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Electromagnetic field quantization in amplifying dielectrics
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The electromagnetic field is quantized for normal transmission of incident waves through a parallel-sided
dielectric slab. The dielectric material is dispersive and it acts as a linear amplifier over limited ranges of the
frequency and as a linear attenuator at the remaining frequencies. The field operators derived for the three
spatial regions within and on either side of the slab are shown to satisfy the canonical commutation relations.
The noise fluxes emitted by the slab are evaluated and shown to satisfy the general requirements for the
minimum noise associated with linear amplifiers and attenuators. The behavior of the amplifier gain profile on
the approach to the lasing threshold of the slab is determined, but the results are restricted to the below-
threshold state of the system. The spectra of the electric-field fluctuations are evaluated for the three spatial
regions and for amplifying and attenuating frequencies.@S1050-2947~97!06402-0#

PACS number~s!: 12.20.2m, 42.50.2p
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I. INTRODUCTION

We have recently developed the quantum theory of
electromagnetic field in dielectric media that show both lo
and dispersion@1,2#, building on earlier work that is re
viewed in these references~see also@3# for other work in the
same area!. Explicit results were given for the quantized fie
operators in propagation perpendicular to the interfaces
dielectric samples with the geometries of an infinite mediu
a semi-infinite medium, and a parallel-sided slab. It w
shown that the conjugate pairs of field operators corre
satisfy the required canonical commutation relations, and
spectra of the vacuum field fluctuations were evaluated
illustrated for the three sample geometries. The formal
has been used to evaluate the effects of propagation o
optical pulse through a dielectric slab on the pulse shape
photon statistics, including the nonclassical effects of pho
antibunching and squeezing@4#. Similar quantization meth-
ods have also been applied to other geometries of diele
material@5#.

The aim of the present paper is to extend the field qu
tization to a dispersive dielectric that shows amplificati
over some ranges of the frequency and attenuation ove
remaining ranges of frequency. We consider particularl
parallel-sided slab constructed from such dielectric mate
again with electromagnetic wave propagation perpendic
to its surfaces. The infinite or semi-infinite sample geo
etries considered for the lossy dielectric lead to difficulties
the presence of gain, as any amplification inevitably p
duces infinite field fluctuations, and we do not consider th
here. The slab geometry also gives rise to infinite p
lengths in directions parallel to the surfaces and, altho
transverse effects are not explicitly treated, we assum
cross-sectional area sufficiently limited in its dimensions t
only propagation perpendicular to the surfaces need be
sidered.

*Present address: Department of Physics, University of Kerm
Kerman, Iran.
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Despite the striking practical differences between me
that show attenuation and those that show amplification o
limited ranges of the frequency, their theoretical descriptio
turn out to be remarkably similar. We can accordingly re
on slightly modified forms of many of the results given
@2#, and this paper and its equations are identified by
abbreviation I. Of course, in agreement with the practi
situation, the physical predictions of the amplifier theory,
terms for example of high-gain behavior, lasing thresh
effects, and enhanced electric-field fluctuations, are quite
ferent from those of attenuator theory. The similarities b
tween their formal theories should not therefore obscure t
very dissimilar physical natures. Brief details of our calcu
tions have been given previously@6#.

The general features of the dielectric function and
noise operators for media that show amplification and atte
ation in different spectral ranges are introduced in S
II. The formal quantization of the electromagnetic fie
in the three spatial regions is performed in Sec. III. It
shown that the field operators satisfy the required canon
commutation relations provided that the magnitude of
round-trip gain inside the slab is less than unity, so t
the lasing threshold is not achieved at any of the frequen
for which the dielectric behaves as an amplifier. The out
noise fluxes and the transmission and reflection ga
or losses of the slab are determined in Sec. IV, and i
shown that these satisfy general requirements derived
the minimum noise in amplifiers and attenuators. The beh
ior of the gain profile on the approach to the threshold
laser action is determined and shown to display the w
known phenomena of divergent peak gain and narrowing
the width of the gain spectrum. The spectra of the elec
field fluctuations in the zero-temperature vacuum and at
evated temperatures are evaluated and illustrated for freq
cies at which the medium shows amplification~negative ef-
fective temperature! and at which it shows attenuatio
~positive effective temperature!. The main conclusions of the
paper and its relation to previous work are summarized
Sec. V.
n,
1623 © 1997 The American Physical Society
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II. DIELECTRIC PROPERTIES

In this section we define the geometrical arrangement
the slab and the electromagnetic fields to be quantized.
also consider the general properties of the dielectric fu
tions that describe amplifying and attenuating media, and
the associated noise operators.

