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Quantum adiabatic approximation and the geometric phase
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A precise definition of an adiabaticity parameteof a time-dependent Hamiltonian is proposed. A variation
of the time-dependent perturbation theory is presented which yields a series expansion of the evolution opera-
tor U(71)=3,U)(7) with UY)(7) being at least of the order’. In particular,U®(7) corresponds to the
adiabatic approximation and yields Berry’'s adiabatic phase. It is shown that this series expansion has nothing
to do with the 1f expansion olU(7). It is also shown that the nonadiabatic part of the evolution operator is
generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This
suggests the introduction of an adiabatic product expansidd fey which turns out to yield exact expressions
for U(r) for a large number of quantum systems. In particular, a simple application of the adiabatic product
expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an
arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the
Schralinger equation is exactly solvable. Some related issues concerning geometric phases and their physical
significance are also discuss¢81050-294{®7)00303-X]

PACS numbd(s): 03.65.Bz

[. INTRODUCTION The purpose of this article is threefold. First, a precise
definition of anadiabaticity parametew is given. This is a
Since the introduction of the adiabatic geometrical phas@arameter that quantifies the rapidity of the time dependence
by Berry [1], the study of the cyclic evolution of quantum ©f the Hamiltonian. Next, a series expansion of the evolution
states of nonconservative quantum systéexplicitly, time- ~ operatorU(r) is proposed whosg'th term is at least of the
dependent Hamiltoniahshas attracted much attention. By order»”. Finally, an adiabatic product expansionlfr) is
definition, a pure cyclic state: 7)( A: 7| is an eigenstate of introduced. In particular, the adiabatic approximation:

the evolution operatod(7), i.e.,

U(n)~>, en;7)(n;0| (5)
n
= iB M| NS .
U(7) % NI N (N B (1) e[0.2m). (D) s recovered as the first term in both the series and the prod-
uct expansions. In Ed5), [n;t)_ are_the instantaneous eigen-
Therefore, the quantity of main importance in the study ofState vectors of the Hamiltonian, i.e.,
cyclic states and the accompanying phg8ggr) is the evo- _ _
lution operatorU (7). This operator is defined by H(t)[n;t) =Eq(D)[n;t), (6)
and
|g(7))=:U(7)]4(0)), 2
an(t):= y(t) + ya(t),
where | (7)) is the solution of the Schdinger equation. 1t
Alternatively, one can defing(7) as the solution of Sy(t):=— ﬁj E, (t)dt’,
0

d
0 dt’

d i t
SU(M=—2H(DU(D, UO=1, @ y(0:=i | <n;t’

n;t’>dt’. (7

where H=H(7) stands for the Hamiltonian ande[0,») If the Hamiltonian isT periodical, i.e. H(T+t)=H(t), then
parametrizes the time. The solution of E8) can be implic-  «,(T),8,(T), and v,(T) are calledadiabatic total phase

itly expressed in the form angle adiabatic dynamical phase anglandadiabatic geo-
metrical phaseor Berry phase anglerespectively[1].
i The quantum adiabatic approximation was discovered by
U(T):=Texp( __f H(t)dt), (4 Born and Fock in 19284]. The geometric phase effects,
hlo which were later noticed by Mead and Truhfat and Berry

[1], were not included in the traditional approach of Born
where7 denotes the time-ordering operaf@. and Fock. This approach forms the basis of the discussion of
the quantum adiabatic approximation in standard textbooks
in quantum mechanids$,7]. In 1950, a mathematically more
*Electronic address: alimos@phys.ualberta.ca rigorous treatment of the adiabatic approximation was given
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by Kato[8] whose results have since been used to improve

and generalize the adiabatic approximatit®15]. H[R]=2> E[R]|n;R)(n;R), ®
The approach pursued in this article may be viewed as a "

variation of the traditional adiabatic approximation that in- ... R=(R%,---,R% are real parameters viewed as the

cludes the geometric phase effects by construction. It als8oordinates of a parameter spasd, E,[R] are the real

clarifies the possible misconception that the adiabatic apéigenvalues, and|n;R)} is a compléte northonormal set of

proximation ofU(7) is given by the zeroth order term in its eigenvectors oH[R]. In this case, a time-dependent Hamil-

1/7 expansion, i.e., it is only valid for—. Here | do not tonianH (t) corresponds to a cun@:[0,7]— M in M:
mean to imply that there is a widespread misconception in

the physics community about the conditions under which the H(t):=H[C(t)]=H[R(t)],

adiabatic approximation is valid. However, it is necessary to

emphasize the distinction between the role of the large with C(t)=:(RL(t) RA(t))=:Re(t)
=:(RL(1),- - -, RL(1))=: i

limit used in the proof of the adiabatic theord8] and the
(sufficient and necessargonditions under which the adia-
batic approximation is valid. . e M is discrete, the energy eigenvalugg R] are nonde-
Furthermore, the results presented here provide a ConV%'enerate and there is no level crossing, i.e., for every
nient framework for a perturbative computation of the nona-_ [0.7] E [Re(t)]<En, 1[Re(D)] T
. . . s . . i1y Bn n .
diabatic corrections to Berry’s adiabatic phase. A perturba- |, order to define a dimensionless adiabaticity parameter,

tive scheme to improve the adiabatic geometric phase hagst one defines aharacteristic frequency
been proposed by Berfl6]. Although the methods used by

