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Information and metrics in Hilbert space
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The concept of distance in Hilbert space is relevant in a variety of scenarios, in particular for investigating
the quality of different approximations. In this work we study the relations between~i! statistical distances
~SD! on a probability space, on the one hand, and~ii ! different metrics on Hilbert space~MHS!, on the other
hand. As a result, we are able to establish some universal relations between SD and MHS and to apply them
to one-dimensional problems.@S1050-2947~97!05003-8#

PACS number~s!: 03.65.2w, 05.30.2d
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I. INTRODUCTION

The concept of distance between different rays in~the
same! Hilbert space is certainly a very important one. It
related, for instance, to different preparations of the sa
quantum system@1# and to the geometric properties of th
quantum evolution submanifold@2#. It becomes relevant in
discussing squeezed coherent states, displaced number s
generalized coherent spin states, etc.@2#. It can be used also
of course, in order to study the quality of different appro
mations, as very few problems are amenable to an e
treatment. From a rather different point of view, a connect
can be found with the problem of detecting weak signals t
cause small changes in the state of a system. This prob
can be regarded as being equivalent to that of distinguish
‘‘neighboring’’ states along a suitably parametrized pa
which involves the concept of distance.

The present effort is inspired by the pioneer work
Wootters@1# and is concerned with the relationship betwe
statistical and geometric distances. The former are dista
on probability space and are determined by the size of
tistical fluctuations@1#. The latter refer, of course, to metric
on Hilbert space.

Given two probability distributionsf 1 and f 2 one can de-
fine a distance between them@1# ~to be herefrom called the
Wootters one!,

DW~ f 1 , f 2!5 lim
n→`

1

An
Yn , ~1!

whereYn is the maximum number of mutually distinguish
able ~in n trials! intermediate probabilities. The Wootte
distance isnot ~in principle, at least! the same as the Euclid
ean distance, which reads

DE~ f 1 , f 2!5AE u f 12 f 2u2dt, ~2!

with dt an appropriate volume element in that functi
space to whichf 1 , f 2 belongs@1#. Indeed, the distance func
tion ~1! was introduced by Fisher in his analysis on gene
drift @3#. Wootters was able to exhibit a notable finding: a
thoughDW is not a priori related to the usual distance~or
angle! between rays, these two kinds of distancecoincide, a
551050-2947/97/55~3!/1695~8!/$10.00
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result that depends of quantum mechanics peculiarities
cidated by him@1# and by an illuminating study of Braun
stein and Caves, which extended Wootters’ work to
realm of density matrices@4#.

In the present work we shall pursue Wootters’ ideas a
study adifferent, information-theory-related statistical dis
tance. We shall be concerned with~i! its connection to Woot-
ters’ one, and~ii ! the precise fashion in which these statis
cal distances can be related to ordinary Hilbert space met
It will be seen that some new, interesting physical insigh
gained by recourse to this type of investigation. We begin
Sec. II by reviewing diverse distances that can be emplo
with reference to wave functions in Hilbert space. In Sec.
we analyze the different distances and are able to estab
some universal relations between them, which supplem
the original one discovered by Wootters. We apply our
sults to some one-dimensional soluble problems in Sec.
and, finally, some conclusions are drawn in Sec. V.

II. DISTANCES BETWEEN WAVE FUNCTIONS

A. The Fubini-study metric

Suppose that a quantum statec(x) is parametrized byn
real parameters that we collectively denote bya, i.e., we
write ca(x). A set of rays corresponding to the states w
all possiblea values constitutes ann-dimensional manifold
K of the Hilbert spaceH. The geometric structure of th
submanifold can be studied with the help of the Fubini-Stu
metric induced on it@5,6#.

dSF
25 12 z^c~a!uc~a1da!& z2, ~3!

where, for the sake of a lighter notation, we use herefrom

ca~x![c~a!, ~4!

and one assumes that states that differ by a cha
a→a1da can be related via the expansion

uc~a1da!&5uc~a!&1da
d

da
uc~a!&

1
1

2
~da!2

d2

da2 uc~a!&1•••. ~5!
1695 © 1997 The American Physical Society
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This metric has been discussed by several authors@7–10#.
The metric structure of the manifold is completely expres
by physical quantities, which are the uncertainties and co
lations of Hermitian operators generating various evolutio
of a given quantum state@2#. It is of importance to mention
the fact that, as Braunstein and Caves@4# have pointed out,
dSF

2 is the maximum value of Wootters’ distance, whic
means that the Fubini metric can be regarded as the sta
cal distance between neighboring pure states@4#.