A. Dielectric function

The dielectric slab is taken to have a thickness 2l , with
the x coordinate perpendicular to its surfaces and the co
dinate origin at its center. With free space on both sides
the slab, the system dielectric function is

«~x,v!5H 1 for x,2 l

«~v! for 2 l,x, l

1 for l,x.

~2.1!

The electromagnetic properties of the medium are spec
by its dielectric function«(v) at angular frequencyv, re-
lated to the complex refractive indexn(v) in the usual way

«~v!5@n~v!#2, ~2.2!

where the real refractive indexh(v) and extinction coeffi-
cientk(v) are defined by

n~v!5h~v!1 ik~v!. ~2.3!

The dielectric function in an attenuating medium has we
known analytic properties@7#, in particular that all of its
poles lie in the lower half of the complexv plane, in accor-
dance with causality requirements. As a consequence,
above optical functions satisfy a range of dispersion,
Kramers-Kronig, relations and sum rules@8,9#.

An amplifying medium is characterized by the existen
of frequenciesv for which the extinction coefficientk(v) is
negative and the loss is accordingly replaced by gain.
dielectric characteristics at such frequencies are calcul
straightforwardly, using, for example, models of optica
pumped media@10#, and they can be described by the sa
functions as defined above. It is found that the dielec
function continues to have all of its poles in the lower half
the complexv plane, with the difference that the signs of th
residues are changed when an attenuating pole is replace
an amplifying pole@11,12#. In general, the dielectric function
of an amplifying medium has limited ranges ofv where
k(v) is negative, whilek(v) is positive or zero for all other
frequencies. The optical functions of a pumped medium c
tinue to satisfy similar dispersion relations and sum ru
@12–14# to those for an entirely lossy dielectric. Furthe
more, the dielectric function continues to conform to t
limit

«~v!→1 for v→` in any manner, ~2.4!

and the crossing relations
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«~2v!5«* ~v!, n~2v!5n* ~v!,

h~2v!5h~v!, k~2v!52k~v! ~2.5!

continue to define the optical functions at negative frequ
cies.

A simple dielectric model is provided by the example o
system that has an upper level with populationNu and a
lower level with populationNl , separated by energy\v0.
The dielectric function for frequencies in the vicinity of th
transition has the Lorentzian form

«~v!5«b~v!2
Nl2Nu

Nl1Nu

S

~v1v01 ig!~v2v01 ig!
,

~2.6!

whereg is a damping parameter,S denotes the strength o
the resonance atv0 when all of the population is in one o
the levels, and«b(v) is a real background contribution to th
dielectric function from all of the other resonances. T
poles of the dielectric function always lie in the lower ha
plane atv56v02 ig, while the residue of the more impor
tant pole atv5v02 ig is negative for an attenuating reso
nance with normal populations,Nl.Nu , but positive for an
amplifying resonance with inverted population,Nl,Nu .

As in I, we consider only electromagnetic waves th
propagate perpendicular to the slab with their wave vec
parallel to thex axis and with their transverse electric an
magnetic vector operatorsÊ(x,t) and B̂(x,t) parallel to the
y andz axes, respectively. Thus with the usual decompo
tions of the operators into positive and negative freque
components and Fourier transform operators defined by

Ê1~x,t !5
1

A2p
E
0

`

dv Ê1~x,v!e2 ivt, ~2.7!

the electric- and magnetic-field operators are related to
vector potential operator by

Ê1~x,v!5 ivÂ1~x,v!, B̂1~x,v!5
]Â1~x,v!

]x
.

~2.8!

