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Transition form factor of the hydrogen Rydberg atom
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The form factor for the transition between the hydrogenic states with parabolic quantum nagrbensand
nin,m’ is obtained in a closed analytic form. The asymptotic limit of the transition form factor at large
parabolic quantum numbers is derived, and a comparison with exact quantum calculations shows that the
asymptotic limit is accurate in a wide region of parabolic quantum numbers and the momentansferred
to electrons. A simple quasiclassical formula for the transition probability is given, and the range of quantum
numbers corresponding to quasiclassically forbidden transitions are ddf8#850-2947@7)02803-3

PACS numbd(s): 03.65.Db, 03.65.Sq, 32.80.Cy

I. INTRODUCTION nates to a fourfold sum. If the atom is placed in a constant
electric field, the parabolic basis is preferable. Recent experi-
The form factor for thé — f transition is defined by mental studied9,10] with unipolar half-cycle electromag-
netic pulses focus on the excitation and ionization of para-
Tri=(V¢eP|¥,), (1.))  bolic atomic states. If the pulse duration is less than the

Kepler period, the transition amplitude between the two
where| ;) and|W¥;) are the electron wave functions for the parabolic states is determined directly by the form factor
initial and final atomic states, respectively, gmis the mo-  (1.1).

mentum transferred to electrongtomic units are used In the limit of small momenturp, the transition form
throughout the papgr factor (1.1) can be written as

The square of Eqd.1), | T2, is the transition probability
from the state to the statef, and it is the main factor in T=08,+ipT?, 1.2

many theoretical treatments of the inelastic scattering of par-
ticles by atoms. Thus, in the Born and impulse approxima-
tions, | T¢;|2 determines the cross sections of inelafti2, ~ where TP is the dipole matrix element. The dipole matrix
| mixing [3] and intercombinatiori4] transitions in atoms element with Coulomb wave functions is calculated analyti-
due to collisions with electrons, atoms, and ions. Recently itally in a closed form in the spherical as well in the parabolic
was shown[5,6] that the probability of excitation and ion- basis[11,12. The approximate analytic formulas fo§; ex-
ization of a Rydberg atom by a short unipolar electromag-st for close in energy states and for the case of transitions
netic field pulse can be determined, in the sudden approxbetween remote bound states. Different approximations for
mation, by the transition form factor. The vecfpr Fyrisin  the dipole matrix elements are discussed in the recent review
this case the momentum transferred to the electron from therticle[13]. The transition form facto¢1.1), as a function of
electric-field pulse of duratiom and the peak valug,. The its parameters, is a more complicated mathematical quantity
matrix element for the electromagnetic transition betweerthanT} , and the approximate analytic formulas for have
the atomic states can be reduced to 8ql) as well. been derived only in the case of small changes in principal
Direct calculation of the matrix elemeft.1), even with  and angular-momentum quantum numidexg,14 when the
hydrogenic wave functions, is laborious as the wave funcHeisenberg correspondence principle can be used. For ion-
tions of highly excited states oscillate very rapidly and manyization and excitation processes involving large changes in
matrix elementg1.1) have to be calculated for comparison the principal quantum number, the methods based on the
with an experimentally measured cross section or a transitioRleisenberg correspondence principle are not satisfactory.
probability. The analytic expressions for the matrix elementThe purpose of this paper is to obtain an approximate ana-
(1.1) have been obtained for transitions between two hydroiytic formula for the transition form factofy; in the case of
genic continuum statg§] and for the transition between the remote bound states.
ground state and any parabolic discrete or continuum state In the present work, an analytic expression for the matrix
[1]. Calculation of the form factofl.1) in the spherical basis element(1.1) between two parabolic quantum states of the
is more complicated than in the parabolic one. Therefore, thydrogen atom is obtained. A quantum-mechanical deriva-
calculate the matrix element$;; between the spherical tion of the main formula is given in Sec. II. In Sec. Il we use
states, Omidvaf8] at first calculatedry; between the para- the method of comparison equations and derive the uniform
bolic states and then used the connection formula betweesisymptotic limit of T;; at large parabolic quantum numbers.
the parabolic and spherical wave functions. Omid#rthas  In Sec. IV the quasiclassical wave functions and the saddle-
reduced the transition form factdr;; in parabolic coordi- point method are used to estimate the matrix eleniir.
A comparison between the quantum-mechanical calculations
and the different approaches are given and discussed in Sec.
*Electronic address: bersons@acad.latnet.lv V. In conclusion we present a summary of the results.

