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Transition form factor of the hydrogen Rydberg atom

I. Bersons* and A. Kulsh
Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina boul. 19, Riga, LV-1586, Latvia

~Received 24 May 1996; revised manuscript received 7 October 1996!

The form factor for the transition between the hydrogenic states with parabolic quantum numbersn1n2m and
n18n28m8 is obtained in a closed analytic form. The asymptotic limit of the transition form factor at large
parabolic quantum numbers is derived, and a comparison with exact quantum calculations shows that the
asymptotic limit is accurate in a wide region of parabolic quantum numbers and the momentump transferred
to electrons. A simple quasiclassical formula for the transition probability is given, and the range of quantum
numbers corresponding to quasiclassically forbidden transitions are defined.@S1050-2947~97!02803-5#
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I. INTRODUCTION

The form factor for thei→ f transition is defined by

Tf i5^C f ueipruC i&, ~1.1!

whereuC i& anduC f& are the electron wave functions for th
initial and final atomic states, respectively, andp is the mo-
mentum transferred to electrons~atomic units are used
throughout the paper!.

The square of Eq.~1.1!, uTf i u2, is the transition probability
from the statei to the statef , and it is the main factor in
many theoretical treatments of the inelastic scattering of p
ticles by atoms. Thus, in the Born and impulse approxim
tions, uTf i u2 determines the cross sections of inelastic@1,2#,
l mixing @3# and intercombination@4# transitions in atoms
due to collisions with electrons, atoms, and ions. Recent
was shown@5,6# that the probability of excitation and ion
ization of a Rydberg atom by a short unipolar electrom
netic field pulse can be determined, in the sudden appr
mation, by the transition form factor. The vectorp5F0t is in
this case the momentum transferred to the electron from
electric-field pulse of durationt and the peak valueF0. The
matrix element for the electromagnetic transition betwe
the atomic states can be reduced to Eq.~1.1! as well.

Direct calculation of the matrix element~1.1!, even with
hydrogenic wave functions, is laborious as the wave fu
tions of highly excited states oscillate very rapidly and ma
matrix elements~1.1! have to be calculated for compariso
with an experimentally measured cross section or a trans
probability. The analytic expressions for the matrix elem
~1.1! have been obtained for transitions between two hyd
genic continuum states@7# and for the transition between th
ground state and any parabolic discrete or continuum s
@1#. Calculation of the form factor~1.1! in the spherical basis
is more complicated than in the parabolic one. Therefore
calculate the matrix elementsTf i between the spherica
states, Omidvar@8# at first calculatedTf i between the para
bolic states and then used the connection formula betw
the parabolic and spherical wave functions. Omidvar@8# has
reduced the transition form factorTf i in parabolic coordi-
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nates to a fourfold sum. If the atom is placed in a const
electric field, the parabolic basis is preferable. Recent exp
mental studies@9,10# with unipolar half-cycle electromag
netic pulses focus on the excitation and ionization of pa
bolic atomic states. If the pulse duration is less than
Kepler period, the transition amplitude between the t
parabolic states is determined directly by the form fac
~1.1!.

In the limit of small momentump, the transition form
factor ~1.1! can be written as

Tf i5d f i1 ipTf i
D , ~1.2!

whereTf i
D is the dipole matrix element. The dipole matr

element with Coulomb wave functions is calculated analy
cally in a closed form in the spherical as well in the parabo
basis@11,12#. The approximate analytic formulas forTf i ex-
ist for close in energy states and for the case of transiti
between remote bound states. Different approximations
the dipole matrix elements are discussed in the recent rev
article @13#. The transition form factor~1.1!, as a function of
its parameters, is a more complicated mathematical quan
thanTf i

D , and the approximate analytic formulas forTf i have
been derived only in the case of small changes in princ
and angular-momentum quantum numbers@2,4,14# when the
Heisenberg correspondence principle can be used. For
ization and excitation processes involving large change
the principal quantum numbern, the methods based on th
Heisenberg correspondence principle are not satisfact
The purpose of this paper is to obtain an approximate a
lytic formula for the transition form factorTf i in the case of
remote bound states.

