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Information and metrics in Hilbert space
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The concept of distance in Hilbert space is relevant in a variety of scenarios, in particular for investigating
the quality of different approximations. In this work we study the relations betwigestatistical distances
(SD) on a probability space, on the one hand, @nddifferent metrics on Hilbert spad®HS), on the other
hand. As a result, we are able to establish some universal relations between SD and MHS and to apply them
to one-dimensional problemgS1050-2947®7)05003-4

PACS numbd(ps): 03.65—w, 05.30—d

I. INTRODUCTION result that depends of quantum mechanics peculiarities elu-
cidated by him[1] and by an illuminating study of Braun-
The concept of distance between different rays(tire  stein and Caves, which extended Wootters’ work to the
same Hilbert space is certainly a very important one. It is realm of density matricegt].
related, for instance, to different preparations of the same In the present work we shall pursue Wootters’ ideas and
guantum systenfil] and to the geometric properties of the study adifferent information-theory-related statistical dis-
guantum evolution submanifol®]. It becomes relevant in tance. We shall be concerned withits connection to Woot-
discussing squeezed coherent states, displaced number statess’ one, andii) the precise fashion in which these statisti-
generalized coherent spin states, g2¢. It can be used also, cal distances can be related to ordinary Hilbert space metrics.
of course, in order to study the quality of different approxi- It will be seen that some new, interesting physical insight is
mations, as very few problems are amenable to an exaggained by recourse to this type of investigation. We begin in
treatment. From a rather different point of view, a connectionSec. Il by reviewing diverse distances that can be employed
can be found with the problem of detecting weak signals thawith reference to wave functions in Hilbert space. In Sec. llI
cause small changes in the state of a system. This probleme analyze the different distances and are able to establish
can be regarded as being equivalent to that of distinguishingome universal relations between them, which supplement
“neighboring” states along a suitably parametrized path,the original one discovered by Wootters. We apply our re-
which involves the concept of distance. sults to some one-dimensional soluble problems in Sec. IV
The present effort is inspired by the pioneer work ofand, finally, some conclusions are drawn in Sec. V.
Wootters[1] and is concerned with the relationship between

statistical and geometric distances. The former are distances || DISTANCES BETWEEN WAVE FUNCTIONS

on probability space and are determined by the size of sta-

tistical fluctuationg 1]. The latter refer, of course, to metrics A. The Fubini-study metric

on Hilbert space. Suppose that a quantum stakéx) is parametrized by

Given two probability distribution$, andf, one can de- real parameters that we collectively denote dyi.e., we
fine a distance between the] (to be herefrom called the yrite y,(x). A set of rays corresponding to the states with
Wootters ong all possiblea values constitutes an-dimensional manifold

IC of the Hilbert spaceH. The geometric structure of the

Dy(fy.f,) = lim iY 1) submanifold can bg studied with the help of the Fubini-Study
' noen metric induced on if5,6].
whereY,, is the maximum number of mutually distinguish- dS$= 1-[(y(a)|(a+da))]?, 3
able (in n trials) intermediate probabilities. The Wootters ] ]
distance ishot (in principle, at leastthe same as the Euclid- where, for the sake of a lighter notation, we use herefrom
ean distance, which reads
Pa(X)=i(a), 4

DE(fl,f2)=\/f|f1—f2|2dT, (2 and one assumes that states that differ by a change

a— a+da can be related via the expansion
with d= an appropriate volume element in that function g
space to whicH,f, belongs[1]. Indeed, the distance func- _
tion (1) was introduced by Fisher in his analysis on genetic |¢(a+da))—|¢(a)>+daa|¢(a)>
drift [3]. Wootters was able to exhibit a notable finding: al-
thoughDyy is nota priori related to the usual distandcer
angle between rays, these two kinds of distamoéncide a

1 , @
+§(da) WW(OI)H"'- 5)
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This metric has been discussed by several autfiord Q). dSy=Dyw. (10)
The metric structure of the manifold is completely expressed
by physical quantities, which are the uncertainties and corre-
lations of Hermitian operators generating various evolutions
of a given quantum stafe]. It is of importance to mention In the present considerations we intend to underline the
the fact that, as Braunstein and Cayéshave pointed out, importance of a different statistical distance that arises out of
dS2 is the maximum value of Wootters' distance, which the celebrated maximum entropy princidlé7]. We shall
means that the Fubini metric can be regarded as the statis§all this distance the Kullback one.

