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Quantum adiabatic approximation and the geometric phase
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A precise definition of an adiabaticity parametern of a time-dependent Hamiltonian is proposed. A variation
of the time-dependent perturbation theory is presented which yields a series expansion of the evolution opera-
tor U(t)5( l U

(l )(t) with U (l )(t) being at least of the ordern l . In particular,U (0)(t) corresponds to the
adiabatic approximation and yields Berry’s adiabatic phase. It is shown that this series expansion has nothing
to do with the 1/t expansion ofU(t). It is also shown that the nonadiabatic part of the evolution operator is
generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This
suggests the introduction of an adiabatic product expansion forU(t) which turns out to yield exact expressions
for U(t) for a large number of quantum systems. In particular, a simple application of the adiabatic product
expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an
arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the
Schrödinger equation is exactly solvable. Some related issues concerning geometric phases and their physical
significance are also discussed.@S1050-2947~97!00303-X#
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I. INTRODUCTION

Since the introduction of the adiabatic geometrical ph
by Berry @1#, the study of the cyclic evolution of quantum
states of nonconservative quantum systems~explicitly, time-
dependent Hamiltonians! has attracted much attention. B
definition, a pure cyclic stateu N;t&^ N;tu is an eigenstate o
the evolution operatorU(t), i.e.,

U~t!5:(
N
eib N~t!u N;t&^ N;tu,b N~t!P@0,2p!. ~1!

Therefore, the quantity of main importance in the study
cyclic states and the accompanying phasesb N(t) is the evo-
lution operatorU(t). This operator is defined by

uc~t!&5:U~t!uc~0!&, ~2!

where uc(t)& is the solution of the Schro¨dinger equation.
Alternatively, one can defineU(t) as the solution of

d

dt
U~t!52

i

\
H~t!U~t!, U~0!51 , ~3!

whereH5H(t) stands for the Hamiltonian andtP@0,̀ )
parametrizes the time. The solution of Eq.~3! can be implic-
itly expressed in the form

U~t!:5TexpS 2
i

\E0
t

H~ t !dtD , ~4!

whereT denotes the time-ordering operator@2#.

*Electronic address: alimos@phys.ualberta.ca
551050-2947/97/55~3!/1653~12!/$10.00
e
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The purpose of this article is threefold. First, a prec
definition of anadiabaticity parametern is given. This is a
parameter that quantifies the rapidity of the time depende
of the Hamiltonian. Next, a series expansion of the evolut
operatorU(t) is proposed whosel th term is at least of the
ordern l . Finally, an adiabatic product expansion ofU(t) is
introduced. In particular, the adiabatic approximation:

U~t!'(
n

eian~t!un;t&^n;0u ~5!

is recovered as the first term in both the series and the p
uct expansions. In Eq.~5!, un;t& are the instantaneous eige
state vectors of the Hamiltonian, i.e.,

H~ t !un;t&5En~ t !un;t&, ~6!

and

an~ t !:5dn~ t !1gn~ t !,

dn~ t !:52
1

\E0
t

En~ t8!dt8,

gn~ t !:5 i E
0

t K n;t8U d

dt8
Un;t8L dt8. ~7!

If the Hamiltonian isT periodical, i.e.,H(T1t)5H(t), then
an(T),dn(T), and gn(T) are calledadiabatic total phase
angle, adiabatic dynamical phase angle, andadiabatic geo-
metrical phaseor Berry phase angle, respectively@1#.

The quantum adiabatic approximation was discovered
Born and Fock in 1928@4#. The geometric phase effect
which were later noticed by Mead and Truhlar@5# and Berry
@1#, were not included in the traditional approach of Bo
and Fock. This approach forms the basis of the discussio
the quantum adiabatic approximation in standard textbo
in quantum mechanics@6,7#. In 1950, a mathematically mor
rigorous treatment of the adiabatic approximation was giv
1653 © 1997 The American Physical Society
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1654 55ALI MOSTAFAZADEH
by Kato @8# whose results have since been used to impr
and generalize the adiabatic approximation,@9–15#.

The approach pursued in this article may be viewed a
variation of the traditional adiabatic approximation that
cludes the geometric phase effects by construction. It a
clarifies the possible misconception that the adiabatic
proximation ofU(t) is given by the zeroth order term in it
1/t expansion, i.e., it is only valid fort→`. Here I do not
mean to imply that there is a widespread misconception
the physics community about the conditions under which
adiabatic approximation is valid. However, it is necessary
emphasize the distinction between the role of the largt
limit used in the proof of the adiabatic theorem@8# and the
~sufficient and necessary! conditions under which the adia
batic approximation is valid.

Furthermore, the results presented here provide a co
nient framework for a perturbative computation of the non
diabatic corrections to Berry’s adiabatic phase. A pertur
tive scheme to improve the adiabatic geometric phase
been proposed by Berry@16#. Although the methods used b
Berry in @16# are similar to some of those employed he
Berry’s scheme does not seem to be related to the pre
analysis.

Probably the most important implication of the approa
pursued in this article is the introduction of an adiaba
product expansion for the evolution operatorU(t). This ex-
pansion provides an alternative generalization of the a
batic approximation which is nonperturbative in nature. O
of the immediate consequences of the adiabatic product
pansion is the identification of a large number of exac
solvable quantum systems.

This paper is organized as follows. Sec. II provides a b
discussion of the adiabaticity parameter. Section III includ
a thorough treatment of the evolution operator that diff
with those of the existing literature@4,8–15#. Section IV re-
veals the role of time-dependent unitary transformations
the Hilbert space in relating the generator of the nonadiab
part of the evolution operator to the Hamiltonian. Section
uses these transformations to derive the nonadiabatic
metric phase associated with periodic Hamiltonians. Here
physical significance of the dynamical, geometrical, and to
phases is also discussed. Specifically, it is shown that it is
differences of the total phases which enter into the calc
tion of the physical observables. Section VI demonstrates
application of the adiabatic series expansion for a magn
dipole in a rotating magnetic field. In particular, the firs
order nonadiabatic term in the adiabatic series expansio
explicitly calculated for a nutating magnetic field. Secti
VII introduces the adiabatic product expansion and gives
general properties. The application of this expansion fo
dipole in a changing magnetic field is also demonstrated
particular, it is shown how this expansion can be used
obtain exactly solvable models. Finally, Sec. VIII includ
the concluding remarks.