Substitution of these fields into Maxwell’s equations pr
duces an equation for the vector potential operator in
form

2S ]2

]x2
1

v2«~x,v!

c2 D Â1~x,v!5m0 ĵ ~x,v!, ~2.9!

where the transverse current operatorĵ (x,v) plays the role
of a Langevin force associated with the noise sources in
dielectric@2#. This operator vanishes in the absence of loss
gain, while in their presence it has the form

ĵ ~x,v!5u„k~v!… ĵ1~x,v!1u„2k~v!… ĵ2~x,v!,
~2.10!

whereu(Z) is the usual unit step function
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u~Z!5H 1 for Z.1

0 for Z,1.
~2.11!

The replacement of the operatorĵ1 for the attenuating me
dium by ĵ2 for the amplifying medium is associated with th
inversion of the noise oscillators in the latter~see@15,16#!.

The solution of Eq.~2.9! for the vector potential operato
is obtained by standard Green function methods in the fo

Â1~x,v!5SE
2`

`

dx8G~x,x8,v! ĵ ~x8,v!, ~2.12!

whereS is an area of quantization in they-z plane, and the
Green function is determined by solution of

2S ]2

]x2
1

v2«~x,v!

c2 DG~x,x8,v!5
m0

S
d~x2x8!.

~2.13!

The Fourier transform Green function is the same as in

G~x,k,v!5
1

A2p
E

2`

`

dx8G~x,x8,v!eikx8

5
m0

A2pS

eikx

k22@v2«~x,v!/c2#
, ~2.14!

where«(x,v) is independent ofx within each of the three
spatial regions defined in Eq.~2.1!.

B. Noise operators

The momentum conjugate to the vector potential in
Coulomb gauge is2«0Ê(x,t), and their equal-time commu
tator can be expressed in terms of the Green function
@5,17#

@Â~x,t !,2«0Ê~x8,t !#5 i
2«0\

p E
0

`

dv v Im@G~x,x8,v!#.

~2.15!

The commutator is required to reduce to the canonical fo

@Â~x,t !,2«0Ê~x8,t !#5~ i\/S!d~x2x8!, ~2.16!

and this condition is used to establish the normalization
the Langevin noise operators. Thus, for noise that is un
related at different positions and different frequencies,
result obtained in I~2.20! and in~4.38! of @17# is generalized
to

@ ĵ1~x,v!, ĵ2~x8,v8!#5$4«0\v2h~v!uk~v!u/S%

3d~x2x8!d~v2v8! ~2.17!

and it follows from the definition~2.10! of the generalized
noise operator that

@ ĵ ~x,v!, ĵ †~x8,v8!#5$4«0\v2h~v!k~v!/S%d~x2x8!

3d~v2v8!. ~2.18!
m
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We shall see in the Sec. III C that this normalization of t
noise current commutator ensures compliance of the fi
operators with the canonical commutator~2.16!. It is seen
from Eqs.~2.17! and ~2.18!, respectively, that in regions o
v for which amplification occurs,k(v) sometimes appear
as a positive magnitude and sometimes as a negative q
tity.

Again similar to the derivations in I, it is convenient t
use a normalized versionf̂ (x,v) of the noise current opera
tor, defined by

f̂ ~x,v!5 ĵ1~x,v!/A4«0\v2h~v!uk~v!u/S, ~2.19!

and it is seen from Eq.~2.17! that this satisfies the simpl
boson commutation relation

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!. ~2.20!

The corresponding normalized version of Eq.~2.10! is given
by

ŵ~x,v!5u„k~v!… f̂ ~x,v!1u„2k~v!… f̂ †~x,v!,
~2.21!

and this new noise operator has a boson-type commutat

@ŵ~x,v!,ŵ†~x8,v8!#5sgn@k~v!#d~x2x8!d~v2v8!.
~2.22!

The expectation values of these noise operators determ
the amounts of noise that are added to optical signals
propagate through the attenuating or amplifying dielect
The state of the dielectric slab at frequenciesv for which
attenuation occurs is conveniently characterized by a pos
frequency-dependent effective temperatureT[T(v) and the
noise operator expectation values are taken in the stan
forms

^ f̂ ~x,v!&5^ f̂ †~x,v!&50 ~2.23!

and

^ f̂ †~x,v! f̂ ~x8,v8!&5N~v,T!d~x2x8!d~v2v8!.
~2.24!

