standard solutions o
closed-orbit theory with coefficientsAk given by Eq.~3.20!,
i.e., ~in scaled variables!

Ak52~2p!3/2g1/6@m̃12,k~Ẽ!#21/2. ~4.2!

In this case we add, in Eq.~4.1!, the contributions of all real
closed orbits and ghostsk which are included in the corre
sponding uniform approximation. Interference effects b
tween these orbits are now taken care of by the expone
function. Furthermore, the classical action of ghost orb
may be complex, which results, for a positive imaginary p
of the action, in an exponential damping of ghost orbit co
tributions. Note that the energy dependence of amplitu
~4.1! can be measured experimentally byscaled energy spec



-
n

d

w

er
th
b
on
on
ho
th
e
-
in
an
in
e

l
c-

ry

ut,
w
li-

iod-

ur-
on,

f
the
ted
ere-
on

ude
ed

rs
n-
ral,
e
w
ses
n-

ith
er-
in
of
en-

he
rfly
ce-
er-

the
des
the

1756 55JÖRG MAIN AND GÜNTER WUNNER
troscopy @3,9,21# when following the peak hights of reso
nances in the (Ẽ,S̃) diagram of Fourier transform actio
spectra.

First we discuss the fold catastrophe related to the sad
node bifurcation of orbitX1. The amplitudesA(Ẽ,g) at con-
stant magnetic-field strengthg5431026 are presented in
Fig. 9~a!. The dashed line shows the superposition of the t
real orbitsX1

a and X1
b at energiesẼ.Ẽb . The oscillatory

structure of the amplitude is the result of a strong interf
ence between these two orbits. At the bifurcation energy
amplitude diverges. Note that the amplitude at energies
low the bifurcation point is zero in the standard formulati
of the closed-orbit theory, i.e., when only real orbits are c
sidered. The dashed-dotted line is the extension when g
orbit contributions are also included. We only consider
ghost with a positive imaginary part of complex action b
cause only this ghost has a physical meaning~see the discus
sion in Sec. III C!. The amplitude decreases exponentially
2(Ẽb2Ẽ)3/2 with decreasing energy, but also exhibits
unphysical divergence at the bifurcation point. The solid l
in Fig. 9~a! is the uniform approximation for the amplitud
which we obtain from Eq.~3.34! as

A~Ẽ,g!527/2p2g1/9~3s̃/2!1/6uM̃ u21/2

3uAi „~3s̃/2!2/3g22/9~Ẽb2Ẽ!…u, ~4.3!

with parametersẼb , s̃, andM̃ determined from the classica
trajectory calculations in Sec. II A. Apart from constant fa

FIG. 9. Semiclassical amplitudes.~a! X1 ~fold catastrophe!,
magnetic field strengthg5431026 a.u.;~b! V2

2 ~cusp catastrophe!,
g51027; ~c! R2 ~butterfly catastrophe!, g51027. Dashed lines:
Amplitudes in the standard model. Dashed-dotted line@in ~a!#:
Ghost orbit contribution. Solid lines: Uniform approximations.
le-

o

-
e
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-
st
e
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e

tors, the uniform approximation to the amplitude is an Ai
function in terms of the energy differenceẼb2Ẽ. Both the
oscillatory structure of the amplitude atẼ.Ẽb and the ex-
ponentially damped ghost orbit tail are well reproduced, b
in addition, the singularity at the bifurcation point is no
completely removed. Note that the maximum of the amp
tude is not located at the bifurcation pointẼ5Ẽb but is
shifted to a slightly higher energy.

The results for the cusp catastrophe related to the per
doubling bifurcation of the balloon orbitV1

1 are illustrated in
Fig. 9~b! ~magnetic-field strengthg51027). The nonuni-
form amplitude is plotted as a dashed line. Above the bif
cation energy, three real orbits, the period-doubled ballo
V2
2, and the bifurcated orbit,V2

2* , traversed in both direc-
tions, are considered in Eq.~4.1!, and the interference o
these three orbits produces the oscillatory fluctuations of
amplitude. As discussed in Sec. III D the ghost orbits rela
to the cusp catastrophe have no physical meaning and, th
fore, only the real orbit, i.e., the period doubled ballo
V2
2, is considered atẼ,Ẽb . The nonuniform solution is

characterized by an unphysical divergence of the amplit
around the bifurcation energy, but the singularity is remov
in the uniform approximation@solid line in Fig. 9~b!#