In the present work, an analytic expression for the ma
element~1.1! between two parabolic quantum states of t
hydrogen atom is obtained. A quantum-mechanical deri
tion of the main formula is given in Sec. II. In Sec. III we us
the method of comparison equations and derive the unifo
asymptotic limit ofTf i at large parabolic quantum number
In Sec. IV the quasiclassical wave functions and the sad
point method are used to estimate the matrix element~1.1!.
A comparison between the quantum-mechanical calculat
and the different approaches are given and discussed in
V. In conclusion we present a summary of the results.
1674 © 1997 The American Physical Society
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II. FORM FACTOR FOR n1n2m˜n18n28m8 TRANSITION

The wave function of the hydrogen atom in the parabo
coordinates is given by@1,12#

Cn1n2m
5

eimw

p1/2n2
f n1mS j

nD f n2mS h

n D , ~2.1!

f nim~x!5
1

m! S ~ni1m!!

ni !
D 1/2xm/2F~2ni ,m11,x!e2~x/2!,

~2.2!

n5n11n21m11, m>0, ~2.3!
c

where F(2ni ,m11,x) is the confluent hypergeometri
function. If we choose thez axis along thep direction, the
integration over angular variablew is trivial and yields the
conservation of the magnetic quantum numberm. The tran-
sition form factor~1.1! can be presented as

Tf i5 i FR~n1 ,n18!
]R* ~n2 ,n28!

]p
2R* ~n2 ,n28!

]R~n1 ,n18!

]p G ,
~2.4!

where
or
R~n1 ,n18!5
1

~nn8!~m/2!11m! 2 F ~n11m!! ~n181m!!

n1!n18!
G1/2E

0

`

dj jmFS 2n1 ,m11,
j

nDFS 2n18 ,m11,
j

n8D
3expF2

j

2 S 1n1
1

n8
2 ip D G , ~2.5!

andR* (n2 ,n28) is the complex conjugate ofR(n2 ,n28).
The integral~2.5! is calculated analytically in a closed form@1#, and can be written as

R~n1 ,n18!5
2m11~nn8!m/2

m! F ~n11m!! ~n181m!!

n1!n18!
G1/2~n2n82 iy !n1~n82n2 iy !n18

~n1n82 iy !n11n181m11
F~2n1 ,2n18 ,m11;z!, ~2.6!

y5pnn8, z52
4nn8

~n2n8!21y2
, ~2.7!

where the hypergeometric functionF(2n1 ,2n18 ,m11;z) is polynomial, symmetrical betweenn1 andn18 .
Differentiating ofR(n1 ,n18) andR* (n2 ,n28) with respect top according to Eq.~2.4! and using the recurrence relations f

the hypergeometric functions@15# we obtain the final expression for the transition form factor~1.1!

Tf i5
i22m11yz~nn8!m

m! 2 F ~n11m!! ~n181m!! ~n21m!! ~n281m!!

n1!n18!n2!n28!
G ~1/2!

3
~n2n82 iy !n1~n82n2 iy !n18~n2n81 iy !n2~n82n1 iy !n28

~n1n82 iy !n11n181m11~n81n1 iy !n21n281m11 H 2nn8~n12n21 iy !1~n282n18!~n21n821y2!

~n1n8!21y2

3F~2n1 ,2n18 ,m11;z!F~2n2 ,2n28 ,m11;z!1n18F~2n1 ,2n1811,m11;z!F~2n2 ,2n28 ,m11;z!

2n28F~2n1 ,2n18 ,m11;z!F~2n2 ,2n2811,m11;z!J . ~2.8!

In the limit of smallp, the matrix elementTf i is connected, according to Eq.~1.2!, with the dipole matrix element in the
parabolic basis@11,12#. Equation~2.8! is simplified, if n15n250, m5n21 ~the initial state is circular!. The transition
probability, in this case, is

uTf i u25
~n181n21!! ~n281n21!!y2z2n12@~n2n8!21y2#n1n8@y21~n182n28!2#

@~n21!! #2n18!n28! @~n1n8!21y2#n1n812
,

n85n181n281n>n. ~2.9!
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1676 55I. BERSONS AND A. KULSH
For transitions from the ground state (n51), Eq. ~2.9! is
identical with the one given by Landau and Lifshitz@1#.

The transition form factor, in the spherical basis, can
calculated from Eq.~2.8!, if the connection formula betwee
the spherical and parabolic wave functions@16,17#

Cnlm5(
k
CS n21

2
,
m1k

2
,
n21

2
,
m2k

2
,l ,mDcnkm

~2.10!

is used, whereC(•••) is the Clebsh-Gordon coefficient an
k5n12n2 is the electric quantum number.

At n85n and smallpn, the argument of the hypergeome
ric function is large and from Eq.~2.8! we can obtain that the
depletion of the initial state is equal to

uTii u2512~n22m213!
~pn!2

4
. ~2.11!

This expression is independent of the parabolic quan
numbersn1 andn2 and it is true for the spherical quantu
states too.