II. THE ADIABATICITY PARAMETER

Following Berry @1#, consider a parameter-depende
Hamiltonian:
e
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H@R#5(
n

En@R#un;R&^n;Ru, ~8!

whereR5(R1,•••,Rd) are real parameters viewed as t
coordinates of a parameter spaceM, En@R# are the real
eigenvalues, and$un;R&% is a complete orthonormal set o
eigenvectors ofH@R#. In this case, a time-dependent Ham
tonianH(t) corresponds to a curveC:@0,t#→M inM:

H~ t !:5H@C~ t !#5H@RC~ t !#,

with C~ t !5:„RC
1 ~ t !,•••,RC

d ~ t !…5:RC~ t !.

Furthermore, suppose that the spectrum ofH@R# for all R
PM is discrete, the energy eigenvaluesEn@R# are nonde-
generate, and there is no level crossing, i.e., for evert
P@0,t#, En@RC(t)#,En11@RC(t)#.

In order to define a dimensionless adiabaticity parame
first one defines acharacteristic frequency:

vc~t1 ,t2!:5Sup$uAmn~ t !u:nÞm50,1, . . . ,tP@t1 ,t2#%;

@t1 ,t2##@0,t#, ~9!

with Sup denoting supremum~least upper bound! and

Amn~ t !:5 Km;tU ddt Un;t L ~10!

5

Km;tUF ddt H~ t !GUn;t L
En~ t !2Em~ t !

, for mÞn. ~11!

Then the desiredadiabaticity parameteris defined according
to

n:5
\vc~0,t!

DE
, ~12!

whereDE is a convenient energy scale. For example, o
can takeDE to be the first transition energy of the initia
Hamiltonian, i.e.,DE:5E1(0)2E0(0).

The main motivation for this definition is the fact tha
according to Eqs.~9!, ~11!, and ~12!, vc(0,t) and therefore
n involve time derivatives of the HamiltonianH(t). The use
of vc(0,t) in the definition of the adiabaticity parameter w
be self-evident once one examines the evolution opera
The role of DE is to provide a convenient energ
(\3frequency! scale

It must also be emphasized that by definition,n is a ‘‘glo-
bal’’ quantity that characterizes the time-dependence of
Hamiltonian. In particular, it is neither equal nor propo
tional to 1/t. Furthermore, note that althoughun;t& are only
determined up to arbitraryRC(t)-dependent phase factor
~gauge transformations alongC @2#!, uAmn(t)u with mÞn
and thereforevc(t1 ,t2) andn are independent of the choic
of such phases~they are gauge-invariant quantities!. In other
words,n is well defined.
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III. COMPUTATION OF U„t…

Consider the definition of the time-ordered product in~4!:

U~t!:5 lim
N→`

F12
i

\
H~ tN!eG•••F12

i

\
H~ tk!eG•••F12

i

\
H~ t0!eG , ~13!

wheree:5t/N and tk :5ke, for k50,1,•••N. Using the orthonormality and completeness of the energy eigenvectorsun;t&,
one can compute

U~t!5 lim
N→`

(
n0 ,•••,nN

H unN ;tN&^nN ;tNuF12
i

\
H~ tN!e G unN21 ;tN21&^nN21 ;tN21u•••unk ;tk&

3^nk ;tkuF12
i

\
H~ tk!eG unk21 ;tk21&^nk21 ;tk21u•••un1 ;t1&^n1 ;t1uF12

i

\
H~ t0!e G un0 ;t0&^n0 ;t0uJ ,

5 lim
N→`

(
n0 ,•••,nN

H expF2 ~ i /\!(
j50

N

Enj
~ t j !eG)

k51

N

^nk ;tkunk21 ;tk21&J unN ;tN&^n0 ;t0u.

Introducing

KnNn0
~t!:5^nN ;tuU~t!un0 ;0&

5 lim
N→`

(
n1 ,•••,nN21

expF2~ i /\! (
j51

N21

Enj
~ t j !eG)

k51

N

^nk ;tkunk21 ;tk21&, ~14!

one then has

U~t!5(
mn

Kmn~t!um;t&^n;0u. ~15!

The computation of the terms in the product in Eq.~14! is straightforward:

^nk ;tkunk21 ;tk21&5dnknk21
2e K nk ;tU ddt Unk21 ;t L U

t5tk21

1O~e2!,

5e2eAnknk21
~ tk21!dnknk21

1eDnknk21
~ tk21!1O~e2!,

5e2eAnknk
~ tk!@dnknk21

1eeeAnknk
~ tk!Dnknk21

~ tk!#1O~e2!. ~16!

Here

Dmn~ t !:5~dmn21!Amn~ t !. ~17!

Substituting Eq.~16! in Eq. ~14!, one obtains 2N terms which can be arranged in the order of the appearance of diffe
powers ofe. In this way one finds onlyN terms of ordere051.1 These will be denoted byKmn

(l )(t):

Kmn~t!5 lim
N→`

(
l 50

N

Kmn
~ l !~t !. ~18!

Performing the algebra, one finds

1Note that a sum ofNl terms of ordere l is of ordere051.
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KnNn0
~ l ! ~t !:5 (

n1•••nN21
(

t i1
,•••,t i l

50

t

e l FexpS i\(
j51

N

[2Enj
~ t j !1 i\Anjnj

~ t j !] e D dn0n1•••dni122ni121
eeAni1

ni1
~ t i1

!Dni1
ni121

~ t i1!

3dni1ni111
•••dni l 22ni l 21

eeAni l
ni l

~ t i l
!Dni l

ni l 21
~ t i l !dni l nI l 11

•••dnN21nN G1O~e!, ~19!
id

a-

is
vo-
where l 50,1,•••,N and tk5ke/N50,e,•••,t. In particu-
lar,

KnNn0
~0! ~t !5GnN

~t!dnNn01O~e!, ~20!

KnNn0
~1! ~t !52

i

\
GnN

~t! (
t i5t j

tk

eHnNn0
8 ~ t i !1O~e!,

52
i

\(
m

FKnNm
~0! ~t ! (

t i50

t

eHmn0
8 ~ t i !G1O~e!,

~21!

where

Gn~ tk!:5expS i /\ (
t j50

tk

[2En~ t j !1 i\Ann~ t j !] e D , ~22!

Hmn8 ~ tk!:5 i\Gm* ~ tk!Dmn~ tk!Gn~ tk!, ~23!

andGm* (tk)51/Gm(tk) is the complex conjugate ofGm(tk).
Furthermore, for everyl .1, one can expressKmn

(l )(t) in
terms ofKmn

(0)(t) andHmn8 (t i), namely,

Kmml
~ l ! ~t !5S 2 i

\ D l (
t i1

,•••,t i l
50

t

e l (
m0•••ml 21

Kmm0
~0! ~t !