B. The Euclidean metric

This is included here for reasons of completeness
reads, of course, for two wave functionsc1, c2,

dSE
25E u~c12c2!u2dt. ~6!

Notice that, for the sake of an easier notation, we shall h
from denote volume elements simply asdt5dx.

C. The Wootters distance

This isnot the Euclidean distance. Wootters uses, inst
@1#,

dSW
2 5~arccosz^c1uc2& z!2[g2, ~7!

and with very good reasons: the angle (g in our case! in
Hilbert space is the only Riemannian metric on the set
rays, up to a constant factor, which is invariant under
unitary transformations@1#. Notice that, for very ‘‘close’’
rays~‘‘neighboring states’’! the overlap̂ c1uc2&'1 and we
can omit the ‘‘absolute value’’ symbols in Eq.~7!, i.e.,

dSW
2 5~arccoŝc1uc2&!2. ~8!

Interestingly enough, recourse to estimation theory~ @11–
16#, and references therein! has allowed Braunstein an
Caves@4# to show that the Wootters metric is identical wi
the so-called Cramer-Rao bound@12#.

D. Statistical distributions in Hilbert space

The concept of statistical distance is quite independen
quantum mechanics and can be defined in any probab
space@1#. In order to find an explicit expression for Eq.~1!,
Wootters@1# regards probability distributions as points, sa
pW 1, pW 2, belonging to anN-dimensional probability spac

@pW 15(p1
1 ,p1

2 , . . . ,p1
N); pW 25(p2

1 ,p2
2 , . . . ,p2

N)#. Let us con-

nect two of these points by a smooth curvepW (t) param-
etrized by the variablet ~0 <t< 1!. Thus, pW (0)5pW 1 and
pW (1)5pW 2. Performing a variational calculation in order
find the shortest curve betweenpW 1 andpW 2 and thereby deter
mine the statistical distance, Wootters finds that, in the li
N→`,

DW5arccosF(
i51

`

~p1
i !1/2~p2

i !1/2G , ~9!

and, as anticipated above, reaches~and explains! a notable
result, namely that@cf. Eq. ~1!#
d
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dSW5DW . ~10!

E. Kullback’s distance

In the present considerations we intend to underline
importance of a different statistical distance that arises ou
the celebrated maximum entropy principle@17#. We shall
call this distance the Kullback one.

Kullback’s minimum cross-entropy principle~MinEnt!
@18# is an entropy optimization principle that rivals Jayne
celebrated maximum entropy principle~MEP! @17# both in
its range of applications and in its theoretical outreach.
deed, MEP and MinEnt are related in the fashion to be m
explicit below. We define now the Kullback distance. L
pW 5(p1 ,p2 , . . . ,pn) and qW 5(q1 ,q2 , . . . ,qn) be two nor-
malized ~to unity! probability distributions. The Kullback-
Leibler measure is defined as@18,19#

DKL~pW :qW !5(
i51

n

pi ln
pi
qi
, ~11!

where we assume that wheneverqi50, the corresponding
pi is also zero. We define, as usual@17#, 0ln(0/0)50. Some
important properties of this measure are as follows.

~i! DKL(pW :qW ) is a continuous function ofp1 , . . . ,pn and
of q1 , . . . ,qn .

~ii ! DKL(pW :qW ) is permutationally symmetric@we can per-
mute among themselves pairs (pj ,qj )#.

~iii ! DKL(pW :qW )>0 and vanishes ifpW 5qW . This property
will play a central role in our considerations. It may be he
ful to have the proof at hand, so that we give it in the A
pendix.

~iv! The minimum value ofDKL is zero.
~v! DKL is a convex function of bothpW andqW . This prop-

erty is important in establishing the properties of glob
minimum.