III. ASYMPTOTIC LIMIT

In this section we shall obtain an asymptotic limit of th
transition form factor at large quantum numbers. The pr
lem is to find the asymptotic limit of the hypergeometr
function F(2n1 ,2n18 ,m11;z). We shall further use the
method of comparison equations for this purpose. T
method @15# is successful to find the uniform asymptot
solution of a second-order differential equation presente
the form

d2u1
dz2

1@l2p~z!1q~z!#u150, ~3.1!

wherel is a large parameter. Using the substitution

F5
~12z!~n11n181m!/2

~2z!~m11!/2 u1 ~3.2!

in the hypergeometric equation@15# we obtain an equation
for the functionu1 in the form ~3.1!, where now

p~z!52
1

~12z!2
2

a

z~12z!
2

b

z2
, ~3.3!

q~z!5
1

4~12z!2
1

1

4z~12z!
1

1

4z2
, ~3.4!

l5
n11n18

2
, ~3.5!

a5
4n1n181m2

~n11n18!2
, b5

m2

~n11n18!2
, ~3.6!

n15n11
m11

2
, n185n181

m11

2
. ~3.7!
e

m

-

is

in

Thus, the method of comparison equations can be used,
vided that the combinationn11n18 of the parabolic quantum
numbers is large.

The main term of the asymptotic solution of Eq.~3.1! is
determined by the functionp(z). The zeros of the function
p(z) are called branching points. The method of the co
parison equation is based on the idea that the functionp(z)
can be replaced by a simpler function with the same bran
ing points in some domain ofz and for which the analytic
solution of the comparison equation is well known. How
ever, in our case the situation is more complicated beca
the functionp(z) and, therefore, the branching points, d
pend on two additional parametersa andb. These param-
eters vary in the intervals: 0,a,2, 0,b,1. Equation
~3.1!, for the functionu1, has two branching points~both
negative!

z1
25

24n1n181m22b1
2~n12n18!2

, z1
15

24n1n181m21b1
2~n12n18!2

,

~3.8!

with

b1
25~4n1n182m2!224m2~n12n18!2.0. ~3.9!

These branching pointsz1
2 andz1

1 depend only on parabolic
quantum numbersn1 ,n18 andm. In the case of the hypergeo
metric functionF(2n2 ,2n28 ,m11,z), there are branching
points z2

2 and z2
1 with n2 and n28 instead ofn1 and n18 ,

respectively. Ifm50, bothz1
1 andz2

1 are equal to zero. Fo
n15n18 the branching pointz1

2 tends to infinity andz1
1 is

equal to2m2/(4n1
22m2).

The asymptotic equation foru1 can be presented now a

d2u1
dz2

2p1~z!u150, ~3.10!

where

p1~z!5
~n12n18!2~z1

22z!~z1
12z!

4z2~12z!2
. ~3.11!

The argumentz is negative and according to Eq.~2.7!
changes from24nn8/(n82n)2 to zero. The functionu1(z)
oscillates in the region between the branching poin
z1

2,z,z1
1 , and exponentially decreases asz tends to zero

or to 2`.
We are using the equation for the Airy function as a co

parison equation@14# and are focusing our attention on
solution near the turning pointz1

2 . For z<z1
2 , the asymp-

totic solution of Eq.~3.10! is given by

u15CS x1p1D
1/4

Ai ~x1!, ~3.12!

where

g15
2

3
x1
3/25E

z

z1
2

dz8@p1~z8!#1/2 ~3.13!
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55 1677TRANSITION FORM FACTOR OF THE HYDROGEN RYDBERG ATOM
and Ai(x1) is the Airy function. We will find in Sec. IV, that
constantC is

C5~21!n1
m!

~n1n18!m/2
. ~3.14!

The integration in Eq.~3.13! yields

2

3
x1
3/25~n11n18! ln Ug11S 12z1

2

12z D 1/22g1
2S 12z1

1

12z D 1/2U1un1

2n18u ln~g1
11g1

2!1m lnFg11S z12z D 1/21g1
2S z11z D 1/2G ,

~3.15!

with

g1
65S z1

62z

z1
12z1

2D 1/2. ~3.16!

The argument of the Airy function is equal to zero
z5z1

2 .
Forz lying between the branching points,z1

2<z<z1
1 , the

function p1(z) is negative. The asymptotic solution of E
~3.10! is again given by Eq.~3.12! with a negative paramete
x1,

g15
2

3
~2x1!

3/25E
z1

2

z

dz8@2p1~z8!#1/2. ~3.17!

After performing the integration, we obtain

g15
2

3
~2x1!