Furthermore, suppose that the spectrunHpR] for all R

Berry in [16] are similar to some of those employed here, w(71,72): = SUH|Apa(D]:n#=m=0,1, . .. te[ 1, m]};
Berry’s scheme does not seem to be related to the present
analysis. [r1.7]C[0], ©

Probably the most important implication of the approach
pursued in this article is the introduction of an adiabatic
product expansion for the evolution operatdf7). This ex-
pansion provides an alternative generalization of the adia- d
batic approximation which is nonperturbative in nature. OneA,(t): = < m;t‘ gt n;t> (10
of the immediate consequences of the adiabatic product ex-
pansion is the identification of a large number of exactly
solvable quantum systems. <m'tHiH(t) n't>

This paper is organized as follows. Sec. Il provides a brief B dt ’
discussion of the adiabaticity parameter. Section Ill includes  EL(H)—ER(t) for m#n. (1)
a thorough treatment of the evolution operator that differs
with those of the existing literatuf@,8—15. Section IV re-  Then the desireddiabaticity parametets defined according
veals the role of time-dependent unitary transformations ofo
the Hilbert space in relating the generator of the nonadiabatic
part of the evolution operator to the Hamiltonian. Section V hwc(0,7)
uses these transformations to derive the nonadiabatic geo- VIS TAE (12
metric phase associated with periodic Hamiltonians. Here the
physical significance of the dynamical, geometrical, and total . :
phases is also discussed. Specifically, it is shown that it is th&/N€r€ AE s a convenient energy scale. For example, one
differences of the total phases which enter into the calcula®®" takeAE to be the first transition energy of the initial
tion of the physical observables. Section VI demonstrates thgamntonlan, |.e.AE. — El(o)_.EO(O): L
application of the adiabatic series expansion for a magnetic The_mam motivation for this definition is the fact that
dipole in a rotating magnetic field. In particular, the first- according to Eqs(9), (11), and(12), (0,7) and therefore

order nonadiabatic term in the adiabatic series expansion & INvolve time derivatives of the Hamiltoniar(t). The use
explicitly calculated for a nutating magnetic field. Section©f @c(0:7) in the definition of the adiabaticity parameter will
VIl introduces the adiabatic product expansion and gives itd€ Self-evident once one examines the evolution operator.
general properties. The application of this expansion for g € role of AE is to provide a convenient energy
dipole in a changing magnetic field is also demonstrated. 14 frequency scale _ o
particular, it is shown how this expansion can be used to !t mustalso be emphasized that by definitieris a “glo-

obtain exactly solvable models. Finally, Sec. VIl includes P&l” gquantity that characterizes the time-dependence of the
the concluding remarks. Hamiltonian. In particular, it is neither equal nor propor-

tional to 1/. Furthermore, note that although;t) are only
determined up to arbitrarR(t)-dependent phase factors
(gauge transformations alor@ [2]), |Ann(t)| with m#n
and thereforew.(71,75) andv are independent of the choice

Following Berry [1], consider a parameter-dependentof such phase@hey are gauge-invariant quantitiegn other
Hamiltonian: words, v is well defined.

with Sup denoting supremuitteast upper boundand

Il. THE ADIABATICITY PARAMETER
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Ill. COMPUTATION OF U(7)

Consider the definition of the time-ordered product4i

1—'%H(tN)e -~-[1—;—iH(tk)e -~-[1—;;H(to>f , 13

U(7):= lim

N—o

wheree: = 7/N andt,:=ke, for k=0,1,- - - N. Using the orthonormality and completeness of the energy eigenventoys
one can compute

Inn- 1t (NNt gl [Nk )

[
1_%H(tN)E

U(r)=lim > (|nN;tN><nN;tN|

N—ooNg, -, NN

i i
X(”thkql_ %H(tk)f |nk—1;tk—1><nk—1;tk—1|"'|n1;t1><n13t1|[1_ gH(to)f |no§to><no§to|)y

N N
= lim 2 [exp{—(i/m;o Enj<tj)e}k[ll<nk;tklnk1;tkl>]|nN;tN><no:to|.

Introducing

KnNnO(T):=<nN;T|U(7)|n0;0>

N—oo Ng,+++,N

N—1 N
=lm > exp[—(i/ﬁ)jZ1 Enj(tj)e}klz]l<nk;tk|nk_1;tk_1>, (14)

one then has

U(T)Zg;] Kmn(7)|M; 7)(n;0. (15)
The computation of the terms in the product in Etg) is straightforward:
d 2
(it N1 tk-1) = Gn o, — €l Nt gt/ Mkt +0(€%),
=ty
=e" EAnan“kfl)énknkflJr €Ann, (k-1 +O( €?),
=e S8, +eePnWA, o (1)]+O(€). (16)
Here
Amn(1):=(Omn=1)Amn(t). (17)

Substituting Eq(16) in Eq. (14), one obtains ® terms which can be arranged in the order of the appearance of different
powers ofe. In this way one finds onl\N terms of ordere®=1.! These will be denoted bKEn/,Z(T):

N
Kpn(7) = lim /ZO KY)(7). (18)