cal distance between neighboring pure stftds Kullback’s minimum  cross-entropy principléMinEnt)
[18] is an entropy optimization principle that rivals Jaynes’

celebrated maximum entropy princip(®1EP) [17] both in
o its range of applications and in its theoretical outreach. In-
This is included here for reasons of completeness. IHeed, MEP and MinEnt are related in the fashion to be made

E. Kullback’s distance

B. The Euclidean metric

reads, of course, for two wave functiotlg, i, explicit below. We define now the Kullback distance. Let
P=(P1.P2, - --.Pn) @and g=(qy,qy, ... .4n) be two nor-
d§=J' [(p1— rp)|?d 7. (6)  malized (to unity) probability distributions. The Kullback-

Leibler measure is defined §%8,19

Notice that, for the sake of an easier notation, we shall here- n
from denote volume elements simply és=dx. DKL(ﬁia)Z 2 piln& (12)
=1 q’

C. The Wootters distance .
where we assume that whenewgr=0, the corresponding

This isnot the Euclidean distance. Wootters uses, insteag). is also zero. We define, as us{ial], 0In(0/0)=0. Some

(1], important properties of this measure are as follows.
d%=(arcco$(¢//1|¢//2>|)25 Y2, 7) (i) Dk (p:q) is a continuous function gb4, ... ,p, and
of qi, ... .0n-
and with very good reasons: the anglge ih our case in (i) Dy, (p:q) is permutationally symmetripve can per-

Hilbert space is the only Riemannian metric on the set oinute among themselves paing;(q;)].
rays, up to a constant factor, which is invariant under all (i) p,, (p:q)=0 and vanishes ip=gq. This property
unitary transformationg1]. Notice that, for very “close” || play a central role in our considerations. It may be help-

rays (“neighboring states) the overlap(y|¢,)~1 and we  fy| to have the proof at hand, so that we give it in the Ap-
can omit the “absolute value” symbols in E¢p), i.e., pendix.

(iv) The minimum value oDy, is zero.
A= 2, 8 : . - -
Siv= (arccosys|yz)) ® (v) Dk, is a convex function of botlp andg. This prop-
Interestingly enough, recourse to estimation thepfil1— €ty is important in establishing the properties of global

16], and references thergirhas allowed Braunstein and Minimum. . .
Caves[4] to show that the Wootters metric is identical with  (vi) D (p:q) # Dk (9:p).-

the so-called Cramer-Rao boufit?]. The non-negativity [Dy, (p:q)=0] and the identity
S [Dy (p:p)=0] are essential for any measure discrep-
D. Statistical distributions in Hilbert space ancy On the other hand, the Kullback-Leibler distance does

The concept of statistical distance is quite independent ofiot satisfy the symmetry and triangle inequality, conditions
quantum mechanics and can be defined in any probabilithat apply for metric distances. The last one is not essentlal
space/1]. In order to find an explicit expression for E@), ~ for our present purposes becausg we are interested in
Wootters[1] regards probability distributions as points, say, discrepancies or deviations frdief. Eq.(3)] ¢(«) when one
P1, P2 belonging to anN-dimensional probability space S|ght!y varies the paramelsy a; .(b) we are interested in

> 1 2 Ny, = 1 2 N considering only two wave functions at a time, so that the
[P1=(P1,P1, - P1); P2=(P2:P2, - - - ,P2)] L€t US con-  yiangie inequality is not required.
nect two of these points by a smooth curpét) param- Nevertheless in order to preserve the symmetry property
etrized by the variable (0 <t< 1). Thus, [3(0)=E)1 and we can also use thgelated measurg 18,19
p(1)=p,. Performing a variational calculation in order to n n
find the shortest curve between andp, and thereby deter- 2 p, =D, (p:q)+ Dy, (q: 5):;1 p"ng 4 Izl Qim%-
< -

mine the statistical distance, Wootters finds that, in the limit i
N—oo, (12)

s _ so that, obviouslyPy(p:q) = D(q:p).
Dw= arccoPEl (pll)llz(plz)llz}- ©) Now, if we takeq to be theuniform (q;=g,=- - - =q,)
probability distributionu, then we immediately find
and, as anticipated above, reacliasd explains a notable .
result, namely thaficf. Eq. (1)] Dk (p:u)=Inn—=S(py,pz, - .. ,Pn), 13
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whereS stands for Shannon’s measute’]. Thus minimiz-
ing Dy (p:U) is tantamount to maximizing.
Of course, for the present purposes we take