3/25~n11n18!arctanF t1S 12z1
1

12z1
2D 1/2G

2un12n18uarctant12marctanF t1S z11z12D 1/2G ,
~3.18!

with

t15S z2z1
2

z1
12zD

1/2

. ~3.19!

As a result the asymptotic expression of the hypergeom
ric function F(2n1 ,2n18 ,m11;z) at largen11n18 and for
z<z1

2 and z>z1
2 is given by Eqs.~3.2! and ~3.12!–~3.19!.

The functionR(n1 ,n18) now becomes

R~n1 ,n18!5S 4x1d1
D 1/4Ai ~x1!eir1, ~3.20!

with

d154n2n82~12z!2p1~z!

5
n2n82~n12n18!2~z1

22z!~z1
12z!

z2
, ~3.21!
t-

r15~n11n18!arctanS y

n1n8D2~n182n1!arctanS y

n82nD .
~3.22!

The functionR* (n2 ,n28) can be easily obtained from Eq
~3.20!. Differentiation ofR(n1 ,n18) and R* (n2 ,n28) in Eq.
~2.4! gives the following asymptotic estimate for the tran
tion form factor:

Tf i5
8nn8y

Q S x1x2d1d2
D 1/4H nn8y Ai ~x1!Ai ~x2!

1 i F S d1x1D
1/2

Ai 8~x1!Ai ~x2!

2S d2x2D
1/2

Ai 8~x2!Ai ~x1!G J ei ~r12r2!, ~3.23!

where

Q5~n822n2!212y2~n21n82!1y4 ~3.24!

and Ai8(x) is the derivative of the Airy function. Here we
ignore the derivatives of (x1 /d1)

1/4 and (x2 /d2)
1/4 which are

much smaller than the derivative of the Airy function and t
exponential factor.

The asymptotic limit of the transition form factor, Eq
~3.23!, is valid for z near the pointsz1

2 and z2
2 . If z ap-

proaches one of the branching pointsz1
1 or z2

1 , Eq. ~3.23!
breaks down. However, Eq.~3.23! can also be used forz
near these points if we redefine the argument of the A
functions. Thus, forz.z1

1 the argumentx1 is defined again
by Eq. ~3.15! with

g1
65S z2z1

6

z1
12z1

2D 1/2. ~3.25!

At z,z1
1 the argumentx1 is defined by Eqs.~3.18! and

~3.19! if z1
2 andz1

1 are interchanged in both these equatio
When can we expect that the asymptotic limit of the fo

factor will not be correct? Firstly, when the parameterl, Eq.
~3.5!, of the asymptotic expansion is small, i.e.,n11n18 or
n21n28 is small. In the second place, if the magnetic qua
tum numberm is very large andn1 andn18 or n2 andn28 are
small. In this casez1

1 or z2
1 is close to2m/2, andz1

1 ap-
proachesz1

2 or z2
1 approachesz2

2 . The asymptotic expan
sion in the vicinity of the isolated point is no longer correc
In the limiting case, if the initial or final state is circular on
the hypergeometric functions are equal to unity, and the tr
sition probability is defined by Eq.~2.9! and has a bell-
shaped form as a function ofpn. At last, the asymptotic
expansion breaks down, if the final state coincides with
initial one (n185n1 ,n285n2 ,n85n), and we are looking at
the matrix elementTii at smallpn. Whenn85n, the argu-
mentz is equal to24/(pn)2 and is large at smallpn. In this
case, the dominant term in Eq.~3.1! proportional toz22 is
absent in the main functionp(z), but the functionq(z),
which we neglect to find the leading term of the asympto
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1678 55I. BERSONS AND A. KULSH
expansion, contains such term. But this is just the case
developing an alternative method based on the Heisen
correspondence principle.

Forz1
2,z,z1

1, z2
2,z,z2

1 and large and negativex1 and
x2, we can use the asymptotic expansion for the Airy fun
tion @15#. In this limit, the functionR(n1 ,n18) becomes

R~n1 ,n18!5S 2p D 1/2eir1k1
1/4sinS g11

p

4 D , ~3.26!

where

k152d1 ~3.27!

and g1 is defined by Eq.~3.18!. The transition probability
can be written as

uTf i u25
16n2n82y2

p2Q2~k1k2!
1/2@V1k11k21L#, ~3.28!

V5n2n82y2. ~3.29!

The rapidly oscillating termL is given by

L5~V2k11k2!sin2g11~V1k12k2!sin2g2

1 1
2 @V2k12k222~k1k2!

1/2#cos2~g12g2!

1 1
2 @2V1k11k222~k1k2!

1/2#cos2~g11g2!.

~3.30!

