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Quantum prediction algorithms

Adrian Kent and Jim McElwain&
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, United Kingdom
(Received 15 October 1996

The consistent histories formulation of the quantum theory of a closed system with a pure initial state defines
an infinite number of incompatible consistent sets, each of which gives a possible description of the physics.
We investigate the possibility of using the properties of the Schmidt decomposition to define an algorithm
which selects a single, physically natural, consistent set. We explain the problems which arise, set out some
possible algorithms, and explain their properties with the aid of simple models. Though the discussion is
framed in the language of the consistent histories approach, it is intended to highlight the difficulty in making
any interpretation of quantum theory based on decoherence into a mathematically precise theory.
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[. INTRODUCTION approach thus violates both standard scientific criteria and
ordinary intuition[5-10]. In our view, the present version of

It is hard to find an entirely satisfactory interpretation of the consistent histories formalism is too weakly predictive in
the quantum theory of closed systems, since quantum theomimost all plausible physical situations to be considered a
does not distinguish physically interesting time-ordered sefundamental scientific theory. Nonetheless, we believe that
qguences of operators. The consistent histories approach the consistent histories approach gives a new way of looking
quantum theory was originally developed by Griffith, = at quantum theory which raises intriguing questions and
Omnes[2], and Gell-Mann and Hartlg8]. One of its virtues, should, if possible, be developed further.
in our view, is that it allows the problems of the quantum The status of the consistent histories approach remains
theory of closed systems to be formulated precisely enougbontroversial: much more optimistic assessments of the
to allow us to explore possible solutions. A natural probabil-present state of the formalism can be found, for example, in
ity distribution is defined on each consistent set of historiesRefs.[3,11,13. It is, though, generally agreed that set selec-
allowing probabilistic predictions to be made from the initial tion criteria should be investigated. For if quantum theory
data. There are infinitely many consistent sets, which areorrectly describes macroscopic physics then, it is believed,
incompatible in the sense that pairs of sets generally admital-world experiments and observations can be described by
no physically sensible joint probability distribution whose what Gell-Mann and Hartle termquasiclassicalconsistent
marginal distributions agree with those on the individualsets of histories. Roughly speaking, quasiclassical sets are
sets. Indeed the standard no-local-hidden-variable theoreng&fined by projection operators which involve similar vari-
show that there is no joint probability distribution defined onables at different times and which satisfy classical equations
the collection of histories belonging to all consistent setsof motion, to a very good approximation, most of the time.
[4,5]. Hence, the set selection problem: probabilistic predicNo precise definition of quasiclassicality has yet been found,
tions can only be made conditional on a choice of consistentor is any systematic way known of identifying quasiclassi-
set, yet the consistent histories formalism gives no way otal sets within any given model or theory. Whether Gell-
singling out any particular set or sets as physically interestMann and Hartle’s program of characterizing quasiclassical
ing. sets is taken as a fundamental problem or a phenomenologi-

One possible solution to the set selection problem wouldtal one, any solution must clearly involve some sort of set
be an axiom which identifies a unique physically interestingselection mechanism.
set, or perhaps a class of such sets, from the initial state and In this paper, we consider one particular line of attack on
the dynamics. Another would be the identification of a physi-this problem: the attempt to select consistent sets by using
cally natural measure on the space of consistent sets, acconthe Schmidt decomposition together with criteria intrinsic to
ing to which the physically relevant consistent set is ranthe consistent histories formalism. The paper is exploratory
domly chosen. No workable solution has yet been proposedn spirit: our aims here are to point out obstacles, raise ques-

however. tions, set out some possible selection principles, and explain
The problem remains essentially unaltered if the predictheir properties.
tions are conditioned on a large collection of dpfd and Our discussion is framed in the language of the consistent

even if predictions are made conditional on approximatelyhistories approach to quantum theory, but we believe it is of
classical physics being observigl. The consistent histories wider relevance. Many modern attempts to provide an inter-
pretation of quantum theory rely, ultimately, on the fact that
quantum subsystems decohere. Subsystems considered in-
*Electronic address: apak@damtp.cambridge.ac.uk clude the brains of observers, the pointers of measuring de-
TElectronic address: jnm11@damtp.cambridge.ac.uk vices, and abstractly defined subspaces of the total Hilbert
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space. Whichever, the moral is intended to be that decohefFhe set of histories isonsistent if and only if,
ence selects the projection operators, or space-time events, or

algebras of observables which characterize the physics of the _ + _

subsystem as it is experienced or observed. There is no doubt D“ﬁ_w' Cﬁc“' ¥)= OapP(a),
that understanding the physics of decoheradmasprovide a

very good intuitive grasp of how to identify operators from in which casep(«) is interpreted as the probability of the
which our everyday picture of real-world quasiclassicalhistory «. D is the decoherence matrix. Here and later,
physics can be constructed and this lends some support to thigough, we use the compact notatierto refer to a history,
hope that a workable interpretation of quantum theory — awe intend the individual projection operators and their asso-
plausible successor to the Copenhagen interpretation -eiated times to define the history. The histories of nonzero
could possibly be constructed along the lines just describedprobability in a consistent set thus correspond precisely to
However, it seems to us that the key question is whethethe nonzero vector€ | ). According to the standard view
such an interpretation can be made mathematically préciseof the consistent histories formalism, which we adopt here, it
That is, given a decohering subsystem, can we find gener## only consistent sets which are of physical relevance. The
rules which precisely specify operatd other mathemati- dynamics are defined purely by the Hamiltonian, with no
cal object which allow us to recover the subsystem’s phys-collapse postulate, but each projection in the history can be
ics as we experience or observe it? From this point of viewhought of as corresponding to a historical event, taking

we illustrate below how one might go about setting out SucHaIace at the relevant time. If a given history is realized, its
rules, and the sort of problems which arise.

events correspond to extra physical information, neither de-
ducible from the state vector nor influencing it.

Most projection operators involve rather obscure physical
guantities, so that it is hard to interpret a general history in
familiar language. However, given a sensible model, with

We use a version of the consistent histories formalism irHamiltonian and canonical variables specified, one can con-
which the initial conditions are defined by a pure state, thestruct sets of histories which describe familiar physics and
basic objects of the formalism are branch-dependent sets @heck that they are indeed consistent to a very good approxi-
projections, and consistency is defined by Gell-Mann andnation. For example, a useful set of histories for describing
Hartle's decoherence criterion E(..3). the solar system could be defined by projection operators

Let |¢) be the initial state of a quantum system. A whose nonzero eigenspaces contain states in which a given
branch-dependent set of historids a set of products Pplanet's center of mass is located in suitably chosen small
of projection operators indexed by the variablesvolumes of space atthe relevant times, and one would expect
a={ay,an_1, ...} and corresponding time coordinates @ Sensible model to show that this is a consistent set and that
{t,, ... .}, where the ranges of the, and the projections the histories of significant probability are those agreeing with

they define depend on the valuesa@f 1, . . . ,aq, and the the trajectories predicted by general relativity.
histories take the form More generally, Gell-Mann and Hart[@] introduce the

notion of aquasiclassical domaina consistent set which is

1.3

A. Consistent histories

Co=P" (th;an_1,...,a1) complete — so that it cannot be nontrivially consistently
n extended by more projective decompositions — and is de-
% PZ;_ll(tnfl;anfzv cooap) .. Pil(tl)- (1.1 fined by projection operators which involve similar variables

at different times and which satisfy classical equations of
motion, to a very good approximation, most of the time. The
notion of a quasiclassical domain seems natural, though pres-

Here, for fixed values of ayy,....a1, e  opyvimprecisely defined. Its heuristic definition is motivated
Po(tii @1, - . ,a1) define a projective decomposition of . the familiar example of the hydrodynamic variables —
the identity indexed by  «, SO that densities of chemical species in small volumes of space, and
EakPZk(tk;ak,l, ...,a7)=1 and similar quantities — which characterize our own quasiclas-
sical domain. Here the branch dependence of the formalism
plays an important role, since the precise choice of variables
pk (te e 1, - - . a’l)Pk/(tk'a’kfl ) (most obvious_ly, the si_zes of the small volumc_ase use de-
e ’ ’ e ! ’ ’ pends on earlier historical events. The formation of our Gal-
_ K (y - axy and Solar System influences all subsequent local phys-
- 5ak“épak(tk'ak*1’ ). (1.2 ics; even present-day quantum experiments have the

potential to do so significantly, if we arrange for large mac-
roscopic events to depend on their results.

Even those who believe that an interpretation relying on intuitive
ideas or verbal prescriptions is acceptable would, we hope, concede’Several different consistency criteria are used in the literature, all
that it is interesting to ask whether those ideas and prescripteoms  of which are believed to be compatible with the standard quasiclas-
be set out mathematically. sical descriptions of realistic physical examples. This particular cri-
2For brevity, we refer to projective decompositions of the identity terion is generally known asedium consistenoyr medium deco-
as projective decompositions hereafter. herence it will be used throughout the paper.
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It should be stressed that, according to all the developerability with the quantum history probabilities defined by the
of the consistent histories approach, quasiclassicality and relecoherence matrix, can be found in R&f1].
lated properties are interesting notions to study within, not Though a detailed critique is beyond our scope here, it
defining features of, the formalism. In the view of the for- seems to us that any attempt to interpret quantum theory
malism’s developers, all consistent sets of histories have therhich relies solely on the properties of the Schmidt decom-
same physical status, though in any realistic example we angosition must fail, even if some fixed choice®f, andH, is
likely to be more interested in the descriptions of the physicsallowed. The Schmidt decomposition seems inadequate as,
given by some than by others. although it allows a plausible interpretation of the quantum