A~Ẽ,g!58pg1/12s̃1/4uM̃ u21/2uF„2s̃1/2g21/6~Ẽb2Ẽ!…u
~4.4!

obtained from Eq.~3.51!, and with the classical paramete
Ẽb , s̃, and M̃ determined in Sec. II B. The energy depe
dence is given by a special case of Pearcey’s integ
F(x) ~see Appendix B 2!. In contrast to the fold catastroph
@Fig. 9~a!# there is a real orbit, instead of a ghost orbit, belo
the bifurcation point and therefore the amplitude decrea
;(Ẽb2Ẽ)21/2 rather than exponentially with decreasing e
ergy. The modulations of amplitudes atẼ.Ẽb are also less
pronounced, and, in particular, there are no energies w
vanishing amplitude, i.e., with complete destructive interf
ence between all closed-orbit contributions. Oscillations
periodic orbit contributions related to a cusp catastrophe
returning trajectories have recently been verified experim
tally in Stark spectra of lithium atoms@21#.

Finally we discuss the amplitudes of modulations for t
butterfly catastrophe of returning trajectories. The butte
catastrophe is related to a more complicated bifurcation s
nario as found, e.g., around the period doubling of the p
pendicular orbit~see Sec. II C!. The uniform approximation
to the amplitudes is obtained from Eq.~3.67!,

A~Ẽ,g!5pg1/1831/6k1/3~32s̃/M̃ !1/2

3uC@231/3k2/3g22/9s̃~Ẽ2Ẽb
~2!!,

2~9k!1/3g21/9#u, ~4.5!

with the closed-orbit parametersk, s̃, M̃ , and Ẽb
(2) deter-

mined in Sec. II C and the integralC(x,y) solved in Appen-
dix B 3. Results forg51027 are presented in Fig. 9~c!. The
solid line is the uniform approximation~4.5!, and for com-
parison the dashed line shows the nonuniform solution of
standard closed-orbit theory. The modulations of amplitu
at energies above the bifurcation point are caused by
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55 1757HYDROGEN ATOM IN A MAGNETIC FIELD: GHOST . . .
interference of three closed orbits, namely, the peri
doubled perpendicular orbit,R2, and the ‘‘Pacman’’ orbit,
R2
1, traversed in both directions. Ghost orbits exist at th

energies but have no physical meaning~see Sec. III E!. Be-
low the bifurcation point one real orbit,R2, and, in addition,
a ghost orbit~and its time reversed counterpart! contribute to
the semiclassical photoabsorption spectrum. As in the cas
a fold catastrophe the amplitude of the ghost orbit is dam
exponentially with decreasing energy, but now the ghos
not isolated and its contribution is surpassed by that of
perpendicular orbit, i.e., the ghost is ‘‘hidden’’ behind th
real orbit.

V. CONCLUSIONS

Photoabsorption spectra of hydrogen in a magnetic fi
calculated semiclassically by application of closed-or
theory in its original version@7,8#, suffer from singularities
at energies where orbits undergo bifurcations. The unifo
approximations derived in this paper significantly impro
on those calculations and remove unphysical singulari
from the spectra. The total oscillator strength~3.1! is divided
into three parts,

f5 f 01 (
kstandard

f kstandard
osc 1 (

k uniform
f k uniform
osc , ~5.1!

with f 0 the smoothly varying continous background a
f k,standard
osc the oscillatory part from the contributions of iso
lated closed orbits sufficiently far away from any bifurc
tions. In this case the returning trajectories do not form
catastrophe at the origin and Eq.~3.21! can be applied. The
third term in Eq.~5.1! adds the contributions of closed orbi
near bifurcations, i.e., when returning trajectories form a
tastrophe at the origin. The uniform approximations depe
on the specific type of the catastrophe. In this paper we h
investigated, in detail, the fold, cusp, and butterfly catas
phe, wheref k,uniform

osc is given by Eqs.~3.34!, ~3.51!, and
~3.58!, respectively. Note that each of these terms usu
represents the contributions of several strongly interac
closed orbits including ghosts.