N—of =

Performing the algebra, one finds

Note that a sum oN” terms of ordere” is of ordere®=1.
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. N
|
eXF{hZ [ E (t )'HﬁAn n (t )] 5) non o 5ni172ni17leEAnilnh(til)Anilnifl(til)

nNnO Ng---NN—1 ti1< --<ti/:0 =1
X 5“|1”|1+1 o ”i/—2”i/*1eEAni/ni/(ti/)A”i/”i/—l(ti/)5“i/“l/+1' ©Ony_yny | TO(E), (19
|
where/=0,1,---,N andt,=ke/N=0.¢,- - -, 7. In particu-
lar, H'(t):= lim %: Hn(D)[m; 0)(n;0],
N—o
Koy (7) =T (7) 8oy + OC€), (20) =it Yy, e lemO=an®IA (t)|m;0)(n;0],
mn
i i =—if >, e am®=an®IA_(t)|m;0)(n;0,
Kino(1) == 3T (1) 2 eH}\ o (1) +O(e), e
N"o A ™ =t N"o
Y (26)
i T
=— %Em) K T)ti§=)o €Hu (1) |+ OCe), then
@1 U(n)=2 U(n)=UO(n)[Te” M IFH O] (27)
/=0
where

En(t)) +iiAs(t))] ) (22

b
To(ty): —exp(lth [-

Honn(t) 1 =15 () Amn(ti) Tn(te), (23

andT'y (t,) = 1T (t,) is the complex conjugate df(t,).
Furthermore, for every’>1, one can expreslsm(r) in
terms ofKO(7) andH/, (t;), namely,

Kfmm(7)

_i)/moE

ceemy_q

—
l

T /
> m{H Hi o (ti) |+ O(e).
il'”ti/:O a=1 a a
(24)
Therefore, if one defines
U (7):= lim 2 K (r)|m; 7)(n;0], (25)

N—oo M

where by takingN—e the sums of the fornE, " ef(t;)

have been promoted to the integr&{édtf(t). In particular,
one has

O(r)=> e*|n;7)(n;0], (29

U (n)=u(r)

f dtH'(t)|. (29

By constructionU(©)(7) yieldsU(7) in the adiabatic ap-
proximation (5).Therefore, adiabatic approximation is valid
only if one can neglecf dtH’(t) in Eq. (27). It is not dif-
ficult to observe that this condition is fulfilled if the adiaba-
ticity parameterv as defined by Eq(12) is negligible. In
fact, for everyt; andt, satisfying O<t,<t,=<r, one has

ty tr
(m;0|j $f
ty ty

t
sﬁJ “dt|Ann(t)|<ATAEw,
ty

(30

whereA 7. = 75— 7 with [ 7, 7,]C[0,7] is the time interval
over whichw, is nonvanishing, i.e.r; and 7, and therefore
A7 are defined by the condition

w(71,75)=0 if and only if 73<7y or 7;>7,.
(31)

Note that usualhA 7 is a finite time interval whereas may

be infinite (arbitrarily large. A case for whichAr=17 is
when the Hamiltonian depends periodically on time. In this
case, however, the physically interesting features of the evo-
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lution is given byAr=7<T, whereT is the period of the A simple consequence of E¢33) is the fact that the
Hamiltonian. Particularly interesting is the case T. essential ingredient that determing¢r) beyond the adia-
In general,A7 may become arbitrarily large, in which batic approximation is not, but (r;,7,) of Eq. (31) and
case Eq.(30) is a trivial statement. However, even in this ». For physically realistic nonperiodic Hamiltonians, the lat-
casev plays a most important role. In fact, one can argueter quantities take finite values, whereas the duratiofithe

that in general the following relation holds: evolution of the system may be arbitrarily large. For a quan-
N—1 tum system with a periodic Hamiltoniah(t)=H(t+T), the
U(n=> U(n+0N). (32) physically interesting case is when=7<T. In this case,
/=0 v may or may not be determined By This is because, in

general, the parameteRg(t) of the Hamiltonian have dif-

In particular, the adiabatic approximation is valid if and only ferent periods. These are necessarly of the form

if v<<1. In order to establish Eq32), it is sufficient to T,=Tiz,. respectively, wherez, is a positive integer.

show thatU™M)(7) and thereforefdtH’'(t) are at least of )
orderv. This is, however, self-evident, since one knows thatCIGarly'wC(o’T) and consequently will depend on the larg-

if ¥=0, thenU(r)=U(7). Consequently, in a expan- est value oz, . Therefore, in general the statement that “the
sion ofiJ(r) uW(n) is necéssarily of orde;v or higher adiabatic approximation is valid if the period of the Hamil-

An alternative way of expressing E€32) is to define tonianis large,” is false. The only case wherelepends on
D(/)(T): —UNA)v and ﬁ’(r):= H'(7)/v and write T and thg preceding statement is valid is the case where_ the
U(7) in the form energy eigenstates are time dependent and either there is ef-
fectively one changing parameter 6y, =T for all u. Typi-
cal examples of these two cases are a spin in a precessing

o

U(7r)= Z U(r)p =UO(7)[ Te (WBIH O], magnetic field[2] and a spin in a precessing and nutating
/=0 (33) magnetic field with equal precession and nutation periods,
respectively.

This equation must not, however, be viewed as a true power Another useful observation is that in the eigenbasis
series expansion dfi(7) in v, for UY)(7) may in general _{|n;0>} of H(0), H'(t) has no diagonal matrix elements,
depend orw. ie.,

0 for m=n
(MOH'(Hn;0)=1 . (Mt{[(d/dHHMD]Int)
! En(D)—En() =

(34

ap—ap(®]  for m=#n.