The population factor can be written in the equivalent for

N~v,T!5
1

exp~\v/kBT!21
5

Nu

Nl2Nu
, ~2.25!

whereNu andNl are the upper- and lower-level population
associated with the dielectric response at frequencyv, as
used in the specimen two-level dielectric function~2.6!, with
Nl.Nu for frequencies at which attenuation occurs. Ve
high temperatures correspond to saturation of the transi
between the two levels, withNl5Nu .

The corresponding results for an amplifying dielectric a
obtained by taking a negative effective temperature, with
of the property

N~v,T!5N~v,2uTu!52N~v,uTu!21 for T,0.
~2.26!
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Thus the expectation value~2.23! is unchanged, but Eq
~2.24! is modified by the substitution ofN(v,uTu) for the
population factor, which can be written in the equivale
forms

N~v,uTu!5
1

exp~\v/kBuTu!21
5

Nl

Nu2Nl
, ~2.27!

with Nu.Nl for frequencies at which amplification occur
The effective temperatureuTu50 corresponds to perfect in
version, withNl50, while very high temperaturesuTu→`
again correspond to saturation of the transition between
two levels, withNl5Nu .

The noise operator defined by Eq.~2.21! is used in all
subsequent calculations, and its expectation values d
mined by Eqs.~2.20!, ~2.23!, ~2.24!, and~2.26! are

^ŵ†~x,v!ŵ~x8,v8!&5$u„k~v!…N~v,T!

1u„2k~v!…@N~v,uTu!11#%

3d~x2x8!d~v2v8! ~2.28!

and

^ŵ~x,v!ŵ†~x8,v8!&5$u„k~v!…@N~v,T!11#

1u„2k~v!…N~v,uTu!%d~x2x8!

3d~v2v8!, ~2.29!

and these are seen to be consistent with Eq.~2.22!.

III. FIELD QUANTIZATION

The formal quantization of the electromagnetic fields
the slab and the free space regions on either side is
formed in the present section. The methods are identica
those used in I, and many of the results are also the sa
The account given below is therefore restricted to an out
of the procedure and presentation of those detailed res
where the occurrence of amplifying behavior over so
ranges of frequency produces changes from the results
purely attenuating medium. The physical significances of
various results are discussed in Sec. IV.

The Green functions determined by solution of Eq.~2.13!
are the same as for a purely attenuating dielectric and
results are given by I~5.2!, ~5.6!, and ~5.7!. A particular
integral solution for the vector potential operator is obtain
by substitution of the appropriate Green function into E
~2.12!. The complete solution also contains complement
function parts that correspond to free fields incident on
slab surfaces from the regions of free space to its left
right. The notation for the operators associated with
rightwards and leftwards parts of the fields in the three s
tial regions is illustrated in Fig. 1. The operators for t
incoming fields on the left and right of the slab have t
free-space commutators

@ âR~v!,âR
†~v8!#5@ b̂L~v!,b̂L

†~v8!#5d~v2v8!,
~3.1!

and the operators for the two kinds of incoming wave co
mute,
t

he

er-
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e
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e

e

d
.
y
e
d
e
-

-

@ âR~v!,b̂L
†~v8!#50. ~3.2!

A. Exterior regions

Consider first the complete fields exterior to the slab. T
field on the left can be written in the form

Â1~x,t !5E
0

`

dvS \

4p«0cvSD
1/2

@ âR~v!eivx/c

1âL~v!e2 ivx/c#e2 ivt, x,2 l , ~3.3!

where the operator for the leftward-propagating outgo
field is given by

âL~v!5RS~v!âR~v!1TS~v!b̂L~v!1F̂L~v!, ~3.4!

similar to I ~5.11!. The outward-propagating noise operat
is defined as

F̂L~v!5 i S 2vh~v!uk~v!u
c D 1/2

3E
2 l

l

dx8HV~v!expS ivn~v!x8

c D
1W~v!exp S 2

ivn~v!x8

c D J ŵ~x8,v!. ~3.5!

The amplitude reflection and transmission coefficients for
slab are given by

RS~v!52
n~v!221

D~v!
expS 2

2iv l

c D
3H 12 expS 4ivn~v!l

c D J ~3.6!

and

TS~v!5
4n~v!

D~v!
expS 2iv@n~v!21# l

c D . ~3.7!