1050-2947/97/563)/16749)/$10.00 55 1674 © 1997 The American Physical Society



55 TRANSITION FORM FACTOR OF THE HYDROGEN RYDBERG ATOM 1675

Il. FORM FACTOR FOR njn,m—n;in,m’ TRANSITION where F(—n;,m+1x) is the confluent hypergeometric
The wave function of the hydrogen atom in the parabolicfuncuon.' If we choose the axis al_ong_ t_hep d|rec_t|on, the
: L integration over angular variable is trivial and yields the

coordinates is given bj1,12] . .
conservation of the magnetic quantum numiverThe tran-

gime ( 5) 7 sition form factor(1.1) can be presented as
S
2

\I,nlnzm:ﬂ_TZn_zfnlm n n (2.7
aR*(”Z!”é) é’R(nl,ni)
L((nimt) Ty=i| R(ny,n)——————R*(ny,np)————|,
fom(X)=— g Xm/zF(—ni,m-i-l,X)e_(X/z), fi (ng,ny) ap (ny,n5) D
' m! n;! .
(2.2
n=n;tn+m+1, m=0, (2.3 where
|
, 1 (ng+mt(ni+mt|¥2 = £ , ¢
R(nlynl):(nn/)(m/2)+lm!2 Y jo dé &MF —nym+ 1Rl =g m+ 1
3 1+ 1 ,
“eqTzln P 25

andR* (n,,n;) is the complex conjugate d&¥(n,,n).
The integral(2.5) is calculated analytically in a closed forfti], and can be written as

21 )™2[ (ny+m)! (] +m)! ¥ (n—n’—iy)"(n’ —n—iy)"
R(ny,ny)= (ml i I(,|1 ( y). ( ; ¥) F(—ny,—n;,m+1;z), (2.9
; nping: (n+n/_|y)n1+n1+m+1
B , B ann’ )
y=pnn’, z= n=n"Z+y?’ (2.7

where the hypergeometric functiéf(—n,,—n;,m+1;z) is polynomial, symmetrical between, andn; .
Differentiating ofR(ny,n;) andR* (n,,n5) with respect tgp according to Eq(2.4) and using the recurrence relations for
the hypergeometric functiofd5] we obtain the final expression for the transition form fadtod)

122y 7(nn" )™ (ny+m)!(ng+m)! (ny+m)!(ny+m)t |42

Tii=

m!? ny'nyin,!nj!

><(n—n'—i)/)nl(n’_n—iy)”i(n—n’+iy)”2(n’—n+iy)”é 200’ (g —ny+iy) +(ny—n})(n?+n'2+y?)
(N+n’ —iy)" M mEL(ns 4 fjy)nztnptml (n+n’)%+y?

XF(=ng,—n;,m+1;2)F(—n,,—ny;,m+1;z)+n;F(—ny,—n;+1m+1;z2)F(—ny,—n;,m+1;2)

—nyF(—=ny,—n;,m+1;2)F(—ny,—ny+1m+1;z) . (2.9

In the limit of smallp, the matrix elemenTy; is connected, according to E€L.2), with the dipole matrix element in the
parabolic basi§11,12. Equation(2.8) is simplified, if n,=n,=0, m=n—1 (the initial state is circular The transition
probability, in this case, is

(nj+n—1)1(nj+n—1)1y?22"*2[(n—n")2+y?]"" " [y?+(n;—nj)?]

T.2: ’
| fl| [(n_l)l]Zn:/L'nél[(n+n/)2+y2]n+ﬂ +2

n’=n;+ny,+n=n. (2.9
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For transitions from the ground state=1), Eq. (2.9 is  Thus, the method of comparison equations can be used, pro-
identical with the one given by Landau and Lifshjtz. vided that the combinatiomn, + v; of the parabolic quantum

The transition form factor, in the spherical basis, can benumbers is large.
calculated from Eq(2.8), if the connection formula between The main term of the asymptotic solution of E§.1) is

the spherical and parabolic wave functidi$,17] determined by the functiop(z). The zeros of the function
p(z) are called branching points. The method of the com-
v, =3 n—1 m+k n—1 m-k | m|y parison equation is based on the idea that the fungiia)
nim 222 27 nkm can be replaced by a simpler function with the same branch-