Here, use is made of Eq&6) and(11). This equation also The resemblance of this equation to the gauge transforma-
implies that the matrix elementsn; 7/U)(7)|n;0) are di- tions of the gauge potential in non-Abelian gauge theories
rectly related tojn—m| =7, i.e., the main contribution to (connections on principal fiber bundjeis remarkable17].
U)(7) comes from the nearest energy levels. Moreover, a simple calculation shows that

IV. RELATION BETWEEN H’(t) AND H(t)

Consider Eq(26). Since them=n term is missing in the UOTHHUO ()=, Eo(t)[n;0)(n;0], (37
sum in Eq.(26), one can expredd’(t) in the form "

_ d .
H'()=—ifi 2, [(mitle” ] [e'n|n;t)] d
m#n H' () ==iA > (m:0Ju©@T(t)u®
+
X |m;0)(n;0]. (35) e
X (t)|n;0)|m;0)(n;0|. (39
This equation, together with the definition Bf%)(t), leads
to
q Therefore, the role of the first term on the right-hand side of
'y — 1 (0 O) /4y 15110 41 2 1 1(0) Eqg. (36) is to cancel the diagonal matrix elements of the
H' (t)=U"T(t)H(t) UM (t)—isrU (t)dtU (t). (36 second term.
Egs.(36) and(38) signify the importance of the adiabatic
approximation in the determination of the nonadiabatic cor-
2This is becaus®))(7) involves/ copies ofH’(7) in its inte-  rectionsU)(7) (/>0) to U®(7) and consequently the
grand. exact evolution operatdd (7).
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In order to fully appreciate the meaning of E§6), one T _ 1
should recall the effect of a general time-dependent unitary 8 MT)=— g<¢(0)|H|¢(0)>:T[ - g(l//(t)|H(t)|$(t)>
transformation of the Hilbert spack. Let U(t): H—H be
such a transformation and suppose that the transformed state

d
vectors +i<¢(0)ZT(t)aZ(t)‘ l//(O)H.

. =A MT)+T (T, (42)
() =UMD|Y(1)) (39

11~
A= [ aolnolw), @9
satisfy the following Schidinger equation: 0
T d
i o FMT)::ifodt<¢N(t)‘a¢Mt)>, (44)
ifi g ) =HO[¥(1)). (40
where|4(t)):=Z(t)|4(0)).* The phase angle& () and
I \(7) were first introduced by Aharonov and Anand22)]

Then, requiring|(t)) to satisfy the Schidinger equation and called thedynamical and geometrical phase angles.

defined by the original HamiltoniaH (t), one finds They generalize their adiabatic counterparts, which were pre-
’ viously discovered by Berrjl]. Clearly, forv<1, one has

| NiTy=[n;0), A \((T)=~8,(T), andl’ \(T)=~ y,(T).
. : ) d " Next, consider the general caselft) is also assumed to
H(O)=UHMOU (t)_'hu(t)&u (V. (4D leave the original energy eigenstates invariant, i.eH (f)
has the same eigenstatestft), then one can show that
U(t) andH(t) must be of the form
Therefore, Eq(36) is a particular example of E¢41) with

U(t)=U©T(t) andH(t)=H’(t). In other words, the nona- ut) =€, (45)
diabatic effects are given by a transformed Hamiltonian

H’(t) where the transformation is performed by the inverse H(t)ﬂg(t): H(t)_ﬁm 1, (46)
of(ot)r;e adiabatically approximate evolution operator, i.e., dt

U™ 1(t).

where f=1(t) is a real-valued functionl{, is a constant
unitary transformation, and 1 is the identity operator’eén
Note that transformatioi39) with (t) given by Eq.(45)
leaves all the observables invariant. It shifts the energy ei-

Transformation(39) may be used to yield an exact solu-
tion of the Schrdinger equation, if one can findZ4t) that
makes the transformed Schlinger equation(40) easily
solvable. The Rabi-Ramsey-Schwinger methtd] is a spe-

cial case of this approach, where one uses the symmetry genvalues

the problem to find a unitary transformatioit) which ren- (t)

dersH time independert.This is, in general, possible for En(t)aE;(t)zEn(t)—hw, (47
cranked Hamiltonians with a fixed cranking direction

[19,20. but does not affect the observable transition energies

E,(t) —E(t). Therefore, one can identify a physical system
with the equivalence class of all the quantum systems which
V. TIME-DEPENDENT UNITARY TRANSFORMATIONS are related by transformations of the fot89,45.
AND THE GEOMETRIC PHASE A simple consequence of this observation is that unlike
There is another significant application of time-dependenih® dynamical phase ang(é3), the geometric phase angle

unitary transformations of the Hilbert space when the Hamil-(44) is & physical quantity2]. This statement, however, re-

tonian isT periodic. In this case, one knows from the FloquetdUires a clarification. One can easily see that E4f)
theory [21] that the evolution operator is given by changes the dyn_amlcal phase arzg}qr).'lt does, neverthe-
U(r)=Z(r)exr[—i71:|'/h] whereZ(7) is a T-periodic uni- less, leave the difference of two dynamical phase angles and

. ' ~ . consequently two total phase angles invariant. Therefore, the
tary operator withZ(T)=2Z(0)=1 and H is a time-

independent Hermitian operator. Then by definition the cy dynamical phase angle also carries physically significant in-

. . ; formation about the evolving system. In fact, a close look at
clic stateg N;T)( NV;T| at7=T are given by the eigenstates gsy
of H and the associated total phase angles are———