The coefficients in the integrand of the noise operator ar

V~v!5
2@n~v!11#

D~v!
expS iv@n~v!21# l

c D ~3.8!

and

FIG. 1. Representation of the dielectric slab, showing the no
tion for the destruction operators used in the definitions of the v
tor potential operator.
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W~v!5
2@n~v!21#

D~v!
expS iv@3n~v!21# l

c D , ~3.9!

where

D~v!5@n~v!11#22@n~v!21#2exp@4ivn~v!l /c#.
~3.10!

The field on the right of the slab is given by

Â1~x,t !5E
0

`

dvS \

4p«0cvSD
1/2

@ b̂R~v!eivx/c

1b̂L~v!e2 ivx/c#e2 ivt, x. l , ~3.11!

where the operator for the rightwards-propagating outgo
field is given by

b̂R~v!5TS~v!âR~v!1RS~v!b̂L~v!1F̂R~v!, ~3.12!

similar to I ~5.15!, and the form of the noise operator on th
right is obtained from that on the left, given by Eq.~3.5!,
according to the prescription

F̂R~v!5F̂L~v! with x8→2x8 in the exponents.
~3.13!

These outward propagating noise operators differ from th
given in I by the occurrence of the modulus of the extincti
coefficient in the square-root prefactors and by the gene
zation of the normalized noise current operator to the fo
defined in Eq.~2.21!.

It is straightforward, but algebraically lengthy, to sho
with the use of the commutator~2.22! and the forms of the
coefficients~3.6!–~3.9! that the noise operators in~3.4! and
~3.12! have the commutators

@ F̂L~v!,F̂L
†~v8!#5@ F̂R~v!,F̂R

†~v8!#

5@12uR~v!u22uT~v!u2#d~v2v8!

~3.14!

and

@ F̂L~v!,F̂R
†~v8!#52@RS~v!TS* ~v!1TS~v!RS* ~v!#

3d~v2v8!. ~3.15!

These noise-operator commutators and the forms of the
going field operators defined in Eqs.~3.4! and ~3.12! have
been applied in@18# to derive the field commutation relation
in an optical cavity. It follows from the above expressio
that the outgoing field operators have the simple free-sp
commutators

@ âL~v!,âL
†~v8!#5@ b̂R~v!,b̂R

†~v8!#5d~v2v8!
~3.16!

and

@ âL~v!,b̂R
†~v8!#50. ~3.17!
g

e

li-

t-

ce

Expressions for the electric- and magnetic-field operators
the left and right of the slab are readily obtained from E
~3.3! and ~3.11!, respectively, with the use of Eq.~2.8!.

B. Interior region

The vector potential operator inside the dielectric slab
the form

Â1~x,t !5E
0

`

dvS \h~v!

4p«0cvn~v!2SD
1/2

@ ĉR~x,v!

1 ĉL~x,v!#e2 ivt, 2 l,x, l , ~3.18!

where the operators associated with the rightward-
leftward-propagating fields are again linear combinations
the incoming field operators and noise contributions, with
forms

ĉR~x,v!5S n~v!

h~v!1/2
@V~v!âR~v!1W~v!b̂L~v!#

1 i S 2vuk~v!u
c D 1/2

3H E
2 l

l

dx8Fn~v!221

D~v!
expS ivn~v!~2l1x8!

c D
1

@n~v!21#2

D~v!
expS ivn~v!~4l2x8!

c D G ŵ~x8,v!

1E
2 l

x

dx8exp S 2
ivn~v!x8

c D ŵ~x8,v!J D
3exp S ivn~v!x

c D ~3.19!

and

ĉL~x,v!5S n~v!

h~v!1/2
@W~v!âR~v!1V~v!b̂L~v!#

1 i S 2vuk~v!u
c D 1/2

3H E
2 l

l

dx8Fn~v!221

D~v!
expS ivn~v!~2l2x8!

c D
1

@n~v!21#2

D~v!
expS ivn~v!~4l1x8!

c D G ŵ~x8,v!

1E
x

l

dx8 expS ivn~v!x8

c D ŵ~x8,v!J D
3exp S 2

ivn~v!x

c D , ~3.20!

similar to I ~5.17! and~5.18!. The commutation relations fo
these operators are the same as given in the Appendix
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and there is no need to reproduce them here. Their equa
of propagation are easily derived from Eqs.~3.19! and~3.20!
as

] ĉR,L~x,v!