Identifying interesting consistent sets of histories is presstate at a single fixed time, its time evolution has no natural
ently more of an art than a science. One of the original aiménterpretation consistent with the predictions of Copenhagen
of the consistent histories formalism, stressed, in particulaquantum theory.
by Griffiths and Omnsg, was to provide a theoretical justifi- Many studies have been made of the behavior of the
cation for the intuitive language often used, both by theoristSchmidt decomposition during system-environment interac-
and experimenters, in analyzing laboratory setups. Evetions. In developing the ideas of this paper, we were influ-
here, though there are many interesting examples in the litenced, in particular, by Albrecht’s investigatiof&2,23 of
erature of consistent sets which give a natural description ahe behavior of the Schmidt decomposition in random
particular experiments, no general principles have beeilamiltonian interaction models and the description of these
found by which such sets can be identified. Identifying inter-models by consistent histories.
esting consistent sets in quantum cosmological models or in
real-world cosmology seems to be still harder, although c. combining consistency and the Schmidt decomposition
some interesting criteria stronger than consistency have re-

cently been proposed 0,13 The idea motivating this paper is that the combination of

the ideas of the consistent histories formalism and the
Schmidt decomposition might allow us to define a math-
B. The Schmidt decomposition ematically precise and physically interesting description of

. . . ... the quantum theory of a closed system. The Schmidt decom-
We consider a closed quantum system with a pure initial-_ " .% : S
state vecto #(0)) in a Hilbert space with Hamiltonian position defines four natural classes of projection operators,

H. We suppose that=H, @ H,; we write dim(H,) =d; and which we refer to collectively aSchmidt projectionsThese

we suppose that;<d,<<w. With respect to this splitting of take the form
the Hilbert space, th&chmidt decompositioof | (t)) is an L — L
expression of the form Pi(t) =|w;(t))(w;(1)|;®1, and P =|1®|2—2i Pi(t),

dy

_ . 1/2)\ps. . Y
|¢(t)>—i21[p.(t)] wi(D)1®|wi(t))2, (1.4 P2(t)=1,® Wi(1))o(i(1)], and P2=1,01,— S, P(1),

where theSchmidt state$|w;);} and{|w;),} form, respec-  PS()=|wi(1) 1(wi(t)| 1@ |wi(1))2(w;(1)]2
tively, an orthonormal basis dff; and part of an orthonor- o
mal basis ofH,, the functiong;(t) are real and positive, and and P3=1,®1,— > P3(1),
we take the positive square root. For fixed titpeany de- i
composition of the form Eq(l1.4) then has the same list of 4
probability weights{p;(t)}, and the decompositiol.4) is  Pij(1) = [wi()) (Wi (D)]1®[w;(t)){w;(D)]2
unique if these weights are all different. These probability L
weights are the eigenvalues of the reduced density matrix. and P4=1,®1,— > pﬁ(t)_ (1.5

This simple result, proved by Schmidt in 19014], i
means that at any given time there is, generically, a natural -
decomposition of the state vector relative to any fixed splitf dim?;=dimH, the complementary projectiorB®, P?,
H="H,®H,, which defines a basis on the smaller spaceand P* are zero.
‘H, and a partial basis oft{,. The decomposition has an Since the fundamental problem with the consistent histo-
obvious application in standard Copenhagen quantum theonyes approach seems to be that it allows far too many consis-
where, if the two spaces correspond to subsystems undergtent sets of projections, and since the Schmidt projections
ing a measurement-type interaction, it describes the final ougppear to be natural dynamically determined projections, it
comes[15]. seems sensible to explore the possibility that a physically

It has more than once been suggested that the Schmidensible rule can be found which selects a consistent set or
decompositiorper semight define a fundamental interpreta- sets from amongst those defined by Schmidt projections.
tion of quantum theory. According to one line of thought, it ~ The first problem in implementing this idea is choosing
defines the structure required in order to make precise sengle split’H="H,®H,. In analyzing laboratory experiments,
of Everett's ideaq16]. Another idea which has attracted one obvious possibility is to separate the system and appara-
some attention is that the Schmidt decomposition itself detus degrees of freedom. Other possibilities of more general
fines a fundamental interpretatiqd7—20. Some critical application are to take the split to correspond to more funda-
comments on this last program, motivated by its irreconcil-mental divisions of the degrees of freedom — fermions and
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bosons, or massive and massless particles, or, one mighm which the selected set is branch dependent and the distinct

speculate, the matter and gravitational fields in quantunorthogonal componentsy;(t)) correspond to the different

gravity. Some such division would necessarily have to bebranches at timé. In this case, we will consider the Schmidt

introduced if this proposal were applied to cosmologicaldecompositions of each of tHe;(t)) separately. Again, it

models. will be sufficient to consider only the first class of Schmidt
Each of these choices seems interesting to us in contexprojections. In fact, for the branch-dependent algorithms we

but none, of course, is conceptually cost free. Assuming &onsider, all of the classes of Schmidt projection select the

division between system and apparatus in a laboratory exsame history vectors and, hence, select physically equivalent

periment seems to us unacceptable in a fundamental theorgpnsistent sets.

reintroducing, as it does, the Heisenberg cut which post-

Copenhagen quantum theory aims to eliminate. It seems jus-

tifiable, though, for the limited purpose of discussing the!l. APPROXIMATE CONSISTENCY AND NONTRIVIALITY

consistent sets which describe physically interesting histories In realistic examples it is generally difficult to find simple

in laboratory situations. It also allows useful tests: if an al'examples of physically interesting sets that are exactly con-
gorithm fails to give sensible answers here, it should prob-

: v S sistent. For simple physical projections, the off-diagonal
ably be discarded; if it succeeds, applications elsewhere ma¥, .« of the decoherence matrix typically decay exponen-
be worth exploring.

. | solit of Hilb h tially. The sets of histories defined by these projections sepa-
Postulating a fundamental split o .H' ert space, on the 40 by times much larger than the decoherence time, are
other hand, seems to us acceptable in principle. If the Sp“lthus typically very nearly but not precisely consisté®4—

chosen were reasonaply natural,. and_ If it were to produce 85). Histories formed from Schmidt projections are no ex-
well-defined anql physically sensible interpretation of qu"’m'ception: they give rise to exactly consistent sets only in spe-
tum theory applied to closed systems, we would see N0 régs,| cases, and even in these cases the exact consistency is

son not to adopt it. This seems a possibility especially worth,iapje ynder perturbations of the initial conditions or the
exploring in quantum cosmology, where any pointers to- e i

wards calculations that might give new physical insight

would be welcome. . — thought to be a fundamental problemer se According to
Here, though, we leave aside these motivations and thg “ontroversial view[3], probabilities in any physical
conceptual questions they raise, as there are simpler angde ..y need only be defined, and need only satisfy sum rules,
more concrete problemg Wh'Ch first need_to be addresse a very good approximation, so that approximately consis-
Our am in .th's Paper 1S ;lmply to explain the p_roblemstent sets are all that is ever needed. Incorporating pragmatic
which arise in trying to define consistent set selection algobbservation into fundamental theory in this way clearly, at

rithms using the Schmidt decomposition, t0 set out SOMg, yery |east, raises awkward questions. Fortunately, it

possibilities, and to explain _thelr properties, u_smg_5|mpleSeems unnecessary. There are good reasons to d&peot

) . ! ) . Xfind exactly consistent sets very close to a generic approxi-

perimental deV'C‘? or W'th.a Series .Of SUCh. deV|ce§. mately consistent set, so that even if only exactly consistent
Th? most' b'?s'c question here is preqsely W.h'Ch. of thesets are permitted the standard quasiclassical description can

SCh.m'dt projections Sh.OUId be used. Agf_;un, OUr VIEW IS Pragpyq recovered. Note, though, that none of the relevant exactly

matic: we would happily adopt any choice that gave physi-,qjsient sets will generally be defined by Schmidt projec-

cally interesting results. Where we discuss the abstract feql-Ons

tures of Schmidt projection algorithms below, the discussion

is intended to apply to all four choices. When we conside

The lack of simple exactly consistent sets is not generally

It could be argued that physically reasonable set selection
! . criteria should make predictions which vary continuously
S|m_ple models of expenmental setups, we tag to Qe- with structural perturbations and perturbations in the initial
scribe the system variables ahd} the apparatus or environ- ., itions, and that the instability of exact consistency under
ment. Here we look for histories which describe the evolu-qor rhation means that the most useful consistency criteria
tion of the system state, tracing over the environment, and SQre very likely to be approximate. Certainly, there seems no

discuss set selgctipn algorithms which .U.S?.O'ﬂ'ly the ﬁrSt. Clasr%ason, in principle, why a precisely defined selection algo-
of Schmidt projections: the other possibilities are also '“ter'rithm, which gives physically sensible answers, should be

esting, but run into essentially the same problems. Thus, ifgiecteq if it fails to exactly respect the consistency criterion.
or, once a single set has been selected, there seems no fun-

the remainder of the paper, we use the term Schmidt projeg-
tion to mean the system space Schmidt projections denotegh mental problem in taking the decoherence functional prob-

by P{ andP*, defined in Eq(1.5). ability weights to represent precisely the probabilities of its
In most of the following discussion, we consider algo- fine-grained histories and the probability sum rulesiédine
rithms which use only the properties of the state vectokhe probabilities of coarse-grained histories. On the other
|#(t)) and its Schmidt decomposition to select a consistenhand, allowing approximate consistency raises new difficul-
set. However, we will also consider later the possibility ofties in identifying a single natural set selection algorithm,
reconstructing a branching structure defined by the deconkince any such algorithm would have — at least indirectly —

position to specify the degree of approximation tolerated.
These arguments over fundamentals, though, go beyond
N(D) our scope here. Our aim below is to investigate selection
t))= (1), 1.6 rules which might give physically interesting descriptions of
[4A) izl (1) 1.8 quantum systems, whether or not they produce exactly con-
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sistent sets. As we will see, it seems surprisingly hard to findhat, if the set contains one history of probability less than or

good selection rules even when we follow the standard proequal to 25, no further extensions are permitted.

cedure in the decoherence literature and allow some degree Once again, though, our approach is pragmatic, and in

of approximate decoherence. order to cover all the obvious possibilities we investigate
Mathematical definitions of approximate consistencybelow absolute consistency and nontriviality criteria as well

were first investigated by Dowker and Halliw¢R7], who  as relative ones.