3F )
a51

l

Hma21ma
8 ~ t i a!G1O~e!,

5
1

l ! S 2 i

\ D l (
m0•••ml 21

Kmm0
~0! ~t !

3 (
t i1
•••t i l

50

t

e l T F )
a51

l

Hma21ma
8 ~ t i a!G1O~e!.

~24!

Therefore, if one defines

U ~ l !~t !:5 lim
N→`

(
mn

Kmn
~ l !~t !um;t&^n;0u, ~25!
H8~ t !:5 lim
N→`

(
mn

Hmn8 ~ t !um;0&^n;0u,

5 i\(
mn

e2 i [am~ t !2an~ t !]Dmn~ t !um;0&^n;0u,

52 i\ (
mÞn

e2 i [am~ t !2an~ t !]Amn~ t !um;0&^n;0u,

~26!

then

U~t!5 (
l 50

`

U ~ l !~t !5U ~0!~t !@Te2 ~ i /\! *0
tdtH8~ t !#, ~27!

where by takingN→` the sums of the form( t i5t
t8e f (t i)

have been promoted to the integrals* t
t8dt f(t). In particular,

one has

U ~0!~t !5(
n

eian~t!un;t&^n;0u, ~28!

U ~1!~t !5U ~0!~t !F2 i

\ E
0

t

dtH8~ t !G . ~29!

By construction,U (0)(t) yieldsU(t) in the adiabatic ap-
proximation ~5!.Therefore, adiabatic approximation is val
only if one can neglect*o

tdtH8(t) in Eq. ~27!. It is not dif-
ficult to observe that this condition is fulfilled if the adiab
ticity parametern as defined by Eq.~12! is negligible. In
fact, for everyt1 and t2 satisfying 0<t1<t2<t, one has

U^m;0u E
t1

t2
dtH8~ t !un;0&U<E

t1

t2
dtz^m;0uH8~ t !un;0& z

<\E
t1

t2
dtuAmn~ t !u<DtDEn,

~30!

whereDt:5t22t1 with @t1 ,t2##@0,t# is the time interval
over whichvc is nonvanishing, i.e.,t1 andt2 and therefore
Dt are defined by the condition

vc~t18 ,t28!50 if and only if t28,t1 or t18.t2 .
~31!

Note that usuallyDt is a finite time interval whereast may
be infinite ~arbitrarily large!. A case for whichDt5t is
when the Hamiltonian depends periodically on time. In th
case, however, the physically interesting features of the e
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lution is given byDt5t<T, whereT is the period of the
Hamiltonian. Particularly interesting is the caset5T.

In general,Dt may become arbitrarily large, in whic
case Eq.~30! is a trivial statement. However, even in th
casen plays a most important role. In fact, one can arg
that in general the following relation holds:

U~t!5 (
l 50

N21

U ~ l !~t !1O~nN!. ~32!

In particular, the adiabatic approximation is valid if and on
if n!1. In order to establish Eq.~32!, it is sufficient2 to
show thatU (1)(t) and therefore*dtH8(t) are at least of
ordern. This is, however, self-evident, since one knows t
if n50, thenU(t)5U (0)(t). Consequently, in an expan-
sion ofU(t), U (1)(t) is necessarily of ordern or higher.

An alternative way of expressing Eq.~32! is to define
Ũ (l )(t):5U (l )(t)/n l and H̃8(t):5H8(t)/n and write
U(t) in the form

U~t!5 (
l 50

`

Ũ ~ l !~t !n l 5U ~0!~t !@Te2~ in/\!*0
tdtH̃8~ t !#.

~33!

This equation must not, however, be viewed as a true po
series expansion ofU(t) in n, for Ũ (l )(t) may in general
depend onn.
e

t

er

A simple consequence of Eq.~33! is the fact that the
essential ingredient that determinesU(t) beyond the adia-
batic approximation is nott, but (t1 ,t2) of Eq. ~31! and
n. For physically realistic nonperiodic Hamiltonians, the la
ter quantities take finite values, whereas the durationt of the
evolution of the system may be arbitrarily large. For a qua
tum system with a periodic HamiltonianH(t)5H(t1T), the
physically interesting case is whent25t<T. In this case,
n may or may not be determined byT. This is because, in
general, the parametersRC

m(t) of the Hamiltonian have dif-
ferent periods. These are necessarily of the fo
Tm5T/zm , respectively, wherezm is a positive integer.
Clearly,vc(0,t) and consequentlyn will depend on the larg-
est value ofzm . Therefore, in general the statement that ‘‘t
adiabatic approximation is valid if the period of the Ham
tonian is large,’’ is false. The only case wheren depends on
T and the preceding statement is valid is the case where
energy eigenstates are time dependent and either there
fectively one changing parameter orTm5T for all m. Typi-
cal examples of these two cases are a spin in a preces
magnetic field@2# and a spin in a precessing and nutati
magnetic field with equal precession and nutation perio
respectively.

Another useful observation is that in the eigenba
$un;0&% of H(0), H8(t) has no diagonal matrix element
i.e.,
^m;0uH8~ t !un;0&5H 0 for m5n

i\
^m;tu@~d/dt!H~ t !#un;t&

Em~ t !2En~ t !
e2 i [am~ t !2an~ t !] for mÞn.

~34!
ma-
ies

of
he

c
or-
Here, use is made of Eqs.~26! and ~11!. This equation also
implies that the matrix elementŝm;tuU (l )(t)un;0& are di-
rectly related toun2mu2l , i.e., the main contribution to
U (l )(t) comes from the nearest energy levels.

IV. RELATION BETWEEN H 8„t… AND H „t…

Consider Eq.~26!. Since them5n term is missing in the
sum in Eq.~26!, one can expressH8(t) in the form

H8~ t !52 i\ (
mÞn

[ ^m;tue2 iam~ t !#
d

dt
@eian~ t !un;t&]

3um;0&^n;0u. ~35!

This equation, together with the definition ofU (0)(t), leads
to

H8~ t !5U ~0!†~ t !H~ t !U ~0!~ t !2 i\U ~0!†~ t !
d

dt
U ~0!~ t !. ~36!