]x
56 i

vn~v!

c
ĉR,L~x,v!

6 i S 2vuk~v!u
c D 1/2ŵ~x,v!, ~3.21!

where1 and2 refer to right and left propagation, respe
tively. The electric- and magnetic-field operators inside
slab are straightforwardly derived from Eq.~2.8! with the use
of Eqs. ~3.18! and ~3.21!. It has been shown in@6# that the
same expressions for the vector potential operator as der
in the present section can be obtained by taking the pro
gation equation~3.21! as the starting point and applying th
usual boundary conditions to the field operators at the
faces of the slab.

All of the field operators in the three spatial regions a
expressed in terms of the two incoming fields associated w
âR(v) and b̂L(v), together with the noise field associate
with ŵ(x,v). The states of the entire system are thus defi
by the states of the two incoming optical fields and by
expectation values of the noise operator. For specified inp
the formalism allows the time development of the optic
fields from their initial input states to be calculated.

C. Canonical commutation relation

The correctness of the quantized field operators can
tested by evaluation of the canonical commuator, wh
should have the value given in Eq.~2.16!. The test can be
carried out by use of the explicit forms of the field operato
as in @6#, or more concisely by use of the expression~2.15!,
which is determined by the same Green functions as the
operators themselves. The calculations are largely the s
as presented for the attenuating dielectric in I, and it is
necessary to repeat most of the detail. However, the po
bility that k(v) may be negative for some ranges of t
frequencyv requires additional consideration of the stru
tures of the poles in the various reflection and transmiss
coefficients. Thus, while«(v) continues to have all of its
poles in the lower half of the complexv plane, as outlined in
Sec. II, this condition is no longer automatically the case
some of the coefficients that are derived from«(v).

The reflection coefficient at each surface for light incide
from inside the dielectric slab is

r ~v!5
n~v!21

n~v!11
[ur ~v!uexp@ if r~v!#, ~3.22!

where the amplitude has the propertyur (v)u<1 for all val-
ues of the frequency, whetherv corresponds to dielectric
loss or gain. The complex round-trip loss or gain for lig
that travels from a point in the slab and back to the sa
point after two surface reflections is

g~v!5r 2~v!exp@4ivn~v!l /c#[ug~v!uexp@ ifg~v!#,
~3.23!

where
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ug~v!u5ur ~v!u2exp@24vk~v!l /c#,

fg~v!52f r~v!1@4vh~v!l /c#. ~3.24!

The denominator~3.10! that occurs in the coefficients de
fined in Eqs.~3.6!–~3.9! can be written in the form

D~v!5@n~v!11#2@12g~v!#. ~3.25!

The numerators of these coefficients and the denomin
~3.25! are analytic functions ofv in the upper half of the
complexv plane and the coefficients are themselves anal
functions if 12g(v) has no zeros there. The zeros
12g(v) occur for frequenciesv that simultaneously satisfy

ug~v!u51 ~3.26!

and

cos@fg~v!#51. ~3.27!

The functiong(v) is also analytic in the upper half plan
and ug(v)u accordingly takes its maximum value on th
boundary of the half plane@19#. Now ug(v)u clearly tends to
zero on the infinite semicircle, so that its maximum val
must occur on the real axis. A sufficient condition for an
lytic coefficients is therefore

ug~v!u,1 for real v, ~3.28!

and this is always satisfied for frequencies associated w
loss, wherek(v) is positive. However, for frequencies ass
ciated with gain, wherek(v) is negative, the condition
~3.28! is satisfied only for

ur ~v!u,exp@22vuk~v!u l /c#. ~3.29!

In this case the coefficients are indeed analytic functions
v in the upper half plane, and the proofs of the canoni
commutation relation~2.16! for the different regions of spac
proceed in exactly the same ways as presented in I for
purely attenuating dielectric. These proofs justify the n
malization of the noise commutator assumed in Eq.~2.17!.

The conditions~3.26! and ~3.27! determine the threshold
for laser action, when the state of the optical field in t
amplifying slab transforms into one of self-sustaining osc
lation. The two conditions must be satisfied simultaneou
for the lasing frequenciesv. Condition ~3.26! specifies a
gain in the dielectric that is sufficient to offset the loss
optical energy through the slab surfaces while condit
~3.27! specifies phase matching of the light after a round t
in the slab. We do not consider the properties of the las
slab here.