q=|w(a)|?, (14)
p=|y(a+Aa)|? (15)
(or vice versaso that
| )2
2DK=f dx|¢(a)|zln[—2|¢(a+Aa)|
Ylat+Aa)|?
+fdx|¢(a+Aa)|2In{%} (16)

and, in order to keep dimensions properly accounted for, we

need to regar@y as a metric in the sengeelf-explanatory
notation

dSt=Dy. 17

IIl. COMPARING DISTANCES IN HILBERT SPACE

The idea is that we have a vectw(«) that depends upon
a set of parameters collectively denoted dyWe slightly
changea to a+Aa, so that our wave function is now
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aw (921// 2
F=|p(a+Aa)— ¢(a)|2=’Aa£+(1/2)A2aW
2
~ANa j—f (20)

(i) Up to this order, and using Eq$19) (the asterisk
indicates, as usual, complex conjugajion

2
O=(y(a)|p(a+Aa))~1 +(1/2)A2aJ’ dxy* Z—lﬂ

a’’

(21)

To make further progress we notice that
Py 9 Y
* * —
J dxy 5 &aJ dx( Vi &a) J dx

aa?
which, since the first integral on the right-hand side vanishes
[see Eqgs(19)], finally gives

AY* Iy
da da’
(22)

2
(23

Y
Jda

1 —(9=(1/2)A2aj dx

The results(i)—(iii) are quite general. The next one is re-
stricted to real wave functions, so that it becomes specially
useful in the case of one-dimensional problems, whre
stationary statgsone always can assume, without loss of

y(a+Aa). We wish to compare these two wave functions,9enerality, that wave functions are of such a naf@@21.

according to the different criteria that arise out of the con-
siderations of the preceding section, by recourse to evaluat-

ing the diverse distances betwegfia+A«) and (). To
this end, and following Eq5), we expand/(a+Aa) up to
second order and assume that bgtlr) andy(a+Aa) are

properly normalized to unity. The goal is, of course, that of
establishing universal relationships among the various dis-

tances between neighboring statd$). We begin, however,

with a quite general relationship between Euclidean and

Wootters distances.

(iv) Up to second orderf’ = dilda),

% + (A a/Z)W}
alny?
Jda

[atAa)])?=|pa)+Aa

1+Ax

=y?

+A2a[¢”/¢+(¢'/¢)z]} (24)

Before embarking into our discussion we first note the

following.
(i) On account of normalization

d
J=(£)<¢<a>|w<a>>

Y
=<£z//(a)>+c.c.: 0 (18
implies
Y _
J
<z//(a) a—Z> =0. (19

(i) Up to second order itha [we setA2a=(Aa)?],

A. Euclidean distance between neighboring states

By recourse to Eq(20) we evaluate now, for the sake of
later reference, the Euclidean distance

dSE=J dX{¢(atAa)=y(a)]? (25)
up to second order id «,
dsng dxF

_nza [ ad?’

=A af dx T

=A2%al,, (26)
so that

dS£=A2al;. (27)
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B. Euclidean distance and Wootters distance As shown in[2], the Fubini metric neatly captures the

We show here that they are intimately related. Just congssentials of the uncertainties and correlations of the opera-

sider two wave functionsyy, i, [¥1=uv(a+Aa),i, tors Ay generating thex evolution of (). This has been
=y(a)] and compare Eqg6) and (8). best demonstrated by using squeezed s{@&2s
Since fdx|¢,|?=fdx|i,|>=1, we have Our result Eq. (35) tells us that, up to second order in
Aa, the Euclidean metric is also able to account (in the
d§=2(1—<z/;1|¢2))=2(1—c03y)= 2(1-0), (28 sense of [2]) for the above mentioned uncertainties and cor-

. . ~ relations.
wherey is, of course, a small angle. Expansion of the trigo-

nometric function gives . .
D. MinEnt distances between NS

d=21-1+ 7_2_ 7_4+ o yz( 1 7_2) ~ 2 We address now out leitmotiv topic: i.e., concerning our-
2 24 12 selves with statistical distances of a quite different origin:
) information theory(IT) [17], whose main tenet asserts that to
=[arccos(y|y2)) 1%, (29 any probability distribution one can associate, in unique
i.e., the Wootters distance reappears in the last equalitfashion, an information measuf&7]. Dy (p:q) is the mea-
From Eq.(23) we get sure of arelativeinformation[23,24]. Assume that you have

an a priori estimation(i of how the pertinent probability
distribution (pd) should look. You are provided now with
some additional information concerning the system of inter-

est and conclude that the pijis the one that best reflects
what you knownow about the systeerKL(fJ:ﬁ) measures
d%zdﬁ,, (31) the amount of information associated ;Eorelative to that

) contained ing [23]. Let us rephrase this in a slightly differ-
up to second order ir. ent form. Suppose that the maximum amount of information
you can gather concerning your system is callad.