We believe that a large variety of singularities in sem
classical photoabsorption spectra of the hydrogen atom
magnetic field can be removed by one of the uniform form
las mentioned above. The ‘‘exotic’’ orbits@3,9# are usually
created in a saddle-node bifurcation, with the trajector
forming a fold close to the origin. As an example we ha
studied the shortest exotic orbitX1, but obviously the uni-
form result for the fold catastrophe can be applied in
analogous situations. Also the uniform solution for the cu
catastrophe is not at all restricted to a period-doubling bif
cation of orbits~e.g., the period doubling of the balloon orb
V1
1) but is valid for any period-n bifurcation whenever re-

turning orbits form a cusp. Last, but not least, the perp
dicular orbitR1 undergoes an organized sequence of peri
n bifurcations at energiesẼ,20.1273, at which energy th
orbit finally becomes unstable. The systematics of this
quence is explained in@11# by application of the norma
form theory. The creation and annihilation of orbitsRm

n is
similar to the bifurcation scenario of orbitsR2 andR2

1 dis-
cussed in this paper, the returning orbits form a butte
-
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close to the origin, and the corresponding uniform appro
mations can be applied to semiclassical calculations of
photoabsorption cross section.

However, the set of catastrophes discussed in this pap
certainly not complete. The possible geometries of elem
tary catastrophes are systematically studied in catastro
theory~see, e.g.,@16#!. A complete investigation of all types
of catastrophes existing in atoms in external fields and
derivation of related uniform semiclassical approximations
subject to future work. For example, closed-orbit bifurc
tions might exist where the returning trajectories form
swallowtail. We also do not study bifurcations of the paral
orbit in this paper. The parallel orbit requires special tre
ment because of a symmetry property of nearby orbits wh
are invariant under rotations of the azimuthal angle,w.

The application of uniform semiclassical approximatio
must not be restricted to the hydrogen atom. Investigati
of nonhydrogenic atoms have revealed the importance
classical trajectories scattered at the ionic core@24#. The core
scattering results in a dramatic increase in the numbe
closed orbit bifurcations which are related to singularities
the semiclassical photoabsorption spectra. Thus we ex
uniform approximations to be a powerful tool to remove u
physical singularities from semiclassical spectra, not only
hydrogen but of nonhydrogenic atoms as well.
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APPENDIX A: ANGULAR FUNCTION Ym„q…

The angular functionYm(q) solely depends on the initia
statec i and the dipole operatorD and is a linear superposi
tion of spherical harmonics

Ym~q!5 (
l 5umu

`

~21! l Bl mYl m~q,0!. ~A1!

The coefficientsBl m are defined by the overlap integrals

Bl m5E d3x~Dc i !~x!A2/rJ2l 11~A8r !Yl m* ~q,w!

~A2!

@with Jn(x) Bessel functions# and can be calculated analyt
cally @8#. For excitations of the ground statec i5u1s0& with
p-polarized light~i.e., dipole operatorD5z) the explicit re-
sult is

Y0~q!52p21/223e22cosq ~A3!

and for c i5u2p0&; i.e., the initial state in many spectro
scopic measurements on hydrogen@2,3,9# we obtain

Y0~q!5~2p!21/227e24~4cos2q21!. ~A4!
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APPENDIX B: UNIFORM PHASE INTEGRALS

1. The Airy function Ai „x…

In the case of a fold catastrophe the uniform phase in
gral is an Airy function@26#

E
2`

1`

cos~ t31xt!dt5321/32pAi ~321/3x! ~B1!

with the asymptotic behavior

Ai ~6x! ;
x→`H 1

2
p21/2x21/4expS 2

2

3
x3/2D

p21/2x21/4sinS 23 x3/21 p

4 D . ~B2!

2. The function F„x…

For a cusp catastrophe the uniform phase integral

F~x![E
2`

1`

exp@2 i ~xt21t4!#dt ~B3!

is a special case of Pearcey’s integral@25,17,18#

P~x,y!5E
2`

1`

exp@ i ~ t41xt21yt!#dt, ~B4!

i.e.,

F~x!5P* ~x,y50!. ~B5!