~vi! DKL(pW :qW )ÞDKL(qW :pW ).
The non-negativity @DKL(pW :qW )>0# and the identity

@DKL(pW :pW )50# are essential for any measure ofdiscrep-
ancy. On the other hand, the Kullback-Leibler distance do
not satisfy the symmetry and triangle inequality, conditio
that apply for metric distances. The last one is not essen
for our present purposes because~a! we are interested in
discrepancies or deviations from@cf. Eq.~3!# c(a) when one
sightly varies the parameter~s! a; ~b! we are interested in
considering only two wave functions at a time, so that t
triangle inequality is not required.

Nevertheless in order to preserve the symmetry prop
we can also use the~related! measure@18,19#

2DK5DKL~pW :qW !1DKL~qW :pW !5(
i51

n

pi ln
pi
qi

1(
i51

n

qi ln
qi
pi
,

~12!

so that, obviously,DK(pW :qW ) 5 DK(qW :pW ).
Now, if we takeqW to be theuniform (q15q25•••5qn)

probability distributionuW , then we immediately find

DKL~pW :uW !5 lnn2S~p1 ,p2 , . . . ,pn!, ~13!
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55 1697INFORMATION AND METRICS IN HILBERT SPACE
whereS stands for Shannon’s measure@17#. Thus minimiz-
ing DKL(pW :uW ) is tantamount to maximizingS.

Of course, for the present purposes we take

qW 5uc~a!u2, ~14!

pW 5uc~a1Da!u2 ~15!

~or vice versa! so that

2DK5E dxuc~a!u2lnF uc~a!u2

uc~a1Da!u2G
1E dxuc~a1Da!u2lnF uc~a1Da!u2

uc~a!u2 G , ~16!

and, in order to keep dimensions properly accounted for,
need to regardDK as a metric in the sense~self-explanatory
notation!

dSK
2[DK . ~17!

III. COMPARING DISTANCES IN HILBERT SPACE

The idea is that we have a vectorc(a) that depends upon
a set of parameters collectively denoted bya. We slightly
changea to a1Da, so that our wave function is now
c(a1Da). We wish to compare these two wave function
according to the different criteria that arise out of the co
siderations of the preceding section, by recourse to eval
ing the diverse distances betweenc(a1Da) andc(a). To
this end, and following Eq.~5!, we expandc(a1Da) up to
second order and assume that bothc(a) andc(a1Da) are
properly normalized to unity. The goal is, of course, that
establishing universal relationships among the various
tances between neighboring states~NS!. We begin, however,
with a quite general relationship between Euclidean a
Wootters distances.

Before embarking into our discussion we first note t
following.

~i! On account of normalization

J5S ]

]a D ^c~a!uc~a!&

5 K ]c

]a Uc~a!L 1c.c.5 0 ~18!

implies

K ]c

]a Uc~a!L 5 0,

K c~a!U ]c

]a L 5 0. ~19!

~ii ! Up to second order inDa @we setD2a5(Da)2#,
e

,
-
t-

f
s-

d

F5uc~a1Da!2c~a!u25UDa
]c

]a
1~1/2!D2a

]2c

]a2 U2

'D2aU ]c

]a U2. ~20!

~iii ! Up to this order, and using Eqs.~19! ~the asterisk
indicates, as usual, complex conjugation!,

O[^c~a!uc~a1Da!&'11~1/2!D2aE dxc*
]2c

]a2 .

~21!

To make further progress we notice that

E dxc*
]2c

]a2 5
]

]aE dxS c*
]c

]a D2E dx
]c*

]a

]c

]a
,

~22!

which, since the first integral on the right-hand side vanis
@see Eqs.~19!#, finally gives

12O5~1/2!D2aE dxU ]c

]a U2. ~23!

The results~i!–~iii ! are quite general. The next one is r
stricted to real wave functions, so that it becomes speci
useful in the case of one-dimensional problems, where~for
stationary states! one always can assume, without loss
generality, that wave functions are of such a nature@20,21#.

