
PHYSICAL REVIEW A MARCH 1997VOLUME 55, NUMBER 3
Quantum prediction algorithms

Adrian Kent* and Jim McElwaine†

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, United Kingdom
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The consistent histories formulation of the quantum theory of a closed system with a pure initial state defines
an infinite number of incompatible consistent sets, each of which gives a possible description of the physics.
We investigate the possibility of using the properties of the Schmidt decomposition to define an algorithm
which selects a single, physically natural, consistent set. We explain the problems which arise, set out some
possible algorithms, and explain their properties with the aid of simple models. Though the discussion is
framed in the language of the consistent histories approach, it is intended to highlight the difficulty in making
any interpretation of quantum theory based on decoherence into a mathematically precise theory.
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I. INTRODUCTION

It is hard to find an entirely satisfactory interpretation
the quantum theory of closed systems, since quantum th
does not distinguish physically interesting time-ordered
quences of operators. The consistent histories approac
quantum theory was originally developed by Griffiths@1#,
Omnès @2#, and Gell-Mann and Hartle@3#. One of its virtues,
in our view, is that it allows the problems of the quantu
theory of closed systems to be formulated precisely eno
to allow us to explore possible solutions. A natural probab
ity distribution is defined on each consistent set of histor
allowing probabilistic predictions to be made from the init
data. There are infinitely many consistent sets, which
incompatible in the sense that pairs of sets generally ad
no physically sensible joint probability distribution whos
marginal distributions agree with those on the individu
sets. Indeed the standard no-local-hidden-variable theor
show that there is no joint probability distribution defined
the collection of histories belonging to all consistent s
@4,5#. Hence, the set selection problem: probabilistic pred
tions can only be made conditional on a choice of consis
set, yet the consistent histories formalism gives no way
singling out any particular set or sets as physically intere
ing.

One possible solution to the set selection problem wo
be an axiom which identifies a unique physically interest
set, or perhaps a class of such sets, from the initial state
the dynamics. Another would be the identification of a phy
cally natural measure on the space of consistent sets, ac
ing to which the physically relevant consistent set is ra
domly chosen. No workable solution has yet been propo
however.

The problem remains essentially unaltered if the pred
tions are conditioned on a large collection of data@5#, and
even if predictions are made conditional on approximat
classical physics being observed@6#. The consistent historie
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approach thus violates both standard scientific criteria
ordinary intuition@5–10#. In our view, the present version o
the consistent histories formalism is too weakly predictive
almost all plausible physical situations to be considere
fundamental scientific theory. Nonetheless, we believe
the consistent histories approach gives a new way of look
at quantum theory which raises intriguing questions a
should, if possible, be developed further.

The status of the consistent histories approach rem
controversial: much more optimistic assessments of
present state of the formalism can be found, for example
Refs.@3,11,12#. It is, though, generally agreed that set sele
tion criteria should be investigated. For if quantum theo
correctly describes macroscopic physics then, it is believ
real-world experiments and observations can be describe
what Gell-Mann and Hartle termquasiclassicalconsistent
sets of histories. Roughly speaking, quasiclassical sets
defined by projection operators which involve similar va
ables at different times and which satisfy classical equati
of motion, to a very good approximation, most of the tim
No precise definition of quasiclassicality has yet been fou
nor is any systematic way known of identifying quasiclas
cal sets within any given model or theory. Whether Ge
Mann and Hartle’s program of characterizing quasiclass
sets is taken as a fundamental problem or a phenomeno
cal one, any solution must clearly involve some sort of
selection mechanism.

In this paper, we consider one particular line of attack
this problem: the attempt to select consistent sets by u
the Schmidt decomposition together with criteria intrinsic
the consistent histories formalism. The paper is explorat
in spirit: our aims here are to point out obstacles, raise qu
tions, set out some possible selection principles, and exp
their properties.

Our discussion is framed in the language of the consis
histories approach to quantum theory, but we believe it is
wider relevance. Many modern attempts to provide an in
pretation of quantum theory rely, ultimately, on the fact th
quantum subsystems decohere. Subsystems considere
clude the brains of observers, the pointers of measuring
vices, and abstractly defined subspaces of the total Hil
1703 © 1997 The American Physical Society
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1704 55ADRIAN KENT AND JIM McELWAINE
space. Whichever, the moral is intended to be that deco
ence selects the projection operators, or space-time even
algebras of observables which characterize the physics o
subsystem as it is experienced or observed. There is no d
that understanding the physics of decoherencedoesprovide a
very good intuitive grasp of how to identify operators fro
which our everyday picture of real-world quasiclassic
physics can be constructed and this lends some support t
hope that a workable interpretation of quantum theory —
plausible successor to the Copenhagen interpretation
couldpossibly be constructed along the lines just describ

However, it seems to us that the key question is whet
such an interpretation can be made mathematically prec1

That is, given a decohering subsystem, can we find gen
rules which precisely specify operators~or other mathemati-
cal objects! which allow us to recover the subsystem’s phy
ics as we experience or observe it? From this point of vie
we illustrate below how one might go about setting out su
rules, and the sort of problems which arise.

A. Consistent histories

We use a version of the consistent histories formalism
which the initial conditions are defined by a pure state,
basic objects of the formalism are branch-dependent se
projections, and consistency is defined by Gell-Mann a
Hartle’s decoherence criterion Eq.~1.3!.

Let uc& be the initial state of a quantum system.
branch-dependent set of historiesis a set of products
of projection operators indexed by the variabl
a5$an ,an21 , . . . ,a1% and corresponding time coordinate
$tn , . . . ,t1%, where the ranges of theak and the projections
they define depend on the values ofak21 , . . . ,a1, and the
histories take the form

Ca5Pan
n ~ tn ;an21 , . . . ,a1!

3Pan21

n21 ~ tn21 ;an22 , . . . ,a1! . . .Pa1
1 ~ t1!. ~1.1!

Here, for fixed values of ak21 , . . . ,a1, the
Pak
k (tk ;ak21 , . . . ,a1) define a projective decomposition o

the identity2 indexed by ak , so that
(ak

Pak
k (tk ;ak21 , . . . ,a1)51 and

Pak
k ~ tk ;ak21 , . . . ,a1!Pa

k8
k

~ tk ;ak21 , . . . ,a1!

5dakak8
Pak
k ~ tk ;ak21 , . . . ,a1!. ~1.2!

1Even those who believe that an interpretation relying on intuit
ideas or verbal prescriptions is acceptable would, we hope, con
that it is interesting to ask whether those ideas and prescriptionscan
be set out mathematically.
2For brevity, we refer to projective decompositions of the ident

as projective decompositions hereafter.
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The set of histories isconsistent,3 if and only if,

Dab5^cuCb
†Cauc&5dabp~a!, ~1.3!

in which casep(a) is interpreted as the probability of th
history a. D is the decoherence matrix. Here and lat
though, we use the compact notationa to refer to a history,
we intend the individual projection operators and their as
ciated times to define the history. The histories of nonz
probability in a consistent set thus correspond precisely
the nonzero vectorsCauc&. According to the standard view
of the consistent histories formalism, which we adopt here
is only consistent sets which are of physical relevance. T
dynamics are defined purely by the Hamiltonian, with
collapse postulate, but each projection in the history can
thought of as corresponding to a historical event, tak
place at the relevant time. If a given history is realized,
events correspond to extra physical information, neither
ducible from the state vector nor influencing it.

Most projection operators involve rather obscure physi
quantities, so that it is hard to interpret a general history
familiar language. However, given a sensible model, w
Hamiltonian and canonical variables specified, one can c
struct sets of histories which describe familiar physics a
check that they are indeed consistent to a very good appr
mation. For example, a useful set of histories for describ
the solar system could be defined by projection opera
whose nonzero eigenspaces contain states in which a g
planet’s center of mass is located in suitably chosen sm
volumes of space at the relevant times, and one would ex
a sensible model to show that this is a consistent set and
the histories of significant probability are those agreeing w
the trajectories predicted by general relativity.

More generally, Gell-Mann and Hartle@3# introduce the
notion of aquasiclassical domain: a consistent set which is
complete — so that it cannot be nontrivially consisten
extended by more projective decompositions — and is
fined by projection operators which involve similar variabl
at different times and which satisfy classical equations
motion, to a very good approximation, most of the time. T
notion of a quasiclassical domain seems natural, though p
ently imprecisely defined. Its heuristic definition is motivat
by the familiar example of the hydrodynamic variables
densities of chemical species in small volumes of space,
similar quantities — which characterize our own quasicl
sical domain. Here the branch dependence of the forma
plays an important role, since the precise choice of variab
~most obviously, the sizes of the small volumes! we use de-
pends on earlier historical events. The formation of our G
axy and Solar System influences all subsequent local p
ics; even present-day quantum experiments have
potential to do so significantly, if we arrange for large ma
roscopic events to depend on their results.

e
de3Several different consistency criteria are used in the literature
of which are believed to be compatible with the standard quasic
sical descriptions of realistic physical examples. This particular
terion is generally known asmedium consistencyor medium deco-
herence; it will be used throughout the paper.
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55 1705QUANTUM PREDICTION ALGORITHMS
It should be stressed that, according to all the develop
of the consistent histories approach, quasiclassicality and
lated properties are interesting notions to study within,
defining features of, the formalism. In the view of the fo
malism’s developers, all consistent sets of histories have
same physical status, though in any realistic example we
likely to be more interested in the descriptions of the phys
given by some than by others.

Identifying interesting consistent sets of histories is pr
ently more of an art than a science. One of the original a
of the consistent histories formalism, stressed, in particu
by Griffiths and Omne`s, was to provide a theoretical justifi
cation for the intuitive language often used, both by theor
and experimenters, in analyzing laboratory setups. E
here, though there are many interesting examples in the
erature of consistent sets which give a natural descriptio
particular experiments, no general principles have b
found by which such sets can be identified. Identifying int
esting consistent sets in quantum cosmological models o
real-world cosmology seems to be still harder, althou
some interesting criteria stronger than consistency have
cently been proposed@10,13#.