DKL(E):ﬁ) can also be said to represent the additional amount
We start with the definition of information that is still required, in going from to p, to
attain the ideal amount#1. Of course, if starting fromﬁ you

2

adiy 30

— A2
d£=A af dx ——

which coincides, of course, with our previous result. Thus,

C. Fubini distance between NS

dsi= 1- +Aa))?, 32 R
SZF Kiella+da)) 32 were free to choosp, you would select it so as tminimize
and use Eq(21), Dy (p:q) [23,24.
Within the present context we have
ds£=[1-07], (33

q(a)=[¥(a)1?,

which, after expansion up to second order, and on account of
Eq. (23), gives

2 p(e)=q(a+Aa)=[¢(a+Aa)]? (39
d§=A2af dx Ja| (34) so that we can write, if we restrict ourselves to the one-
dimensional instance, and are thus allowed to use(#4).
so that the interesting relation ensues (see the comment made before deriving that relationship
— 2 —
dsf=(A%a)l;=dSE, (35) o i),
up to second order ida. pPle)=q(a)| 1 +Aa—p—+(A%l2)(q" Q)+ - - .
Next let us suppose that the evolution of s(«) is gen- (40
erated by a unitary operatdd, i.e., that for an arbitrary
initial state () we can write Dy, (p:q) measures how much information is gained in go-
R ing from a to a+ A« relative to that already contained in
p(a)=U(a,ag) P(ag). (36)  y(a), the so-called “quantal entropy’Sqy [25], that has

. o _ i been the subject of much recent wg25—-32. One writes
Correspondingly, the infinitesimal evolutions we are inter-

ested in here can be ascribed to the action of a sah of
Hermitian operator§22], So= _f dx| (@) |?In| g a)|? (41)

—idkip(a)=A(a), (37 , _
(for details see, for instance, Ref25,29 and references
with therein.
A A A It is clear that, in principleDy, is not related in an ob-
Ala)=iU(a,ag)d U Ya,ay) (k=1---m). (38  vious way to the Wootters distance, which refers to the maxi-
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mum number\ of mutually distinguishabléin n trials) in-
termediate probability distributions (y)|? (a<y<a
+Aa).

Notice that, because boi «) and¥(a+ Aa) are prop-
erly normalized wave functions, E¢40) implies (we drop

the (i notation for the sake of a lighter notatipn

d Inq(a)

AaJ dxgq(a) ————=0 (42

and
(Azalz)f dxq'(a)=0 (43

so that we can recast our KL measure in the fashion
_ q(a)
DuL(g:p)= dxq(a)ln p(a)

——f dxq(ln
- [ ax
[

d Inq
:J dxq AaW-F(AZa/Z)(q"/q)

_(m

1. First-order relationships

d Inq
1 +AaW+(A2a/2)(q”/q)

(44)

A 9 Ing A2al2)g”
q aWﬁL( al2)q"(a)

A dInq A2 , )
1+ 0[74‘( 0[/2)(q /q)
(45)

dInq ) ,
1+Aaw+(A al2)(q"1q)
(46)

If we expand now

InN[1+y]=In

ding
1+Aa{(9—a+(A2a/2)(qH/Q)}, (47)

up to first order iny we immediately obtain from Eq46)

Dy.(q:p)=0 (48)

1699
which, in terms ofy(«) reads
& 2
D@m= 28% [ a0 60
Jda
ie.,
dSi = 2d<E, (51)
and, for the symmetrized Kullback distance,
dSe= 4dSZ, (52

which tell us that the both the Kullback and the KL distance
become proportional to the Euclidean distaiéeand thus
to the Wootters one.

IV. APPLICATIONS

The concept of distance between rays can be used in order
to discuss the quality of different approximate treatments.
We apply now some of the previous considerations to some
one-dimensional soluble problems.