(2.10  ing points in some domain af and for which the analytic
solution of the comparison equation is well known. How-
is used, wher€C(- - -) is the Clebsh-Gordon coefficient and ever, in our case the situation is more complicated because
k=n;—n, is the electric quantum number. the functionp(z) and, therefore, the branching points, de-
At n’ =n and smallpn, the argument of the hypergeomet- pend on two additional parametessand 8. These param-
ric function is large and from Eq2.8) we can obtain that the eters vary in the intervals: 9a<2, 0<B<1. Equation
depletion of the initial state is equal to (3.1), for the functionu,, has two branching pointéoth

( ) 5 negative
p

1221 (n2—m2
|T“| 1 (n +3) (21]) _ _4V1Vi+m2_b1 n _4V1V1+m2+b1

7 = N2 4= N2
. L . 2(vi—v 2(vi—v
This expression is independent of the parabolic quantum (r1=vy) (r1=vy) 3.9
numbersn, andn, and it is true for the spherical quantum
states too. with

lIl. ASYMPTOTIC LIMIT b2=(4vyv;—m?)2—4m?(v,— v})?>0. (3.9

In this section we shall obtain an asymptotic limit of the
transition form factor at large quantum numbers. The prob-
lem is to find the asymptotic limit of the hypergeometric
function F(—n,,—n,,m+1:7). We shall further use the metric functlonF( _nz, nz,m+1;) there are branching
method of comparison equations for this purpose. ThidCintsz; and z; with n, and n; instead ofn, andnj,
method [15] is successful to find the uniform asymptotic respectively. Ifim=0, bothz; andz, are equal to zero. For
solution of a second-order differential equation presented ifl1=n; the branching point; tends to infinity andz; is

These branching pomlzs_L andz; depend only on parabolic
quantum numbers;,n; andm. In the case of the hypergeo-

the form equal to—m?/(4v5—m?).
) The asymptotic equation far; can be presented now as
d<u;
42 TIVp(@)+a(2)]u=0, (3.1 d2u,
a0z —p1(2)u;=0, (3.10
where\ is a large parameter. Using the substitution
where
(1_2)(n1+ni+m)/2
P e 32 e I
pl(z)_ 422(1_2)2 . ( . 1)
in the hypergeometric equatidi5| we obtain an equation
for the functionu, in the form(3.1), where now The argumentz is negative and according to E¢2.7)
changes from-4nn’/(n’ —n)? to zero. The function,(z)
)= — L. B (3.3 oscillates in the region between the branching points,
P(2)= (1-22 z(1-z2) Z* ' z; <z<z; , and exponentially decreases atends to zero
or to — oo,
1 1 1 We are using the equation for the Airy function as a com-
q(2)= A(1=2)? + 42(1-2) a2 (3.4 parison equatiorj14] and are focusing our attention on a
solution near the turning poirtt; . For z<z; , the asymp-
/ totic solution of Eq.(3.10 is given by
_ vty
A= 5 (3.5 x| 14
u1=C(—) Ai(Xl), (312
’ 2 2 pl
4dyivi+m m
a= (3.6

(vq+ Vi)2 » B= (vt Vi)z' where

m+1 m+1 2 7, ,
vi=myt o, vi=nit o 3.7 n=3%"%= ledz[pl(z )] (3.13
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and Ai(xy) is the Airy function. We will find in Sec. IV, that

constantC is
m!
Cz(—l)nlm. (3.19
The integration in Eq(3.13 yields
2 ’ l_ZI 1/2 - l_ZI 1/2]
§X§/2:(V1+V1) In gf( 1_2) -0 1—2 +|vy

1/2

(3.15

—\ 12 +
Z; 4
gf(?) +0; (7

—vi|in(g; +97)+min

with

) zf—z 1/2
0, = : (3.16

21 -2;

The argument of the Airy function is equal to zero at

z=2; .
Forz lying between the branching points, <z<z; , the

function p1(z) is negative. The asymptotic solution of Eq.
(3.10 is again given by Eq3.12 with a negative parameter