IV. SLAB AMPLIFICATION OR ATTENUATION
AND NOISE

The slab acts as an amplifier or attenuator for radiat
incident from the free space on its left or right. The syste
must also produce noise in amounts whose minimum va
are controlled by very general requirements derived from
relations between input and output operators@20#. We show
in the present section how the gain and the noise deri
from the slab properties obtained above conform to th
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requirements. We also evaluate the electric-field fluctuati
in the three spatial regions.

A. Gain and noise

The slab geometry shown in Fig. 1 is symmetrical, and
need consider only its effects on light that is incident fro
the free space on its left, with the incident field from the rig
taken to be in its vacuum state. Thus, with the use of E
~3.4! and~3.12!, the output photon-number fluxes on the le
and right of the slab are determined by the expectation
ues

^âL
†~v!âL~v8!&5GR~v!^âR

†~v!âR~v8!&1^F̂L
†~v!F̂L~v8!&

~4.1!

and

^b̂R
†~v!b̂R~v8!&5GT~v!^âR

†~v!âR~v8!&

1^F̂R
†~v!F̂R~v8!&. ~4.2!

The intensity gains in reflection and transmission are defi
by

GR~v!5uRS~v!u2 ~4.3!

and

GT~v!5uTS~v!u2, ~4.4!

respectively, where the reflection and transmission coe
cients are given by Eqs.~3.6! and ~3.7!. We use the term
‘‘gain’’ for simplicity to cover both amplifying and attenu
ating frequencies, when theG(v) are greater or smaller tha
unity, respectively. These gains have the properties

GR~v!1GT~v!.1 for k~v!,0

51 for k~v!50

,1 for k~v!.0.
~4.5!

Both the reflection and transmission coefficients have
denominatorD(v), which can be written in the form~3.25!,
and they therefore have the proportionality

G~v!}
1

u12g~v!u2
5

1

11ug~v!u222ug~v!ucos@fg~v!#
,

~4.6!

where Eq.~3.23! has been used. The gains have their ma
mum values for cos@fg(v)#51 when

Gmax~v!}
1

@12ug~v!u#2
~4.7!

and infinite gain occurs forug(v)u51, corresponding to the
threshold for laser action discussed in Sec. III C. The g
remains finite forug(v)u,1 and Eq. ~4.6! takes half its
maximum value~4.7! when

cos@fg~v!#512
@12ug~v!u#2

2ug~v!u
. ~4.8!
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Thus, as the round-trip gainug(v)u approaches the threshol
value of unity,fg(v) at half maximum gain differs from its
value at maximum gain~an integer multiple of 2p) by ap-
proximately6@12ug(v)u#. The full width of the gain pro-
file at half maximum height close to threshold is now o
tained from the second line of Eq.~3.24! as

Dv5
c@12ug~v!u#

2h~v!l
. ~4.9!

The divergence in peak gain~4.7! and the narrowing of the
gain profile shown by Eq.~4.9! on the approach to threshol
are well-known features of standard laser theory@21#.

The output noise operator expectation values that occu
Eqs.~4.1! and~4.2! are readily obtained from essentially th
same calculation that produces the commutation relati
~3.14!, with the help of the corresponding expectation valu
for the noise current operator given in Eqs.~2.28! and~2.29!.
The results can be written in the forms

^F̂L
†~v!F̂L~v8!&5^F̂R

†~v!F̂R~v8!&

5FN~v,uTu!11

2N~v,T!
G

3$GR~v!1GT~v!21%d~v2v8!

~4.10!

and

^F̂L~v!F̂L
†~v8!&5^F̂R~v!F̂R

†~v8!&

5F N~v,uTu!

2N~v,T!21G
3$GR~v!1GT~v!21%d~v2v8!,

~4.11!

where here, and subsequently, the upper and lower entrie
the column matrix refer to frequencies for which the diele
tric is amplifying and attenuating, respectively. These exp
tation values are always positive or zero in accordance w
the inequalities in Eq.~4.5!. The subtraction of Eq.~4.10!
from Eq. ~4.11! produces expressions consistent with t
commutator~3.14! for both cases of amplification and a
tenuation.