Averaging Eq.~3.28! over these fast oscillations, we obtain
very simple estimate for the transition probability

uTf i u25
16n2n82y2

p2Q2~k1k2!
1/2@V1k11k2#, ~3.31!

where two parametersk1 andk2 are defined by Eqs.~3.21!
and ~3.27!. Expression~3.28! for the transition probability
will be found by the alternative, quasiclassical, method
Sec. IV, and we will call Eq.~3.28! the quasiclassical ap
proximation and Eq.~3.31! the averaged quasiclassical a
proximation for the transition probability.

The quasiclassical formulas, Eqs.~3.28! and ~3.31!, di-
verge asz tends to one of the branching point. Thus, we c
use these formulas only in thez domain

max~z1
2 ,z2

2!,z,min~z1
1 ,z2

1!. ~3.32!

Transitions outside of this domain are quasiclassically f
bidden. It means that in the quasiclassical approximation
transition probability between two parabolic states is zero
somep values. Quantum mechanically, the transition pro
ability at every finitep differs from zero~at somep values it
can be very small!. It is interesting to note that for som
states the condition~3.32! never can be satisfied, i.e., trans
tion between these states is quasiclassically forbidden. F
it happens ifz1

1 or z2
1 is less than the minimal value ofz:

z1
1,2

4nn8

~n2n8!2
or z2

1,2
4nn8

~n2n8!2
. ~3.33!
or
rg

-

n

-
e
t
-

st,

Whenm50, the branching pointsz1
15z2

150 and the con-
dition ~3.33! cannot be realized. But form.m1 or m.m2,
where

m15
4nn8

~n2n8!2 Fn11n18111
~n1n8!

~nn8!1/2

3S n11 1

2D
1/2S n181

1

2D
1/2G ~3.34!

andm2 is defined similarly, the condition~3.33! is satisfied.
In the second place, the transition between two states is
siclassically forbidden, if the quasiclassical interva
@z1

2 ,z1
1# and @z2

2 ,z2
1# are not overlapping

z2
2.z1

1 or z1
2.z2

1 . ~3.35!

In this case, there are no suchp values for which the condi-
tion ~3.32! can be satisfied. A physical reason for these
strictions on the quasiclassical transitions probabilities w
be given in Sec. IV.

Considering the limit of smallp in Eq. ~3.23!, we can find
the asymptotic limit of the dipole matrix element in the par
bolic basis for transition involving large changes inn

^n18 ,n28 ,muzun1 ,n2 ,m&5
8n2n82

~n822n2!2

3H S x2d1x1d2
D 1/4Ai 8~x1!Ai ~x2!

2S x1d2x2d1
D 1/4Ai 8~x2!Ai ~x1!J .

~3.36!

The parametersxi anddi are defined above and

z5
24nn8

~n2n8!2
. ~3.37!

An estimate of the dipole matrix element in the parabo
basis has been obtained recently in@13#. That presented in
@13# formula contains the same combination of the Ai
functions as Eq.~3.36!, however the arguments of the Air
functions in two expressions are different. Note that
p50, whenz is given by Eq.~3.37!, at least one ofz1

2 and
z2

2 exceedsz and the condition~3.32! is not satisfied. Thus
in this limit we cannot employ the quasiclassical approxim
tion for the functionR(n1 ,n2), given by Eq.~3.26!. There-
fore, we can never employ this approximation for Eq.~3.36!.

IV. QUASICLASSICAL APPROXIMATION

In this section an alternative method is proposed for e
mating the transition form factor~1.1! at large quantum num
bers. The quasiclassical wave functions and the saddle-p
method are used. This method gives physical insight in
transition mechanism and allows us to find the constanC
undetermined in the preceding section.

The wave function~2.1! in the quasiclassical approxima
tion is given by
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Cn1n2m
5

eimwsinFSn1~j!1
p

4 GsinFSn2~h!1
p

4 G
n2p3/2@jhkn1~j!kn2~h!#1/2

, ~4.1!

where

Sn1~j!5E
jn1

2

j

dj8kn1~j8!, ~4.2!

kn1
2 ~j!52

1

4n2
1

n1
nj

2
m2

4j2
, ~4.3!

and the turning pointsjn1
6 are defined by

jn1
6 52nn1~16«n1!, ~4.4!

«n15S 12
m2

4n1
2D 1/2. ~4.5!

For the coordinateh, there are equations, analogous to E
~4.2!–~4.5!.

The transition form factor can be presented again by
~2.4!, where the functionR(n1 ,n18) is now given by the in-
tegral

R~n1 ,n18!5
1

pnn8

3E dj sinFSn1~j!1
p

4 GsinFSn
18
~j!1

p

4 Ge~ ipj!/2

j@kn1~j!kn
18
~j!#1/2

.