X1,
2 3/2 z ’ 1112
=g (-x*= [Cazl-p= @
2

After performing the integration, we obtain

2 ' 1-z\ Y2
ylzg(—xl)”:(vﬁvi)arcta i p—

4

ZI— 1/2
—|v,—vi|arctanr; —m arctar{ m Z—) ,
1
(3.18
with
S\ 12
1
T1= ( E) . (319)
1
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—(vy— vl)arctar6 n’{ n) .
(3.22

=(y,+v))ar
p1=(vy V1)30t3’6n+n,

The functionR*(n,,n;) can be easily obtained from Eg.
(3.20. Differentiation of R(ny,n;) and R*(n,,n7) in Eq.
(2.4) gives the following asymptotic estimate for the transi-
tion form factor:

T _8nn'y (X%, v v AT(XOA
=T | dyd, nn'y Ai(x)Ai(Xz)

1/2

: dl) ) .
+il| =] AI'(x9)Ai(Xp)
X1

d 1/2
—(X—z) Ai’(xz)Ai(xl)]eW’l‘Pz), (3.23
2

where

Q=(n"2-n?%2+2y?(n%+n'?)+y* (3.249
and Ai'(x) is the derivative of the Airy function. Here we
ignore the derivatives ofx; /d;)¥* and (x,/d,)"* which are
much smaller than the derivative of the Airy function and the
exponential factor.

The asymptotic limit of the transition form factor, Eq.
(3.23), is valid for z near the pointz, andz, . If z ap-
proaches one of the branching poigs or z; , Eq. (3.23
breaks down. However, Eq3.23 can also be used far
near these points if we redefine the argument of the Airy
functions. Thus, foz>z; the argumenk, is defined again
by Eq. (3.195 with

+\ 12
z—-27; )

91 = (3.29

2y -2

At z<z; the argumentx, is defined by Egs(3.18 and
(3.19 if z; andz; are interchanged in both these equations.
When can we expect that the asymptotic limit of the form
factor will not be correct? Firstly, when the parameteieqg.
(3.5, of the asymptotic expansion is small, i.e;+ vy or
v,+ v is small. In the second place, if the magnetic quan-
tum numbem is very large andh; andn; or n, andn; are

As a result the asymptotic expression of the hypergeometsmall. In this case; or z; is close to—m/2, andz; ap-

ric function F(—n.,—n;,m+1;z) at largev,+v; and for
z<z; andz=z; is given by Egs(3.2) and(3.12—(3.19.
The functionR(ny,n;) now becomes

4x, |\ V4 4
R(nl,ni)=(d—) Ai(x,)e'1, (3.20
1
with
di=4n°n"3(1-2)p,(2)
n2n/2 _ /22—_2 Z+_Z
_ (V1 V1) (21 )( 1 ), (3.21)

z

proachesz; or z, approacheg, . The asymptotic expan-
sion in the vicinity of the isolated point is no longer correct.
In the limiting case, if the initial or final state is circular one,
the hypergeometric functions are equal to unity, and the tran-
sition probability is defined by Eq2.9) and has a bell-
shaped form as a function gfn. At last, the asymptotic
expansion breaks down, if the final state coincides with the
initial one (n;=n;,n;=n,,n’=n), and we are looking at
the matrix element;; at smallpn. Whenn’=n, the argu-
mentz is equal to—4/(pn)? and is large at smafin. In this
case, the dominant term in E¢B.1) proportional toz 2 is
absent in the main functiop(z), but the functionq(z),
which we neglect to find the leading term of the asymptotic
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expansion, contains such term. But this is just the case fowhenm=0, the branching pointg; =z, =0 and the con-
developing an alternative method based on the Heisenbefgtion (3.33 cannot be realized. But fan>m; or m>m,,

correspondence principle. where
Forz; <z<z;,z, <z<z; and large and negativg and
X,, We can use the asymptotic expansion for the Airy func- . 4nn’ nn 414 (n+n’)
tion [15]. In this limit, the functionR(n,,n;) becomes Y (n—nnH2 "t (nn")1?2
2 1/2eip1 o 1 1/2 , 1 1/2
R(nl,ni):(;> K—%,Zsin 'yl+Z , (326) X n1+§ n;+ E (334)
where andm, is defined similarly, the conditiofB8.33 is satisfied.
In the second place, the transition between two states is qua-
k1= —d; (3.27  siclassically forbidden, if the quasiclassical intervals
[z; ,z{] and[z, ,z, ] are not overlapping
and vy, is defined by Eq(3.18. The transition probability L -
can be written as Z,>z; OF Z;>7;. (3.39
) 6n°n’?y? In this case, there are no suphvalues for which the condi-
| Tl :W[WL kit rotL], (328  tion (3.32 can be satisfied. A physical reason for these re-
1me strictions on the quasiclassical transitions probabilities will
V=n2n'2y? (3.29 be given in Sec. IV.