~iv! Up to second order (c85]c/]a),

@c~a1Da!#25Fc~a!1Da
]c

]a
1~D2a/2!

]2c

]a2G2
5c2F11Da

] lnc2

]a

1D2a@c9/c1~c8/c!2#G . ~24!

A. Euclidean distance between neighboring states

By recourse to Eq.~20! we evaluate now, for the sake o
later reference, the Euclidean distance

dSE
25E dx@c~a1Da!2c~a!#2 ~25!

up to second order inDa,

dSE
25E dxF

5D2aE dxU]c

]aU
2

[D2aI 1 , ~26!

so that

dSE
2[D2aI 1 . ~27!
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B. Euclidean distance and Wootters distance

We show here that they are intimately related. Just c
sider two wave functionsc1 ,c2 @c15c(a1Da),c2
5c(a)] and compare Eqs.~6! and ~8!.

Since*dxuc1u25*dxuc2u251, we have

dSE
252~12^c1uc2&!52~12cosg!5 2~12O!, ~28!

whereg is, of course, a small angle. Expansion of the trig
nometric function gives

dSE
252S 1211

g2

2
2

g4

24
1••• D5g2S 12

g2

12D.g2

5@arccos~^c1uc2&!#2, ~29!

i.e., the Wootters distance reappears in the last equa
From Eq.~23! we get

dSE
25D2aE dxU ]c

]a U2, ~30!

which coincides, of course, with our previous result. Thu

dSE
25dSW

2 , ~31!

up to second order ina.

C. Fubini distance between NS

We start with the definition

dSF
25 12 z^c~a!uc~a1Da!& z2, ~32!

and use Eq.~21!,

dSF
25@12O2#, ~33!

which, after expansion up to second order, and on accoun
Eq. ~23!, gives

dSF
25D2aE dxU ]c

]a U2, ~34!

so that the interesting relation ensues

dSF
25~D2a!I 15dSE

2 , ~35!

up to second order inDa.
Next let us suppose that thea evolution ofc(a) is gen-

erated by a unitary operatorÛ, i.e., that for an arbitrary
initial statec(a0) we can write

c~a!5Û~a,a0!c~a0!. ~36!

Correspondingly, the infinitesimal evolutions we are int
ested in here can be ascribed to the action of a set om
Hermitian operators@22#,

2 i ]kc~a!5Âkc~a!, ~37!

with

Âk~a!5 iÛ ~a,a0!]kÛ
21~a,a0! ~k51•••m!. ~38!
-

-

y.

of

-

As shown in @2#, the Fubini metric neatly captures th
essentials of the uncertainties and correlations of the op
tors Âk generating thea evolution ofc(a). This has been
best demonstrated by using squeezed states@22#.

Our result Eq. (35) tells us that, up to second order
Da, the Euclidean metric is also able to account (in th
sense of [2]) for the above mentioned uncertainties and c
relations.

D. MinEnt distances between NS

We address now out leitmotiv topic: i.e., concerning ou
selves with statistical distances of a quite different orig
information theory~IT! @17#, whose main tenet asserts that
any probability distribution one can associate, in uniq
fashion, an information measure@17#. DKL(pW :qW ) is the mea-
sure of arelative information@23,24#. Assume that you have
an a priori estimationqW of how the pertinent probability
distribution ~pd! should look. You are provided now with
some additional information concerning the system of int
est and conclude that the pdpW is the one that best reflect
what you knownow about the system.DKL(pW :qW ) measures
the amount of information associated topW relative to that
contained inqW @23#. Let us rephrase this in a slightly differ
ent form. Suppose that the maximum amount of informat
you can gather concerning your system is calledM.
DKL(pW :qW ) can also be said to represent the additional amo
of information that is still required, in going fromqW to pW , to
attain the ideal amountM. Of course, if starting fromqW you
were free to choosepW , you would select it so as tominimize
DKL(pW :qW ) @23,24#.

Within the present context we have

qW ~a!5@c~a!#2,

pW ~a![qW ~a1Da!5@c~a1Da!#2, ~39!

so that we can write, if we restrict ourselves to the on
dimensional instance, and are thus allowed to use Eq.~24!
~see the comment made before deriving that relationship!,

pW ~a!5qW ~a!F11Da
] lnqW ~a!