2This is becauseU (l )(t) involves l copies ofH8(t) in its inte-
grand.
The resemblance of this equation to the gauge transfor
tions of the gauge potential in non-Abelian gauge theor
~connections on principal fiber bundles! is remarkable@17#.
Moreover, a simple calculation shows that

U ~0!†~ t !H~ t !U ~0!~ t !5(
n

En~ t !un;0&^n;0u, ~37!

H8~ t !52 i\ (
nÞm

^m;0uU ~0!†~ t !
d

dt
U ~0!

3~ t !un;0&um;0&^n;0u. ~38!

Therefore, the role of the first term on the right-hand side
Eq. ~36! is to cancel the diagonal matrix elements of t
second term.

Eqs.~36! and~38! signify the importance of the adiabati
approximation in the determination of the nonadiabatic c
rectionsU (l )(t) (l .0) to U (0)(t) and consequently the
exact evolution operatorU(t).
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In order to fully appreciate the meaning of Eq.~36!, one
should recall the effect of a general time-dependent uni
transformation of the Hilbert spaceH. Let U(t):H→H be
such a transformation and suppose that the transformed
vectors

uč~ t !&:5U~ t !uc~ t !& ~39!

satisfy the following Schro¨dinger equation:

i\
d

dt
uč~ t !&5Ȟ~ t !uč~ t !&. ~40!

Then, requiringuc(t)& to satisfy the Schro¨dinger equation
defined by the original HamiltonianH(t), one finds

Ȟ~ t !5U~ t !H~ t !U†~ t !2 i\U~ t !
d

dt
U†~ t !. ~41!

Therefore, Eq.~36! is a particular example of Eq.~41! with
U(t)5U (0)†(t) and Ȟ(t)5H8(t). In other words, the nona
diabatic effects are given by a transformed Hamilton
H8(t) where the transformation is performed by the inve
of the adiabatically approximate evolution operator, i.
U (0)†(t).

Transformation~39! may be used to yield an exact sol
tion of the Schro¨dinger equation, if one can find aU(t) that
makes the transformed Schro¨dinger equation~40! easily
solvable. The Rabi-Ramsey-Schwinger method@18# is a spe-
cial case of this approach, where one uses the symmetr
the problem to find a unitary transformationU(t) which ren-
ders Ȟ time independent.3 This is, in general, possible fo
cranked Hamiltonians with a fixed cranking directio
@19,20#.

V. TIME-DEPENDENT UNITARY TRANSFORMATIONS
AND THE GEOMETRIC PHASE

There is another significant application of time-depend
unitary transformations of the Hilbert space when the Ham
tonian isT periodic. In this case, one knows from the Floqu
theory @21# that the evolution operator is given b
U(t)5Z(t)exp@2itH̃/\#, whereZ(t) is a T-periodic uni-
tary operator with Z(T)5Z(0)51 and H̃ is a time-
independent Hermitian operator. Then by definition the
clic statesu N;T&^ N;Tu at t5T are given by the eigenstate
of H̃ and the associated total phase angles
b N(T)52T^ N;TuH̃u N;T&/\. Next, consider choosing
U(t) of Eq. ~39! to beZ†(t) and uc(0)&5uč(0)&5u N;T&.
Then by virtue of Eq.~41!, one has

3For a recent review of the application of this method to a s
system in a precessing magnetic field, see Ref.@2#.
ry

ate

n
e
,

of

t
l-
t

-

re

b N~T!52
T

\
^c~0!uH̃uc~0!&5TF2

1

\
^c~ t !uH~ t !uc~ t !&

1 i K c~0!UZ†~ t ! ddt Z~ t !Uc~0!L G ,
5D N~T!1G N~T!, ~42!

D N~t!:52
1

\E0
t

dt^c~ t !uH~ t !uc~ t !&, ~43!

G N~t!:5 i E
0

t

dtK f N~ t !U ddtUf N~ t !L , ~44!

where uf(t)&:5Z(t)uc(0)&.4 The phase anglesD N(t) and
G N(t) were first introduced by Aharonov and Anandan@22#
and called thedynamical and geometricalphase angles.5

They generalize their adiabatic counterparts, which were p
viously discovered by Berry@1#. Clearly, forn!1, one has
u N;T&'un;0&, D N(T)'dn(T), andG N(T)'gn(T).

Next, consider the general case. IfU(t) is also assumed to
leave the original energy eigenstates invariant, i.e., ifȞ(t)
has the same eigenstates asH(t), then one can show tha
U(t) and Ȟ(t) must be of the form

U~ t !5ei f ~ t !U0 , ~45!

H~ t !→Ȟ~ t !5H~ t !2\
d f~ t !

dt
1, ~46!

where f5 f (t) is a real-valued function,U0 is a constant
unitary transformation, and 1 is the identity operator onH.
Note that transformation~39! with U(t) given by Eq.~45!
leaves all the observables invariant. It shifts the energy
genvalues

En~ t !→En8~ t !5En~ t !2\
d f~ t !

dt
, ~47!

but does not affect the observable transition energ
En(t)2Em(t). Therefore, one can identify a physical syste
with the equivalence class of all the quantum systems wh
are related by transformations of the form~39,45!.

A simple consequence of this observation is that unl
the dynamical phase angle~43!, the geometric phase angl
~44! is a physical quantity@2#. This statement, however, re
quires a clarification. One can easily see that Eq.~46!
changes the dynamical phase angleDN(t). It does, neverthe-
less, leave the difference of two dynamical phase angles
consequently two total phase angles invariant. Therefore,
dynamical phase angle also carries physically significant
formation about the evolving system. In fact, a close look

n

4Note that the expression in the bracket in Eq.~42! is independent
of t. This is the reason why the sum of the integrals in Eqs.~43! and
~44! leads to a simple multiplicative factor ofT.
5Note that in general the Hamiltonian need not be periodic and

Floquet theory does not apply. However, even in this case one
defineuf _N(t)& and Eqs.~42!–~44! are valid. See@22,2# for more
details.
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the experimental results of the detection of the geome
phase@23# clearly shows that the measurable quantities
related to the differences of total phase angles. This is u
ally overshadowed by the fact that in the best studied syst
namely the two-level spin (j51/2) system in a precessin
magnetic field@1#, the conventional choice of the Hami
tonian ~48! leads to two cyclic states whose total pha
angles differ by a minus sign. Therefore, their difference
twice one of them and it appears that the experiments de
a total phase. In reality however, the experiments alw
detect the differences between total phase angles, a qua
which is invariant under Eq.~46!. This can be easily seen
one uses a complete orthonormal set of cyclic sta
$u N;t&% to compute the expectation values

^X~t!&:5^c~t!uX~0!uc~t!&

5^c~0!uU†~t!X~0!U~t!uc~0!&,

5 (
N,N8

^c~0!uN;t&^N;tuU†~t!X~0!U~t!uN8,t&

3^N8;tuc~0!&

5 (
N,N8

e2 i [bN~t!2bN8 ~t!]^c~0!uN;t&

3^N;tuX~0!uN8,t&^N8;tuc~0!&,

whereX(0) is an observable and in the last equality use
made of Eq.~1!.