BMT)==T(N;TIH| N;T)/. Next, consider choosing  4note that the expression in the bracket in E4®) is independent
U(t) of Eq. (39) to be Z'(t) and|#(0))=|4(0))=| N;T).  oft. This s the reason why the sum of the integrals in E48) and
Then by virtue of Eq(41), one has (44) leads to a simple multiplicative factor df.
SNote that in general the Hamiltonian need not be periodic and the
Floquet theory does not apply. However, even in this case one can
3For a recent review of the application of this method to a spindefine|¢ ,(t)) and Eqs.(42)—(44) are valid. Sed22,2] for more
system in a precessing magnetic field, see RHf. details.
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the experimental results of the detection of the geometriavhich C does not pass through the south pole. This allows
phase[23] clearly shows that the measurable quantities ar@ne to work with a single coordinate patch 8t that ex-
related to the differences of total phase angles. This is usteludes the south pole.

ally overshadowed by the fact that in the best studied system, In this patch one hag2]

namely the two-level spinjE 1/2) system in a precessing

magnetic field[1], the conventional choice of the Hamil- En(6,¢)=E,(0,0=bAn with n=0+3,+1,*3, ...,
tonian (48) leads to two cyclic states whose total phase (49
angles differ by a minus sign. Therefore, their difference is _ 3 o 3

twice one of them and it appears that the experiments detect [N (6,¢))=e 1¢/M e (106l n; (0,0)),

a total phase. In reality however, the experiments always

detect the differences between total phase angles, a quantity 0[0.m),¢<[0,2m). (50)
which is invariant under Eq46). This can be easily seen if By definiton, |n;(0,0) are the eigenvectors of
one uses a complete orthonormal set of cyclic state;l(azo 0=0)=bJ, ie.

{| N:7)} to compute the expectation values ' T

(X(7)):=(P(D[X(0)] (7))
=($(0)|UT(nX(0)U(7)|1(0)),

J%n;(0,0))=7n|n;(0,0)).

In order to compute the operatd$®)(7) andH’(7), one
first calculates

ZN% (P(O)| N TN 7| UT (1) X(0)U(7)| N, 7) Amn(1) =AY (1) + A (1) (51)
X (N7 7]9(0)) A(ﬁmm::<m;(0,¢) i n;<0,¢)>
= 2 e*i[ﬁj\/(f)*ﬁ,,'\,(r)]<d,(o)|/\/‘;7.) i
e = —[sing(IhJo—cosa(Iadol. (52
X{AN; 7| X(O) N, 7N ; 7| (0)),
where X(0) is an observable and in the last equality use is (mn. _ [ m: i . >
made of Eq(1). A <m’(0’@) dp n:(6,¢)

Incidentally, it is not too difficult to see that by definition, 1
the adiabaticity parameter (12), the operatoH’(t) of Eq. :i[m(l—cogg) Smnt —sinB(cosp(JE Vo
(26), and consequently all the nonadiabatic corrections h
U7 (with /=1) to UO)(7) are invariant under the
transformation(45). Therefore, all of these quantities signify +sing(J2 )0)
physically measurable effects.

, (53

where (J% }o:=(m;(0,0)3#|n;(0,0)), (6(t),e(t))=C(t)
VI. APPLICATION TO A MAGNETIC DIPOLE IN A and the dot stands fal’dt. In the derivation of Eq952) and
ROTATING MAGNETIC FIELD (53) use is made of the following identities:

In this section, the utility of the expansi@@7) is demon-

_ (i 3 i 3 .
strated for the quantum system consisting of a magnetic di- e (1#/MI°g2eli¢l) "= —sinp '+ cospd?,
pole moment subject to a magnetic field with changing di- . ) . )
rection. (101103733 =(1011)3° = o9 3% — sinAJ*,

The Hamiltoniafi of this system is given by
. . e~ (19/m3 glgliel = cogs 31+ singJ2.
H(68,0)=bR(6,¢)-J=Db(sindcosp*+ sindsingpJ?
The next step is the calculation of the phase angles

3
+cosHJ), 48, (1) of Eq. (7). These are given by
whereb is the Larmor frequencyg and ¢ are the azimuthal an()=8,(1)+ ya(1), 8,(t)=—btn
and polar angles in spherical coordinates, respectively, and " " meen ’
J is the angular momentum operator with componeHts Ya(t)=—ny(t), (54)

n=123. Clearly, the parameter manifold is the two-
dimensional sphereS? and the time-dependence of the where
Hamiltonian is described by a cun@:[0,7]— S?. Without

- - . t . @(t)
loss of generality, one can choose a coordinate system in y(t)::f dt'(l—COSﬁ)(p:f (1-cosf)de. (55)
0 0

8As discussed in the preceding section, the choice of a Hamilin (55), ¢(0) is set to zero and in the second integeals
tonian is not unique, i.e., one can add a multiple of the identityused to parametrize the cur@ i.e., 6= 6(¢).
operator to Eq(3.1) without having any physical consequences. Eqations(51)—(55) together with Eqs(28) and(26) yield
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) —ilbréyaln magnetic dipole in a classical environment, however, one
U™ (n)= En: e P70 N; 7)(n; 0, (56)  can safely make this assumption. In this case, one can use the
well known relationd24]

H (0= 3 [H™O@ ot H MO @ ollmoxmiol,  I7=311% ITIni(0.0)=ACln=1:(0.0),
(57) Cn:=V(j—m)(j+m+1), (61)
where to compute(J:, Yo and(JZ )o. This leads to

H;™(t): =elP N(M=M(sing g+ sindcospp), (58 %
<‘]rlnn>O:§(Cn5mn+l+ C_nomn- 1)’<‘]r2nn>0