proposed a simple criterion — the Dowker-Halliwell crite-

rion, or DHC — according to which a set is approximately

consistent to ordee if the decoherence functional Ill. REPEATED PROJECTIONS AND CONSISTENCY
Daﬁ=<¢|CECa|¢> (2.1 One of the problems which arises in trying to define
physically interesting set selection algorithms is the need to
satisfies the equation find a way either of preventing near-instantaneous repetitions
of similar projections or of ensuring that such repetitions,
IDpl<€(D,Dpp)™ Vazp. (22 when permitted, do not prevent the algorithm from making

. . L _ physically interesting projections at later times. It is useful,
Approximate consistency criteria were analyzed further in, analyzing the behavior of repeated projections, to intro-
Ref. [36]. As Refs.[27,36 explain, the DHC has natural ce 4 version of the DHC which applies to the coincident

physical properties and is well adapted for mathematicalime |imit of sets of histories defined by smoothly time-
analyses of consistency. We adopt it here, and refer to th&ependent projective decompositions.

largest term, To define this criterion, fix a particular tintg, and con-

MaX(|D 1D uaD ) V% B S, B, sider class operator€, consisting of projections at times

t=(ty, ... t,), wheret,>t,_>..->t;>t,. Define the
andD,, ,Dgg# 0}, (2.3 normalized historiedy
of a (possibly incompleteset of historiesS as the Dowker-
Halliwell parameter, or DHP. ~ . Cu )|
A trivial history « is one whose probability is zero, |a)=lim TCOPI’ 3.
C.l#)=0. Many of the algorithms we discuss involve, as v—t

well as the DHP, a parameter which characterizes the degree
to which histories approach triviality. The simplest nontrivi-
ality criterion would be to require that all history probabili-
ties must be greater than some paramétdre., that

where the limits are taken in the ordgr—t, thent,—t, and
0 on, whenever these limits exist. Define the limit DHC

between two normalized histori¢a) and|3) as
D,,>¢6 for all histories a. (2.9

As a condition on a particular extensigR;:i=1,2, ...} of (a|B)<e. (3.2

the historya this would imply that|P;C,|)||?> 6 for all

i. This, of course, is an absolute condition, which depends on

the probability of the original historyr rather than on the  This of course, is equivalent to the limit of the ordinary

relative probabilities of the extensions and which implieSpHc when the limiting histories exist and are not null. It

that once a history with probability less tha has been  gefines a stronger condition when the limiting histories exist

selected any further extension is forbidden. and at least one of them is null, since in this case the limit of
It seems to us more natural to use criteria, such as thg,e pHC is automatically satisfied.
DHC, which involve only relative probabilities. It is cer- |t 5 set of histories is defined by a smoothly time-

tainly simpler in practice: applying absolute criteria strictly dependent projective decomposition applied at two nearby
would require us to compute from first cosmological prin-times it will contain many nearly null histories, since
ciples the probability to date of the history in which we find P.P,=0 for all n#m. Clearly, in the limit as the time sepa-
ourselves. We therefore propose the following relative nonation tends to zero, these histories become null, so that the

triviality criterion: an extensiofiP;:i=1,2, ...} of the non-|imjt of the ordinary DHC is automatically satisfied. When
trivial history a is nontrivial to orderd, for any & with o the normalized histories satisfy the stronger criterion
: Let P(t) be a projection operator with a Taylor series at
IPCdulz=dlc vz forali. (@5 g™ beaprojectionop Y

We say that a set of histori€§ which may be branch de-
pendent, is nontrivial to ordes if every set of projections, o 5
considered as an extension of the histories up to the time at P()=P+tP+3t°P+O(t%), (3.3
which it is applied, is nontrivial to orde#. In both cases we
refer to 6 as the nontriviality parameter, or NTP. ) .

An obvious disadvantage of applying an absolute nonwhere P=P(0), P=dP(t)/dt|,—, and P=d?P(t)/dt?;_o.
triviality criterion to branch-independent consistent sets isSince P?(t)=P(t) for all t
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P+tP+ 3 t2P+O(t3) =[P+tP+ 2P+ O(t3) ][ P+tP
+1t2P+0(t3)]
=P+t(PP+PP)

+12(PP+PP+2P?2)+0(t3).

(3.9
This implies that
P=PP+PP, (3.9
and
Ip=1pPp+iPP+PpP2, (3.6

Now consider a projective decompositi¢R,} and the ma-
trix element

(Y PP (1) Pl ) = (Y| PPy Pl ) + t(4h| PPy P )
+ 3 YPuP P ) +O(13).  (3.7)

Now P,PP,=Pydmdkn. Since the projections are or-
thogonal, and

P PP n= Sim( 1= 8kn) PP+ Skn(1— Sem) PP
= SemPiPnt 8P mPk— ScmSknPi (3.9

since P,P,=P,P,P, if k#n and P,P,=(1—-P,)P,. (No
summation convention applies throughout this paperom
Eq. (3.6) we have that

PmPiPn= %( Omkt Oni) PmPykPn+ Pmpipn .

N

(3.9

Equation(3.7) can now be simplified. To leading ordertirit
is

(YIPdy)+0O(t) if k=m=n, (3.10
(PP ) +O(t2) if k=m, k#n,  (3.11
t<MPmWWy+oa% if k#m, k=n, (3.12

and
t2(h|PnP2P ) +O(t3) if k#m, k#n. (3.13
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and consider an extended branch-dependent set defined by
applyinga(t) on one of the branches — say, the first — at a
later timet.

The new normalized history states are

PWP|¢) P(MPI) Ple)
IPAPISI" [Pt)PIo) " [P )

(3.19

We assume now tha®P|¢)+0, so that the limit of these
states as—0 exists. We have that

_ (P-tP)P|¢)  —PP|¢)
lim . =— . (3.1
o (5(|PP?P[¢)) 12 [[PP|g)
so that the limits of the normalized histories are
Pl¢) —PPlo) Plo)
’ - [ — . (3'17)
IPI&" PPl " 1Pl

The only possibly nonzero terms in the limit DHC are

(¢IPPPl¢)  (4|PP|g) s

IPIBIIPPIG)  IPI#)IPPI&)’

18

which generically do not vanish.
Consider instead extending the second branch using
P(t) again. This gives the set

[Pl¢> Pl¢) —P(HPP|¢) —_P_(t>PP|¢>}
IPIO" [PI )" IP(YPPI#) " [P(t)PP| )] |
(3.19
SincePPP=0 the limitt—0 exists and is
, — y
{ 9 Plo) PPl _PPI¢>>]' (3.20
IPIA" [PI#Y] " IP?PI 4] PPl

The DHC term between the first and third histories is

~ (¢IPP?Plg) _ [PPIg)|?
IPIBIP?PIA) PPl

(3.21

This is always nonzero sind‘éP| ¢)#0.
For the same reason, extending the first branch again, or

Now consider a smoothly time-dependent projective delhe third branch, violates the limit DHC. Hence, if projec-

composition, o(t)={P(t),P(t)}, defined by a time-

dependent projection operator and its complement. Writ

P=P(0), andconsider a statép) such thatP|$)#0 and
P|¢)# 0. We consider a set of histories with initial projec-
tions P, P, so that the normalized history statesat0 are

[ Pl¢) Ple) }
IPIOM " P |

(3.19

tions are taken from a continuously parametrized set, and the
imit DHC is used, multiple reprojections will generically be
orbidden.

The assumption tha®P|¢$)#0 can be relaxed. It is suf-
ficient, for example, that there is somk such that
[PD]|=0 for all j<k and that P®P|$)+0, where
PO =dIP(t)/dt!|,—o.

Note, finally, that it is easy to construct examples in
which a single reprojection is consistent. For instance, let
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wherex is a unit vector inC%, y a unit vector inC%, and
A a d,xd; complex matrix.|P|¢)|#0,1 implies thatq

#0,1 andPP| ¢)#0 implies thatAx+ 0. So from Eq(3.18
the DHC term is

0 Af
A 0

la, 0
0 0

= , P

|

|¢>>=( (3.22

yTAX

- (3.23
I1AX|

If d,=2 theny can be chosen orthogonal Ax and then Eq.
(3.23 is zero. The ftriple projection term, however, Eq.
(3.2, is
A
1A%

(3.29

which is never equal to O sino&x#0.

IV. SCHMIDT PROJECTION ALGORITHMS

We turn now to the problem of defining a physically sen-
sible set selection algorithm which uses Schmidt projection

properties of Schmidt projection algorithms.
We consider here dynamically generated algorithms i
which initial projections are specified &0, and the se-

lected consistent set is then built up by selecting later pro
jective decompositions, whose projections are sums of th
Schmidt projection operators, as soon as specified criteria al

satisfied. The projections selected up to titnaus depend
only on the evolution of the system up to that time. We will
generally consider selection algorithms for

dependent selection algorithms.

We assume that there is a set of Heisenberg pictur

Schmidt projection operatof,(t)} with continuous time

dependence, defined even at points where the Schmidt pro

ability weights are degenerate, wrikg, for P,(0), and let
| be the index set for projections which do not annihilate th
initial state,l ={n:P,|¢)# 0}.

We consider first a simple algorithm, in which the initial
projections are fixed to be the, for ne | together with their

branch-
independent sets and add comments on related branc

€,
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number of projections, one is randomly selected.

Though the limit DHC(3.2) can prevent ftrivial projec-
tions, it does not generically do so here. The limit DHC
terms between histories andn for an extension involving
Py (kel) are

KUAPmPUOP ] KpAPuPEPl 9l _
[Pl PP (1Pl )| PPyl )]

lim
t—0

4.9

whenever| P, ¢)|| and||PP,|#)| are both nonzero. The
first is nonzero by assumption; the second is generically non-
zero. Thus the extension of all histories by the projections
P(kel) andZ, . P, satisfies the limit DHC.