Incidentally, it is not too difficult to see that by definition
the adiabaticity parametern ~12!, the operatorH8(t) of Eq.
~26!, and consequently all the nonadiabatic correctio
U (l )(t) ~with l >1) to U (0)(t) are invariant under the
transformation~45!. Therefore, all of these quantities signi
physically measurable effects.

VI. APPLICATION TO A MAGNETIC DIPOLE IN A
ROTATING MAGNETIC FIELD

In this section, the utility of the expansion~27! is demon-
strated for the quantum system consisting of a magnetic
pole moment subject to a magnetic field with changing
rection.

The Hamiltonian6 of this system is given by

H~u,w!5bRW ~u,w!•JW5b~sinucoswJ11sinusinwJ2

1cosuJ3!, ~48!

whereb is the Larmor frequency,u andw are the azimutha
and polar angles in spherical coordinates, respectively,
JW is the angular momentum operator with componentsJm,
m51,2,3. Clearly, the parameter manifold is the tw
dimensional sphereS2 and the time-dependence of th
Hamiltonian is described by a curveC:@0,t#→S2. Without
loss of generality, one can choose a coordinate system

6As discussed in the preceding section, the choice of a Ha
tonian is not unique, i.e., one can add a multiple of the iden
operator to Eq.~3.1! without having any physical consequences.
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which C does not pass through the south pole. This allo
one to work with a single coordinate patch ofS2 that ex-
cludes the south pole.

In this patch one has@2#

En~u,w!5En~0,0!5b\n with n50,6 1
2 ,61 ,6 3

2 , . . . ,
~49!

un;~u,w!&5e2~ iw/\!J3e2~ iu/\!J2e~ iw/\!J3un;~0,0!&,

uP@0,p!,wP@0,2p!. ~50!

By definition, un;(0,0)& are the eigenvectors o
H(u50,w50)5bJ3, i.e.,

J3un;~0,0!&5\nun;~0,0!&.

In order to compute the operatorsU (0)(t) andH8(t), one
first calculates

Amn~ t !5Au
~mn!u̇~ t !1Aw

~mn!ẇ~ t ! ~51!

Au
~mn!:5 Km;~u,w!U ]

]u Un;~u,w!L
5

i

\
@sinw^Jmn

1 &02cosw^Jmn
2 &0#, ~52!

Aw
~mn! :5 Km;~u,w!U ]

]w Un;~u,w!L
5 i Fm~12cosu!dmn1

1

\
sinu~cosw^Jmn

1 &0

1sinw^Jmn
2 &0!G , ~53!

where ^Jmn
m &0 :5^m;(0,0)uJmun;(0,0)&, (u(t),w(t))5C(t)

and the dot stands ford/dt. In the derivation of Eqs.~52! and
~53! use is made of the following identities:

e2~ iw/\!J3J2e~ iw/\!J352sinwJ11coswJ2,

e~ iu/\!J2J3e2~ iu/\!J25cosuJ32sinuJ1,

e2~ iw/\!J3J1e~ iw/\!J35coswJ11sinwJ2.

The next step is the calculation of the phase ang
an(t) of Eq. ~7!. These are given by

an~ t !5dn~ t !1gn~ t !, dn~ t !52btn,

gn~ t !52ng~ t !, ~54!

where

g~ t !:5E
0

t

dt8~12cosu!ẇ5E
0

w~ t !

~12cosu!dw. ~55!

In ~55!, w(0) is set to zero and in the second integralw is
used to parametrize the curveC, i.e., u5u(w).

Eqations~51!–~55! together with Eqs.~28! and~26! yield

il-
y
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U ~0!~t !5(
n

e2 i [bt1g~t!]nun;t&^n;0u, ~56!

H8~ t !5 (
mÞn

@H18
mn~ t !^Jmn

1 &01H28
mn~ t !^Jmn

2 &0#um;0&^n;0u,

~57!

where

H18
mn~ t !:5ei [bt1g] ~m2n!~sinwu̇1sinucoswẇ!, ~58!

H28
mn~ t !:5ei [bt1g] ~m2n!~2coswu̇1sinusinwẇ!. ~59!

In order to further ease the computation ofH8(t), one can
make the additional assumption that the energy eigens
have definite total angular momentum, i.e.,

uWJu2un,~u,w!&5 j ~ j11!un,~u,w!&,

n52 j ,2 j11, . . . ,j . ~60!

This assumption is too restrictive for the applications in m
lecular physics, where one encounters systems with cy
derical symmetry rather than spherical symmetry@2#. For a
in

e

tes

-
n-

magnetic dipole in a classical environment, however, o
can safely make this assumption. In this case, one can us
well known relations@24#

J6:5J16 iJ2, J6un;~0,0!&5\C6nun61;~0,0!&,

Cm :5A~ j2m!~ j1m11!, ~61!

to computê Jmn
1 &0 and ^Jmn

2 &0. This leads to

^Jmn
1 &05

\

2
~Cndmn111C2ndmn21!,^Jmn

2 &0

5
2 i\

2
~Cndmn112C2ndmn21!. ~62!

Substituting Eqs.~62! and carrying out the necessary alg
bra, one has

Au
~mn!5

1

2
~eiwCmdmn212e2 iwCndm21 n!, ~63!

Aw
~mn!5 i @m~12cosu!dmn1

1
2 sinu~eiwCmdmn21

1e2 iwCndm21 n!#, ~64!
H8~ t !5
\

2 Fh8(t)(
n

Cnun11;0&^n;0u1h8* (t)(
n

Cnun21;0&^n;0uG
5

\

2 Fh8~ t !e2 i ~u0 /\!J2(
n

Cnun11;(0,0)&^n;(0,0)uei ~u0 /\!J2

1h8* (t)e2 i ~u0 /\!J2(
n

Cnun21;(0,0)&^n;(0,0)ueiu0 /\J
2G

5
1

2
@h8~ t !e2 i ~u0 /\!J2J1ei ~u0 /\!J21h8* ~ t !e2 i ~u0 /\!J2J2ei ~u0 /\!J2#

5Re@h8~ t !#~cosu0J
12sinu0J

3!2Im@h8~ t !#J2, ~65!
ly.