B. The Schmidt decomposition

We consider a closed quantum system with a pure init
state vectoruc(0)& in a Hilbert spaceH with Hamiltonian
H. We suppose thatH5H1^H2; we write dim(Hj )5dj and
we suppose thatd1<d2,`. With respect to this splitting of
the Hilbert space, theSchmidt decompositionof uc(t)& is an
expression of the form

uc~ t !&5(
i51

d1

@pi~ t !#
1/2uwi~ t !&1^ uwi~ t !&2 , ~1.4!

where theSchmidt states$uwi&1% and $uwi&2% form, respec-
tively, an orthonormal basis ofH1 and part of an orthonor
mal basis ofH2, the functionspi(t) are real and positive, an
we take the positive square root. For fixed timet, any de-
composition of the form Eq.~1.4! then has the same list o
probability weights$pi(t)%, and the decomposition~1.4! is
unique if these weights are all different. These probabi
weights are the eigenvalues of the reduced density matr

This simple result, proved by Schmidt in 1907@14#,
means that at any given time there is, generically, a nat
decomposition of the state vector relative to any fixed s
H5H1^H2, which defines a basis on the smaller spa
H1 and a partial basis onH2. The decomposition has a
obvious application in standard Copenhagen quantum th
where, if the two spaces correspond to subsystems unde
ing a measurement-type interaction, it describes the final
comes@15#.

It has more than once been suggested that the Sch
decompositionper semight define a fundamental interpret
tion of quantum theory. According to one line of thought,
defines the structure required in order to make precise s
of Everett’s ideas@16#. Another idea which has attracte
some attention is that the Schmidt decomposition itself
fines a fundamental interpretation@17–20#. Some critical
comments on this last program, motivated by its irrecon
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ability with the quantum history probabilities defined by th
decoherence matrix, can be found in Ref.@21#.

Though a detailed critique is beyond our scope here
seems to us that any attempt to interpret quantum the
which relies solely on the properties of the Schmidt deco
position must fail, even if some fixed choice ofH1 andH2 is
allowed. The Schmidt decomposition seems inadequate
although it allows a plausible interpretation of the quantu
state at a single fixed time, its time evolution has no natu
interpretation consistent with the predictions of Copenha
quantum theory.

Many studies have been made of the behavior of
Schmidt decomposition during system-environment inter
tions. In developing the ideas of this paper, we were infl
enced, in particular, by Albrecht’s investigations@22,23# of
the behavior of the Schmidt decomposition in rando
Hamiltonian interaction models and the description of the
models by consistent histories.

C. Combining consistency and the Schmidt decomposition

The idea motivating this paper is that the combination
the ideas of the consistent histories formalism and
Schmidt decomposition might allow us to define a ma
ematically precise and physically interesting description
the quantum theory of a closed system. The Schmidt dec
position defines four natural classes of projection operat
which we refer to collectively asSchmidt projections. These
take the form

Pi
1~ t !5uwi~ t !&1^wi~ t !u1^ I 2 and P̄15I 1^ I 22(

i
Pi
1~ t !,

Pi
2~ t !5I 1^ uwi~ t !&2^wi~ t !u2 and P̄25I 1^ I 22(

i
Pi
2~ t !,

Pi
3~ t !5uwi~ t !&1^wi~ t !u1^ uwi~ t !&2^wi~ t !u2

and P̄35I 1^ I 22(
i
Pi
3~ t !,

Pi j
4 ~ t !5uwi~ t !&1^wi~ t !u1^ uwj~ t !&2^wj~ t !u2

and P̄45I 1^ I 22(
i j

Pi j
4 ~ t !. ~1.5!

If dimH15dimH2 the complementary projectionsP̄1, P̄2,
and P̄4 are zero.

Since the fundamental problem with the consistent his
ries approach seems to be that it allows far too many con
tent sets of projections, and since the Schmidt projecti
appear to be natural dynamically determined projections
seems sensible to explore the possibility that a physic
sensible rule can be found which selects a consistent se
sets from amongst those defined by Schmidt projections

The first problem in implementing this idea is choosi
the splitH5H1^H2. In analyzing laboratory experiments
one obvious possibility is to separate the system and app
tus degrees of freedom. Other possibilities of more gen
application are to take the split to correspond to more fun
mental divisions of the degrees of freedom — fermions a
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1706 55ADRIAN KENT AND JIM McELWAINE
bosons, or massive and massless particles, or, one m
speculate, the matter and gravitational fields in quant
gravity. Some such division would necessarily have to
introduced if this proposal were applied to cosmologi
models.

Each of these choices seems interesting to us in con
but none, of course, is conceptually cost free. Assumin
division between system and apparatus in a laboratory
periment seems to us unacceptable in a fundamental the
reintroducing, as it does, the Heisenberg cut which po
Copenhagen quantum theory aims to eliminate. It seems
tifiable, though, for the limited purpose of discussing t
consistent sets which describe physically interesting histo
in laboratory situations. It also allows useful tests: if an
gorithm fails to give sensible answers here, it should pr
ably be discarded; if it succeeds, applications elsewhere
be worth exploring.

Postulating a fundamental split of Hilbert space, on
other hand, seems to us acceptable in principle. If the s
chosen were reasonably natural, and if it were to produc
well-defined and physically sensible interpretation of qu
tum theory applied to closed systems, we would see no
son not to adopt it. This seems a possibility especially wo
exploring in quantum cosmology, where any pointers
wards calculations that might give new physical insig
would be welcome.

Here, though, we leave aside these motivations and
conceptual questions they raise, as there are simpler
more concrete problems which first need to be addres
Our aim in this paper is simply to explain the problem
which arise in trying to define consistent set selection al
rithms using the Schmidt decomposition, to set out so
possibilities, and to explain their properties, using sim
models of quantum systems interacting with an idealized
perimental device or with a series of such devices.

The most basic question here is precisely which of
Schmidt projections should be used. Again, our view is pr
matic: we would happily adopt any choice that gave phy
cally interesting results. Where we discuss the abstract
tures of Schmidt projection algorithms below, the discuss
is intended to apply to all four choices. When we consid
simple models of experimental setups, we takeH1 to de-
scribe the system variables andH2 the apparatus or environ
ment. Here we look for histories which describe the evo
tion of the system state, tracing over the environment, an
discuss set selection algorithms which use only the first c
of Schmidt projections: the other possibilities are also int
esting, but run into essentially the same problems. Thus
the remainder of the paper, we use the term Schmidt pro
tion to mean the system space Schmidt projections den
by Pi

1 and P̄1, defined in Eq.~1.5!.
In most of the following discussion, we consider alg

rithms which use only the properties of the state vec
uc(t)& and its Schmidt decomposition to select a consist
set. However, we will also consider later the possibility
reconstructing a branching structure defined by the dec
position

uc~ t !&5(
i51

N~ t !

uc i~ t !&, ~1.6!
ht
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in which the selected set is branch dependent and the dis
orthogonal componentsuc i(t)& correspond to the differen
branches at timet. In this case, we will consider the Schmid
decompositions of each of theuc i(t)& separately. Again, it
will be sufficient to consider only the first class of Schmi
projections. In fact, for the branch-dependent algorithms
consider, all of the classes of Schmidt projection select
same history vectors and, hence, select physically equiva
consistent sets.

II. APPROXIMATE CONSISTENCY AND NONTRIVIALITY

In realistic examples it is generally difficult to find simp
examples of physically interesting sets that are exactly c
sistent. For simple physical projections, the off-diagon
terms of the decoherence matrix typically decay expon
tially. The sets of histories defined by these projections se
rated by times much larger than the decoherence time,
thus typically very nearly but not precisely consistent@24–
35#. Histories formed from Schmidt projections are no e
ception: they give rise to exactly consistent sets only in s
cial cases, and even in these cases the exact consisten
unstable under perturbations of the initial conditions or
Hamiltonian.

The lack of simple exactly consistent sets is not gener
thought to be a fundamental problemper se. According to
one controversial view@3#, probabilities in any physica
theory need only be defined, and need only satisfy sum ru
to a very good approximation, so that approximately cons
tent sets are all that is ever needed. Incorporating pragm
observation into fundamental theory in this way clearly,
the very least, raises awkward questions. Fortunately
seems unnecessary. There are good reasons to expect@5# to
find exactly consistent sets very close to a generic appr
mately consistent set, so that even if only exactly consis
sets are permitted the standard quasiclassical description
be recovered. Note, though, that none of the relevant exa
consistent sets will generally be defined by Schmidt proj
tions.

It could be argued that physically reasonable set selec
criteria should make predictions which vary continuous
with structural perturbations and perturbations in the init
conditions, and that the instability of exact consistency un
perturbation means that the most useful consistency crit
are very likely to be approximate. Certainly, there seems
reason, in principle, why a precisely defined selection al
rithm, which gives physically sensible answers, should
rejected if it fails to exactly respect the consistency criterio
For, once a single set has been selected, there seems no
damental problem in taking the decoherence functional pr
ability weights to represent precisely the probabilities of
fine-grained histories and the probability sum rules todefine
the probabilities of coarse-grained histories. On the ot
hand, allowing approximate consistency raises new diffic
ties in identifying a single natural set selection algorith
since any such algorithm would have — at least indirectly
to specify the degree of approximation tolerated.

These arguments over fundamentals, though, go bey
our scope here. Our aim below is to investigate select
rules which might give physically interesting descriptions
quantum systems, whether or not they produce exactly c



fin
r
gr

cy

e-
ly

i
l
ica
t

,
as
gr
i-
li-

o

ies

th
-
tly
in-
d
on

-

e

on
i

or

in
te
ell

ne
to

ons
s,
ng
ul,
ro-
nt
e-

s

C

ry
It
ist
t of

e-
rby
e
-
the
n
ion

at

55 1707QUANTUM PREDICTION ALGORITHMS
sistent sets. As we will see, it seems surprisingly hard to
good selection rules even when we follow the standard p
cedure in the decoherence literature and allow some de
of approximate decoherence.

Mathematical definitions of approximate consisten
were first investigated by Dowker and Halliwell@27#, who
proposed a simple criterion — the Dowker-Halliwell crit
rion, or DHC — according to which a set is approximate
consistent to ordere if the decoherence functional

Dab5^cuCb
†Cauc& ~2.1!

satisfies the equation

uDabu<e~DaaDbb!1/2, ;aÞb. ~2.2!

Approximate consistency criteria were analyzed further
Ref. @36#. As Refs. @27,36# explain, the DHC has natura
physical properties and is well adapted for mathemat
analyses of consistency. We adopt it here, and refer to
largest term,

max$uDabu~DaaDbb!21/2:a,bPS,aÞb,

andDaa ,DbbÞ0%, ~2.3!

of a ~possibly incomplete! set of historiesS as the Dowker-
Halliwell parameter, or DHP.