Hence, if the initial projections do not involve all the
Schmidt projections, and if the algorithm tolerates any de-
gree of approximate consistency, whether relative or exact,
then the DHC fails to prevent further projections arbitrarily
soon aftert=0, introducing histories with probabilities arbi-
trarily close to zero. Alternatively, if the algorithm treats
such projections by a limiting process, then generically all
the Schmidt projections at=0 are applied, producing his-
tories of zero probability. Similar problems would generally
arise with repeated projections at later times, if later projec-
tions occur at all.

There would be no compelling reason to reject an algo-
rithm which generates unexpected histories of arbitrarily
small or zero probability, so long as physically sensible his-

starting in this section with an abstract discussion of thi-f_?”es' of total probability close to one, are also generated.

owever, as we note in Sec. IV B below and will see later in
the analysis of a physical example, this is hard to arrange.

"We therefore also consider below several ways in which

small probability histories might be preventéi) The initial
state could be chosen so that it does not precisely lie in the
full space of any Schmidt projectiofSee Sec. IV A. (2)
'Kn initial set of projections could somehow be chosen, inde-
pendent of the Schmidt projections, and with the property
that for every Schmidt projection at time zero there is at least
$ne initial history not in its null spacéSee Sec. IV Q.(3)

he algorithm could forbid zero probability histories by fiat
and require that the selected projective decompositions form
&n exactly consistent set. It could then prevent small prob-

bility histories from occurring by excluding any projective

ecompositions(t) from the selected set iF(t) belongs to
a continuous family of decompositions, defined on some
semiopen intervalt(— €,t], which satisfy the other selection
criteria. (See Sec. IV D.

(4) A parametrized nontriviality criterion could be used.

(See Sec. IV B.(5) Some combination of parametrized cri-

complement (}2,Py,), and which then selects decomposi- yj5 for approximate consistency and nontriviality could be

tions built from Schmidt projections at the earliest possible,

time, provided they are consistent. More precisely,
that the algorithm has selected a consistentSgeif projec-
tive decompositions at timeg,t,, ... t,. It then selects the

earliest time, ., 1>t, such that there is at least one consistent

extension of the se¥, by a projective decomposition formed
from sums of Schmidt projections at tintg, ;. In generic

used.(See Sec. IV §.We will see though, in this section and

SUPPOSke next, that each of these possibilities leads to difficulties.

A. Choice of initial state

In the usual description of experimental situatiofs,
describes the system degrees of freed@fh,those of the

physical situations, we expect this decomposition to beapparatugand/or an environmeptand the initial state is a
unique. However, if more than one such decomposition expure Schmidt state of the forw)=|y),1®|#»),. Accord-

ists, the one with the largest number of projections is seing to this description, probabilistic events occur only after
lected; if more than one decomposition has the maximathe entanglement of system and apparatus by the measure-
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ment interaction. It could, however, be argued that, sincen Schmidt selection algorithms. We know of no compelling
states can never be prepared exactly, we can never ensuteoretical argument against incorporating projections into
that the system and apparatus are precisely uncorrelated, atie initial conditions, but have found no natural combination
the initial state is more accurately represented byof initial projections and a Schmidt projection selection al-
|)=|1)1® )+ y| $), where y is small and|¢) is a  gorithm that generally selects physically interesting sets.
vector in the total Hilbert space chosen randomly subject to
the constraint thay|)=1. A complete set of Schmidt pro- D. Exact consistency and a nontriviality criterion
jections{P,}, with P,|#)#0 for all n, is then generically ) , ) )
defined at=0, and any Schmidt projection algorithm which ~ Sinc& many of the problems above arise from immediate
begins by selecting all initial Schmidt projections of nonzero"€Projections, it seems natural to look at rules which prevent
probability will include all of theP,. zero proba_lblllty hl_storles. The simplest pos_S|b|I|ty is to im-
An obvious problem here, if relative criteria for approxi- Pose precisely this constraint, together with exact consis-
mate consistency and nontriviality are used to identify subiency and the rules thdt) only one decomposition can be
sequent projections, is that the small probability initial histo-S€lected at any given time arfid) no projective decomposi-
ries constrain the later projections just as much as the largéon can be selected at tinteif it belongs to a continuous
probability history which corresponds, approximately, to thefamily of projectionso(t), whose members would, but for
Schmidt staté ), ®|#»), and which is supposed to repro- this rule, be selected at times lying in some interval
duce standard physical descriptions of the course of the sulft— €,t]. This last condition means that the projections se-
sequent experiment. If a branch-dependent selection algdected att=0 are precisely those initially chosen and that no
rithm is used, a relative nontriviality criterion will not cause further projections occur in the neighborhoodtef0. Un-
the small probability initial histories to constrain the projec- fortunately, as the model studied later illustrates, it also gen-
tions selected later on the large probability branch, but arally prevents physically sensible projective decompositions
relative approximate consistency criterion still will. being selected at later times. If it is abandoned, however, and
There seems no reason to expect the projections whicifi the initial state|y) is a pure Schmidt state, then further
reproduce standard descriptions to be approximately consigrojections will be selected as soon as the interaction begins:
tent extensions of the set defined by the initial Schmidt proin other words, at times arbitrarily closette 0. Again, these
jections, and, hence, no reason to expect to recover standgpdojections are generally inconsistent with later physically
physics from a Schmidt projection algorithm. When we con-natural projections. On the other hand,|if) is Schmidt
sider a simple model of a measurement interaction in thémpure, this is generally true of the initial projections. All of
next section we will see that, indeed, the initial projectionsthese problems also arise in the case of branch-dependent set
fail to extend to a physically natural consistent set. selection algorithms.
If absolute criteria are used, on the other hand, we would
expect either that essentially the same problem arises, or that . Exact consistency and a parametrized nontriviality
the small probability histories do not constrain the projec- criterion
tions subsequently allowed and, hence, in particular, do not L ;
solve the problems associated with repeated projections, de- Another apparently natural possibility is to require exact

pending whether the probability of the unphysical histories consistency together with one of the parametrized nontrivi-

I Il relative to th tet 2 ality criFe_zria(_ZA) or (2.5),_ra§herthan simply forbid_ding Zero
arge or small relative to the parametetaind e probability historiesA priori, there seem no obvious prob-

lems with this proposal but, again, we will see that it gives

unphysical answers in the model analyzed below, whether
If the initial state is Schmidt pure, or more generally doesbranch-dependent or branch-independent selection algo-

not define a maximal rank Schmidt decomposition, a full setithms are considered.

of Schmidt projections can, nonetheless, generically be de-

fined att=0 — which we take to be the start of the interac- F. Approximate consistency and a parametrized nontriviality

tion — by taking the limit of the Schmidt projections as criterion

t—0*. The normalized histories corresponding to the pro-

jections of zero probability weight can then be defined as thThere are p:laufsmlet rgqsonsl, ap.ra:t fromhFhﬁ difficulties C.’f
above, if the relevant limits exist, and used to constrain thQ e proposals, for studying algorithms which use approxi-

mate consistency and parametrized nontriviality. The follow-

subsequent projections in any algorithm involving relative,
criteria. Again, though, there seems no reason to expect the comments apply to both.branch-dependent and branch-
ndependent algorithms of this type.

constraints to be consistent with standard physical descrid Physically interesting sets of projective decompositions

tions. — for example, those characterizing the pointer states of an
apparatus after each of a sequence of measurements — cer-
tainly form a set which is consistent to a very good approxi-
The projections selected &+ 0 could, of course, be se- mation. Equally, in most cases successive physically inter-
lected using quite different principles from those used in theesting decompositions define nontrivial extensions of the set
selection of later projections. By choosing initial projectionsdefined by the previous decompositions: if the probability of
which are not consistently extended by any of the decompoa measurement outcome is essentially zero then, it might
sitions defined by Schmidt projections at times rtea®, we  plausibly be argued, it is not essential to include the outcome
can certainly prevent any immediate reprojection occurringn the description of the history of the system. Moreover, a

B. Including null histories

C. Redefining the initial conditions
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finit.e npntriviality par'a.met.eﬁ ensures thgt, after.a Sghmidt ty= \/§||pkpn| zﬁ)ll_l. 4.2
projective decomposition is selected at timéhere is a finite

time interval[t,t+ At] before a second decomposition can P |¢>||||pkp |l

be chosen. One might hope that, if the parameters are well t.=e€ il — n . 4.3
chosen, the Schmidt projective decompositions at the end of K| PmPicPal )]

and after that interval will no longer define an approximately ~t_impli
consistent extension unless and until they correspond to whke™ te Implies

would usually be considered as the result of a measurement- 2 : 2

type interaction occurring after time While, on this view, ‘/5|<¢|PmPkP”|"/f>|>E||Pml OIIPPlA" 4.4

the parameters and 6 are artificial, one might also hope that Thus we requires™ €2, up to model-dependent numerical
they might be eliminated by letting them tend to zero in agactors: this, of course, still holds if we use a relative non-
suitable limit. _ . __triviality criterion rather than an absolute one.