A. Sextic anharmonic potential

The special sextic anharmonic oscillator has been exten-
sively studied by Dutta and Wile}83] and by Leackhet al.
[34]. It reads

V(X)=ap+ a;x+ax?+azx>+ax*+ asx®+ agx®,
(53
and we tackle here the special case
a0:a1:a3:a520. (54)

It is well known that the associated, exact ground stgte)
wave function(w.f.) can be written in the fashion

W(X)= p( Exx)

where the relations between thés and thea,, coefficients
are given by(see Ref[24])

(55

which tells us that the KL measure is stable against first-

order changes i\ «. This constitutes one of our main re-

sults up to first order inA«, no information is gained in
going froma to o+ A« (or vice versa
2. A second-order relation

If we expand now up to second order Aw in Eq. (47)
we find from Eq.(46), taking care also of Eq43),

dlnq\ 2
da |’

(49)

DKL<q:p>=<1/2>A2af dxq

a4=2N\o\ 4, (57)
)\3:0, (58)
)\120, (59)

a2=§)\§—3)\4. (60)

The energy of the g.s. IE= 3\,. It is also well known that
maximization of the quantal entrofS, (MEP), or, equiva-
lently, minimization of the KL one, yields the exact g.s.
wave function.

In order to test the accuracy of the MEP technique, and
thus use the distance concept to numerically measure it, we
add now a perturbatioagx® to the potential53) and com-
pare the exact g.s. wave function for thisw potential with
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FIG. 1. Euclidean vs symmetrized Kullback distances between FIG. 3. Relative ground state energy erepvs the symmetrized
two ground state wave functions, namelly,that obtained with the  Kullback distance(dashedl and Euclidian onésolid). The error is
approximate MEP techniqu@?2) with A, = 1 and\, = 0.5, and  that associated to the approximate MEP wave function referred to in
(ii) the exact one, for the case of the potentd) to which an  Fig. 1.
additional perturbative terragx® has been added. In the graph, the
ag coefficient varies between 0 and 1. distance. Figure 3 depicts the same distances as Fig. 2, but

. ] ] _here against the relative energy error
the one obtained, following the approximate MEP technique
described i 27], by recourse to the ansatz Emver— Eexact
G=—r——, (63)

Eexact

. (61

1
\PMEP(X):eX[{__()\O+)\2X2+)\4X4) . . . . .
2 which establishes a direct connection between the quality of

. . approximate quantal treatment and the concept of dis-
We compute the different distances between the exact a nce.
the MEP wave functions and display in Fig. 1 ttsymme-
trized Kullback vs the Euclidean one. Of course, a straight 1. Harmonic oscillator
line is obtained &g has been allowed to vary between 0 and '

1). Numerically, we have We use the distance concept here in order to compare two

different approximate technique@) the MEP approach and
dSf= 4.01d£—-5.4108, (62 (i) the perturbative one. To this end we add a perturbation
a,x* to the harmonic oscillator potential.
and the coefficient of correlation eqUaIS 1.0. In F|g 2 the We examine the MEP approximation by recourse to the
different distances are plotted agaiagt The solid line rep-  ansat61), on the one hand, and employ results obtained by
resents the Euclideator, equivalently, the Fubini or the recourse to second order perturbation theory, on the other
Wootters distance(all three coincide within the scale of the hand. The Euclideatsolid lines and the symmetrized Kull-
figure). The dashed curve gives tfigymmetrized Kullback  pack’s distancedotted-dashed curvesf Figs. 4 (MEP vs
exac) and 5 (perturbative vs exagtthat separate approxi-
mate from exact results neatly illustrates the fact that the

3x10* T T T T T T T T T T T

MEP method is clearly superior to second order perturbation
______________ theory, even in the case of very small anharmonicities
s a4X4.
2x10% | 1
o, V. CONCLUSIONS

Ll | In the present work we have established some universal

X ‘ . . o
relations between two distances on probability spdRefs.