]a
1~D2a/2!~qW 9/qW !1•••G .

~40!

DKL(pW :qW ) measures how much information is gained in g
ing from a to a1Da relative to that already contained i
c(a), the so-called ‘‘quantal entropy’’SQ @25#, that has
been the subject of much recent work@25–32#. One writes

SQ52E dxuc~a!u2lnuc~a!u2 ~41!

~for details see, for instance, Refs.@25,29# and references
therein!.

It is clear that, in principle,DKL is not related in an ob-
vious way to the Wootters distance, which refers to the ma
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mum numberN of mutually distinguishable~in n trials! in-
termediate probability distributionsuc(g)u2 (a<g<a
1Da).

Notice that, because bothc(a) andc(a1Da) are prop-
erly normalized wave functions, Eq.~40! implies ~we drop
the ‘‘qW ’’ notation for the sake of a lighter notation!

DaE dxq~a!
] lnq~a!

]a
5 0 ~42!

and

~D2a/2!E dxq9~a!5 0, ~43!

so that we can recast our KL measure in the fashion

DKL~q:p!5E dxq~a!ln
q~a!

p~a!

52E dxqS lnF11Da
] lnq

]a
1~D2a/2!~q9/q!G D

~44!

5E dxFqDa
] lnq

]a
1~D2a/2!q9~a!G

2E dxqS lnF11Da
] lnq

]a
1~D2a/2!~q9/q!G D

~45!

5E dxqH Da
] lnq

]a
1~D2a/2!~q9/q!

2S lnF11Da
] lnq

]a
1~D2a/2!~q9/q!G D J .

~46!

1. First-order relationships

If we expand now

ln@11y#[ lnF11Da
] lnq

]a
1~D2a/2!~q9/q!G , ~47!

up to first order iny we immediately obtain from Eq.~46!

DKL~q:p!5 0, ~48!

which tells us that the KL measure is stable against fi
order changes inDa. This constitutes one of our main re
sults: up to first order inDa, no information is gained in
going froma to a1Da ~or vice versa!.

2. A second-order relation

If we expand now up to second order inDa in Eq. ~47!
we find from Eq.~46!, taking care also of Eq.~43!,

DKL~q:p!5~1/2!D2aE dxqS ] lnq

]a D 2, ~49!
t-

which, in terms ofc(a) reads

DKL~q:p!5 2D2aE dxF]c~a!

]a G2, ~50!

i.e.,

dSKL
2 5 2dSE

2 , ~51!

and, for the symmetrized Kullback distance,

dSK
25 4dSE

2 , ~52!

which tell us that the both the Kullback and the KL distan
become proportional to the Euclidean distance~6! and thus
to the Wootters one.

IV. APPLICATIONS

The concept of distance between rays can be used in o
to discuss the quality of different approximate treatmen
We apply now some of the previous considerations to so
one-dimensional soluble problems.

A. Sextic anharmonic potential

The special sextic anharmonic oscillator has been ex
sively studied by Dutta and Wiley@33# and by Leachet al.
@34#. It reads

V~x!5a01a1x1a2x
21a3x

31a4x
41a5x

51a6x
6,

~53!

and we tackle here the special case

a05a15a35a550. ~54!

It is well known that the associated, exact ground state~g.s.!
wave function~w.f.! can be written in the fashion

C~x!5expS 2
1

2(i50

4

l ix
i D , ~55!

where the relations between thel ’s and thean coefficients
are given by~see Ref.@24#!

a652l4
2 , ~56!

a452l2l4 , ~57!

l350, ~58!

l150, ~59!

a25
1

2
l2
223l4 . ~60!

The energy of the g.s. isE5 1
2l2. It is also well known that

maximization of the quantal entropySQ ~MEP!, or, equiva-
lently, minimization of the KL one, yields the exact g.
wave function.