A trivial history a is one whose probability is zero
Cauc&50. Many of the algorithms we discuss involve,
well as the DHP, a parameter which characterizes the de
to which histories approach triviality. The simplest nontriv
ality criterion would be to require that all history probabi
ties must be greater than some parameterd, i.e., that

Daa.d for all histories a. ~2.4!

As a condition on a particular extension$Pi : i51,2, . . .% of
the historya this would imply thatiPiCauc&i2.d for all
i . This, of course, is an absolute condition, which depends
the probability of the original historya rather than on the
relative probabilities of the extensions and which impl
that once a history with probability less than 2d has been
selected any further extension is forbidden.

It seems to us more natural to use criteria, such as
DHC, which involve only relative probabilities. It is cer
tainly simpler in practice: applying absolute criteria stric
would require us to compute from first cosmological pr
ciples the probability to date of the history in which we fin
ourselves. We therefore propose the following relative n
triviality criterion: an extension$Pi : i51,2, . . .% of the non-
trivial history a is nontrivial to orderd, for any d with
0,d,1, if

iPiCauc&i2>diCauc&i2 for all i . ~2.5!

We say that a set of historiesS, which may be branch de
pendent, is nontrivial to orderd if every set of projections,
considered as an extension of the histories up to the tim
which it is applied, is nontrivial to orderd. In both cases we
refer tod as the nontriviality parameter, or NTP.

An obvious disadvantage of applying an absolute n
triviality criterion to branch-independent consistent sets
d
o-
ee

n

l
he

ee

n

e

-

at

-
s

that, if the set contains one history of probability less than
equal to 2d, no further extensions are permitted.

Once again, though, our approach is pragmatic, and
order to cover all the obvious possibilities we investiga
below absolute consistency and nontriviality criteria as w
as relative ones.

III. REPEATED PROJECTIONS AND CONSISTENCY

One of the problems which arises in trying to defi
physically interesting set selection algorithms is the need
find a way either of preventing near-instantaneous repetiti
of similar projections or of ensuring that such repetition
when permitted, do not prevent the algorithm from maki
physically interesting projections at later times. It is usef
in analyzing the behavior of repeated projections, to int
duce a version of the DHC which applies to the coincide
time limit of sets of histories defined by smoothly tim
dependent projective decompositions.

To define this criterion, fix a particular timet0, and con-
sider class operatorsCa consisting of projections at time
t5(t1 , . . . ,tn), where tn.tn21.•••.t1.t0. Define the
normalized historiesby

uâ&5 lim
t8→t

Ca~ t8!uc&
iCa~ t8!uc&i , ~3.1!

where the limits are taken in the ordert18→t1 thent28→t2 and
so on, whenever these limits exist. Define the limit DH
between two normalized historiesuâ& and ub̂& as

^âub̂&<e. ~3.2!

This, of course, is equivalent to the limit of the ordina
DHC when the limiting histories exist and are not null.
defines a stronger condition when the limiting histories ex
and at least one of them is null, since in this case the limi
the DHC is automatically satisfied.

If a set of histories is defined by a smoothly tim
dependent projective decomposition applied at two nea
times, it will contain many nearly null histories, sinc
PmPn50 for all nÞm. Clearly, in the limit as the time sepa
ration tends to zero, these histories become null, so that
limit of the ordinary DHC is automatically satisfied. Whe
do the normalized histories satisfy the stronger criter
~3.2!?

Let P(t) be a projection operator with a Taylor series
t50,

P~ t !5P1t Ṗ1 1
2 t

2P̈1O~ t3!, ~3.3!

whereP5P(0), Ṗ5dP(t)/dtu t50 and P̈5d2P(t)/dt2u t50.
SinceP2(t)5P(t) for all t
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P1t Ṗ1 1
2 t

2P̈1O~ t3!5@P1t Ṗ1 1
2 t

2P̈1O~ t3!#@P1t Ṗ

1 1
2 t

2P̈1O~ t3!#

5P1t~PṖ1 ṖP!

1 1
2 t

2~PP̈1 P̈P12Ṗ2!1O~ t3!.

~3.4!

This implies that

Ṗ5PṖ1 ṖP, ~3.5!

and

1
2 P̈5 1

2PP̈1 1
2 P̈P1 Ṗ2. ~3.6!

Now consider a projective decomposition$Pk% and the ma-
trix element

^cuPmPk~ t !Pnuc&5^cuPmPkPnuc&1t^cuPmṖkPnuc&

1 1
2 t

2^cuPmP̈kPnuc&1O~ t3!. ~3.7!

Now PmPkPn5Pkdkmdkn , since the projections are or
thogonal, and

PmṖkPn5dkm~12dkn!ṖkPn1dkn~12dkm!PmṖk

5dkmṖkPn1dknPmṖk2dkmdknṖk , ~3.8!

since ṖkPn5PkṖkPn if kÞn and ṖkPk5(12Pk) Ṗk . ~No
summation convention applies throughout this paper.! From
Eq. ~3.6! we have that

1
2PmP̈kPn5

1
2 ~dmk1dnk!PmP̈kPn1PmṖk

2Pn . ~3.9!

Equation~3.7! can now be simplified. To leading order int it
is

^cuPkuc&1O~ t ! if k5m5n, ~3.10!

t^cuṖkPnuc&1O~ t2! if k5m, kÞn, ~3.11!

t^cuPmPkuc&1O~ t2! if kÞm, k5n, ~3.12!

and

t2^cuPmṖk
2Pnuc&1O~ t3! if kÞm, kÞn. ~3.13!

Now consider a smoothly time-dependent projective
composition, s(t)5$P(t),P(t)%, defined by a time-
dependent projection operator and its complement. W
P5P(0), andconsider a stateuf& such thatPuf&Þ0 and
P̄uf&Þ0. We consider a set of histories with initial proje
tionsP,P̄, so that the normalized history states att50 are

H Puf&
iPuf&i ,

P̄uf&

i P̄uf&i J , ~3.14!
-

te

and consider an extended branch-dependent set define
applyings(t) on one of the branches — say, the first — a
later timet.

The new normalized history states are

H P~ t !Puf&
iP~ t !Puf&i ,

P̄~ t !Puf&

i P̄~ t !Puf&i
,
P̄uf&

i P̄uf&i J . ~3.15!

We assume now thatṖPuf&Þ0, so that the limit of these
states ast→0 exists. We have that

lim
t→0

~ P̄2t Ṗ!Puf&

~ t2^fuPṖ2Puf&!1/2
5

2 ṖPuf&

i ṖPuf&i
, ~3.16!

so that the limits of the normalized histories are

H Puf&
iPuf&i ,

2 ṖPuf&

i ṖPuf&i
,
P̄uf&

i P̄uf&i J . ~3.17!

The only possibly nonzero terms in the limit DHC are

2
^fuP̄ṖPuf&

i P̄uf&ii ṖPuf&i
52

^fuP̄Ṗuf&

i P̄uf&ii P̄Ṗuf&i
, ~3.18!

which generically do not vanish.
Consider instead extending the second branch us

P(t) again. This gives the set

H Puf&
iPuf&i ,

P̄uf&

i P̄uf&i
,

2P~ t !ṖPuf&

iP~ t !ṖPuf&i
,

2 P̄~ t !ṖPuf&

i P̄~ t !ṖPuf&i J .
~3.19!

SincePṖP50 the limit t→0 exists and is

H Puf&
iPuf&i ,

P̄uf&

i P̄uf&i
,

2 Ṗ2Puf&

i Ṗ2Puf&i
,

2 ṖPuf&

i ṖPuf&i J . ~3.20!

The DHC term between the first and third histories is

2
^fuPṖ2Puf&

iPuf&ii Ṗ2Puf&i
52

i ṖPuf&i2

iPuf&ii Ṗ2Puf&i
. ~3.21!

This is always nonzero sincePṖuf&Þ0.
For the same reason, extending the first branch again

the third branch, violates the limit DHC. Hence, if proje
tions are taken from a continuously parametrized set, and
limit DHC is used, multiple reprojections will generically b
forbidden.

The assumption thatṖPuf&Þ0 can be relaxed. It is suf
ficient, for example, that there is somek such that
iP( j )i50 for all j,k and that P(k)Puf&Þ0, where
P( j )5djP(t)/dtj u t50.

Note, finally, that it is easy to construct examples
which a single reprojection is consistent. For instance, le
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P5S I d1 0

0 0
D , P̄5S 0 0

0 I d2
D , Ṗ5S 0 A†

A 0 D ,
uf&5S Aqx̂

A12qŷ
D , ~3.22!

where x̂ is a unit vector inCd1, ŷ a unit vector inCd2, and
A a d23d1 complex matrix. iPuf&iÞ0,1 implies thatq
Þ0,1 andṖPuf&Þ0 implies thatAx̂Þ0. So from Eq.~3.18!
the DHC term is

2
ŷ†Ax̂

iAx̂i
. ~3.23!

If d2>2 thenŷ can be chosen orthogonal toAx̂ and then Eq.
~3.23! is zero. The triple projection term, however, E
~3.21!, is

2
iAx̂i2

iA2x̂i
, ~3.24!

which is never equal to 0 sinceAx̂Þ0.

IV. SCHMIDT PROJECTION ALGORITHMS

We turn now to the problem of defining a physically se
sible set selection algorithm which uses Schmidt projectio
starting in this section with an abstract discussion of
properties of Schmidt projection algorithms.

We consider here dynamically generated algorithms
which initial projections are specified att50, and the se-
lected consistent set is then built up by selecting later p
jective decompositions, whose projections are sums of
Schmidt projection operators, as soon as specified criteria
satisfied. The projections selected up to timet thus depend
only on the evolution of the system up to that time. We w
generally consider selection algorithms for branc
independent sets and add comments on related bra
dependent selection algorithms.

We assume that there is a set of Heisenberg pic
Schmidt projection operators$Pn(t)% with continuous time
dependence, defined even at points where the Schmidt p
ability weights are degenerate, writePn for Pn(0), and let
I be the index set for projections which do not annihilate
initial state,I5$n:Pnuc&Þ0%.