Considering the limit of smalb in Eq. (3.23, we can find
the asymptotic limit of the dipole matrix element in the para-

The rapidly oscillating ternt. is given b : ! o . .
picly Hiating 'S gV y bolic basis for transition involving large changesnin

L=(V— K1+ ky)Sin2y;+(V+ k1— Kk5)SiN27y,

8n2n/2
+3[V— k1= k3= 2( k1K) Y?]COSA v, — ¥,) (n1.nz,mizjny,nz,m)= (n'?—n?)?
+3[ =V K+ ko= 2( k1K) Y2]cosA y1 + ,). X0 1/4A" A
(3.30 N, A (X1)Ai(X2)
Averaging Eq(3.28 over these fast oscillations, we obtain a _ x,d; MAi’(x )AI(Xy)
very simple estimate for the transition probability X»d 2 v
16n%n’2y? (3.36
Tii|?= ——=——1[V+ k1t k5], 3.3 i
T 7'fZQZ(Kle)lZ[ kit (339 The parameters; andd; are defined above and
where two parameters, and «, are defined by Eqg3.21) —4nn’
and (3.27). Expression(3.28 for the transition probability 2= = (3.37)

will be found by the alternative, quasiclassical, method in

Sec. IV, and we will call Eq(3.28 the quasiclassical ap- An estimate of the dipole matrix element in the parabolic

proximation and Eq(3.31) the averaged quasiclassical ap- pasis has been obtained recently[18]. That presented in

proximation for the transition probability. [13] formula contains the same combination of the Airy
The quasiclassical formulas, Eq8.28 and (3.3D), di-  functions as Eq(3.36), however the arguments of the Airy

verge ag tends to one of the branching point. Thus, we canfunctions in two expressions are different. Note that at

use these formulas only in ttredomain p=0, whenz is given by Eq.(3.3, at least one of; and

z, exceedg and the condition(3.32 is not satisfied. Thus,

in this limit we cannot employ the quasiclassical approxima-

. . . . . . tion for the functionR(n4,n,), given by Eq.(3.26). There-

Transitions outside of this domain are quasiclassically for- ; L L

bidden. It means that in the quasiclassical approximation thraore’ we can never employ this approximation for E2i36.

transition probability between two parabolic states is zero at

somep values. Quantum mechanically, the transition prob- IV. QUASICLASSICAL APPROXIMATION

ability at every finitep differs from zero(at somep values it In this section an alternative method is proposed for esti-
can be very small It is interesting to note that for some mating the transition form factdt..1) at large quantum num-
states the conditiof8.32 never can be satisfied, i.e., transi- pers. The quasiclassical wave functions and the saddle-point
tion between these states is quasiclassically forbidden. Firstaethod are used. This method gives physical insight in the
it happens ifz; or z, is less than the minimal value @ transition mechanism and allows us to find the conse@nt
undetermined in the preceding section.

The wave function(2.1) in the quasiclassical approxima-
tion is given by

maxz; ,z, )<z<min(z; ,z,). (3.32

4nn’ 4ann’

ZI—<—(n_—n,)2' or Z;<—m. (333)
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where
é
s,0- [ aek e, (4.2
én,
k2 . V1 m2
(&)=~ a2 T g 28 (4.3
and the turning pointgﬁl are defined by
& =2nvy(1=en), (4.4)
m2 1/2
8n1:(1_4_1/§) . (45)

For the coordinatey, there are equations, analogous to Egs.

(4.2-(4.5.

The transition form factor can be presented again by Eq.

(2.4), where the functiorR(ny,n;) is now given by the in-
tegral

1
R(”l:”i)ZW

|

désin eliPo)f2

| T
Sn,(O)+7 SIF{Sni(f) 7
&[kn,(E)knr (6)]Y?