~4.6!

To calculate the quasiclassical integral like Eq.~4.6!, the
Heisenberg correspondence principle is usually used@2,4,6#.
This method is based on the assumption that the differe
between the actionsSn1 andSn18 is smaller than the action

themselves, but is larger thanpj/2. This condition is fulfilled
for smallp. If pj is comparable withSn1 andSn18, the saddle-

point method is more preferable@6#. The saddle-point
method for evaluation of the quasiclassical integrals l
~4.6! has been proposed in@18#. According to this method
the transitions arise only in the vicinity of stationary poin

A stationary pointj0 is defined by the equation

p

2
5ukn

18
~j0!6kn1~j0!u. ~4.7!

Equation ~4.7! presents the momentum conservation:
sum~the difference! of the initial and final electron momen
tum ~along the coordinatej) at the pointj0 is equal to half
of the momentum transferred to electron. The sign ‘‘1 ’’ in
Eq. ~4.7! means that the electron changes the direction
motion along the classical orbit by changing the momentu
At kn

18
(j)5kn1(j), when Eq.~4.7! can be satisfied only fo

the sign ‘‘1,’’ the electron does not change the absolu
.

q.

ce

e

.

e

f
.

value of its momentum, but changes the direction of moti
When m50, the electron can approach the nucleus v
closely and the momentum transferred to the electron ca
large.

In Fig. 1 we present the momentakn1(j),kn18(j), the func-

tion ukn
18
(j)6kn1(j)u, and the analogous momenta along t

h axis for the states with quantum numbersn525,
m520, n152, n252, n8526, n1853, n2852. For such
quantum numbers, the momentumkn

18
(j) exceedskn1(j),

and the transition is allowed forj lying inside the classically
allowed region, i.e., at 200,j,1000. The momentum
kn2(h) exceeds kn

28
(h) at h,633, but at h.633,

kn2(h),kn
28
(h). Along the coordinateh the transition is re-

stricted by the range 260,h,1000. We will call the right-
hand side of Eq. ~4.7!, the two-valued function
ukn

18
(j)6kn1(j)u, the ovoid. For anyp/2 inside of this ovoid,

there are two roots of Eq.~4.7!. The two roots are defined b

FIG. 1. ~a! The electron momentakn1(j) ~dotted line! and
kn

18
(j) ~dashed-dotted line!, the sumkn1(j)1kn

18
(j) ~solid line!,

and the absolute value of the differencekn
18
(j)2kn1(j) ~dashed

line! as a function ofj; ~b! the same for the coordinateh. Curves
for the quantum numbersn525, n152, n252, m520, n8526,
n1853, andn2852 are shown.
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j0
65

4nn8

Q
@~n822n2!~n1n82n18n!

1~n18n1n1n8!y262yk1
1/2#, ~4.8!

with

k15nn8~nn12n8n18!~n18n2n1n8!1n1n18nn8y
22

m2

16
Q

5
n2n82~n12n18!2~z2z1

2!~z1
12z!

z2
. ~4.9!

On the top and the bottom of the ovoid, both stationa
pointsj0

6 coincide. As one can see from Eq.~4.9!, the vari-
ablez at these points is equal toz1

1 andz1
2 respectively. The

standard saddle-point method is not correct in the vicinity
the top and the bottom of the ovoid, because the derivativ
Eq. ~4.7! at these points is equal to zero, and we should t
into account the next term in the expansion of the expon
tial factor. This leads to the Airy function representation
the functionR(n1 ,n18). The standard saddle-point metho
gives the divergent form factor at the top and the bottom
ovoids. The quasiclassical approximation evaluates the t
sition form factor only in the range ofp values which are
common for both ovoids. In Fig. 1 this range
0.0022,p,0.029. To make a transition from the initial t
the final state, the momentum transferred to the electron
not be less than 0.0022 and greater than 0.029. Outside
range the quasiclassical transition probability is equal
zero.