We consider first a simple algorithm, in which the initi
projections are fixed to be thePn for nPI together with their
complement (12(nPn), and which then selects decompos
tions built from Schmidt projections at the earliest possi
time, provided they are consistent. More precisely, supp
that the algorithm has selected a consistent setSk of projec-
tive decompositions at timest0 ,t1 , . . . ,tk . It then selects the
earliest timetk11.tk such that there is at least one consist
extension of the setSk by a projective decomposition forme
from sums of Schmidt projections at timetk11. In generic
physical situations, we expect this decomposition to
unique. However, if more than one such decomposition
ists, the one with the largest number of projections is
lected; if more than one decomposition has the maxim
-
s,
e
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number of projections, one is randomly selected.
Though the limit DHC~3.2! can prevent trivial projec-

tions, it does not generically do so here. The limit DH
terms between historiesm andn for an extension involving
Pk (k¹I ) are

lim
t→0

z^cuPmPk~ t !Pnuc& z
iPmuc&iiPk~ t !Pnuc&i 5t

z^cuPmṖk
2Pnuc& z

iPmuc&iiPkPnuc&i
50,

~4.1!

wheneveriPmuc&i and i ṖkPnuc&i are both nonzero. The
first is nonzero by assumption; the second is generically n
zero. Thus the extension of all histories by the projectio
Pk(k¹I ) and(nPIPn satisfies the limit DHC.

Hence, if the initial projections do not involve all th
Schmidt projections, and if the algorithm tolerates any d
gree of approximate consistency, whether relative or ex
then the DHC fails to prevent further projections arbitrar
soon aftert50, introducing histories with probabilities arb
trarily close to zero. Alternatively, if the algorithm trea
such projections by a limiting process, then generically
the Schmidt projections att50 are applied, producing his
tories of zero probability. Similar problems would genera
arise with repeated projections at later times, if later proj
tions occur at all.

There would be no compelling reason to reject an al
rithm which generates unexpected histories of arbitra
small or zero probability, so long as physically sensible h
tories, of total probability close to one, are also generat
However, as we note in Sec. IV B below and will see later
the analysis of a physical example, this is hard to arran
We therefore also consider below several ways in wh
small probability histories might be prevented:~1! The initial
state could be chosen so that it does not precisely lie in
null space of any Schmidt projection.~See Sec. IV A.! ~2!
An initial set of projections could somehow be chosen, ind
pendent of the Schmidt projections, and with the prope
that for every Schmidt projection at time zero there is at le
one initial history not in its null space.~See Sec. IV C.! ~3!
The algorithm could forbid zero probability histories by fi
and require that the selected projective decompositions f
an exactly consistent set. It could then prevent small pr
ability histories from occurring by excluding any projectiv
decompositions(t) from the selected set ifs(t) belongs to
a continuous family of decompositions, defined on so
semiopen interval (t2e,t#, which satisfy the other selectio
criteria. ~See Sec. IV D.!

~4! A parametrized nontriviality criterion could be use
~See Sec. IV E.! ~5! Some combination of parametrized cr
teria for approximate consistency and nontriviality could
used.~See Sec. IV F.! We will see though, in this section an
the next, that each of these possibilities leads to difficulti

A. Choice of initial state

In the usual description of experimental situations,H1
describes the system degrees of freedom,H2 those of the
apparatus~and/or an environment!, and the initial state is a
pure Schmidt state of the formuc&5uc1&1^ uc2&2. Accord-
ing to this description, probabilistic events occur only af
the entanglement of system and apparatus by the mea
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ment interaction. It could, however, be argued that, si
states can never be prepared exactly, we can never en
that the system and apparatus are precisely uncorrelated
the initial state is more accurately represented
uc&5uc1&1^ uc2&21guf&, whereg is small anduf& is a
vector in the total Hilbert space chosen randomly subjec
the constraint that̂cuc&51. A complete set of Schmidt pro
jections $Pn%, with Pnuc&Þ0 for all n, is then generically
defined att50, and any Schmidt projection algorithm whic
begins by selecting all initial Schmidt projections of nonze
probability will include all of thePn .

An obvious problem here, if relative criteria for approx
mate consistency and nontriviality are used to identify s
sequent projections, is that the small probability initial his
ries constrain the later projections just as much as the la
probability history which corresponds, approximately, to t
Schmidt stateuc1&1^ uc2&2 and which is supposed to repro
duce standard physical descriptions of the course of the
sequent experiment. If a branch-dependent selection a
rithm is used, a relative nontriviality criterion will not caus
the small probability initial histories to constrain the proje
tions selected later on the large probability branch, bu
relative approximate consistency criterion still will.

There seems no reason to expect the projections w
reproduce standard descriptions to be approximately con
tent extensions of the set defined by the initial Schmidt p
jections, and, hence, no reason to expect to recover stan
physics from a Schmidt projection algorithm. When we co
sider a simple model of a measurement interaction in
next section we will see that, indeed, the initial projectio
fail to extend to a physically natural consistent set.

If absolute criteria are used, on the other hand, we wo
expect either that essentially the same problem arises, or
the small probability histories do not constrain the proje
tions subsequently allowed and, hence, in particular, do
solve the problems associated with repeated projections
pending whether the probability of the unphysical histories
large or small relative to the parametersd ande2.

B. Including null histories

If the initial state is Schmidt pure, or more generally do
not define a maximal rank Schmidt decomposition, a full
of Schmidt projections can, nonetheless, generically be
fined att50 — which we take to be the start of the intera
tion — by taking the limit of the Schmidt projections a
t→01. The normalized histories corresponding to the p
jections of zero probability weight can then be defined
above, if the relevant limits exist, and used to constrain
subsequent projections in any algorithm involving relat
criteria. Again, though, there seems no reason to expect t
constraints to be consistent with standard physical desc
tions.

C. Redefining the initial conditions

The projections selected att50 could, of course, be se
lected using quite different principles from those used in
selection of later projections. By choosing initial projectio
which are not consistently extended by any of the decom
sitions defined by Schmidt projections at times neart50, we
can certainly prevent any immediate reprojection occurr
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in Schmidt selection algorithms. We know of no compellin
theoretical argument against incorporating projections i
the initial conditions, but have found no natural combinati
of initial projections and a Schmidt projection selection
gorithm that generally selects physically interesting sets.

D. Exact consistency and a nontriviality criterion

Since many of the problems above arise from immedi
reprojections, it seems natural to look at rules which prev
zero probability histories. The simplest possibility is to im
pose precisely this constraint, together with exact con
tency and the rules that~i! only one decomposition can b
selected at any given time and~ii ! no projective decomposi
tion can be selected at timet if it belongs to a continuous
family of projectionss(t), whose members would, but fo
this rule, be selected at times lying in some interv
(t2e,t#. This last condition means that the projections s
lected att50 are precisely those initially chosen and that
further projections occur in the neighborhood oft50. Un-
fortunately, as the model studied later illustrates, it also g
erally prevents physically sensible projective decompositi
being selected at later times. If it is abandoned, however,
if the initial stateuc& is a pure Schmidt state, then furthe
projections will be selected as soon as the interaction beg
in other words, at times arbitrarily close tot50. Again, these
projections are generally inconsistent with later physica
natural projections. On the other hand, ifuc& is Schmidt
impure, this is generally true of the initial projections. All o
these problems also arise in the case of branch-depende
selection algorithms.

E. Exact consistency and a parametrized nontriviality
criterion

Another apparently natural possibility is to require exa
consistency together with one of the parametrized nontr
ality criteria~2.4! or ~2.5!, rather than simply forbidding zero
probability histories.A priori, there seem no obvious prob
lems with this proposal but, again, we will see that it giv
unphysical answers in the model analyzed below, whet
branch-dependent or branch-independent selection a
rithms are considered.

F. Approximate consistency and a parametrized nontriviality
criterion

There are plausible reasons, apart from the difficulties
other proposals, for studying algorithms which use appro
mate consistency and parametrized nontriviality. The follo
ing comments apply to both branch-dependent and bran
independent algorithms of this type.

Physically interesting sets of projective decompositio
— for example, those characterizing the pointer states o
apparatus after each of a sequence of measurements —
tainly form a set which is consistent to a very good appro
mation. Equally, in most cases successive physically in
esting decompositions define nontrivial extensions of the
defined by the previous decompositions: if the probability
a measurement outcome is essentially zero then, it m
plausibly be argued, it is not essential to include the outco
in the description of the history of the system. Moreover
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finite nontriviality parameterd ensures that, after a Schmid
projective decomposition is selected at timet, there is a finite
time interval @ t,t1Dt# before a second decomposition c
be chosen. One might hope that, if the parameters are
chosen, the Schmidt projective decompositions at the en
and after that interval will no longer define an approximat
consistent extension unless and until they correspond to w
would usually be considered as the result of a measurem
type interaction occurring after timet. While, on this view,
the parameterse andd are artificial, one might also hope tha
they might be eliminated by letting them tend to zero in
suitable limit.

However, as we have already mentioned, in realis
physical situations we should not necessarily expect any
quence of Schmidt projective decompositions to define
exactly consistent set of histories. When the Schmidt pro
tions correspond, say, to pointer states, the off-diago
terms of their decoherence matrix typically decay expon
tially, vanishing altogether only in the limit of infinite time
separation@24–35#. An algorithm which insists on exact con
sistency, applied to such situations, will fail to select a
projective decompositions beyond those initially selected
t50 and so will give no historical description of the physic
We therefore seem forced, if we want to specify a Schm
projection set selection algorithm mathematically, to int
duce a parametere and to accept sets which are appro
mately consistent to ordere and then, in the light of the
preceding discussion, to introduce a nontriviality parame
d in order to try to prevent unphysical projective decomp
sitions being selected shortly aftert50. This suggests, too
that the best that could be expected in practice from an
gorithm which uses a limit in whiche andd tend to zero is
that the resulting set of histories describes a series of ev
whose time separations tend to infinity.

A parameter-dependent set selection algorithm, of cou
leaves the problem of which values the parameters sh
take. One might hope, at least, that there is a range of va
for e andd over which the selected set varies continuou
and has essentially the same physical interpretation. An
mediate problem here is that, if the first projective decom
sition selected aftert50 defines a history which only jus
satisfies the nontriviality condition, the decomposition w
once again, have no natural physical interpretation and
generally be inconsistent with the physically natural deco
positions which occur later. We will see that, in the simp
model considered below, this problem cannot be avoi
with an absolute consistency criterion.