However, as we have already mentioned, in realistic Thjs gives, at least, a range of parameters in which to
physical situations we should not necessarily expect any s&parch for physically sensible consistent sets, and over which
guence of S_chmldt proleqtlve_decomposmons to define aRhere are natural limits — for example, lmlim, . We
exactly consistent set of histories. When the Schmidt projechgve however. as yet only looked at some model-
tions correspond, say, to pointer states, the off-diagonghqependent problems which arise in defining suitable set
terms of their decoherence matrix typically decay exponensejection rules. In order to gain some insight into the physi-

tially, vanishing altogether only in the limit of infinite time g problems, we look next at a simple model of system-
separationi24—35. An algorithm which insists on exact con- ovironment interactions.

sistency, applied to such situations, will fail to select any
projective decompositions beyond those initially selected at
t=0 and so will give no historical description of the physics.
We therefore seem forced, if we want to specify a Schmidt We now consider a simple model in which a single spin-
projection set selection algorithm mathematically, to intro-half particle, the system, moves past a line of spin-half par-
duce a paramete¢ and to accept sets which are approxi- ticles, the environment, and interacts with each in turn. This
mately consistent to ordes and then, in the light of the can be understood as modeling either a series of measure-
preceding discussion, to introduce a nontriviality parametement interactions in the laboratory or a particle propagating
S in order to try to prevent unphysical projective decompo-through space and interacting with its environment. In the
sitions being selected shortly after0. This suggests, too, first case the environment spin-half particles represent point-
that the best that could be expected in practice from an alers for a series of measuring devices, and in the second they
gorithm which uses a limit in whicle and & tend to zero is  could represent, for example, incoming photons interacting
that the resulting set of histories describes a series of evenvgith the particle.
whose time separations tend to infinity. Either way, the model omits features that would generally
A parameter-dependent set selection algorithm, of coursdge important. For example, the interactions describe ideal-
leaves the problem of which values the parameters shoulided sharp measurements — at best a good approximation to
take. One might hope, at least, that there is a range of valugeal measurement interactions, which are always imperfect.
for € and & over which the selected set varies continuouslyThe environment is represented initially by the product of
and has essentially the same physical interpretation. An imN-particle states, which are initially unentangled either with
mediate problem here is that, if the first projective decompothe system or each other. The only interactions subsequently
sition selected aftet=0 defines a history which only just considered are between the system and the environment par-
satisfies the nontriviality condition, the decomposition will, ticles, and these interactions each take place in finite time.
once again, have no natural physical interpretation and willWe assume too, for most of the following discussion, that the
generally be inconsistent with the physically natural decominteractions are distinct: th&th is complete before the
positions which occur later. We will see that, in the simple(k+1)th begins. It is useful, though, even in this highly
model considered below, this problem cannot be avoidedblealized example, to see the difficulties which arise in find-
with an absolute consistency criterion. ing set selection algorithms: we take the success of a set
Suppose now that we impose the absolute nontrivialityselection algorithm here to be a necessary, but not sufficient,
condition that all history probabilities must be greater thancondition for it to be considered as a serious candidate.
S together with the relative approximate consistency crite-
rion that the modulus of all DHC terms is less thanThe A. Definition of the model
parameters and & must be chosen so that these projections We use a vector notation for the system states, so that if
stop being approximately consistent before they become . _ 3 _ y - '
nontrivial, otherwise projections will be made as soon ad! IS & unit vector inR” the eigenstates oér-u are repre-
they produce histories of probability exac#lyin which case  sented by +u). With the pointer state analogy in mind, we
the nontriviality parameter, far from eliminating unphysical use the basig|1),||)x} to represent théth environment
histories, would be responsible for introducing them. particle state, together with the linear combinations
Let t, denote the latest time that the extension with pro- =)= (|1)x*|1))/V2. We compactify the notation by
jection P, (t) is approximately consistent ang the earliest writing environment states as single kets, so that, for ex-
time at which the extension is nontrivial. We see from Eq.ample,|1),®---®|1), is written as|T;- - - T,), and we take
(4.1) that, to lowest order in, the initial state|#(0)) to be|V)®|T1- - Th).

V. A SIMPLE SPIN MODEL
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The interaction between the system and kite environ-  forms. (i) A series of Schmidt projections made at times

ment particle is chosen so that it corresponds to a measurbetween the interactions — i.e., at timessuch that
ment of the system spin along thg direction, so that the 6k(t)=0 or /2 for allk. (i) A series as irfi), made at times
states evolve as follows: ty, ... t,, together with one Schmidt projection made at
any timet during the interaction immediately preceding the
[0 @[T Y= ud @7k (5.1 last projection time,,. (i) A series as ini), together with
one Schmidt projection made at any timeuring an inter-
| = 0)® | T == U ® || ). (5.2 action taking place aftert,. Conversely, any branch-

dependent set, each of whose histories takes one of the forms
A simple unitary operator that generates this evolution is  (i)—(iii ), is consistent. We assume below that the set of spin
A A measurement directions satisfies the condition of the theo-
U()=P(u) @l +P(—u)®e '&UFK (5.3  rem: since this can be ensured by an arbitrarily small pertur-
bation, this seems physically reasonable. The following sec-
where P(X)=|x)(X| and Fy=i||)(Tlx—i|T)(l|x. Here tions explain, with the aid of this classification, the results of
6 (1) is a function defined for each partide which varies various set selection algorithms applied to the model.
from O to /2 and represents how far the interaction has
progressed. We defineP (+)=|=)(=|c, so that VI. APPLICATION OF SELECTION ALGORITHMS
Fr=Pu(+)—P(-). TO THE SPIN MODEL

The Hamiltonian for this interaction is thus _ . .
We can define a natural consistent set which reproduces

He(t) = iU () UI(t) = 8u(t) P(— G) ® ., 54 the standard historical account of the physics of the separated
<) (DU = 0OP(—u) & Fy 64 interaction spin model by selecting the Schmidt projections

in both the Schidinger and Heisenberg pictures. We write at all times between each successive spin measurement. A set

the extension ofJ, to the total Hilbert space as of this type ought to be produced by a good set selection
algorithm, either as the selected set itself or, perhaps, a sub-

Vi=P(U)®11® -+ @1, +P(—U)® 1,8 @4 set. Sections VI A, VI B, and VI C describe the results actu-

_ ally produced by various set selection algorithms applied to

e W@l @ ®l,. (5.5  the spin model. All of these algorithms are dynamical, in the

. ) o ) . sense that the decision whether to select projections at time
We take the system particle to interact initially with particle t, and if so which, depends only on the evolution of the state

1 and then with consecutively numbered ones, and there ig.ctor up to timet. Sections VID and VI E discuss how
no interaction between environment particles, so that thenese results are affected by altering the initial conditions of
evolution operator for the complete system is the model. In Sec. VI F we consider a selection algorithm
(5.6 which is quasidynamical, in the sense that the decisions at
' time t depend on the evolution of the state vector up to and

with each factor affecting only the Hilbert spaces of the sysJust beyondt. We summarize our conclusions in Sec. VI G.
tem and one of the environment spins.

We suppose, finally, that the interactions take place in A. Exact limit DHC consistency
disjoint time intervals and that the first interaction begins at
t=0, so that the total Hamiltonian is simply

U(t)=Vn(t)---Vy(1),

Since any projective decomposition at tihelefines an
exactly consistent set when there is only one history up to
n that time, a Schmidt projection selection algorithm without a
H(t)=z Hy(t), (5.7) nontr|V|aI|ty_cr|ter|_on WI|| |mmed|_ately make a projection.
k=1 The normalized histories are defined as

and we have that9;(t)>0 for t>0 and that, if 6,(t) imP. ()| )P ()|, (6.2
€ (0,7/2), then,(t) = =/2 for all i<k and 6,(t) =0 for all =0
i>k.

whereP_ (t) denotes the Schmidt projections at titne€rhe

B. Classification of Schmidt projection consistent sets Schmidt states to first order in= 6,(t) are

in the model ~ . N Ain
. . . o . V@[T T —i02(1-uy-VIV)®|[ 115 Tn)
For generic choices of the spin measurement directions, in (6.
which no adjacent pair of the vectofs,u,, . .. ,U,} is par-
allel or orthogonal, the exactly consistent branch-dependeritnd
sets defined by the Schmidt projections onto the system

space can be completely classified in this model. The follow- _ 1-0,-0\ Y2
ing classification theorem is proved in RE37]: Theorem [UAV|[=V)®[[ 112+ Th) +iw/2 1100 |=V)
In the spin model defined above, suppose that no adjacent -V

pair of the vectorgv,uy, ... ,u,} is parallel or orthogonal. ®[T1 - Tn), (6.3

Then the histories of the branch-dependent consistent sets
defined by Schmidt projections take one of the followingso the normalized histories are
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{1112 Tad | =V @[ L1T2 - To)}- (6.9

1713

require exact consistency. As explained earlier, without a
nontriviality criterion this leads to an ill-defined algorithm:

The limit DHC term for one projection at time 0 and anotherthe initial projections at=0 produce a null history, and the

during interactiork at timet is
cosp for k=1,
Sir12¢|ﬂl-ﬂ2||\7/\(ﬂl/\ﬂ2)|
Na($)[ 1= (V-Uy)*N3( )]
)\2(k—1)Nk(¢)|\7/\(a1/\a2)|
[1=Ao0- 1) Ni( )2

where ¢= 6,(t). Here we define

r k=2,

for k>2, (6.5

-1
)\ij=£[i [Ug- Uk 1], (6.6)

with the convention thak;;=1 for j<i, and

N () =|A( ) U_1], (6.7)

where
A($)=P(li) +cospP(U), 6.8

whereP(uy) is the projection onto the vectax, in R®, and
P(u,) its complement.

Schmidt projections at all times greater than zero are consis-
tent with these initial projections, so that no minimal nonzero
time is selected by the algorithm.

Introducing a nontriviality criterion removes this problem.
Suppose, for example, we impose the absolute criterion
D,.= 4 for all historiesa. Since any physically reasonable

6 would have to be extremely small, let us assuﬂ§e|ﬁi

/\l]jl. The first projections after=0 are then selected at the
first time whenD ,,= &, which occurs during the first inter-
action. Whether or not branch-dependent projections are al-
lowed, the only other Schmidt projections which can consis-
tently be selected then take place at the end of the first
interaction, and it again follows from the classification theo-
rem that no further projections can take place. Again, by
making projections too early, this algorithm fails to produce
the correct consistent set.

A suitably large value ob could ensure that no extension
will occur until later interactions but, generically, the first
extension made afteé=0 will take place during an interac-
tion rather than between interactions, and the classification
theorem ensures that no more than four histories will ever be
generated.

The same problems arise if the nontriviality criterion is
taken to be relative rather than absolute. It is possible to do

Whether the algorithm is taken to be branch-dependent Qfetier by fine tuning the parameters: for example, if branch-

branch-independent, the only future Schmidt projectiong,jenendent histories are used, a relative nontriviality crite-
which are consistent with the initial projections are thus .

those between the first and second interactions, and the pr
jections selected will be at the end of the first interaction.