H,™(t): =€l Nm=m( _ cogph+ sindsing ). (59

—ifh
In order to further ease the computatiorHbf( ), one can =% (Cndmn+1= Cndmn-1)- (62)
make the additional assumption that the energy eigenstates
have definite total angular momentum, i.e., Substituting Egs(62) and carrying out the necessary alge-
. o bra, one has
| 312N, (6,0)=i(i+D)In,(6,¢)), .
n=—j,—j+1...J. (60) A" =5(¢*Crfmn-1 =€ *Codn-an). (69
This assumption is too restrictive for the applications in mo- AMY =i m(1—coH) 8t ESING(E¢C 01
lecular physics, where one encounters systems with cylin- ¢ _ mn memn
derical symmetry rather than spherical symmégy For a +e7'°Cpém_1n)1s (64)

H'(t)= g[h'(t)E Caln+1;0)(n;0|+h’"*(t)>, Cyln—1;0)(n;0|

f ) )
=§[h’(t)e"(90’ﬁ”2; Caln+1;(0,0))(n;(0,0)|e %%
+h/*(t)e—i(00/ﬁ).]22 Cn|n—1;(0,0)><n;(0,0)|ei‘90/"'32}
n

_ %[h,(t)e—i(aolh)323+ei(ao/ﬁ)32+h/*(t)e—i(oo/h)JZJ—ei(oo/maz]

=R h'(t)](coshgdt—singud®) —Im[h'(t)]J?, (65)
|
where Here, w is the frequency of precession afifio and 7 are
the frequency and amplitude of the nutation, respectively.
h(t): =ellPt 7= ¢l(i 9+ sindg) (66) Clearly 0= »<1*cog, andl is an integer.

The computation ofy is straightforward:

0p:=0(0), and Re and Instand for the real part and-i
times the imaginary part of the argument. Furthermore, in
the derivation of Eq(65) use is made of Eq457), (50),
(61), ¢(0)=0, and the identities

y(t)z(l—cosﬁo)wt—I—n[l—cos(lwt)]. (69)

o (08132 3 i (g 1132 - 1(00 /)92 J1gi (4111 . 32 Hence, forr=T:=2x/w, one recovers Berry’'s result:

=c0HyJt—singy3+iJ2.  (67) Yn(T)=—2mn(1—coshy) = —nQ(C), (70

Next, consider the case in which the magnetic field peryhere()(C) is the solid angle subtended by the cueA
forms a simultaneous precession and nutation, i.e., simple consequence ¢70) is that the adiabatic approxima-
tion does not detect the effects of the nutation. In fact, one
C: o¢=owt, co¥=cody+ nsin(lwt). (68) has
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UO(T)=2) e PT+2r1=coln n;0)(n; 0 Re[l(T)]=§|sin(2w/§>+ —1__(,%2)
:e—i(00/ﬁ)JZe—(i/ﬁ,)[bT+2w(1—cos90)]J3ei(eolﬁ)Jz_ «[1- 0% 2 /g)]}l Lol 2) a7
- T n )
(72)
The first nonadiabatic correctiod*)(T) to (71) is ob- |m[|(T)]=§[1—005{27T/§)

tained by integratindd’(t) of Eq. (65). This involves the

evaluation of 2

( 1-¢ )
+ —W sin(2m/ )|l n

|(T):= fOTh'a)dt: fOTdteilbw—«ol(imsma@. 72 (79)

+0(17%),

i 2 3
(1) T=— —IZWje—I(ﬂ/Zﬁ)J e —(i/h)bTJ RI(T Jl
In order to give a closed expression for this integral and (M i {ReI()]

subsequently) ((T), one can expand the integrand in pow-

ers of 5. This leads to a lengthy calculation which results in — Im[1(T)19%}ei(m2M . (79
| | 1- cog 2ml0) Igliu?gtizga}gc#l)i/spgzzetex of Eq. (12) can also be easily
Ra[I(T)]=§[S|neosm(277/§)+ W) '
. v=cy1+(I9)%+0077), (80)
x (Wao +cotbol — sineogz) }l K wherec:=C_;/2=\/j(j+1/2). The appearance ¢fin this

expression, is an indication of the fact that the leading order

2coPpsin(2ml ()L
T SiPe[1-4(10)7]

() ]+O(I ) term in UA(T) is of orderv. In fact, for the two extreme
' cases| »<1 andl »>1 [with | <1 so that one can neglect
(73) O(1%?)] this is manifestly seen.
As indicated by Eqs(76)—(79), the nutation of the direc-
tion of the magnetic field only contributes to the nonadia-

, 1 bati t of th luti tor.
{1 (T)] = ¢ sind[ 1 cos 2a/)1+| | - _ cotdy; atic part of the evolution operator
_ VII. ADIABATIC PRODUCT EXPANSION
) ) sin(2ml )
+sindol 1102 Iy Consider writing Eq(27) in the form

2co¥[1—cod2m/{)]¢

}u ) U(r)=UO(nU’(7), U'(r):=Te (MIEH®
Sirto[1—4(10)7] 7

21+ 0177,

(81)

(74) In view of the analysis of Sec. IV, the operatdf(7) is the
time-evolution operator for the transformed Hamiltonian

where {:=w/(b—wcos). In terms of REI(T)] and H'(7), where the transformation is performed using the ad-