(4.9

To calculate the quasiclassical integral like E4.6), the
Heisenberg correspondence principle is usually 2etl6|.
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FIG. 1. () The electron momenteknl(g) (dotted ling and
kni(g) (dashed-dotted line the sumkn1(§)+kni(§) (solid line),
and the absolute value of the differenk:@i(g)—knl(g) (dashed
line) as a function of; (b) the same for the coordinate. Curves

This method is based on the assumption that the differencr the quantum numbens=25, n,=2, n,=2, m=20, n' =26,

between the actionSf;nl and S“i is smaller than the actions

themselves, but is larger thag/2. This condition is fulfilled
for smallp. If p& is comparable witra11 andSni, the saddle-

point method is more preferablg6]. The saddle-point

n;=3, andn,=2 are shown.

value of its momentum, but changes the direction of motion.
When m=0, the electron can approach the nucleus very

method for evaluation of the quasiclassical integrals likeclosely and the momentum transferred to the electron can be

(4.6) has been proposed [18]. According to this method,
the transitions arise only in the vicinity of stationary points.
A stationary point, is defined by the equation

2 = Ik (£0) =k (o). @7

large.

In Fig. 1 we present the momerkgll(g),kni(g), the func-
tion |kni(§) * knl(g)
n axis for the states with quantum numbers=25,
m=20, n;=2, n,=2, n'=26, n;=3, n,=2. For such
quantum numbers, the momentdmi(g) exceedsknl(g),

and the transition is allowed fdf lying inside the classically

, and the analogous momenta along the

Equation (4.7) presents the momentum conservation: thegowed region, i.e., at 200£<1000. The momentum

sum (the differencg of the initial and final electron momen-
tum (along the coordinat€) at the point¢, is equal to half
of the momentum transferred to electron. The sigh’™in

knz(ﬂ) exceeds kné( ) at 7<<633, but at »>633,
Kn,( 7/)<kné(77)- Along the coordinatey the transition is re-

Eqg. (4.7) means that the electron changes the direction ostricted by the range 2607<1000. We will call the right-
motion along the classical orbit by changing the momentumhand side of Eqg. (4.7, the two-valued function
At kni(g)zknl(g), when Eq.(4.7) can be satisfied only for |kn1(§)ikn1(§)|, the ovoid. For any/2 inside of this ovoid,

the sign “+,” the electron does not change the absolutethere are two roots of E@4.7). The two roots are defined by
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. 4Ann’ , where
56:T[(n' —n%)(vn' —win)
12 51(§§)=5n1(§§)—5ni(§§), (4.1)
+(vin+ vin')y2= 2yk71“], (4.8
with ) gg_gr:l 1/2
m2 Snl(ga)zzvlarcta W
ky=nn"(nv;—n’v))(vin—vn')+ vlvinn’yz—E ng S0
. (L+en)(& &) |72
n?n’'?(vy—v;)%(z—2; )(z{ —2) —marcta - : (4.12
_ ~ . (4.9 (1=en)(én &)

On the top and the bottom of the ovoid, both statiqnaryandsni(gg) is defined for the final state in the same way as
points &, commde_. As_ one can see fro_m E(q..9),_the vari- S,.(£2) for the initial state. Comparing Eq€3.26 and
ablez at these points is equal & andz; respectively. The 1 .
standard saddle-point method is not correct in the vicinity of 4-10 We see that they coincide if
the top and the bottom of the ovoid, because the derivative of
Eq. (4.7) at these points is equal to zero, and we should take
into account the next term in the expansion of the exponen-
tial factor. This leads to the Airy function representation of These identities can be proved after some simple but lengthy
the functionR(ny,n;). The standard saddle-point method algebra. The constaft given by Eq.(3.14) is chosen on the
gives the divergent form factor at the top and the bottom obasis of comparison of Eq$3.26) and (4.10. For the sign
ovoids. The quasiclassical approximation evaluates the tran-+" in Eq. (4.7), the quasiclassical approximation again
sition form factor only in the range gf values which are gives the functionR(n,n’) identical with Eq.(3.26. Ac-
common for both ovoids. In Fig. 1 this range is cording to Eq.(4.13, the argument of sin and cos in Eq.
0.002% p<<0.029. To make a transition from the initial to (3.30 is the difference between two actions. The transitions
the final state, the momentum transferred to the electron carpetween two states take place in the vicinity of the stationary
not be less than 0.0022 and greater than 0.029. Outside thiwints, but the phase of the wave function of the initial and
range the quasiclassical transition probability is equal tghe final states is accumulating between these points. The
zero. phase is responsible for the oscillation of the transition prob-
The transitions between some quantum states are quasibility by a variation ofp.
classically forbidden for alp. It happens when both ovoids
do not have a common interval pf2. A fixed momentum
can be transferred to the electron along one of the axes, but
cannot be transferred along the other axis. As mentioned in In this section we compare various approximations for the
the preceding section, this happens whefi<z, or transition probabilities with exact quantum-mechanical cal-
z; <z; . In the second place, the transition between the tweeulations. We present all results as a functiorpaf In gen-
states is quasiclassically forbidden, if the initial and finaleral, the transition probability increases witn increasing,
states do not have a common region in the electron classicRs a maximum at sonpen and then decreases and oscillates
motion, i.e., the areas under the curkag(£) andky, (¢) or with further increase opn. The mathematical source of the