The transitions between some quantum states are q
classically forbidden for allp. It happens when both ovoid
do not have a common interval ofp/2. A fixed momentum
can be transferred to the electron along one of the axes
cannot be transferred along the other axis. As mentione
the preceding section, this happens whenz1

1,z2
2 or

z2
1,z1

2 . In the second place, the transition between the
states is quasiclassically forbidden, if the initial and fin
states do not have a common region in the electron clas
motion, i.e., the areas under the curveskn1(j) andkn18(j) or

kn2(h) andkn28(h) do not overlap. This occurs if the turnin

point jn1
1 ,jn

18
2
or jn

18
1

,jn1
2 and similar for the motion along

the axish. It is easy to show that in this casem.m1 or
m.m2, wherem1 is defined by Eq.~3.34!. Whenp is small,
the momentum differenceukn

18
(j0

6)2kn1(j0
6)u is also small

and using the saddle-point method is questionable.
Heisenberg correspondence method is preferable in this c

In the saddle-point method, only the regions near fo
stationary points (j0

6 for coordinatej andh0
6 for coordinate

h) are important for transitions from the initial to the fin
electronic state. These stationary points are different for
ferent final states. For the sign ‘‘2 ’’ in Eq. ~4.7!, the saddle-
point method yields

R~n1 ,n18!5
1

~2p!1/2k1
1/4H expF i SS1~j0

1!2
p

4 D G
1exp F i SS1~j0

2!1
p

4 D G J , ~4.10!
y

f
of
e
n-
f

f
n-

n-
his
o

si-

ut
in

o
l
al

e
se.
r

f-

where

S1~j0
6!5Sn1~j0

6!2Sn
18
~j0

6!, ~4.11!

Sn1~j0
6!52n1arctanF j0

62jn1
2

jn1
1 2j0

6G 1/2
2marctanF ~11«n1!~j0

62jn1
2 !

~12«n1!~jn1
1 2j0

6!G 1/2, ~4.12!

andSn
18
(j0

6) is defined for the final state in the same way

Sn1(j0
6) for the initial state. Comparing Eqs.~3.26! and

~4.10! we see that they coincide if

r11g15S1~j0
1!, r12g15S1~j0

2!. ~4.13!

These identities can be proved after some simple but leng
algebra. The constantC given by Eq.~3.14! is chosen on the
basis of comparison of Eqs.~3.26! and ~4.10!. For the sign
‘‘ 1 ’’ in Eq. ~4.7!, the quasiclassical approximation aga
gives the functionR(n,n8) identical with Eq. ~3.26!. Ac-
cording to Eq.~4.13!, the argument of sin and cos in Eq
~3.30! is the difference between two actions. The transitio
between two states take place in the vicinity of the station
points, but the phase of the wave function of the initial a
the final states is accumulating between these points.
phase is responsible for the oscillation of the transition pr
ability by a variation ofp.

V. NUMERICAL RESULTS

In this section we compare various approximations for
transition probabilities with exact quantum-mechanical c
culations. We present all results as a function ofpn. In gen-
eral, the transition probability increases withpn increasing,
has a maximum at somepn and then decreases and oscillat
with further increase ofpn. The mathematical source of th
oscillations of the transition probability is the oscillation
the hypergeometric functions in Eq.~2.8! at largen1 ,n2 ,n18
andn28 .

In Fig. 2 the transition probability between two states
the n521 manifold is presented. For the chosen quant
numbers the branching pointsz1

25235.0, z2
25263.0 and

z1
15z2

150. The parameters of the asymptotic expansion
large:l159 andl2512. The asymptotic expansion deve
oped in the vicinity of the pointsz1

2 and z2
2 and the

quantum-mechanical calculations give practically the sa
results and cannot be distinguished in Fig. 2. The quasic
sical approximation also reproduces all oscillations, but i
not correct in the vicinity ofpn50.338 and below this poin
which corresponds toz1

25235. In Fig. 3 we present the
transition probability between two states of the neighbor
n manifolds with smalln1 ,n2 ,n18 ,n28 , and largem. The cor-
responding picture of electron momenta is displayed in F
1. The branching pointsz1

252273.5, z2
252`, z1

15

21.46 andz2
1521.78. The asymptotic expansion near t

points z1
2 and z2

2reproduces the quantum calculations ve
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well but breaks down whenpn approaches value 1.47 whic
corresponds to the pointz2

1 . On the other hand, the asymp
totic expansion near the pointsz1

1 and z2
1 coincides well

with the quantum calculations at largepn but diverges when
pn tends to 0.11 which corresponds to the branching po
z1

2 . There is a wide enough range ofpn values, where the
asymptotic expansions near the pointsz1

2 ,z2
2 andz1

1 ,z2
1 , as

well as the quasiclassical approximation coincide. In Fig
we present the transition between two states of very rem
n manifolds (n515, n85180), when the branching point
z1

2520.837, z2
2520.0686 andz1

15z2
150. Again, the

asymptotic limit and quantum-mechanical results ag
within a great accuracy. The quasiclassical approxima

FIG. 2. Transition probability between the parabolic states w
quantum numbersn5n8521, n15n2510, n1857, n28513, and
m50 as a function ofpn, in a.u. The solid line is the quantum
mechanical calculation; the dotted line is the asymptotic limit, E
~3.23!; the dashed-dotted line is the quasiclassical approximat
Eq. ~3.28!; and the dash line is the averaged quasiclassical appr
mation, Eq.~3.31!.