The state at this time is

(1)) =) (Ug V) @[T 17+ T o)+ | = Up)( = Ug| v)

@172 Tn)- (6.9
The time evolved histories are
[hy(1))=|Up){Us V) ®[T1- -+ Tr)+|—Ug){— Uy |V)
®[T1...Tn) (6.10
|ho(t))=Up)(Us| = V)® | [ 1127+ Tnd —| = Up)(— Ug| — V)

®[Lal2 1) (6.11)

so the new normalized histories are
{00)®[ 11 T U@ L1T2 - Tn), (6.12
|=U)®[T2) - Toh = U@ L1T2- T)}. (6.13

Since no future Schmidt projections are consistent with thos
selected, the algorithm clearly fails to produce the correc

set.

B. Exact consistency and nontriviality

on is imposed and 6=(1—|Uy- Uy 4)/2 for all
=0,...,n—1, then projections will occur at the end of
each interaction producing the desired set of histories. This,
though, is clearly not a satisfactory procedure.

C. Approximate consistency and nontriviality

One might wonder if these problems can be overcome by
relaxing the standards of consistency, since a projection at a
very small time will be approximately consistent — accord-
ing to absolute measures of approximate consistency, at least
— with projections at the end of the other interactions. How-
ever, this approach too runs into difficulties, whether relative
or exact criteria are used.

Consider first a branch-dependent set selection algorithm
which uses the absolute nontriviality criteri@x),,= & for all
a, and the absolute criterion for approximate consistency
|Daﬂ|se for all a# B. No history with probability less than
26 will thus be extended, since if it were one of the resultant
histories would have probability less than

Any history a with a probability less than or equal &
will automatically be consistent with any histofyaccording
to this criterion, sincgD 4/ < (D 4D gp) '?<(e?x 1)*?=e.
gherefore if 5< €2 then histories of probabilitys will be

onsistent with all other histories. The first projection after

=0 will be made as soon as the nontriviality criterion per-
mits, when the largest Schmidt eigenvalue is 4. Other
projections onto the branch defined by the largest probability
history will follow similarly as the Schmidt projections

Suppose that, instead of using the limit DHC, we considerevolve. The final set of histories aftarprojections will thus
only sets defined by decompositions at different times andonsist of one history with probability-1né andn histories
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with probability § — clearly far from the standard picture. Schmidt projections at tim&' such thatg,(t") = ¢ for some

Suppose now thad> €. The probabilities for histories k>1, we find that the largest off-diagonal decoherence ma-
with projection in the first interval, at timet with trix element is

0,(t)= w, are
3 VAN ok 1) NK( ) VAU VA (U1 A U) [[ 1+ O(Vw) ]
- = 2 2(k—1)Nk 1 1/ \U2 .
11— V1—sirfw|v/AG,|?]. (6.14 (6.20)
The first projection will therefore be made when Since we have chosea< s to prevent multiple projec-
o tions, and since the other terms are not small for generic
01(1) = w=25|V/\0y| 72, (6.19  choices of the vectors, the set generally fails to satisfy the

criterion for approximate consistency. Note, however, that if
producing histories of probabilitie and (1~ ). The next  all the measurement directions are apart by an angle greater
projections selected will necessarily extend the history othan equal to som&>0, then\ ) decreases exponen-
probability (1~ 6), since the absolute nontriviality criterion tially with k. After a large enough numbefof order
forbids further extensions of the other history. We look firsto(—Ine)] of interactions have passed the algorithm will se-
at projections taking place at a later timg, with  |ect a consistent extension, and further consistent extensions
01(t")=¢, during the first interaction, and define will be selected at similar intervals. The algorithm does thus
N;(w)=(1-sirfw|v/A\U,|?)¥2 Of the probabilities of the eventually produce nontrivial consistent sets, though the sets

extended histories, the smaller is produced do not vary smoothly with and do not describe
the outcome of most of the spin measurements.
H1+Ny(0){1-N; X 0)N; H(P)[(v-0y)? The reason this algorithm, and similar algorithms using
o approximate consistency criteria, fail is easy to understand.
+cosp cosw cog ¢p— w)|VAUL|?]} The off-diagonal decoherence matrix component in a set de-

AR ) fined by the Schmidt projections at tintetogether with
=ilVAu (0= ¢)[1+0(w)+0(4$)]. (6.16  Schmidt projections during later interactions is proportional
to sinw cosw, together with terms which depend on the

Therefore this extension will be nontrivial when angles between the vectors. The decoherence matrix compo-
A n il A oAl nent for a set defined by the projections at titneéogether
b= w+2\5[V\Uy| 1 =4\8[VAU| ~*+0O(5). with Schmidt projections at a second tirfesoon afterwards

(6.17) is proportional to sif(¢—w). The obstacle to finding non-
. . triviality and approximate consistency criteria that can pre-
;Ti#g%i?;ﬁgﬂ?gonal element in the decoherence matm\gem reprojections in the first interaction period, yet allow
interactions in later interaction periods, is that when
_ N . . —w) is small the second term is generally smaller than
INTY($)|VADy|2cosp sine sin(¢— w) =8+ 0(8%). Eﬁ; ﬁ‘;’s)t_ g y
(6.18 Using a relative nontriviality criterion makes no differ-

Unlessé> e, then, this extension is selected together, again?nce’ since the branchings we consider are from a history of

with a series of further extensions generating small probabiIpr()bab'"t.y c!ose to 1, and using the D.HC instead of an ab-
ity histories. solute criterion for approximate consistency only worsens

Suppose now that> e. The term on the left-hand side of the problem of consistency of later projectiqns, since the
Eq. (6.18 increases monotonically untip= /4, and then DHC alters Eq.(6.21) by a factor of 145, leaving a term

decreases again @s— /2. For = /2, it equals which is generically of order unity. Requiring branch inde-
' ’ pendence, of course, only worsens the problems.

376 cosp|vA\U[|V-Uy| [ 1+O(cosp)].  (6.19
D. Nonzero initial Schmidt eigenvalues

Hence, the approximate consistency criterion is next satisfied \yo now reconsider the possibility of altering the

when initial conditions in the context of the spin model. Suppose
first that the initial state is not Schmidt degenerate.

2€|v-uy| For example, as the initial normalized histories are

p=ml2— —=——+0(€6), (6.20 . R _
VoVl {11 Tal=V®[l1T2 - Tn)} @ natural ansatz is
and this extension is also nontrivial unlesgndu, are es- [(0) =PV ®[T1 ... T+ Vo =)@ 175 )
sentially parallel, which we assume not to be the case. In this (6.22

case, then, projections are made towards the beginning and . : ) )
towards the end of the first interaction, and a physically reaC0nsider now a set of histories defined by Schmidt projec-

sonable description of the first measurement emerges. tions at times 0 and a timeduring thekth interaction for
This description, however, cannot generally be consisk™2, S0 thatfy(t) = 6(t)=7/2. The moduluses of the non-

tently extended to describe the later measurements. If wéero off-diagonal elements of the decoherence matrix are

consider the set of histories defined by the Schmidt projec- o

tions at timet, given by Eq.(6.15 above, together with the 3 VP1P2VALU/AUL TN 5 - (6.23
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Generically, these off-diagonal elements are not small, so G. Comments
that Fhe pert_urb_ed initial con_ditions prevent later physically The simple spin model used here illustrates the difficulty
sensible projections from being selected. in encoding our physical intuition algorithmically. The

model describes a number of separated interactions, each of
S o which can be thought of as a measurement of the system
E. Specifying initial projections spin. There is a natural choice of consistent set, given by the

We consider now the consequence of specifying initialProjections onto the system spin states along the measured
projections in the spin model. Suppose the initial projectiong®xes at all times between each of the measurenidfttis set

are made usin®(+h)®1s. The modulus of the nonzero does indeed describe the phys_,ics of the system as a s_e_zries of
off-diagonal elements of the decoherence matrix for a prc)[neasurement events and assigns the correct probabllm_es to
o ! L . . those events. Moreover, the relevant projections are precisely
jection at timet during interactiork, for k>2, is the Schmidt projections.

We first considered a series of Schmidt projection set se-
lection algorithms which are dynamical, in the sense that the
projections selected at tintedepend only on the physics up
) . o to that time. Despite the simplifying features of the models,
and again we see that physically natural projections generiz seems very hard to find a dynamical Schmidt projection set
cally violate the approximate consistency criterion. ~ gglection algorithm which selects a physically natural consis-

It might be argued that the choice of initial projections tent set and which is not specifically adapted to the model in
given by h=*v is particularly natural. This produces an question.
initial projection on to the initial state, with the other history It might be argued that the very simplicity of the model
undefined unless a limiting operation is specified. If the limitmakes it an unsuitable testing ground for set selection algo-
of the normalized histories for initial projection"\g*}ﬁ is rithms. It is Certainly true that more realistic models would
generally be expected to allow fewer exactly consistent sets
built from Schmidt projections: it is not at all clear that any
ipontrivial exactly consistent sets of this type should be ex-
pected in general. However, we see no way in which all the

roblems encountered in our discussion of dynamical set se-
ection algorithms can be evaded in physically realistic mod-

HRAVIIAAUL N g - 1) N (D], (6.24

taken, the normalized histories are simplyh). If an abso-

lute consistency criterion is used the null history will not
affect future projections and the results will be the same as
no initial projection had been made. If, on the other hand, th
limit DHC is used then the consistency criterion is the sam

as for generah, that is,h must be parallel tai,. This re- ;g

quires_that the ir_litial conditions imposedtgato _depend on We have, on the other hand, seen that a simple quasidy-

the axis of the first measurement, and still fails to permit g,5mica| set selection algorithm produces a satisfactory de-

physically natural description of later measurements. scription of the spin model. However, as we explain in Sec.

VIl, there is another quite general objection which applies

both to dynamical set selection algorithms and to this quasi-

dynamical algorithm.