Suppose now that we impose the absolute nontrivia
condition that all history probabilities must be greater th
d together with the relative approximate consistency cr
rion that the modulus of all DHC terms is less thane. The
parameterse andd must be chosen so that these projectio
stop being approximately consistent before they beco
nontrivial, otherwise projections will be made as soon
they produce histories of probability exactlyd, in which case
the nontriviality parameter, far from eliminating unphysic
histories, would be responsible for introducing them.

Let te denote the latest time that the extension with p
jection Pk(t) is approximately consistent andtd the earliest
time at which the extension is nontrivial. We see from E
~4.1! that, to lowest order int,
ell
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td5Adi ṖkPnuc&i21, ~4.2!

te5e
iPmuc&ii ṖkPnuc&i

z^cuPmṖk
2Pnuc& z

. ~4.3!

td.te implies

Adu^cuPmṖk
2Pnuc&u.eiPmuc&ii ṖkPnuc&i2. ~4.4!

Thus we required.e2, up to model-dependent numeric
factors: this, of course, still holds if we use a relative no
triviality criterion rather than an absolute one.

This gives, at least, a range of parameters in which
search for physically sensible consistent sets, and over w
there are natural limits — for example, limd→0lime→0. We
have, however, as yet only looked at some mod
independent problems which arise in defining suitable
selection rules. In order to gain some insight into the phy
cal problems, we look next at a simple model of syste
environment interactions.

V. A SIMPLE SPIN MODEL

We now consider a simple model in which a single sp
half particle, the system, moves past a line of spin-half p
ticles, the environment, and interacts with each in turn. T
can be understood as modeling either a series of meas
ment interactions in the laboratory or a particle propagat
through space and interacting with its environment. In
first case the environment spin-half particles represent po
ers for a series of measuring devices, and in the second
could represent, for example, incoming photons interact
with the particle.

Either way, the model omits features that would genera
be important. For example, the interactions describe id
ized sharp measurements — at best a good approximatio
real measurement interactions, which are always imperf
The environment is represented initially by the product
N-particle states, which are initially unentangled either w
the system or each other. The only interactions subseque
considered are between the system and the environment
ticles, and these interactions each take place in finite ti
We assume too, for most of the following discussion, that
interactions are distinct: thekth is complete before the
(k11)th begins. It is useful, though, even in this high
idealized example, to see the difficulties which arise in fin
ing set selection algorithms: we take the success of a
selection algorithm here to be a necessary, but not suffici
condition for it to be considered as a serious candidate.

A. Definition of the model

We use a vector notation for the system states, so th
û is a unit vector inR3 the eigenstates ofs•û are repre-
sented byu6û&. With the pointer state analogy in mind, w
use the basis$u↑&k ,u↓&k% to represent thekth environment
particle state, together with the linear combinatio
u6&k5(u↑&k6u↓&k)/A2. We compactify the notation by
writing environment states as single kets, so that, for
ample,u↑&1^ •••^ u↑&n is written asu↑1•••↑n&, and we take
the initial stateuc(0)& to be uv& ^ u↑1•••↑n&.
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1712 55ADRIAN KENT AND JIM McELWAINE
The interaction between the system and thekth environ-
ment particle is chosen so that it corresponds to a meas
ment of the system spin along theûk direction, so that the
states evolve as follows:

uûk& ^ u↑&k→uuk& ^ u↑&k , ~5.1!

u2ûk& ^ u↑&k→u2ûk& ^ u↓&k . ~5.2!

A simple unitary operator that generates this evolution is

Uk~ t !5P~ ûk! ^ I k1P~2ûk! ^e2 iuk~ t !Fk, ~5.3!

where P( x̂)5ux̂&^x̂u and Fk5 i u↓&k^↑uk2 i u↑&k^↓uk . Here
uk(t) is a function defined for each particlek, which varies
from 0 to p/2 and represents how far the interaction h
progressed. We definePk(6)5u6&k^6uk , so that
Fk5Pk(1)2Pk(2).

The Hamiltonian for this interaction is thus

Hk~ t !5 iU̇ k~ t !Uk
†~ t !5 u̇k~ t !P~2ûk! ^Fk , ~5.4!

in both the Schro¨dinger and Heisenberg pictures. We wri
the extension ofUk to the total Hilbert space as

Vk5P~ ûk! ^ I 1^ •••^ I n1P~2ûk! ^ I 1^ •••^ I k21

^e2 iuk~ t !Fk^ I k11^ •••^ I n . ~5.5!

We take the system particle to interact initially with partic
1 and then with consecutively numbered ones, and ther
no interaction between environment particles, so that
evolution operator for the complete system is

U~ t !5Vn~ t !•••V1~ t !, ~5.6!

with each factor affecting only the Hilbert spaces of the s
tem and one of the environment spins.

We suppose, finally, that the interactions take place
disjoint time intervals and that the first interaction begins
t50, so that the total Hamiltonian is simply

H~ t !5 (
k51

n

Hk~ t !, ~5.7!

and we have thatu1(t).0 for t.0 and that, if uk(t)
P(0,p/2), thenu i(t)5p/2 for all i,k andu i(t)50 for all
i.k.

B. Classification of Schmidt projection consistent sets
in the model

For generic choices of the spin measurement direction
which no adjacent pair of the vectors$v̂,û1 , . . . ,ûn% is par-
allel or orthogonal, the exactly consistent branch-depend
sets defined by the Schmidt projections onto the sys
space can be completely classified in this model. The follo
ing classification theorem is proved in Ref.@37#: Theorem.
In the spin model defined above, suppose that no adja
pair of the vectors$v̂,û1 , . . . ,ûn% is parallel or orthogonal.
Then the histories of the branch-dependent consistent
defined by Schmidt projections take one of the followi
re-

s

is
e

-

n
t
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nt
m
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nt

ets

forms. ~i! A series of Schmidt projections made at tim
between the interactions — i.e., at timest such that
uk(t)50 orp/2 for all k. ~ii ! A series as in~i!, made at times
t1 , . . . ,tn , together with one Schmidt projection made
any timet during the interaction immediately preceding th
last projection timetn . ~iii ! A series as in~i!, together with
one Schmidt projection made at any timet during an inter-
action taking place aftertn . Conversely, any branch
dependent set, each of whose histories takes one of the fo
~i!–~iii !, is consistent. We assume below that the set of s
measurement directions satisfies the condition of the th
rem: since this can be ensured by an arbitrarily small per
bation, this seems physically reasonable. The following s
tions explain, with the aid of this classification, the results
various set selection algorithms applied to the model.

VI. APPLICATION OF SELECTION ALGORITHMS
TO THE SPIN MODEL

We can define a natural consistent set which reprodu
the standard historical account of the physics of the separ
interaction spin model by selecting the Schmidt projectio
at all times between each successive spin measurement.
of this type ought to be produced by a good set selec
algorithm, either as the selected set itself or, perhaps, a
set. Sections VI A, VI B, and VI C describe the results ac
ally produced by various set selection algorithms applied
the spin model. All of these algorithms are dynamical, in t
sense that the decision whether to select projections at
t, and if so which, depends only on the evolution of the st
vector up to timet. Sections VI D and VI E discuss how
these results are affected by altering the initial conditions
the model. In Sec. VI F we consider a selection algorith
which is quasidynamical, in the sense that the decision
time t depend on the evolution of the state vector up to a
just beyondt. We summarize our conclusions in Sec. VI G

A. Exact limit DHC consistency

Since any projective decomposition at timet defines an
exactly consistent set when there is only one history up
that time, a Schmidt projection selection algorithm withou
nontriviality criterion will immediately make a projection
The normalized histories are defined as

lim
t→0

P6~ t !uc&/iP6~ t !uc&i , ~6.1!

whereP6(t) denotes the Schmidt projections at timet. The
Schmidt states to first order inv5u1(t) are

uv̂& ^ u↑1•••↑n&2 iv/2~12û1• v̂!uv̂& ^ u↓1↑2•••↑n&
~6.2!

and

uû1` v̂uu2v̂& ^ u↓1↑2•••↑n&1 iv/2AS 12û1• v̂

11û1• v̂
D 1/2u2v̂&

^ u↑1•••↑n&, ~6.3!

so the normalized histories are
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$uv̂& ^ u↑1↑2•••↑n&,u2v̂& ^ u↓1↑2•••↑n&%. ~6.4!

The limit DHC term for one projection at time 0 and anoth
during interactionk at time t is

cosf for k51,

sin2fuû1•û2uuv̂`~ û1`û2!u

N2~f!@12~ v̂•û1!
2N2

2~f!#1/2
for k52,

l2~k21!Nk~f!uv̂`~ û1`û2!u
@12l0~k21!

2 Nk
2~f!#1/2

for k.2, ~6.5!

wheref5uk(t). Here we define

l i j5)
k5 i

j21

uûk•ûk11u, ~6.6!

with the convention thatl i j51 for j< i , and

Nk~f!5uAk~f!ûk21u, ~6.7!

where

Ak~f!5P~ ûk!1cosf P̄~ ûk!, ~6.8!

whereP(ûk) is the projection onto the vectorûk in R3, and
P̄(ûk) its complement.
Whether the algorithm is taken to be branch-dependen

branch-independent, the only future Schmidt projectio
which are consistent with the initial projections are th
those between the first and second interactions, and the
jections selected will be at the end of the first interactio
The state at this time is

uc~1!&5uû1&^û1uv̂& ^ u↑1•••↑n&1u2û1&^2û1uv&

^ u↓1↑2•••↑n&. ~6.9!

The time evolved histories are

uh1~ t !&5uû1&^û1uv̂& ^ u↑1•••↑n&1u2û1&^2û1uv̂&

^ u↑1 . . . ↑n& ~6.10!

uh2~ t !&5uû1&^û1u2 v̂& ^ u↓1↑2•••↑n&2u2û1&^2û1u2 v̂&

^ u↓1↑2•••↑n&, ~6.11!

so the new normalized histories are

$uû1& ^ u↑1•••↑n&,uû1& ^ u↓1↑2•••↑n&, ~6.12!

u2û1& ^ u↑1&•••↑n&,u2û1& ^ u↓1↑2•••↑n&%. ~6.13!

Since no future Schmidt projections are consistent with th
selected, the algorithm clearly fails to produce the corr
set.