p1+y1=S1(&), p1—v1=Si(&). (4.13

V. NUMERICAL RESULTS

K andk... do not overlap. This occurs if the turnin oscillations of the_transiti_on pr_obability is the oscillation of
”2(77) ”2( ) P ¢ the hypergeometric functions in E(2.8) at largen,n,,n;

andn,.

In Fig. 2 the transition probability between two states of
the n=21 manifold is presented. For the chosen quantum
numbers the branching poingg = —35.0,z, = —-63.0 and
=z, =0. The parameters of the asymptotic expansion are

point §§1<§g, or grf,<g;1 and similar for the motion along
1 1

the axis#. It is easy to show that in this cage>m; or
m>m,, wherem, is defined by Eq(3.34). Whenp is small,
the momentum differenckkni(gg)—knl(ggﬂ is also small

"
and using the saddle-point method is questionable. Thé1

Heisenberg correspondence method is preferable in this cad@9€: A1 =9 and\,;=12. The asymptotic expansion devel-
In the saddle-point method, only the regions near fouoPed in the vicinity of the pointsz; and z, and the

stationary points £, for coordinatet and », for coordinate

guantum-mechanical calculations give practically the same

7) are important for transitions from the initial to the final "€Sults and cannot be distinguished in Fig. 2. The quasiclas-
electronic state. These stationary points are different for difSical approximation also reproduces all oscillations, but it is

ferent final states. For the sign—="" in Eq. (4.7), the saddle-
point method yields

’ 1 H + ™
R(”L”lFW expi 51(50)—Z

|

+exp

i(sl<§o>+§

not correct in the vicinity opn=0.338 and below this point
which corresponds ta; =—35. In Fig. 3 we present the
transition probability between two states of the neighboring
n manifolds with smalh,,n,,n;,n;, and largem. The cor-
responding picture of electron momenta is displayed in Fig.
1. The branching pointg; =—273.5, z, =—o, z/ =
—1.46 andz; = —1.78. The asymptotic expansion near the
pointsz; and z, reproduces the quantum calculations very
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Transition probability

10710 4

Transition probability
=
<o}

L 10"

FIG. 2. Transition probability between the parabolic states with  FIG. 4. The same as in Fig. 2 but for the states with15,
quantum number®=n’'=21, n,=n,=10, n;=7, n;=13, and n;=13,n,=1, m=0,n'=180,n;=89, andn,=90.
m=0 as a function ofon, in a.u. The solid line is the quantum-
mechanical calculation; the dotted line is the asymptotic limit, Eq. . . . . .
(3.23; the dashed-dotted line is the quasiclassical approximatio (,:O'nc'des with the quantum calculatlons at Iq;gga but di-
Eq. (3.29; and the dash line is the averaged quasiclassical approx€rges apn approaches 2.¢the branching poing, ).
mation, Eq.(3.31). The two cases displayed in Fig. 5 and Fig. 6 are the worst

of all for using the approximations developed in this paper.

well but breaks down whepn approaches value 1.47 which N Fig. 5 the initial state is the circular one and the hyper-
corresponds to the poit . On the other hand, the asymp- geometric functions in Eq(2.8) are equal to unity. The