-
ne
where

h8~ t !:5ei [bt1g2w]~ i u̇1sinuẇ!, ~66!

u0 :5u(0), and Re and Imstand for the real part and (2 i
times! the imaginary part of the argument. Furthermore,
the derivation of Eq.~65! use is made of Eqs.~57!, ~50!,
~61!, w(0)50, and the identities

e2 i ~u0 /\!J2J6ei ~u0 /\!J25e2 i ~u0 /\!J2J1ei ~u0 /\!J26 iJ2

5cosu0J
12sinu0J

36 iJ2. ~67!

Next, consider the case in which the magnetic field p
forms a simultaneous precession and nutation, i.e.,

C: w5vt, cosu5cosu01hsin~ lvt !. ~68!
r-

Here,v is the frequency of precession andu l uv andh are
the frequency and amplitude of the nutation, respective
Clearly 0<h,16cosu0 and l is an integer.

The computation ofg is straightforward:

g~ t !5~12cosu0!vt2
h

l
@12cos~ lvt !#. ~69!

Hence, fort5T:52p/v, one recovers Berry’s result:

gn~T!522pn~12cosu0!52nV~C!, ~70!

whereV(C) is the solid angle subtended by the curveC. A
simple consequence of~70! is that the adiabatic approxima
tion does not detect the effects of the nutation. In fact, o
has
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U ~0!~T!5(
n

e2 i [bT12p~12cosu0!]nun;0&^n;0u

5e2 i ~u0 /\!J2e2~ i /\![bT12p~12cosu0!]J3ei ~u0 /\!J2.

~71!

The first nonadiabatic correctionU (1)(T) to ~71! is ob-
tained by integratingH8(t) of Eq. ~65!. This involves the
evaluation of

I ~T!:5E
0

T

h8~ t !dt5E
0

T

dtei [bt1g2w]~ i u̇1sinuẇ!. ~72!

In order to give a closed expression for this integral a
subsequentlyU (1)(T), one can expand the integrand in pow
ers ofh. This leads to a lengthy calculation which results

Re@ I ~T!#5zH sinu0sin~2p/z!1F S 12cos~2p/z!

12~ l z!2 D
3S 1

sinu0
1cotu0z2sinu0z

2D G lh
1F2cosu0sin~2p/z!z

sin3u0@124~ l z!2# G~ lh!2J 1O~ lh2!,

~73!

Im@ I ~T!#5zH sinu0@12cos~2p/z!#1F S 2
1

sinu0
2cotu0z

1sinu0z
2D S sin~2p/z!

12~ l z!2 D G lh
1F2cosu0@12cos~2p/z!#z

sin3u0@124~ l z!2# G~ lh!2J 1O~ lh2!,

~74!

where z:5v/(b2vcosu0). In terms of Re@ I (T)# and
Im@ I (T)#, U (1)(T) is expressed in the form

U ~1!~T!52
i

\
U ~0!~T!$Re@ I ~T!#~cosu0J

12sinu0J
3!

2Im@ I ~T!#J2%

52
i

\
e2~ iu0 /\!J2e2~ i /\![bT12p~12cosu0!]J3

3$Re@ I ~T!#J12Im@ I ~T!#J2%ei ~u0 /\!J2. ~75!

In particular, consider the special case,u05p/2. Then
z5v/b and Eqs.~71!, and~73!–~75! reduce to

U ~0!~T!5e2 i ~p/2\!J2e2~ i /\!~bT12p!J3ei ~p/2\!J2

5e2 i2p je2 i ~p/2\!J2e2~ i /\!bTJ3ei ~p/2\!J2, ~76!
d

Re@ I ~T!#5zH sin~2p/z!1F S 12z2

12~ l z!2D
3@12cos~2p/z!#G lhJ 1O~ lh2!, ~77!

Im@ I ~T!#5zH 12cos~2p/z!

1F S 2
12z2

12~ l z!2D sin~2p/z!G lhJ 1O~ lh2!,

~78!

U ~1!~T!52
i

\
e2 i2p je2 i ~p/2\!J2e2~ i /\!bTJ3$Re@ I ~T!#J1

2Im@ I ~T!#J2%ei ~p/2\!J2. ~79!

The adiabaticity parametern of Eq. ~12! can also be easily
calculated in this case:

n5cA11~ lh!2z1O~ lh2!, ~80!

wherec:5C2 j /25Aj ( j11/2). The appearance ofz in this
expression, is an indication of the fact that the leading or
term in U (1)(T) is of ordern. In fact, for the two extreme
cases,lh!1 andlh@1 @with lh2!1 so that one can neglec
O( lh2)# this is manifestly seen.

As indicated by Eqs.~76!–~79!, the nutation of the direc-
tion of the magnetic field only contributes to the nonad
batic part of the evolution operator.

VII. ADIABATIC PRODUCT EXPANSION

Consider writing Eq.~27! in the form

U~t!5U ~0!~t !U8~t!, U8~t!:5Te2~ i /\!*0
tdtH8~ t !.

~81!

In view of the analysis of Sec. IV, the operatorU8(t) is the
time-evolution operator for the transformed Hamiltoni
H8(t), where the transformation is performed using the a
joint of the adiabatically approximate time-evolution oper
tor, i.e.,U (0)†(t). SinceH8(t) serves as the Hamiltonian o
the system in the transformed frame, one can repeat
analysis of Secs. III and IV to obtain yet another transform
HamiltonianH9(t). Clearly, this is done by separating th
adiabatic partU8(0)(t) of the evolution operatorU8(t) and
use its adjointU8(0)†(t) to transform the Hilbert space. Re
peating this process leads to the product expansion

U~t!5)
i50

`

U~ i !~t !, ~82!

whereU( i )(t) is the adiabatically approximate part of th
evolution operator obtained in thei th step of the above itera
tive construction.

Let us denote byH (N)(t) the transformed Hamiltonian
obtained in theNth step of this construction. Then if th
adiabatic approximation happens to be exact in theNth step,
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i.e., the adiabaticity parametern (N) associated withH (N)(t)
vanishes, the adiabatic product expansion~82! terminates
and one has an exact expression for the original evolu
operator, namely,

U~t!5)
i50

N

U~ i !~t !. ~83!