B. Exact consistency and nontriviality

Suppose that, instead of using the limit DHC, we consi
only sets defined by decompositions at different times
r

or
s

ro-
.

e
t

r
d

require exact consistency. As explained earlier, withou
nontriviality criterion this leads to an ill-defined algorithm
the initial projections att50 produce a null history, and th
Schmidt projections at all times greater than zero are con
tent with these initial projections, so that no minimal nonze
time is selected by the algorithm.

Introducing a nontriviality criterion removes this problem
Suppose, for example, we impose the absolute crite
Daa>d for all historiesa. Since any physically reasonab

d would have to be extremely small, let us assumed!uûi
`ûj u. The first projections aftert50 are then selected at th
first time whenDaa5d, which occurs during the first inter
action. Whether or not branch-dependent projections are
lowed, the only other Schmidt projections which can cons
tently be selected then take place at the end of the
interaction, and it again follows from the classification the
rem that no further projections can take place. Again,
making projections too early, this algorithm fails to produ
the correct consistent set.

A suitably large value ofd could ensure that no extensio
will occur until later interactions but, generically, the fir
extension made aftert50 will take place during an interac
tion rather than between interactions, and the classifica
theorem ensures that no more than four histories will eve
generated.

The same problems arise if the nontriviality criterion
taken to be relative rather than absolute. It is possible to
better by fine tuning the parameters: for example, if bran
independent histories are used, a relative nontriviality cr
rion is imposed and d5(12uûk•ûk11u)/2 for all
k50, . . . ,n21, then projections will occur at the end o
each interaction producing the desired set of histories. T
though, is clearly not a satisfactory procedure.

C. Approximate consistency and nontriviality

One might wonder if these problems can be overcome
relaxing the standards of consistency, since a projection
very small time will be approximately consistent — accor
ing to absolute measures of approximate consistency, at
— with projections at the end of the other interactions. Ho
ever, this approach too runs into difficulties, whether relat
or exact criteria are used.

Consider first a branch-dependent set selection algori
which uses the absolute nontriviality criterionDaa>d for all
a, and the absolute criterion for approximate consisten
uDabu<e for all aÞb. No history with probability less than
2d will thus be extended, since if it were one of the resulta
histories would have probability less thand.

Any historya with a probability less than or equal toe2

will automatically be consistent with any historyb according
to this criterion, sinceuDabu<(DaaDbb)

1/2<(e231)1/25e.
Therefore if d<e2 then histories of probabilityd will be
consistent with all other histories. The first projection af
t50 will be made as soon as the nontriviality criterion pe
mits, when the largest Schmidt eigenvalue is 12d. Other
projections onto the branch defined by the largest probab
history will follow similarly as the Schmidt projection
evolve. The final set of histories aftern projections will thus
consist of one history with probability 12nd andn histories
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with probability d — clearly far from the standard picture.
Suppose now thatd.e2. The probabilities for histories

with projection in the first interval, at timet with
u1(t)5v, are

1
2@12A12sin2vuv̂`û1u2#. ~6.14!

The first projection will therefore be made when

u1~ t !5v.2Aduv̂`û1u21, ~6.15!

producing histories of probabilitiesd and (12d). The next
projections selected will necessarily extend the history
probability (12d), since the absolute nontriviality criterio
forbids further extensions of the other history. We look fi
at projections taking place at a later timet8, with
u1(t8)5f, during the first interaction, and defin
N1(v)5(12sin2vuv̂`û1u2)1/2. Of the probabilities of the
extended histories, the smaller is

1
4 @11N1~v!#$12N1

21~v!N1
21~f!@~ v̂•û1!

2

1cosf cosv cos~f2v!uv̂`û1u2#%

5 1
4 uv̂`û1u2~v2f!2@11O~v!1O~f!#. ~6.16!

Therefore this extension will be nontrivial when

f.v12Aduv̂`û1u2154Aduv̂`û1u211O~d!.
~6.17!

The largest off-diagonal element in the decoherence ma
for this extension is

1
4N1

21~f!uv̂`û1u2cosf sinv sin~f2v!5d1O~d3!.
~6.18!

Unlessd.e, then, this extension is selected together, ag
with a series of further extensions generating small proba
ity histories.

Suppose now thatd.e. The term on the left-hand side o
Eq. ~6.18! increases monotonically untilf.p/4, and then
decreases again asf→p/2. Forf.p/2, it equals

1
2Ad cosfuv̂`û1uuv̂•û1u21@11O~cosf!#. ~6.19!

Hence, the approximate consistency criterion is next satis
when

f5p/22
2euv̂•û1u

Aduv̂`û1u
1O~e2/d!, ~6.20!

and this extension is also nontrivial unlessv̂ and û1 are es-
sentially parallel, which we assume not to be the case. In
case, then, projections are made towards the beginning
towards the end of the first interaction, and a physically r
sonable description of the first measurement emerges.

This description, however, cannot generally be con
tently extended to describe the later measurements. If
consider the set of histories defined by the Schmidt pro
tions at timet, given by Eq.~6.15! above, together with the
f

t

ix

,
il-

d

is
nd
-

-
e
c-

Schmidt projections at timet9 such thatuk(t9)5f for some
k.1, we find that the largest off-diagonal decoherence m
trix element is

1
2Adl2~k21!Nk~f!uv̂`û1uuv̂`~ û1`û2!u@11O~Av!#.

~6.21!

Since we have chosene,d to prevent multiple projec-
tions, and since the other terms are not small for gen
choices of the vectors, the set generally fails to satisfy
criterion for approximate consistency. Note, however, tha
all the measurement directions are apart by an angle gre
than equal to someu.0, thenl2(k21) decreases exponen
tially with k. After a large enough number@of order
O(2 lne)# of interactions have passed the algorithm will s
lect a consistent extension, and further consistent extens
will be selected at similar intervals. The algorithm does th
eventually produce nontrivial consistent sets, though the
produced do not vary smoothly withe and do not describe
the outcome of most of the spin measurements.

The reason this algorithm, and similar algorithms usi
approximate consistency criteria, fail is easy to understa
The off-diagonal decoherence matrix component in a set
fined by the Schmidt projections at timet together with
Schmidt projections during later interactions is proportion
to sinv cosv, together with terms which depend on th
angles between the vectors. The decoherence matrix com
nent for a set defined by the projections at timet, together
with Schmidt projections at a second timet8 soon afterwards
is proportional to sin2(f2v). The obstacle to finding non
triviality and approximate consistency criteria that can p
vent reprojections in the first interaction period, yet allo
interactions in later interaction periods, is that wh
(f2v) is small the second term is generally smaller th
the first.

Using a relative nontriviality criterion makes no diffe
ence, since the branchings we consider are from a histor
probability close to 1, and using the DHC instead of an a
solute criterion for approximate consistency only worse
the problem of consistency of later projections, since
DHC alters Eq.~6.21! by a factor of 1/Ad, leaving a term
which is generically of order unity. Requiring branch ind
pendence, of course, only worsens the problems.

D. Nonzero initial Schmidt eigenvalues

We now reconsider the possibility of altering th
initial conditions in the context of the spin model. Suppo
first that the initial state is not Schmidt degenera
For example, as the initial normalized histories a

$uv̂& ^ u↑1•••↑n&,u2 v̂& ^ u↓1↑2•••↑n&% a natural ansatz is

uc~0!&5Ap1uv̂& ^ u↑1 . . . ↑n&1Ap2u2 v̂& ^ u↓1↑2•••↑n&.
~6.22!

Consider now a set of histories defined by Schmidt proj
tions at times 0 and a timet during thekth interaction for
k.2, so thatu1(t)5u2(t)5p/2. The moduluses of the non
zero off-diagonal elements of the decoherence matrix ar

1
2Ap1p2uv̂`@ û1`u2#ul2k . ~6.23!
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55 1715QUANTUM PREDICTION ALGORITHMS
Generically, these off-diagonal elements are not small,
that the perturbed initial conditions prevent later physica
sensible projections from being selected.

E. Specifying initial projections

We consider now the consequence of specifying ini
projections in the spin model. Suppose the initial projectio

are made usingP(6ĥ)^ I E . The modulus of the nonzer
off-diagonal elements of the decoherence matrix for a p
jection at timet during interactionk, for k.2, is

1
4 uĥ` v̂uuĥ`û1ul1~k21!Nk@uk~ t !#, ~6.24!

and again we see that physically natural projections gen
cally violate the approximate consistency criterion.

It might be argued that the choice of initial projectio

given by ĥ56 v̂ is particularly natural. This produces a
initial projection on to the initial state, with the other histo
undefined unless a limiting operation is specified. If the lim
of the normalized histories for initial projectionsĥ8→ĥ is
taken, the normalized histories are simplyu6ĥ&. If an abso-
lute consistency criterion is used the null history will n
affect future projections and the results will be the same a
no initial projection had been made. If, on the other hand,
limit DHC is used then the consistency criterion is the sa
as for generalĥ, that is, ĥ must be parallel toû1. This re-
quires that the initial conditions imposed att50 depend on
the axis of the first measurement, and still fails to perm
physically natural description of later measurements.

F. A quasidynamical algorithm

For completeness, we include here an algorithm wh
though not strictly dynamical, succeeds in selecting the n
ral consistent set to describe the spin model. In the s
model as defined, it can be given branch-dependen
branch-independent form and selects the same set in e
case. In the branch-independent version, the Schmidt pro
tions are selected at timet provided that they define an ex
actly consistent and nontrivial extension of the set defined
previously selected projectionsand that this extension can
itself be consistently and nontrivially extended by t
Schmidt projections at timet1e for every sufficiently small
e.0.4 In the branch-dependent version, the second co
tion must hold for at least one of the newly created branc
of nonzero probability in the extended set.

It follows immediately from the classification theore
that no Schmidt projections can be selected during inte
tions, since no exactly consistent set of Schmidt projecti
includes projections at two different times during intera
tions. The theorem also implies that the Schmidt projecti
are selected at the end of each interval between interact
so that the selected set describes the outcomes of each o
measurements.

4Alternatively, a limiting condition can be used.
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G. Comments

The simple spin model used here illustrates the difficu
in encoding our physical intuition algorithmically. Th
model describes a number of separated interactions, eac
which can be thought of as a measurement of the sys
spin. There is a natural choice of consistent set, given by
projections onto the system spin states along the meas
axes at all times between each of the measurements.5 This set
does indeed describe the physics of the system as a seri
measurement events and assigns the correct probabilitie
those events. Moreover, the relevant projections are preci
the Schmidt projections.