In order to test the accuracy of the MEP technique, a
thus use the distance concept to numerically measure it
add now a perturbationa8x

8 to the potential~53! and com-
pare the exact g.s. wave function for thisnewpotential with
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1700 55M. RAVICULÉ, M. CASAS, AND A. PLASTINO
the one obtained, following the approximate MEP techniq
described in@27#, by recourse to the ansatz

CMEP~x!5expF2
1

2
~l01l2x

21l4x
4!G . ~61!

We compute the different distances between the exact
the MEP wave functions and display in Fig. 1 the~symme-
trized! Kullback vs the Euclidean one. Of course, a straig
line is obtained (a8 has been allowed to vary between 0 an
1). Numerically, we have

dSK
25 4.01dSE

225.41028, ~62!

and the coefficient of correlation equals 1.0. In Fig. 2 th
different distances are plotted againsta8. The solid line rep-
resents the Euclidean~or, equivalently, the Fubini or the
Wootters! distance~all three coincide within the scale of the
figure!. The dashed curve gives the~symmetrized! Kullback

FIG. 1. Euclidean vs symmetrized Kullback distances betwe
two ground state wave functions, namely,~i! that obtained with the
approximate MEP technique~62! with l2 5 1 andl4 5 0.5, and
~ii ! the exact one, for the case of the potential~53! to which an
additional perturbative terma8x

8 has been added. In the graph, th
a8 coefficient varies between 0 and 1.

FIG. 2. Same as Fig. 1, but here distances are plotted agains
coefficienta8. The dashed curve corresponds to the symmetriz
Kullback’s distance, and the solid one to the Euclidian distance
e

nd

t

e

distance. Figure 3 depicts the same distances as Fig. 2
here against the relative energy error

e r5
EMEP2Eexact

Eexact
, ~63!

which establishes a direct connection between the qualit
an approximate quantal treatment and the concept of
tance.

1. Harmonic oscillator

We use the distance concept here in order to compare
different approximate techniques:~i! the MEP approach and
~ii ! the perturbative one. To this end we add a perturbat
a4x

4 to the harmonic oscillator potential.
We examine the MEP approximation by recourse to

ansatz~61!, on the one hand, and employ results obtained
recourse to second order perturbation theory, on the o
hand. The Euclidean~solid lines! and the symmetrized Kull-
back’s distance~dotted-dashed curves! of Figs. 4 ~MEP vs
exact! and 5 ~perturbative vs exact! that separate approxi
mate from exact results neatly illustrates the fact that
MEP method is clearly superior to second order perturba
theory, even in the case of very small anharmonicit
a4x

4.

V. CONCLUSIONS

In the present work we have established some unive
relations between two distances on probability space~Refs.
@1,4,18,19#! and different metrics on Hilbert space. Th
angleg in Hilbert space@cf. Eq. ~7!# is the only Riemannian
metric (dSW

2 ) on the set of rays, up to a constant facto
which is invariant under all possible time evolutions~more
generally, under all unitary transformations!, being thus, in a
sense, the ‘‘natural’’ metric on the set of quantum states@1#.

Wootters has shown@1# that the same metric arises from
quite different starting point: the analysis of statistical flu
tuations in a finite sequence of measurements, with the re
that distance between two states becomes tantamoun

n

the
d

FIG. 3. Relative ground state energy errore r vs the symmetrized
Kullback distance~dashed! and Euclidian one~solid!. The error is
that associated to the approximate MEP wave function referred t
Fig. 1.
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counting the number of distinguishable intermediate o
@1#. A connection between statistics and geometry is t
established@1# that has been considerably strengthened
the study of Ref.@4#. Although the intricacies of this connec
tion are not at this pointtotally understood, the present wor
allows one to obtain some additional insights into the ma
that, in a sense, allow one to advance a few steps into
road inaugurated by Wootters and considerably widened
Braunstein and Caves.

Thus, with reference to neighboring states, we have es
lished that, up to second order in a suitable parametera,1 the
following identities obtain:

dSW
2 5dSE

2 ~Euclidean metric!,

dSW
2 5dSF

2 ~Fubini -Study metric!,

dSW
2 5dSKL

2 /2 ~Kullback -Leibler metric!. ~64!