Im[1(T)], UY(T) is expressed in the form joint of the adiabatically approximate time-evolution opera-
tor, i.e.,U@T(7). SinceH’(7) serves as the Hamiltonian of

the system in the transformed frame, one can repeat the

i
Ut (m=- ﬁu<°>(T){Re[| (T)](cosHpdt—sindyJ®) analysis of Secs. Ill and IV to obtain yet another transformed
HamiltonianH" (7). Clearly, this is done by separating the
—Im[1(T)]3% adiabatic partu (% 7) of the evolution operatot)’(7) and
i use its adjointU (©{7) to transform the Hilbert space. Re-
- _ gef(i00/fi)Jzef(i/h>[bT+2w(lfcosﬂo)]J3 peating this process leads to the product expansion
X{RG1(T)]3E— Im[1(T)]32ei %03 (75) _]‘[ U(7), 82
In particular, consider the special cag®=m/2. Then  \yhere /() is the adiabatically approximate part of the
{=wlb and Eqs(71), and(73)(75) reduce to evolution operator obtained in thth step of the above itera-
tive construction.
(O)(T) = g~ i(m/21) g (/1) (bT+2m) P gi (m/24)32 Let us denote byH™)(7) the transformed Hamiltonian

o , - , obtained in theNth step of this construction. Then if the
=g [27igTi(m/2h) o= (IIM)bTFai(m/20)37  (76)  adiabatic approximation happens to be exact inNtte step,
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i.e., the adiabaticity parametef™) associated wittH™)(7) Although at present there is no simple procedure to con-
vanishes, the adiabatic product expansi®@@) terminates trol the convergence property of the adiabatic product expan-
and one has an exact expression for the original evolutiosion, except computing allN)’s for N=0,1,2,. .., one can
operator, namely, artificially demand its termination by enforcing™)=0 for

N some small values dfl and try to see if this condition would
“TT ud 83 lead to any interesting results. In the remainder of this sec-
U(T)_i:O (7). (83 tion, | shall demonstrate the consequences of this condition
for a magnetic dipole in an arbitrarily changirigot neces-
In general,¥™ may not vanish for an\N and Eq.(83)  sarily rotating magnetic field.
may not hold exactly. But one can still use this equation as The Hamiltonian for this system is given by EG8),
an approximation. This is indeed a product generalization ofvhere the parametdér may also be time dependent. In order
the adiabatic approximation. It reduces to the ordinary adiato distinguish the two casds= const. andb# const., | shall
batic approximation(5) for N=0. replaceb by br(t) in Eq. (48) wherer=r(t) denotes the
Product and series generalizations of the adiabatic apadial spherical coordinate. Excluding the origin=0 at
proximation are quite different in the sense that the formemwhich the Hamiltonian vanishes, one Ha$—{0} as the pa-
may terminate after a finite number of iteratioNs This  rameter space. Clearly, the eigenvalues HfR] with
property may indeed be used to identify some previoushR=(r,0,¢) € R*—{0} are nondegenerate.
unknown exactly solvable Schdimger equations. The utility The calculations of the energy eigenvalues and eigenvec-
of the adiabatic product expansion in the identification oftors are essentially the same as those presented in Sec. VI. It
exactly solvable models stems from the fact that unlike thds not difficult to see that eigenvectdrs;(r, 6,¢)) are inde-
series expansion, it is essentially nonperturbative. In prinpendent ofr. In fact ther dependence of the Hamiltonian
ciple, the value of the initial adiabaticity parametedoes  only affects its eigenvalues, which are now scaled bifol-
not determine whether the product expangi®® would ter-  lowing the same type of lengthy calculations as in Sec. VI,
minate. one can show that

HO(t):=H"(t)= Q(t)[ ( cos’-%cos;(t) - SiHZ%CO.‘.{cho-i— O'(t)]) J?

—co¥ %sino(t) - sinZ%sir{&poJr a'(t)]) J?+[ —sinfycosr(t) ]33

+
(84)
=br(n)[sing'Y(t)cosp V(1) 31+ sind Y (1) sing' ™ (1) J2+ cost V(1) ],
(89
|
where | have introduced 1 _,| sindgcos(t)
6V (t):=cos BN (90)

Q(t): =V +sirt0¢?, o(t)=—a—oe+§,

—cosr(t)+tarf(6y/2)cog 2+ o(t)]
(91)

o(t):= —bfotr(t’)dt’,

(87)  Note that the transformed Hamiltoni&t{® is obtained from
t , the original HamiltoniarH by replacing the original coordi-
y(t):=—fo[l—cosﬂ(t’)]go(t’)dt’, nates (,0,¢) with the transformed coordinates
(r®, 60 M)y Next one definesr(?, 6, o)) by replac-
e . ing (r,0,¢) in Egs. (86 — (91) with (r™, ™M 1)), and
cost: = sinde sing: = o replaces (1), 60, o)y with (r®,63), o) in Eq. (85) to
Q Q’ obtain the transformed Hamiltoniad®. Continuing this
(889)  simple iterative procedure one can compute all the trans-

0p:=0(t=0), @g:=¢(t=0), formed Hamiltoniandd N (t).
Next let us impose the conditiof)=0 or, alternatively,
o Q(t)A(t) H®@)(t)=0 or r@(t)=0. This condition results in the fol-
re():= b lowing exact expression for the evolution operator:
(89

A(t): =1+ sing,sirt8ysin ¢+ 20(t)], U(n)=UO(nHU (7). (92



55 QUANTUM ADIABATIC APPROXIMATION AND THE ... 1663

The conditionr®(t)=0 can easily be fulfilled if one de- parameter, although being rather unimportant in practice,

mands thato(t)=0. In order to see this, note that?) is  Provides an objective criterion for the applicability of the

proportional ta (D = \/( #D)2+ sir2dD (D)2 and that both adiabatic a_pproxmatlon. In _part|cular, it shows t_hgt in gen-
eral there is no direct relation between the validity of the