- - - o branching pointg; = —6.2 andz, = —11.8 are close to the
totic expansion near the pointg and z, coincides well 9p 1 ' 2 '

with the quantum calculations at large but diverges when POINtS z; =—92.8 andz, = —, respectively, and the as-
pn tends to 0.11 which corresponds to the branching poin_YmPt.Ot'C expansion near the isolated branching pom§ is not
z; . There is a wide enough range ph values, where the justified. There is a very small range ph values for which

ssympotc expansons near th porjsz; andz; 77, as S LTSI s asegseoaly alower. n F. 0 e
well as the quasiclassical approximation coincide. In Fig. 4~ 2pO n,=m=0) as a functi?)n ofon is resente_d Ir’1 trl1is
we present the transition between two states of very remote ~ ' 2 P ’

; e — T — +_
n manifolds =15, n’ =180), when the branching points S the branching pointg =2, =, z; =2, =0 and
2;=-0.837,2, =—0.0686 andz; =z; =0. Again, the the parameters of the asymptotic expansign=20.5 an_d
asymptotic limit and quantum-mechanical results agre@‘zlzo's‘ ;he .par?rr]netarztr:sdeql#al to the_ smallest {).oss.lble ¢
within a great accuracy. The quasiclassical approximatiorf® € @nd using the method of comparison equation 1S no

1 i
E l
A |
> ] 2 [ ’
= 107 4 = ;
a ] < |
o a
° 2
a 102 3 a
c b c
° °
= 2
g 10° - s
= -
107
2 0.8
FIG. 3. The same as in Fig. 2 but for the states with25, FIG. 5. The same as in Fig. 2 but for the states with25,

n;=2,n,=2,m=20,n"=26,n;=3, andn,=2. The asymptotic n,;=n,=0, m=24, n’=26, n;=1, andn,=0. The asymptotic
expansion(dotted ling developed in the vicinity of the points; expansion(dotted ling developed in the vicinity of the points;
andz, (z; andz;) diverges at largésmal) pn, in a.u. andz, (z; andzj) diverges at largésmal) pn, in a.u.
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1 ‘ function at large parameters by the Airy function. This as-

1\ ymptotic expansion is developed in the vicinity of one of the
branching points of Eq3.10, and with a simple redefinition
of the Airy function argument can be used in the vicinity of
the other branching point. A comparison of the quantum-
mechanical calculations with the asymptotic limit shows that
the asymptotic limit is accurate in a wide region mf and
parabolic quantum numbers. The asymptotic limit is not cor-
rect only for a description of the depletion of the initial state
at smallpn and if the initial or the final state is close to the
circular one.

The quasiclassical approximation and the saddle-point
N, method are also used to estimate the transition form factor.

S In this approximation, the transitions between the initial and
108 , . = final states are located in the vicinity of folwo for the
0 1 2 coordinate¢ and two for the coordinat®) stationary points.

These points lie in the classically allowed region of electron
motion for the initial and final states. The transitions are
quasiclassically allowed only if the momentum can be trans-
ferred to an electron along both coordinates. In Sec. IV, we
have defined the conditions on the quantum numbers and

correct. Nevertheless, the difference between the asymptot n yvhen the trangition befcvyeen two states i's quasiclassically
limit and exact quantum calculations is only about 20_30%0rb|dden'. Thefe IS a sufﬂqent'ly brqad reg]onmﬁ where
at largepn. As mentioned in Sec. Ill, the approximations the quasiclassical approximation gives fairly good results

developed in this paper diverge for the transitioni as and reproduces a_II the oscillations in transition probabilities.
pn tends to zero. Usually the experimentally measured value includes summa-

tion over many initial and final states. Such summation can-

cels out the fast oscillations in the individual transition prob-

abilities and, therefore, for an evaluation of such sums, the
The transition form factof1.1) with parabolic Coulomb Simple averaged semiclassical approximat|&y. (3.28)]

wave functions is calculated analytically in closed form. Theshould be good enough. This will be the subject of a separate

final expression contains the hypergeometric functions and i&ork.

similar to Gordon’s formula for the dipole matrix element in

the parabolic _b_asiBLl,lZ. _T_he numerica! calculations show ACKNOWLEDGMENTS

that the transition probability as a functions @i oscillates

and has a maximum at sorpe value. In a general case, we  This work was supported by Latvian Sciences Council
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FIG. 6. The depletion of the initial state with quantum numbers
n=21,n,=20,m=0, as a function opn, in a.u. The meaning of
curves is the same as in Fig. 2.

VI. SUMMARY
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