With the help of the integrals (p.q.0) @27#

E
0

`

exp@2 i ~xp1txq!#dx

5
1

p
expF2 i

p

2pG (
k50

`
1

k!
GS kq11

p D
3S 2texpF i p2q

2p
p G D k ~B6!

we obtain an absolutely convergent Taylor series forF(x)

F~x!5
1

2
expF2 i

p

8 G (
n50

`
1

n!
GS 2n11

4 D S xexpF2 i
3

4
pG D n.

~B7!

AlternativelyF(x) can be expressed in closed form in term
of Bessel functions@27#

F~6x!5
p

2
Ax/2expF i x28 G

3H expF2 i
p

8 GJ2 1/4S x28 D7expF i p

8 GJ1/4S x28 D J .
~B8!
-

For largex we obtain asymptotic formulas by expanding t
phases around their stationary points or by applying the
ymptotic formula

Jn~x! ;
x→`

A~2/px!cosS x2
pn

2
2

p

4 D ~B8!

of the Bessel functions to Eq.~B8!

F~6x!
;

x→`H Ap/xexpF2 i
p

4 G
Ap/xH expF i p

4 G1A2expF i S 14 x22 p

4 D G J .
~B9!

3. The function C„x,y…

The uniform phase integralC(x,y) of the butterfly catas-
trophe is expanded in a two-parametric Taylor series aro
x5y50

C~x,y![E
2`

1`

exp@2 i ~xt21yt41t6!#dt

5 (
n50

`

(
m50

`
1

i n1m

xnym

n!m! E2`

1`

t2n14mexp@2 i t 6#dt.

~B10!

With the substitutionz5t2n14m11 we obtain@27#

E
2`

1`

t2n14mexp@2 i t 6#dt

5
2

2n14m11E0
`

exp@2 iz6/~2n14m11!#dz

5
1

3
expF2 i

2n14m11

12
pGGS 2n14m11

6 D ,
and finally

C~x,y!5
1

3
expF2 i

p

12G (n50

`

(
m50

`
1

n!m!
GS 2n14m11

6 D
3S xexpF2 i

2

3
p G D nS yexpF2 i

5

6
p G Dm, ~B11!

which is a convergent series for allx andy.
The asymptotic behavior ofC(x,y) for x→6` is ob-

tained in a stationary phase approximation to Eq.~B10!, with
the stationary pointst0 being defined by

t0~6t0
414yt0

212x!50. ~B12!

~a! x→2`: There are three real stationary points given b

t050 and t0
252

1

3
y1S 19 y22 1

3
xD 1/2,

and we obtain
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C~x,y! ;
x→2`

E
2`

1`

exp@2 ixt2#dt

12exp@2 i ~xt0
21yt0

41t0
6!#

3E
2`

1`

exp@2 i ~x16yt0
2115t0

4!t2#dt

5S p

2xD
1/2

expF i p

4 G
1F p

2x1
1

3
y22yS 19 y22 1

3
xD 1/2G 1/2

3expH i F2S 19 y22 1

3
xD 3/22 1

3
yS 29 y22xD2

p

4 G J .
~B13!

~b! x→1`: The only real solution of Eq.~B12! is t050 and
C(x,y) is approximated as

C~x,y! ;
x→1`

E
2`

1`

exp@2 ixt2#dt5S p

x D 1/2expF2 i
p

4 G .
~B14!
K.

e,
.

y

li

os

tt.
.

In the case ofy,0 andx* 1
3 y

2 the complex zeros

t056F2
1

3
y6 i ~ 1

3x2 1
9 y

2!1/2G1/2
of Eq. ~B12! are situated close to the real axis. When o
considers these complex zeros in a stationary phase app
mation Eq.~B14! is modified by an additional term exponen
tially damped for largex

C~x,y! ;
x→1`

S p

x D 1/2expF2 i
p

4 G
1F p

x2
1

3
y22 iy~ 1

3x2 1
9 y

2!1/2G 1/2
3expF22S 13 x2

1

9
y2D 3/2G

3expH 2 i F13 yS 29 y22xD2
p

4 G J .
~B15!
-
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