We first considered a series of Schmidt projection set
lection algorithms which are dynamical, in the sense that
projections selected at timet depend only on the physics u
to that time. Despite the simplifying features of the mode
it seems very hard to find a dynamical Schmidt projection
selection algorithm which selects a physically natural con
tent set and which is not specifically adapted to the mode
question.

It might be argued that the very simplicity of the mod
makes it an unsuitable testing ground for set selection a
rithms. It is certainly true that more realistic models wou
generally be expected to allow fewer exactly consistent s
built from Schmidt projections: it is not at all clear that an
nontrivial exactly consistent sets of this type should be
pected in general. However, we see no way in which all
problems encountered in our discussion of dynamical set
lection algorithms can be evaded in physically realistic mo
els.

We have, on the other hand, seen that a simple quas
namical set selection algorithm produces a satisfactory
scription of the spin model. However, as we explain in S
VII, there is another quite general objection which appl
both to dynamical set selection algorithms and to this qu
dynamical algorithm.

VII. THE PROBLEM OF RECOHERENCE

The set selection algorithms above rely on the decoh
ence of the states of one subsystem through their interact
with another. This raises another question: what happ
when decoherence is followed by recoherence?

For example, consider a version of the spin model
which the system particle initially interacts with a single e
vironment particle as before, and then reencounters the
ticle, reversing the interaction, so that the evolution takes
form

a1uû& ^ u↑1&1a2u2û& ^ u↑1&

→a1uû& ^ u↑1&1a2u2û& ^ u↓1&

→a1uû& ^ u↑1&1a2u2û& ^ u↑1&, ~7.1!

generated by the unitary operator

5Strictly speaking, there are many equivalent consistent sets, a
which include the Schmidt projections at some point in time b
tween each measurement and at no time during measurements
all of which give essentially the same physical picture.



ica
-
ca
ri
ic

t
p
n
e

cu
th
m

l

o
ri
co
r
o
a
e
fo

v
e
ro

er
ra

n
ld
t
t
.

m
n
uc
o

ns

e

the
-
ace
ing

ng
al
lgo-
h

on

at
he

ible
ade

ojec-

a
e
t

gs
e
the

1716 55ADRIAN KENT AND JIM McELWAINE
U~ t !5P~ û! ^ I1P~2û! ^e2 iu~ t !F, ~7.2!

where

u~ t !5H t for 0<t<p/2

p/2 for p/2<t<p

3p/22t for p<t<3p/2.

~7.3!

We have taken for granted, thus far, that a dynam
algorithm makes selections at timet based only on the evo
lution of the system up to that time. Thus any dynami
algorithm which behaves sensibly, according to the crite
which we have used so far, will select a consistent set wh
includes the Schmidt projections at some time betweenp/2
and p, since during that interval the projections appear
describe the result of a completed measurement. These
jections cannot be consistently extended by projections o
the initial statea1uû&1a2u2û& and the orthogonal stat
a2uû&2a1u2û& at time 3p/2, so that the algorithm will not
agree with the standard intuition that at timep the state of
the system particle has reverted to its initial state. In parti
lar, if the particle subsequently undergoes interactions of
form ~5.1! with other environment particles, the algorith
cannot reproduce the standard description of these later m
surements. The same problem afflicts the quasidynamica
gorithm considered in Sec. VI F.

In principle, then, dynamical set selection algorithms
the type considered so far imply that, following any expe
ment in which exact decoherence is followed by exact re
herence and then by a probabilistic measurement of the
cohered state, the standard quasiclassical picture of the w
cannot generally be recovered. If the algorithms use an
proximate consistency criterion — as we have argued is n
essary for a realistic algorithm — then this holds true
experiments in which the decoherence and recoherence
approximate.

We know of no experiments of precisely this type. Se
eral neutron interferometry experiments have been p
formed in which one or both beams interact with an elect
magnetic field before recombination@38–45# and
measurement. In these experiments, though, the electrom
netic field states are typically superpositions of many diff
ent number states, and are largely unaffected by the inte
tion, so that Eq.~7.1! is a poor model for the process.6 Still,
it seems hard to take seriously the idea that if a recohere
experiment were constructed with sufficient care it wou
jeopardize the quasiclassicality we observe, and we take
recoherence problem as a conclusive argument agains
general applicability of the algorithms considered to date

VIII. RETRODICTIVE ALGORITHMS

We have seen that dynamical set selection algorith
which run forwards in time generally fail to reproduce sta
dard physics. Can an algorithm be developed for reconstr
ing the history of a series of experiments or, in principle,
the Universe?

6See, for example, Ref.@46# for a review and analysis.
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A. Retrodictive algorithms in the spin model

We first look at the spin model with separated interactio
and initial state

uc~0!&5uv̂& ^ u↑1•••↑n&, ~8.1!

and take the first interaction to run fromt50 to t51, the
second fromt51 to t52, and so on. The final state, in th
Schrödinger picture, is

uc~n!&5(
a

Apauanûn& ^ ub1•••bn&. ~8.2!

Herea5$a1 , . . . ,an% runs over all strings ofn pluses and
minuses, we writeb i5↑ if a i51 andb i5↓ if a i521, and

pa522n~11anan21ûn•ûn21!•••~11a1û1•û0!.
~8.3!

Consider now a set selection algorithm which begins
selection process att5n and works backwards in time, se
lecting an exactly consistent set defined by system sp
Schmidt projections. The algorithm thus begins by select
projections onto the Schmidt statesu6ûn& at t5n. The clas-
sification theorem implies that any Schmidt projection duri
the time interval@n21,n) defines a consistent and nontrivi
extension to the set defined by these projections. If the a
rithm involves a parametrized nontriviality condition wit
sufficiently small nontriviality parameterd, the next projec-
tion will thus be made as soon as the nontriviality conditi
is satisfied, which will be at some timet5n2Dt, where
Dt is small.

If a nontriviality condition is not used but the limit DHC
is used instead, then a second projection will be made
t5n, but the normalized path projected states will be t
same~to lowest order inDt) as for projection att5n2Dt.
The classification theorem then implies that the only poss
times at which further extensions can consistently be m
are t5n21, . . . ,1 and, if d is sufficiently small and the
measurement axes are nondegenerate, the Schmidt pr
tions at all of these times will be selected.

In fact, this algorithm gives very similar results whether
nontriviality condition or the limit DHC is used. We use th
limit DHC here for simplicity of notation. Since the Schmid
states at the end of thekth interaction areu6ûk&, the histo-
ries of the selected set are indexed by strin
$a1 , . . . ,an11% consisting ofn11 pluses and minuses. Th
corresponding class operators are defined in terms of
Heisenberg picture Schmidt projections as

PH
an11~n!PH

an~n!PH
an21~n21!•••PH

a1~1!. ~8.4!

DefineCa5PH
an(n)•••PH

a1(1). Then

PH
an11~n!Ca5Ca if an115an ,

PH
an11~n!Ca50 if an1152an , ~8.5!

and to calculate the limit DHC Eq.~3.2! we note that Eq.
~3.5! implies that
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55 1717QUANTUM PREDICTION ALGORITHMS
lim
e→0

e21PH
2an~n!PH

an~n2e!•••PH
a1~1!

5PH
2an~n!ṖH

an~n!•••PH
a1~1!

5 ṖH
an~n!PH

an~n!•••PH
a1~1!

5PH
an~n!Ca . ~8.6!

The complete set of class operators~up to multiplicative con-
stants! is $Ca ,ṖH

1(n)Ca% and the set of normalized historie
is, therefore,

$uanûn& ^ ua&,u2anûn& ^ ua&%. ~8.7!

Of these histories, the first 2n have probabilities
pa522n(11anan21ûn•ûn21) . . . (11a1û1–û0) and have a
simple physical interpretation, namely, that the particle w
in directiona i ûi at time t5 i , for eachi from 1 to n, while
the second 2n have zero probability. Thus the repeated p
jections that the algorithm selects att5n, while nonstandard
merely introduce probability zero histories, which need
physical interpretation. The remaining projections reprod
the standard description so that, in this example, at le
retrodictive algorithms work. While this is somewhat e
couraging, the algorithm’s success here relies crucially
the simple form of the classification of consistent sets in
spin model, which in turn relies on a number of special fe
tures of the model. In order to understand the behavio
retrodictive algorithms in more generality, we look next
two slightly more complicated versions of the spin mode

B. Spin model with perturbed initial state

Consider now the spin model with a perturbed initial st
uc&1guf&. For generic choices off andg, there is no non-
trivial exactly consistent set of Schmidt projections, but it
easy to check that the set selected in the preceding se
remains approximately consistent to orderg, in the sense
that the DHC and limit DHC parameters areO(g).

This example, nonetheless, highlights a difficulty with t
type of retrodictive algorithm considered so far. Some fo
of approximate consistency criterion is clearly required
obtain physically sensible sets in this example. Howev
there is no obvious reason to expect that there should be
parametere with the property that a retrodictive algorithm
which requires approximate consistency~via the limit DHC
and DHC! to ordere will select a consistent set whose pr
jections are all similar to those of the set previously selec
The problem is that, given any choice ofe which selects the
right projections at timen, the next projections selected wi
be at time (n21)1O(g) rather than at preciselyt5n21.
The level of approximate consistency then required to se
projections at times nearn22, n23, and so forth, depend
on the projections already selected, and so depends ong only
indirectly and in a rather complicated way.

We expect that, for smallg and genericf, continuous
functions ek(g,f) exist with the properties tha
ek(g,f)→0 asg→0 and that some approximation to the s
previously selected will be selected by a retrodictive alg
rithm which requires approximate consistency to ord
s
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ek(g,f) for the kth projection. Clearly, though, since th
aim of the set selection program is to replace mod
dependent intuition by a precise algorithmic description, i
rather unsatisfactory to have to fine tune the algorithm to
the model in this way.