In general,n (N) may not vanish for anyN and Eq.~83!
may not hold exactly. But one can still use this equation
an approximation. This is indeed a product generalization
the adiabatic approximation. It reduces to the ordinary ad
batic approximation~5! for N50.

Product and series generalizations of the adiabatic
proximation are quite different in the sense that the form
may terminate after a finite number of iterationsN. This
property may indeed be used to identify some previou
unknown exactly solvable Schro¨dinger equations. The utility
of the adiabatic product expansion in the identification
exactly solvable models stems from the fact that unlike
series expansion, it is essentially nonperturbative. In p
ciple, the value of the initial adiabaticity parametern does
not determine whether the product expansion~82! would ter-
minate.
n

s
f
-

p-
r

y

f
e
-

Although at present there is no simple procedure to c
trol the convergence property of the adiabatic product exp
sion, except computing alln (N)’s for N50,1,2,. . . , one can
artificially demand its termination by enforcingn (N)50 for
some small values ofN and try to see if this condition would
lead to any interesting results. In the remainder of this s
tion, I shall demonstrate the consequences of this condi
for a magnetic dipole in an arbitrarily changing~not neces-
sarily rotating! magnetic field.

The Hamiltonian for this system is given by Eq.~48!,
where the parameterb may also be time dependent. In ord
to distinguish the two casesb5const. andbÞconst., I shall
replaceb by br(t) in Eq. ~48! where r5r (t) denotes the
radial spherical coordinate. Excluding the originr50 at
which the Hamiltonian vanishes, one hasR32$0% as the pa-
rameter space. Clearly, the eigenvalues ofH@R# with
R5(r ,u,w)PR32$0% are nondegenerate.

The calculations of the energy eigenvalues and eigenv
tors are essentially the same as those presented in Sec.
is not difficult to see that eigenvectorsun;(r ,u,w)& are inde-
pendent ofr . In fact ther dependence of the Hamiltonia
only affects its eigenvalues, which are now scaled byr . Fol-
lowing the same type of lengthy calculations as in Sec.
one can show that
H ~1!~ t !:5H8~ t !5V~ t !H S cos2 u0
2
coss~ t !2sin2

u0
2
cos@2w01s~ t !# D J1

1S 2cos2
u0
2
sins~ t !2sin2

u0
2
sin@2w01s~ t !# D J21@2sinu0coss~ t !#J3%

~84!

5br ~1!~ t !@sinu~1!~ t !cosw~1!~ t !J11sinu~1!~ t !sinw~1!~ t !J21cosu~1!~ t !J3#,
~85!
s

ns-
where I have introduced

V~ t !:5Au̇21sin2uẇ2, s~ t !52a2w1j,

a~ t !:5d~ t !1g~ t !, ~86!

d~ t !:52bE
0

t

r ~ t8!dt8,

~87!

g~ t !:52E
0

t

@12cosu~ t8!#ẇ~ t8!dt8,

cosj:5
sinuẇ

V
, sinj:5

u̇

V
,

~88!
u0 :5u~ t50!, w0 :5w~ t50!,

r ~1!~ t !:5
V~ t !D~ t !

b
,

~89!
D~ t !:5A11sinw0sin

2u0sin@w012s~ t !#,
u~1!~ t !:5cos21F2
sinu0coss~ t !

D~ t ! G , ~90!

w~1!~ t !:5tan21F sins~ t !1tan2~u0/2!sin@2w01s~ t !#

2coss~ t !1tan2~u0 /2!cos@2w01s~ t !#G .
(91)

Note that the transformed HamiltonianH (1) is obtained from
the original HamiltonianH by replacing the original coordi-
nates (r ,u,w) with the transformed coordinate
(r (1),u (1),w (1)). Next one defines (r (2),u (2),w (2)) by replac-
ing (r ,u,w) in Eqs. ~86! – ~91! with (r (1),u (1),w (1)), and
replaces (r (1),u (1),w (1)) with (r (2),u (2),w (2)) in Eq. ~85! to
obtain the transformed HamiltonianH (2). Continuing this
simple iterative procedure one can compute all the tra
formed HamiltoniansH (N)(t).

Next let us impose the conditionn (1)50 or, alternatively,
H (2)(t)50 or r (2)(t)50. This condition results in the fol-
lowing exact expression for the evolution operator:

U~t!5U~0!~t !U~1!~t !. ~92!
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The conditionr (2)(t)50 can easily be fulfilled if one de
mands thatṡ(t)50. In order to see this, note thatr (2) is

proportional toV (1):5A( u̇ (1))21sin2u(1)(ẇ(1))2 and that both
u̇ (1) and ẇ (1) are proportional toṡ. Thus, ṡ50 implies
r (2)50. Furthermore, one can easily check thatṡ is linear in
r . This allows one to express the conditionṡ50 in the form

r ~ t !5r * ~ t !:5
1

b Fcosuẇ2
d/dt~ u̇/sinuẇ!

11~ u̇/sinuẇ!2
G

5
ẇ

b Fcosu2
~d/dw!~u8/sinu!

11~u8/sinu!2 G , ~93!

whereu85du/dw. It is this relation between the coordina
functions that guarantees the exact expression~92! for the
evolution operator. In fact, one can check by direct com
tation of U(0)(t) and U(1)(t) that Eq. ~93! is a sufficient
condition for U(t)5U(0)(t)U(1)(t) to satisfy the Schro¨-
dinger equation~3!.

Surprisingly, Eq.~93! only restricts the magnitude of th
magnetic field and leaves its direction to vary arbitrari
Therefore, since the instantaneous eigenvectors of the Ha
tonian are independent of the magnitude of the magn
field, for any arbitrarily changing Hamiltonian
H@r (t),u(t),w(t)# (magnetic field) there is another Hami
tonian H* @r * (t),u(t),w(t)# (magnetic field) with the sam
time-dependent eigenvectors (direction) but possibly dif
ent eigenvalues (magnitude) for which the Schro¨dinger equa-
tion (3) is exactly solvable.The physical justification of this
remarkable result is still obscure for the author. Its ma
ematical origin may be traced back to the simple derivat
of Eq. ~16! which in turn led to the separation of the adi
batic part of the time-evolution operatorU (0)(t) – that in-
cluded the geometric phase effects – from its nonadiab
part. The capability of the adiabatic product expansion
give rise to such a wide class of previously unnoticed exa
solvable models may be attributed to its nonperturbative
ture.