I ] [1,4,18,19) and different metrics on Hilbert space. The
//" angley in Hilbert spacdcf. Eq.(7)] is the only Riemannian
of ¥ 8 metric (dSSV) on the set of rays, up to a constant factor,

which is invariant under all possible time evolutiofmore

T, s generally, under all unitary transformationbeing thus, in a

sense, the “natural” metric on the set of quantum staids
Wootters has showii] that the same metric arises from a

FIG. 2. Same as Fig. 1, but here distances are plotted against tigglite different starting point: the analysis of statistical fluc-
coefficientag. The dashed curve corresponds to the symmetrizeduations in a finite sequence of measurements, with the result
Kullback’s distance, and the solid one to the Euclidian distance. that distance between two states becomes tantamount to

ag
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FIG. 4. Euclidean(solid) and symmetrized Kullbackdotted- FIG. 5. Same as Fig. 4, but here the approximate wave function
dashed distances between two ground state wave functionspbtained by recourse to second order perturbation theory is com-
namely, (i) that obtained with the approximate MEP technique andpared to the exact one. Notice the difference in the vertical scales of
(i) the exact one, va,, for a quartic anharmonic oscillataa, is Fig. 4 and this figure.
the coefficient of thex* term in the associated potentisl(x)=
$x2+a,x*. The a, parameter varies between 0 and 1. Due to theand correlationsof the operators associated to the measure-
very small figures one finds near the origin that some “imperfec-ments,whose essentials are neatly captured by the Fubini-
tions™ in the drawings are unavoidable. Study metric[2,4]. Thus, our second equality above rein-

forces the plausibility of Wootters’ suggestion.
counting the number of distinguishable intermediate ones The KL metric is associated to an optimization principle,
[1]. A connection between statistics and geometry is thushannon’s maximum entropy one. In a sense, it reflects effi-
estab”Shedl] that has been ConSiderably StrengthenEd b){:|ent management of the available informati(ﬂ*‘v\/ays re-
the study of Ref[4]. Although the intricacies of this connec- |ated to the expectation values at our disposal in building up
tion are not at this poirtitally understood, the present work the concomitant wave functidi25]). The last equality above
allows one to obtain some additional inSightS into the mattebonnects this management to the number of intermediate dis-
that, in a sense, allow one to advance a few steps into thﬁhguishable states betweer{e) and y(a+Aa).
road inaugurated by Wootters and considerably widened by The application of our results to NS states in some one-
Braunstein and Caves. dimensional soluble problems numerically illustrates the fact

Thus, with reference to neighboring states, we have estalihat the Euclidean, the Wootters, and the Fubini distances are
lished that, up to second order in a suitable paramefethe  equivalent. The Kullback's distance is, as explained, propor-

following identities obtain:

dSh=ds

(Euclidean metrig,

tional to the Euclidean onEg. (6)]. The different relations
provide one with a quantitative measure of the quality of
different approximate treatments of Sctiimger’s equation.

ds,=ds

dS;,=dS%, /2 (Kullback -Leibler metrig.

(Fubini -Study metrig,
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tion between geometry and statistics referred to above be-
. . MEASURE
come now entrenched in a firmer manner
Wootters has suggestéd] that statistical fluctuations in
the outcomes of measurements might be partly responsibly

The five metrics here discusSdaecome essentially iden-

Within the present context the KL measure is given by

for the Hilbert-space structure of quantum mechanics. These _ p(X,u)
statistical fluctuations are intertwined withe uncertainties Di(p:0)= pr(X,M)mq(X’M) ’ (A1)
with
1This parameter allows one to distinguish a given state from a
neighboring ondfrom « to a+Aa). q(x,u)=| I,D,L(X)|2 (A2)

2That is, Euclidean, Fubini-Study, Wootters, Kullback-Leibler,

and symmetrized KL. and
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PO ) =4 a2, (A3) q(x, p)
o i (6:p)= [ dxatxping
u being, of course, a real quantity that parametrizes the wave Il
. A n
function . Now, we deal with situations such that _ _J’ dxq( In|1+Au (mq )
P(X, ) =q(X, p+Apu) f dxar oing (L, 7
2 Inq(x, - ) MT—f o
=a(x,p) 1+AM#+~-). (A4) # g
‘ [ oxd 0213, 2| o
= X ——|In —1]{=0.
with N o " ou
(A8)
(1 +AMM = 0. (A5)  The last inequality is a result of the fact that
o
f(y)=y=In(1 +y), (A9)
On account of normalization we have for 1+y>0, is of a non-negative character. Indeed, one has
f(0)= 0,
f pr(X,M):f dxq(x,u)= 1, (A6)
ty) df y
Y) =0T 1y
which implies dy 1+y
f'(0)= 0,
d Ing(x, u)
dxq(x,u)AuT= 0, (A7) f(y)=(1+y) 2. (A10)
Thus, the KL measure is positivgf’(y)<0, y<0, and
so that we can recast EA1) in the fashion f’(y)>0, y>0], as it should be.
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