For completeness, we include here an algorithm which,

though not strictly dynamical, succeeds in selecting the natu- VII. THE PROBLEM OF RECOHERENCE

ral consistent set to describe the spin model. In the spin ) )

model as defined, it can be given branch-dependent or The set selection algorithms above rely on the decoher-

branch-independent form and selects the same set in eith8fce of the states of one subsystem through their interactions

case. In the branch-independent version, the Schmidt projedith another. This raises another question: what happens

tions are selected at timteprovided that they define an ex- When decoherence is followed by recoherence? _

actly consistent and nontrivial extension of the set defined by For example, consider a version of the spin model in

itself be consistently and nontrivially extended by theVironment particle as before, and then reencounters the par-

Schmidt projections at time+ e for every sufficiently small ticle, reversing the interaction, so that the evolution takes the

€>0.% In the branch-dependent version, the second condifom

tion must hold for at least one of the newly created branches N N

of nonzero probability in the extended set. 21|u)®|T1)+az| ~W)@|[Ty)

It follows immediately from the classification theorem - A

that no Schmidt projectii/)ns can be selected during interac- —ayU)®[Ty)+a, ~uelly)

tions, since no gxactly consistent set qf Schmld.t projections —ay|1)®|11) +ay— 1) ®|14), 7.9

includes projections at two different times during interac-

tions. The theorem also implies that the Schmidt projectiongenerated by the unitary operator

are selected at the end of each interval between interactions,

so that the selected set describes the outcomes of each of the———

measurements. Sstrictly speaking, there are many equivalent consistent sets, all of
which include the Schmidt projections at some point in time be-
tween each measurement and at no time during measurements, and

“Alternatively, a limiting condition can be used. all of which give essentially the same physical picture.

F. A quasidynamical algorithm
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Ut =P(l)®l+P(—0)@e #OF, (7.2) A. Retrodictive algorithms in the spin model
We first look at the spin model with separated interactions
where and initial state
t for O<t<m/2 |4(0)) =)@ |11+ 1), (8.2
o(t)y=1{ w2 for ml2<t<m (7.3

and take the first interaction to run frote=0 tot=1, the

3m/2—t for m<t<3m/2. second fromt=1 tot=2, and so on. The final state, in the
Schralinger picture, is
We have taken for granted, thus far, that a dynamical

algorithm makes selections at tinhdased only on the evo- -

lution of the system up to that time. Thus any dynamical [(n) =2 VPl anln)®|By1- - - By). (8.2

algorithm which behaves sensibly, according to the criteria “

which we have used so far, will select a consistent set WhidP-Ierea={a1,

includes the Schmidt projections at some time betweéh

and 7, since during that interval the projections appear to

describe the result of a completed measurement. These pro- —o-n a0 . a0

jections cannot be consistently extended by projections onto Pa=2 (1t anan-gUp-Up-a) - - (1F @qliy-Uo). 8.3

the initial statea;|u)+a,|—u) and the orthogonal state
a,|U)—ay|—U) at time 37/2, so that the algorithm will not Consider now a set selection algorithm which begins the

agree with the standard intuition that at timethe state of ~Selection process at=n and works backwards in time, se-
the system particle has reverted to its initial state. In particulecting an exactly consistent set defined by system space
lar, if the particle subsequently undergoes interactions of th&chmidt projections. The algorithm thus begins by selecting
form (5.1) with other environment particles, the algorithm projections onto the Schmidt statesu,,) att=n. The clas-
cannot reproduce the standard description of these later mesification theorem implies that any Schmidt projection during
surements. The same problem afflicts the quasidynamical athe time interva[ n—1,n) defines a consistent and nontrivial
gorithm considered in Sec. VI F. extension to the set defined by these projections. If the algo-
In principle, then, dynamical set selection algorithms ofrithm involves a parametrized nontriviality condition with
the type considered so far imply that, following any experi-sufficiently small nontriviality paramete$, the next projec-
ment in which exact decoherence is followed by exact recotion will thus be made as soon as the nontriviality condition
herence and then by a probabilistic measurement of the rés satisfied, which will be at some time=n—At, where
cohered state, the standard quasiclassical picture of the worlit is small.
cannot generally be recovered. If the algorithms use an ap- If a nontriviality condition is not used but the limit DHC
proximate consistency criterion — as we have argued is neds used instead, then a second projection will be made at
essary for a realistic algorithm — then this holds true fort=n, but the normalized path projected states will be the
experiments in which the decoherence and recoherence agame(to lowest order inAt) as for projection at=n—At.

.,an} runs over all strings of pluses and
minuses, we writg8;=1 if ;=1 andgB;=] if ¢;=—1, and

approximate. The classification theorem then implies that the only possible
We know of no experiments of precisely this type. Sev-times at which further extensions can consistently be made
eral neutron interferometry experiments have been peraret=n-—1,...,1 and, if § is sufficiently small and the

formed in which one or both beams interact with an electromeasurement axes are nondegenerate, the Schmidt projec-
magnetic field before recombination[38—49 and tions at all of these times will be selected.

measurement. In these experiments, though, the electromag- In fact, this algorithm gives very similar results whether a
netic field states are typically superpositions of many differ-nontriviality condition or the limit DHC is used. We use the
ent number states, and are largely unaffected by the interatimit DHC here for simplicity of notation. Since the Schmidt

tion, so that Eq(7.1) is a poor model for the proceSsStill,  gates at the end of theh interaction ard=U,), the histo-
it seems hard to take seriously the idea that if a recoherenGgs of the selected set are indexed by strings
experiment were constructed with sufficient care it wouldr, = 4 . .1 consisting ofn+1 pluses and minuses. The

jeopardize the quasiclassicality we observe, and we take t|~lf’orr,elsponding class operators are defined in terms of the
recoherence problem as a conclusive argument against thgsisenberg picture Schmidt projections as
general applicability of the algorithms considered to date.
PL (NP (NP (n—1)- - - P X(1). (8.9
VIIl. RETRODICTIVE ALGORITHMS

H — p%n ay
We have seen that dynamical set selection aIgorithmPef'neC“_ P'(n)- - P (1). Then

which run forwards in time generally fail to reproduce stan-

dard physics. Can an algorithm be developed for reconstruct- PLH(N)Ce=C, i anii=an,
ing the history of a series of experiments or, in principle, of
the Universe? P4 (n)C,=0 if any1=—ay, (8.5

and to calculate the limit DHC Eq3.2) we note that Eq.
8See, for example, Ref46] for a review and analysis. (3.5 implies that
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lime 1P *"(n)P“"(n—e)- - - P*1(1) e(y.¢) for the kth projection. Clearly, though, since the
e—0 . H H aim of the set selection program is to replace model-
B _ dependent intuition by a precise algorithmic description, it is
=P, (P (n)---Pi{(1) rather unsatisfactory to have to fine tune the algorithm to fit

» N N the model in this way.
= PHn(n)PHn(n) Tt PHl(l)
o C. Delayed choice spin model
=P"(n)C,. (8.6) o , :
We now return to considering the spin model with an

The complete set of class operatup to multiplicative con-  Unperturbed initial state and look at another shortcoming.

stant3 is {Ca,Pﬁ(n)Ca} and the set of normalized histories The_ interaction o_f the system particle with gach successive
is therefore environment particle takes the form of a spin measurement

interaction in which the axis of each measureménf}, is
- - fixed in advance. This is a sensible assumption when mod-
{lanun)®|a).| = anun) @ |a)}. 8.7) - : mp
eling a natural system-environment coupling, such as a par-
Of these histories, the first "2 have probabilities ticle propagating past a series _of other particles. _A_s a model
of a series of laboratory experiments, however, it is unnec-

—o-n ..U U.-U . - ; ;
p.“_z (1+.a”a.”*1u” u”*.l) - - (1F a3 -Ug) and hgve a essarily restrictive. We can model experiments with an ele-
simple physical interpretation, namely, that the particle was

in direction ail]i at timet=i, for eachi from 1 ton, while ment of delayed choice simply by taking the ais} to

hy depend on the outcome of the earlier measurements.

Fhe _second 2have Zero probability. Thus_the repeated pro- If we do this, while keeping the times of the interactions
Jectlons_that the algorlthm §electstat_r1,w_hﬂe noqstandard, fixed and nonoverlapping, the measurement outcomes can
mere_ly "’!”Oduce p_robablhty Z€ro h|stor|e_s, V\.’h'Ch need NOstill be naturally described in terms of a consistent set built
physical Interpretation. The remaining projections reproduc rom Schmidt projections onto the system space at times
the standard description so that, in this example, at leas 19 n, so long as both the Schmidt projections and
retrodictive algorithms w,ork. While this is somewhat en-y,. ¢ onqistent set are defined to be appropriately branch de-
couraging, the algorithm’s success here relies crucially o endent. Thus. let
the simple form of the classification of consistent sets in th ' '
spin model, which in turn relies on a number of special fea- o=V

, =V)®|Ty - 8.8
tures of the model. In order to understand the behavior of [(0) =& T2 Tn) 8.8

retrodictive algorithms in more generality, we look next at be the initial state and Iétzl(l), for a,= = , be the Schmidt

two slightly more complicated versions of the spin model. o ) )
projections onto the system space at timel. We define a
branch-dependent consistent set in which these projections
define the first branches and consider independently the evo-
Consider now the spin model with a perturbed initial statelution of the two state®;,(1)|#(0)) and P, (1)|4(0)) be-

|4)+ y| ). For generic choices ap andy, there is no non- tweent=1 andt=2. These evolutions take the form of mea-
trivial exactly consistent set of Schmidt projections, but it is g, rements about axes., which depend on the result of the
easy to check that the set selected in the preceding sectiqn L

remains approximately consistent to ordgr in the sense irst measurement. At=2 the second measurements are
that the DHC and limit DHC parameters 2 y). complete, each branch splits again, and the subsequent evo-

This example, nonetheless, highlights a difficulty with theIutlons of the four branches now depend on the results of the

tvoe of retrodictive algorithm considered so far. Some formfirst two measurements. Similar splittings take place at each
yp 9 ' time from 1 ton, so that the axis of theth measurement in

of approximate consistency criterion is clearly required toa given branch,um;am_ depends on the outcomes

B. Spin model with perturbed initial state

obtain physically sensible sets in this example. However, 109!
there is no obvious reason to expect that there should be arfszl’ ... ,ay of the previous (n—1) measurements. Thus,
parametere with the property that a retrodictive algorithm the evolution operator describing theth interaction is

which requires approximate consisten@ya the limit DHC

and DHQ to ordere will select a consistent set whose pro- _ o
jections are all similar to those of the set previously selected. (V) am,l,z'. Lay {P(Um g, .0 @PLBD®
The problem is that, given any choice @fvhich selects the
right projections at timen, the next projections selected will
be at time 6—1)+ O(y) rather than at precisely=n—1.