Finally, let me conclude this section by noting that t
apparent positivity restriction onr does not pose any diffi
culty for the above argument. This is because for the ti
intervals during whichr * (t) is negative one can obtain th
exact expression for the evolution operator of the tim
reversed system. By virtue of the appearance ofẇ on the
right-hand side of Eq.~93!, for the time-reversed systemr *
is positive. The evolution operator for the original system
then obtained from the time-reversed one by inverting~tak-
ing the adjoint of! the latter. The only source of possib
difficulty is the cases wherer * vanishes for extended period
of time.

VIII. SUMMARY AND CONCLUSION

In this article, I have tried to address some of the ba
issues regarding the meaning of the adiabatic approxima
and the implications of their resolution to the phenomenon
the geometric phase. A precise definition of an adiabati
-
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parameter, although being rather unimportant in pract
provides an objective criterion for the applicability of th
adiabatic approximation. In particular, it shows that in ge
eral there is no direct relation between the validity of t
adiabatic approximation and the length of the duration of
evolution or the period of a periodic Hamiltonian. For e
ample, for the system described by Eqs.~48! and ~68!, con-
sider the case in which both the periodT and the nutation
parameterlh are large but in such a way thatn as given by
Eq. ~80! is also large. Then clearly the adiabatic approxim
tion is not valid. A simple example of a periodic system wi
an arbitrarily small period for which the adiabatic approx
mation is valid exactly is a system with constant ener
eigenstates but time-dependent energy eigenvalues. A typ
example of such a system is a magnetic dipole in a magn
field whose magnitude is rapidly changing but whose dir
tion is fixed. Clearly, in this case, the adiabaticity parame
n vanishes identically and the adiabatic approximation
valid exactly. In fact the limitt→` considered in the proo
of the adiabatic theorem@8# is used to mean that the tim
period during which the Hamiltonian changes appreciably
very large. This condition is only a sufficient condition fo
the validity of the adiabatic approximation, whereasn→0 is
both necessary and sufficient.

I have also given two iterative expansions of the evolut
operatorU(t). The first one is an adiabatic series expans
that provides a perturbative generalization of the adiab
approximation. I have shown how one can separate the a
batic and nonadiabatic parts ofU(t) and yield the nonadia-
batic part as a time-ordered exponential defined by a Her
ian operatorH8(t). In a basis that diagonalizes the initia
Hamiltonian,H8(t) is off-diagonal. Moreover, the dominan
contribution to this operator and consequently to the no
diabatic part of the evolution operator comes from the ne
est energy levels. Particularly interesting is to viewH8(t) as
a transformed Hamiltonian. This corresponds to a tim
dependent unitary transformation of the state vectors wh
undoes the adiabatic part of the evolution operator. A logi
consequence of this observation is an adiabatic product
pansion.

I have also presented a brief review of the general tim
dependent unitary transformations of the state vectors a
simple application of such a transformation which yields
splitting of the total phase of a cyclic state into its dynamic
and geometric parts for a periodically changing Hamiltonia
I have discussed the physically equivalent quantum syst
and showed that the physical observables only depend on
differences of the total phase angles of cyclic states.

Next I have applied the adiabatic series expansion
study the dynamics of a magnetic dipole subject to a rota
magnetic field. In particular, I have given an explicit deriv
tion of the formula for the transformed HamiltonianH8(t)
for the general case and studied the case of a precessing
nutating magnetic field in detail.

Finally, I have presented the basic properties and a sim
application of the adiabatic product expansion. The prelim
nary results indicate that this expansion and the correspo
ing generalized adiabatic approximation have quite surp
ing consequences. For instance, for the dipole system
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lead to the identification of previously unknown exac
solvable Schro¨dinger equations. The adiabatic product e
pansion has also potential applications in the exact calc
tion of non-Abelian holonomy elements and in particu
Wilson loop integrals.
a-
-
a-
r

ACKNOWLEDGMENTS

I would like to thank Bahman Darian and Rouzbeh Alla
verdi for interesting discussions, and acknowledge the s
port of the Killam Foundation of Canada.
ys.
@1# M. V. Berry, Proc. R. Soc. London, Ser. A392, 45 ~1984!.
@2# A. Bohm, Quantum Mechanics: Foundations and Applic

tions, 3rd ed.~Springer-Verlag, New York,1993!, Chaps. 22
and 23. For more details see Ref.@3#.

@3# A. Bohm, A. Mostafazadeh, and J. Zwanziger~unpublished!.
@4# M. Born and V. Fock, Zeit. F. Phys.51, 165 ~1928!.
@5# C. A. Mead and D. Truhlar, J. Chem. Phys.70, 2284~1979!.
@6# L. I. Schiff, Quantum Mechanics~McGraw-Hill, New York,

1955!.
@7# A. Messiah,Quantum Mechanics~North-Holland, Amsterdan,

1962!, Vol. 2.
@8# T. Kato, J. Phys. Soc. Jpn.5, 435 ~1950!.
@9# A. Lenard, Ann. Phys.6, 261 ~1959!.

@10# L. M. Garrido, J. Math. Phys.5, 335 ~1964!.
@11# J. A. de Azca´rraga and L. Navarro, J. Math. Phys.16, 243

~1975!.
@12# S. A. Fulling, J. Math. Phys.16, 875 ~1975!.
@13# G. Hagedorn, Ann. Phys.196, 278 ~1989!.
@14# A. Joye and Ch.-Ed. Pfister, J. Phys. A24, 753 ~1991!.
@15# G. Nenciu, Commun. Math. Phys.152, 479 ~1993!.
@16# M. V. Berry, Proc. R. Soc. London, Ser. A414, 31 ~1987!.
@17# M. Nakahara,Geometry, Topology and Physics~Adam Hilger,

London, 1990!.
@18# I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Ph

26, 167 ~1954!.
@19# S. J. Wang, Phys. Rev. A42, 5107~1990!.
@20# A. Mostafazadeh, J. Math. Phys.37, 1218~1996!.
@21# D. J. Moore, J. Phys. A23, L665 ~1990!. For more details see

Ref. @3#.
@22# Y. Aharonov and J. Anandan, Phys. Rev. Lett.58, 1593

~1987!; J. Anandan and Y. Aharonov, Phys. Rev. D38, 1863
~1988!.

@23# T. Bitter and D. Dubbers, Phys. Rev. Lett.59, 251 ~1987!; D.
Suter, K. T. Muller, and A. Pines,ibid. 60, 1218 ~1988!. For
more details see Ref.@3#.

@24# J. J. Sakurai,Modern Quantum Mechanics~Addison-Wesley,
New York, 1985!.