The five metrics here discussed2 become essentially iden
tical up to second order inDa. Two of them were already
analyzed in the pioneer work of Wootters@1# and carefully
discussed in Ref.@4#. The three ones on the right-hand sid
of ~64! are of two types: the first two have a geometric
origin, while the last one is of an statistical one.The connec-
tion between geometry and statistics referred to above
come now entrenched in a firmer manner.

Wootters has suggested@1# that statistical fluctuations in
the outcomes of measurements might be partly respons
for the Hilbert-space structure of quantum mechanics. Th
statistical fluctuations are intertwined withthe uncertainties

1This parameter allows one to distinguish a given state from
neighboring one~from a to a1Da).
2That is, Euclidean, Fubini-Study, Wootters, Kullback-Leible

and symmetrized KL.

FIG. 4. Euclidean~solid! and symmetrized Kullback~dotted-
dashed! distances between two ground state wave functio
namely,~i! that obtained with the approximate MEP technique a
~ii ! the exact one, vsa4, for a quartic anharmonic oscillator.a4 is
the coefficient of thex4 term in the associated potentialV(x)5
1
2x

21a4x
4. The a4 parameter varies between 0 and 1. Due to

very small figures one finds near the origin that some ‘‘imperf
tions’’ in the drawings are unavoidable.
s
s
y

r
he
y

b-

l

e-

ly
se

and correlationsof the operators associated to the measu
ments,whose essentials are neatly captured by the Fub
Study metric@2,4#. Thus, our second equality above rei
forces the plausibility of Wootters’ suggestion.

The KL metric is associated to an optimization princip
Shannon’s maximum entropy one. In a sense, it reflects
cient management of the available information~always re-
lated to the expectation values at our disposal in building
the concomitant wave function@25#!. The last equality above
connects this management to the number of intermediate
tinguishable states betweenc(a) andc(a1Da).

The application of our results to NS states in some o
dimensional soluble problems numerically illustrates the f
that the Euclidean, the Wootters, and the Fubini distances
equivalent. The Kullback’s distance is, as explained, prop
tional to the Euclidean one@Eq. ~6!#. The different relations
provide one with a quantitative measure of the quality
different approximate treatments of Schro¨dinger’s equation.
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APPENDIX: POSITIVITY OF THE KULLBACK-LEIBLER
MEASURE

Within the present context the KL measure is given by

DKL~p:q!5E dxp~x,m!ln
p~x,m!

q~x,m!
, ~A1!

with

q~x,m!5ucm~x!u2 ~A2!

and

a

FIG. 5. Same as Fig. 4, but here the approximate wave func
obtained by recourse to second order perturbation theory is c
pared to the exact one. Notice the difference in the vertical scale
Fig. 4 and this figure.
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p~x,m!5ucm1Dm~x!u2, ~A3!

m being, of course, a real quantity that parametrizes the w
functionc. Now, we deal with situations such that

p~x,m!5q~x,m1Dm!

5q~x,m!S 11Dm
] lnq~x,m!

]m
1••• D , ~A4!

with

S 11Dm
] lnq~x,m!

]m D> 0. ~A5!

On account of normalization we have

E dxp~x,m!5E dxq~x,m!5 1, ~A6!

which implies

E dxq~x,m!Dm
] lnq~x,m!

]m
5 0, ~A7!

so that we can recast Eq.~A1! in the fashion
ve

DKL~q:p!5E dxq~x,m!ln
q~x,m!

p~x,m!

52E dxqS lnF11Dm
] lnq

]m G D
5E dxqDm

] lnq

]m
2E dxqS lnF11Dm

] lnq

]m G D
5E dxqH Dm

] lnq

]m
2S lnF11Dm

] lnq

]m G D J >0.

~A8!

The last inequality is a result of the fact that

f ~y!5y2 ln~11y!, ~A9!

for 11y.0, is of a non-negative character. Indeed, one

f ~0!5 0,

f 8~y![
d f

dy
5

y

11y
,

f 8~0!5 0,

f 9~y!5~11y!22. ~A10!

Thus, the KL measure is positive@ f 8(y),0, y,0, and
f 8(y).0, y.0#, as it should be.
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