0((2))_and ¢*) are proportional to‘_r' Thus, ‘T.__O .|mpllejs adiabatic approximation and the length of the duration of the
r*¥)=0. Furthermore, one can easily check thas linear in  eyolution or the period of a periodic Hamiltonian. For ex-
r. This allows one to express the conditior-0 in the form  ample, for the system described by E¢8) and (68), con-
sider the case in which both the periddand the nutation
parametef » are large but in such a way thatas given by
Eq. (80) is also large. Then clearly the adiabatic approxima-
tion is not valid. A simple example of a periodic system with
an arbitrarily small period for which the adiabatic approxi-

O=r. (1) 1 . d/dt(6/sindg)
r()y=r,(t):=-|coho——"—
* bl Y 14 (blsinde)?

¢

_?l o _ (d/de)(6'/sing) ©3) mation is valid exactly is a system with constant energy
b 1+(6'/sing)? |’ eigenstates but time-dependent energy eigenvalues. A typical

example of such a system is a magnetic dipole in a magnetic

where 0’ =d6/de. It is this relation between the coordinate fiéld whose magnitude is rapidly changing but whose direc-
functions that guarantees the exact expres@ for the  tion is fixed. Clearly, in this case, the adiabaticity parameter
evolution operator. In fact, one can check by direct compu¥ vanishes identically and the adiabatic approximation is
tation of U%(7) and U/ (7) that Eq.(93) is a sufficient Vvalid exactly. In fact the limitr—c considered in the proof
condition for U(7)="(7)1fY)(7) to satisfy the Schro Of the adiabatic theorer{B] is used to mean that the time
dinger equatior(3). period during which the Hamiltonian changes appreciably is
Surprisingly, Eq.(93) only restricts the magnitude of the very large. This condition is only a sufficient condition for
magnetic field and leaves its direction to vary arbitrarily.the validity of the adiabatic approximation, whereas 0 is
Therefore, since the instantaneous eigenvectors of the Hamiboth necessary and sufficient.
tonian are independent of the magnitude of the magnetic | have also given two iterative expansions of the evolution
field, for any arbitrarily changing Hamiltonian operatorU(7). The first one is an adiabatic series expansion
H[r(t),0(t), ()] (magnetic field) there is another Hamil- that provides a perturbative generalization of the adiabatic
tonian H,[r, (t),6(t),¢(t)] (magnetic field) with the same approximation. | have shown how one can separate the adia-
time-dependent eigenvectors (direction) but possibly differpatic and nonadiabatic parts of(7) and yield the nonadia-
ent eigenvalues (magnitude) for which the Sdimger equa-  patic part as a time-ordered exponential defined by a Hermit-

tion (3) is exactly solvableThe physical justification of this 5, operatorH’(t). In a basis that diagonalizes the initial

remarkable result is still obscure for the author. Its math, oo io o H' (1) is off-diagonal. Moreover, the dominant
S - HOM: ontribution to this operator and consequently to the nona-
of Eq. (16 which in turn led to the separation of the adia- diabatic part of the evolution operator comes from the near-

batic part of the time-evolution operatbr®(r) — that in- st energy levels. Particularly interesting is to vieW(t) as
cluded the geometric phase effects — from its nonadiabati€ 9y - Carticufarly Ints 9 .
a transformed Hamiltonian. This corresponds to a time-

art. The capability of the adiabatic product expansion to . ) )
part. P Y P P )gependent unitary transformation of the state vectors which

solvable models may be attributed to its nonperturbative nadndoes the adiabatic part of the evolution operator. A logical

ture. consequence of this observation is an adiabatic product ex-
Finally, let me conclude this section by noting that thePansion. _ . _
apparent positivity restriction on does not pose any diffi- | have also presented a brief review of the general time-

culty for the above argument. This is because for the tim&lependent unitary transformations of the state vectors and a
intervals during whiclr, (t) is negative one can obtain the Simple application of such a transformation which yields a
exact expression for the evolution operator of the time-Splitting of the total phase of a cyclic state into its dynamical
reversed system. By virtue of the appearance'pocbn the and geometric parts for a p_eriodically changing Hamiltonian.
right-hand side of Eq(93), for the time-reversed system I have discussed the physically equivalent quantum systems
is positive. The evolution operator for the original system isand showed that the physical observables only depend on the
then obtained from the time-reversed one by inverfiads-  differences of the total phase angles of cyclic states.
ing the adjoint of the latter. The only source of possible  Next | have applied the adiabatic series expansion to
difficulty is the cases wheng, vanishes for extended periods study the dynamics of a magnetic dipole subject to a rotating
of time. magnetic field. In particular, | have given an explicit deriva-
tion of the formula for the transformed Hamiltonidh' (t)
for the general case and studied the case of a precessing and
nutating magnetic field in detalil.

Finally, | have presented the basic properties and a simple

In this article, | have tried to address some of the basi@pplication of the adiabatic product expansion. The prelimi-
issues regarding the meaning of the adiabatic approximationary results indicate that this expansion and the correspond-
and the implications of their resolution to the phenomenon ofng generalized adiabatic approximation have quite surpris-
the geometric phase. A precise definition of an adiabaticityng consequences. For instance, for the dipole system they

VIll. SUMMARY AND CONCLUSION
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