FIG. 3. The same as in Fig. 2 but for the states withn525,
n152, n252,m520, n8526, n1853, andn2852. The asymptotic
expansion~dotted line! developed in the vicinity of the pointsz1

2

andz2
2 (z1

1 andz2
1) diverges at large~small! pn, in a.u.
t

4
te

e
n

coincides with the quantum calculations at largepn but di-
verges aspn approaches 2.0~the branching pointz2

2).
The two cases displayed in Fig. 5 and Fig. 6 are the wo

of all for using the approximations developed in this pap
In Fig. 5 the initial state is the circular one and the hyp
geometric functions in Eq.~2.8! are equal to unity. The
branching pointsz1

1526.2 andz2
15211.8 are close to the

points z1
25292.8 andz2

252`, respectively, and the as
ymptotic expansion near the isolated branching point is
justified. There is a very small range ofpn values for which
the transitions are quasiclassically allowed. In Fig. 6
depletion of the initial state~quantum numbersn521, n1
520, n25m50) as a function ofpn is presented. In this
case, the branching pointsz1

25z2
252`, z1

15z2
150 and

the parameters of the asymptotic expansionl1520.5 and
l250.5. The parameterl2 is equal to the smallest possib
value and using the method of comparison equation is

h

.
n,
i-

FIG. 4. The same as in Fig. 2 but for the states withn515,
n1513, n251, m50, n85180,n18589, andn28590.

FIG. 5. The same as in Fig. 2 but for the states withn525,
n15n250, m524, n8526, n1851, and n2850. The asymptotic
expansion~dotted line! developed in the vicinity of the pointsz1

2

andz2
2 (z1

1 andz2
1) diverges at large~small! pn, in a.u.



to
0%
s

he
d
in

e
o
tr

s-
he

of
m-
at

or-
te
e

oint
tor.
nd

on
re
ns-
we
and
ally

lts
es.
ma-
an-
b-
the

rate

cil
RB

er
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correct. Nevertheless, the difference between the asymp
limit and exact quantum calculations is only about 20–3
at largepn. As mentioned in Sec. III, the approximation
developed in this paper diverge for the transitioni→ i as
pn tends to zero.

VI. SUMMARY

The transition form factor~1.1! with parabolic Coulomb
wave functions is calculated analytically in closed form. T
final expression contains the hypergeometric functions an
similar to Gordon’s formula for the dipole matrix element
the parabolic basis@11,12#. The numerical calculations show
that the transition probability as a functions ofpn oscillates
and has a maximum at somepn value. In a general case, w
have a superposition of two oscillations. Using the method
comparison equation, we approximate the hypergeome

FIG. 6. The depletion of the initial state with quantum numb
n521,n1520,m50, as a function ofpn, in a.u. The meaning of
curves is the same as in Fig. 2.
s

.

ce

H

tic

is

f
ic

function at large parameters by the Airy function. This a
ymptotic expansion is developed in the vicinity of one of t
branching points of Eq.~3.10!, and with a simple redefinition
of the Airy function argument can be used in the vicinity
the other branching point. A comparison of the quantu
mechanical calculations with the asymptotic limit shows th
the asymptotic limit is accurate in a wide region ofpn and
parabolic quantum numbers. The asymptotic limit is not c
rect only for a description of the depletion of the initial sta
at smallpn and if the initial or the final state is close to th
circular one.

The quasiclassical approximation and the saddle-p
method are also used to estimate the transition form fac
In this approximation, the transitions between the initial a
final states are located in the vicinity of four~two for the
coordinatej and two for the coordinateh) stationary points.
These points lie in the classically allowed region of electr
motion for the initial and final states. The transitions a
quasiclassically allowed only if the momentum can be tra
ferred to an electron along both coordinates. In Sec. IV,
have defined the conditions on the quantum numbers
pn, when the transition between two states is quasiclassic
forbidden. There is a sufficiently broad region ofpn where
the quasiclassical approximation gives fairly good resu
and reproduces all the oscillations in transition probabiliti
Usually the experimentally measured value includes sum
tion over many initial and final states. Such summation c
cels out the fast oscillations in the individual transition pro
abilities and, therefore, for an evaluation of such sums,
simple averaged semiclassical approximation@Eq. ~3.28!#
should be good enough. This will be the subject of a sepa
work.
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