C. Delayed choice spin model

We now return to considering the spin model with
unperturbed initial state and look at another shortcomi
The interaction of the system particle with each success
environment particle takes the form of a spin measurem
interaction in which the axis of each measurement,$ûi%, is
fixed in advance. This is a sensible assumption when m
eling a natural system-environment coupling, such as a
ticle propagating past a series of other particles. As a mo
of a series of laboratory experiments, however, it is unn
essarily restrictive. We can model experiments with an e
ment of delayed choice simply by taking the axis$ûi% to
depend on the outcome of the earlier measurements.

If we do this, while keeping the times of the interactio
fixed and nonoverlapping, the measurement outcomes
still be naturally described in terms of a consistent set b
from Schmidt projections onto the system space at tim
t51,2, . . . ,n, so long as both the Schmidt projections a
the consistent set are defined to be appropriately branch
pendent. Thus, let

uc~0!&5uv̂& ^ u↑1•••↑n& ~8.8!

be the initial state and letPH
a1(1), fora156, be the Schmidt

projections onto the system space at timet51. We define a
branch-dependent consistent set in which these project
define the first branches and consider independently the
lution of the two statesPH

1(1)uc(0)& andPH
2(1)uc(0)& be-

tweent51 andt52. These evolutions take the form of me
surements about axesû2;a1 which depend on the result of th
first measurement. Att52 the second measurements a
complete, each branch splits again, and the subsequent
lutions of the four branches now depend on the results of
first two measurements. Similar splittings take place at e
time from 1 ton, so that the axis of themth measurement in
a given branch,um;am21 , . . . ,a1

, depends on the outcome

am21 , . . . ,a1 of the previous (m21) measurements. Thus
the evolution operator describing themth interaction is

Vm~ t !5 (
am21 , . . . ,a1

$P~um;am21 ,•••,a1
! ^P1~b1! ^ •••

^Pm21~bm21! ^ I m^ ••• ^ I n

1P~2ûm;am21 ,•••,a1
! ^P1~b1!

^ ••• ^Pm21~bm21! ^e2 ium~ t !Fm^ I m11

^ •••^ I n%.

Again we takeb i5↑ if a i51 andb i5↓ if a i52. The full
evolution operator is

U~ t !5Vn~ t !•••V1~ t !. ~8.9!
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During the interval (m21,m) we consider the Schmidt de
compositions on each of the 2m21 branches defined by th
states

U~ t !PH
am21 ;am22 , . . . ,a1~m21!•••PH

a1~1!uc~0!&

5Vm~ t !@P~am21ûm21;am22 , . . . ,a1
!•••P~a1û1!uv̂&]

^ ub1•••bm21↑m•••↑n&,

with a1 , . . . ,am21 independently running over the value
6. Here

PH
am ;am21 , . . . ,a1~ t !5U†~ t !P~amûm;am21 , . . . ,a1

! ^ IU ~ t !,
~8.10!

that is, the Heisenberg picture projection operator onto
branch-dependent axis of measurement. The branche
other words, are defined by the branch-dependent Sch
projections at times from 1 tom21.

It is not hard, thus, to find a branch-dependent consis
set, built from the branch-dependent Schmidt projection
times 1 through ton, which describes the delayed-choic
spin model sensibly.7 However, since the retrodictive algo
rithms considered so far rely on the existence of a bran
independent set defined by the Schmidt decomposition
the original state vector, they will not generally reprodu
this set ~or any other interesting set!. Branch-dependen
physical descriptions, which are clearly necessary in qu
tum cosmology as well as in describing delayed-choice
periments, appear to rule out the type of retrodictive al
rithm we have considered so far.

IX. BRANCH-DEPENDENT ALGORITHMS

The algorithms we have considered so far do not allow
branch dependence, and, hence, cannot possibly selec
right set in many physically interesting examples. We ha
also seen that it is hard to find good Schmidt project
selection algorithms in which the projections selected at
time depend only on the physics up to that time, and that
possibility of recoherence rules out the existence of gener
applicable algorithms of this type.

This suggests thatretrodictive branch-dependent algo
rithms should be considered. Such algorithms, howe
seem generally to require more information than is contai
in the evolution of the quantum state. In the delayed-cho
spin model, for example, it is hard to see how the Schm
projections on the various branches, describing the dela
choice measurements at late times, could be selected b
algorithm if only the entire statec(t) — summed over all
the branches — is specified.

The best, we suspect, that can be hoped for in the cas
the delayed-choice spin model is an algorithm which ta
all the final branches, encoded in the 2n states
u6v& ^ ub1 . . .bn&, where each of theb i is one of the labels

7This sort of branch-dependent Schmidt decomposition could
course, be considered in the original spin model, where all the a
of measurement are predetermined, but would not affect the ea
analysis, since the Schmidt projections in all branches are ident
e
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↑ or ↓, and attempts to reconstruct the rest of the branch
structure from the dynamics.

One possibility, for example, is to work backwards fro
t5n, and at each timet search through all subsetsQ of
branches defined at that time, checking whether the s
ucQ(t)& of the corresponding states at timet has a Schmidt
decomposition with the property that the Schmidt proje
tions, applied toucQ(t)&, produce~up to normalization! the
individual branch states. If so, the Schmidt projections
taken to belong to the selected branch-dependent consi
set, the corresponding branches are unified into a sin
branch at timest and earlier, and the state corresponding
that branch at timet8 is taken to beU(t8)U(t)†ucQ(t)&,
whereU is the evolution operator for the model. Clearl
though, by specifying the final branch states we have alre
provided significant information — arguably most of the si
nificant information — about the physics of the model. Fin
ing algorithmic ways of supplying the branching structure
a natural consistent set, given all of its final history stat
may seem a relatively minor accomplishment. It would o
viously be rather more useful, though, if the final histo
states themselves were specified by a simple rule. For
ample, if the system and environment Hilbert spaces are b
of large dimension, the final Schmidt states would be natu
candidates. It would be interesting to explore these possi
ties in quantum cosmology.

X. CONCLUSIONS

Bell, writing in 1975, said of the continuing dispute abo
quantum measurement theory that it ‘‘is not between peo
who disagree on the results of simple mathematical man
lations. Nor is it between people with different ideas abo
the actual practicality of measuring arbitrarily complicat
observables. It is between people who view with differe
degrees of concern or complacency the following fact:
long as the wave-packet reduction is an essential compon
and so long as we do not know exactly when and how
takes over from the Schro¨dinger equation, we do not have a
exact and unambiguous formulation of our most fundame
physical theory’’@47#.

New formulations of quantum theory have since been
veloped, and the Copenhagen interpretation itself no lon
dominates the debate quite as it once did. The languag
wave-packet reduction, in particular, no longer comman
anything approaching universal acceptance — thanks
large part to Bell’s critiques. But the fundamental dispute
still, of course, very much alive, and Bell’s description of th
dispute still essentially holds true. Many approaches to qu
tum theory rely, at the moment, on well-developed intuiti
to explain, case by case, what to calculate in order to ob
a useful description of the evolution of any given physic
system. The dispute is not over whether those calculati
are correct, or even as to whether the intuitions used
helpful: generally, both are. The key question is whether
should be content with these successes, or whether
should continue to seek to underpin them by an exact
unambiguous formulation of quantum theory.

Consensus on this point seems no closer than it wa
1975. Many physicists take the view that we should not e
expect to find a complete and mathematically precise the
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55 1719QUANTUM PREDICTION ALGORITHMS
of nature, that nature is simply more complex than any ma
ematical representation. If so, some would argue, presen
terpretations of quantum theory may well represent the li
of precision attainable: it may be impossible, in principle,
improve on imprecise verbal prescriptions and intuition.
the other hand, this doubt could be raised in connection w
any attempt to tackle any unsolved problem in physics. W
for example, should we seek a unified field theory, o
theory of turbulence, if we decidea priori not to look for a
mathematically precise interpretation of quantum theo
Clearly, too, accepting the impossibility of finding a com
plete theory of nature need not imply accepting that a
definite boundary to precision will ever be encountered. O
could imagine, for example, that every technical and conc
tual problem encountered can eventually be resolved,
that the supply of problems will turn out to be infinite. An
many physicists, of course, hope or believe that a comp
and compelling theory of nature will ultimately be foun
and so would simply reject the initial premise.

Complete agreement on the desiderata for formulation
quantum theory thus seems unlikely. But it ought to be p
sible to agree whether any given approach to quantum th
actually does supply an exact formulation and, if not, w
the obstacles might be. Our aim in this paper has bee
help bring about such agreement, by characterizing w
might constitute a precise formulation of some of the idea
the decoherence and consistent histories literature, an
explaining how hard it turns out to be to supply such a f
mulation.

Specifically, we have investigated various algorithms t
select one particular consistent set of histories from am
those defined by the Schmidt decompositions of the st
relative to a fixed system-environment split. We give e
amples of partial successes. There are several relati
simple algorithms which give physically sensible answers
particular models, and which we believe might usefully
applied elsewhere. We have not, though, found any a
rithm which is guaranteed to select a sensible consisten
when both recoherence and branch-dependent sys
environment interactions are present.

Our choice of physical models is certainly open to cr
cism. The spin model, for example, is a crudely simplis
model of real-world decoherence processes, which supp
e
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both that perfect correlations are established between sy
and environment particles in finite time and that these in
actions do not overlap. We would not claim, either, that t
delayed-choice spin model necessarily captures any of
essential features of the branching structure of quasiclas
domains, though we would be very interested to kn
whether it might. We suspect that these simplificatio
should make it easier rather than harder to find set selec
algorithms in the models, but we cannot exclude the po
bility that more complicated and realistic models mig
prove more amenable to set selection.

The type of mathematical formulation we have sought
similarly, open to criticism. We have investigated what se
particularly interesting classes of Schmidt projection set
lection algorithms, but there are certainly others which m
be worth exploring. There are also, of course, other ma
ematical structures relevant to decoherence apart from
Schmidt decomposition, and other ways of representing
torical series of quantum events than through consistent
of histories.

Our conclusion, though, is that it is extraordinarily hard
find a precise formulation of nonrelativistic quantum theo
based on the notions of quasiclassicality or decoherence,
is able to provide a probabilistic description of series
events at different points in time sufficiently rich to allo
our experience of real world physics to be reconstructed.
problems of recoherence and of branch-dependent sys
environment interaction, in particular, seem sufficiently se
ous that we doubt that the ideas presented in the literatur
date are adequate to provide such a formulation. Howe
we cannot claim to have exhaustively investigated every p
sibility, and we would like to encourage sceptical readers
improve on our attempts.
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