The level of approximate consistency then required to select
projections at times near—2, n—3, and so forth, depends
on the projections already selected, and so dependsaory

®Pm—l(ﬁm—l)(g)lm(g)'"®|n
+P(~Uma o) ©P1(BY)

Q- '®mel(ﬁmfl)@)e_mm(t)':m@|m+l

indirectly and in a rather complicated way. ®---l,}.
We expect that, for smaly and generice, continuous
functions ¢ (7y,¢) exist with the properties that Again we takeB;=1 if ¢j=+ andBi=] if ¢;=—. The full

e(y,»)—0 asy—0 and that some approximation to the setevolution operator is
previously selected will be selected by a retrodictive algo-
rithm which requires approximate consistency to order Ut)=Vy(t)---Vqi(b). (8.9
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During the interval (n—1,m) we consider the Schmidt de- 1 or |, and attempts to reconstruct the rest of the branching
compositions on each of theé"2? branches defined by the structure from the dynamics.

states One possibility, for example, is to work backwards from
] t=n, and at each timé¢ search through all subse@ of
U(tpmtrém=2 - (m—1). .- P X(1)|4(0)) branches defined at that time, checking whether the sum
. . |°(t)) of the corresponding states at tirndias a Schmidt
=Vu(O[P(@m-1Um-1:a_ ,....a) " Plaits)|V)] decomposition with the property that the Schmidt projec-
tions, applied td#°(t)), produce(up to normalizatiop the
®[B1 Bm-1Tm o), individual branch states. If so, the Schmidt projections are
. . . taken to belong to the selected branch-dependent consistent
with a4, ... ,an_1 independently running over the values

set, the corresponding branches are unified into a single
branch at times and earlier, and the state corresponding to
Y& 1U (1) that branch at time’ is taken to beU(t")U(t)|4<(t)),
! ' where U is the evolution operator for the model. Clearly,
(8.10 though, by specifying the final branch states we have already
Qrovided significant information — arguably most of the sig-

that is, the Heisenberg picture projection operator onto thé&. ; : . .
branch-dependent axis of measurement. The branches, .ﬂﬂf'ca”t information — about the physics of the model. Find-

other words, are defined by the branch-dependent Schmidd &lgorithmic ways of supplying the branching structure of
projections a'\t times from 1 tm— 1 a natural consistent set, given all of its final history states,

It is not hard, thus, to find a branch-dependent consisterl!?Y Iseebm a {ﬁlatlvely mmo]rc ?CfﬁmpILSh.T?:t' flt Wloﬁ!dtc’b'
set, built from the branch-dependent Schmidt projections aflously be raiher more usetul, though, It the final history

times 1 through tan, which describes the delayed-choice states t_hemselves were spe_cified by a simple rule. For ex-
spin model sensiblj.However, since the retrodictive algo- ample, if the system and environment Hilbert spaces are both

rithms considered so far rely on the existence of a branchof large dimension, the final Schmidt states would be natural

independent set defined by the Schmidt decompositions ndidates. It would be interesting to explore these possibili-
the original state vector, they will not generally reproducetles in quantum cosmology.

this set (or any other interesting SetBranch-dependent

physical descriptions, which are clearly necessary in quan- X. CONCLUSIONS

tum cosmology as well as in describing delayed-choice ex- o _ o _

periments, appear to rule out the type of retrodictive algo- Bell, writing in 1975, said of the continuing dispute about

*. Here

P m=t ) =UT() P(amUma, .,

rithm we have considered so far. guantum measurement theory that it “is not between people
who disagree on the results of simple mathematical manipu-
IX. BRANCH-DEPENDENT ALGORITHMS lations. Nor is it between people with different ideas about

the actual practicality of measuring arbitrarily complicated
The algorithms we have considered so far do not allow forobservables. It is between people who view with different
branch dependence, and, hence, cannot possibly select tHegrees of concern or complacency the following fact: so
right set in many physically interesting examples. We haveong as the wave-packet reduction is an essential component,
also seen that it is hard to find good Schmidt projectionand so long as we do not know exactly when and how it
selection algorithms in which the projections selected at anyakes over from the Schdinger equation, we do not have an
time depend only on the physics up to that time, and that thexact and unambiguous formulation of our most fundamental
possibility of recoherence rules out the existence of generallphysical theory”[47)].
applicable algorithms of this type. New formulations of quantum theory have since been de-
This suggests thatetrodictive branch-dependent algo- veloped, and the Copenhagen interpretation itself no longer
rithms should be considered. Such algorithms, howeverdominates the debate quite as it once did. The language of
seem generally to require more information than is containegvave-packet reduction, in particular, no longer commands
in the evolution of the quantum state. In the delayed-choicanything approaching universal acceptance — thanks in
spin model, for example, it is hard to see how the Schmidtarge part to Bell’s critiques. But the fundamental dispute is
projections on the various branches, describing the delayedgill, of course, very much alive, and Bell’s description of the
choice measurements at late times, could be selected by afispute still essentially holds true. Many approaches to quan-
algorithm if only the entire statgy(t) — summed over all tum theory rely, at the moment, on well-developed intuition
the branches — is specified. to explain, case by case, what to calculate in order to obtain
The best, we suspect, that can be hoped for in the case af useful description of the evolution of any given physical
the delayed-choice spin model is an algorithm which takesystem. The dispute is not over whether those calculations
all the final branches, encoded in the" 2states are correct, or even as to whether the intuitions used are
|=Vv)®|B; ... By, where each of th@; is one of the labels helpful: generally, both are. The key question is whether we
should be content with these successes, or whether we
should continue to seek to underpin them by an exact and
"This sort of branch-dependent Schmidt decomposition could, ofinambiguous formulation of quantum theory.
course, be considered in the original spin model, where all the axes Consensus on this point seems no closer than it was in
of measurement are predetermined, but would not affect the earliek975. Many physicists take the view that we should not ever
analysis, since the Schmidt projections in all branches are identicagxpect to find a complete and mathematically precise theory
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of nature, that nature is simply more complex than any mathboth that perfect correlations are established between system
ematical representation. If so, some would argue, present irend environment particles in finite time and that these inter-
terpretations of quantum theory may well represent the limitactions do not overlap. We would not claim, either, that the
of precision attainable: it may be impossible, in principle, todelayed-choice spin model necessarily captures any of the
improve on imprecise verbal prescriptions and intuition. Onessential features of the branching structure of quasiclassical
the other hand, this doubt could be raised in connection witldomains, though we would be very interested to know
any attempt to tackle any unsolved problem in physics. Whywhether it might. We suspect that these simplifications
for example, should we seek a unified field theory, or ashould make it easier rather than harder to find set selection
theory of turbulence, if we decide priori not to look for a  algorithms in the models, but we cannot exclude the possi-
mathematically precise interpretation of quantum theorydility that more complicated and realistic models might
Clearly, too, accepting the impossibility of finding a com- prove more amenable to set selection.
plete theory of nature need not imply accepting that any The type of mathematical formulation we have sought is,
definite boundary to precision will ever be encountered. Oneimilarly, open to criticism. We have investigated what seem
could imagine, for example, that every technical and concepparticularly interesting classes of Schmidt projection set se-
tual problem encountered can eventually be resolved, buection algorithms, but there are certainly others which may
that the supply of problems will turn out to be infinite. And be worth exploring. There are also, of course, other math-
many physicists, of course, hope or believe that a completematical structures relevant to decoherence apart from the
and compelling theory of nature will ultimately be found, Schmidt decomposition, and other ways of representing his-
and so would simply reject the initial premise. torical series of quantum events than through consistent sets
Complete agreement on the desiderata for formulations off histories.
guantum theory thus seems unlikely. But it ought to be pos- Our conclusion, though, is that it is extraordinarily hard to
sible to agree whether any given approach to quantum theorfind a precise formulation of nonrelativistic quantum theory,
actually does supply an exact formulation and, if not, whatbased on the notions of quasiclassicality or decoherence, that
the obstacles might be. Our aim in this paper has been ts able to provide a probabilistic description of series of
help bring about such agreement, by characterizing whatvents at different points in time sufficiently rich to allow
might constitute a precise formulation of some of the ideas irour experience of real world physics to be reconstructed. The
the decoherence and consistent histories literature, and lproblems of recoherence and of branch-dependent system-
explaining how hard it turns out to be to supply such a for-environment interaction, in particular, seem sufficiently seri-
mulation. ous that we doubt that the ideas presented in the literature to
Specifically, we have investigated various algorithms thatlate are adequate to provide such a formulation. However,
select one particular consistent set of histories from amonge cannot claim to have exhaustively investigated every pos-
those defined by the Schmidt decompositions of the statesibility, and we would like to encourage sceptical readers to
relative to a fixed system-environment split. We give ex-improve on our attempts.
amples of partial successes. There are several relatively
simple algorithms which give physically sensible answers in
particular models, and which we believe might usefully be
applied elsewhere. We have not, though, found any algo- We are grateful to Fay Dowker and Trevor Samols for
rithm which is guaranteed to select a sensible consistent seeveral helpful discussions and to Philip Pearle for raising
when both recoherence and branch-dependent systerie question of the implications of recoherence for set selec-
environment interactions are present. tion algorithms at an early stage of this work and for other
Our choice of physical models is certainly open to criti- valuable comments. A.K. was supported by the Royal Soci-
cism. The spin model, for example, is a crudely simplisticety, J.M. by the United Kingdom Engineering and Physical
model of real-world decoherence processes, which suppos&giences Research Council.
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