The dielectric slab considered here is an example o
phase-insensitive linear amplifier, whose output noise op
tors must satisfy the requirements of general amplificat
theory @20#. The theory needs some extensions to cover
kind of amplifier considered here, in which there are tw
inputs and two outputs@22#, and the generalizations of Eq
~4.19b! and ~4.21! of @20# give

^F̂~v!F̂†~v8!1F̂†~v8!F̂~v!&

>uGR~v!1GT~v!21ud~v2v8!, ~4.12!

which must be satisfied by the noise operators on both
left and right of the slab. We note from Eq.~4.5! that the
modulus signs in Eq.~4.12! have no effect fork(v),0, but
they reverse the signs of the terms within fork(v).0. Use
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of the explicit noise operator expectation values for the a
plifying or attenuating slab obtained from Eqs.~4.10! and
~4.11! gives

^F̂L~v!F̂L
†~v8!1F̂L

†~v8!F̂L~v!&

5^F̂R~v!F̂R
†~v8!1FR

†~v8!F̂R~v!&

5F 2N~v,uTu!11

22N~v,T!21G$GR~v!1GT~v!21%d~v2v8!,

~4.13!

and the positive or zero values of the population fact
N(v,T) and N(v,uTu) ensure that the inequality in Eq
~4.12! is indeed satisfied.

B. Electric-field fluctuations

The noise properties of the system are also manifeste
the electric-field fluctuation spectrum in the absence of
input signal, which determines the contributions of the wa
that propagate perpendicular to the slab to such propertie
atomic spontaneous emission rates and Casimir forces.
power spectrumS(x,v) of the electric field fluctuations a
positionx is defined by

^Ê~x,v!Ê~x,v8!&5S~x,v!d~v2v8!, ~4.14!

where the angular brackets denote an expectation value
respect to the vacuum states of the incoming fields descr
by the operatorsâR(v) and b̂L(v) and the positive- or
negative-temperature thermal states of the noise field in
amplifying or attenuating slab.

We have previously used the fluctuation-dissipation th
rem to obtain expressions for the power spectra associ
with various configurations of attenuating dielectrics at z
temperature@1,2,5#. Fluctuation-dissipation theorems hav
also been derived for amplifying media@23–25#. However,
this approach cannot be used when the system as a who
not in thermal equilibrium@26#, as in the present exampl
where an attenuating or amplifying dielectric at eleva
positive or negative temperature is surrounded by free sp
at zero temperature.

The required power spectra can, however, be derived
direct substitution of the electric-field operators in the de
nition ~4.14!. Consider first the free space on the right of t
slab where the electric field operator obtained from E
~2.8!, ~3.11!, and~3.12! is

Ê1~x,v!5 i S \v

2«0cS
D 1/2$@TS~v!âR~v!1RS~v!b̂L~v!

1F̂R~v!#eivx/c1b̂L~v!e2 ivx/c%. ~4.15!

Substitution in Eq.~4.14! then leads to an exterior spectru

Sex~x,v!5
\v

«0cS
H 11Re@RS~v!e2ivx/c#1FN~v,uTu!11

2N~v,T!
G

3@ uRS~v!u21uTS~v!u221#J ~4.16!
-
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for x. l , where Eqs.~3.1!, ~4.3!, ~4.4!, and~4.13! have been
used. For a blackbody limit in which both the reflection a
transmission coefficients vanish, the exterior spectrum of
absorbing slab reduces to

Sex~x,v!5
\v

«0cS
@N~v,T!11#. ~4.17!

Here the thermal factor can be separated into a contribu
from N(v,T) blackbody photons plus a12 vacuum part
propagating away from the slab and another1

2 vacuum con-
tribution propagating towards the slab. The former contrib
tion agrees with the one-dimensional form of the blackbo
spectrum@4,17#.

The electric-field operator in the interior of the slab
similarly obtained with the use of Eqs.~3.18!–~3.20!, and the
resulting power spectrum can be written as

Sin~x,v!5Svac~x,v!1FN~v,uTu!11

2N~v,T!
G$SRL~x,v!

22Svac~x,v!% ~4.18!

for 2 l,x, l , where

Svac~x,v!5
\v

«0cS

1

un~v!u2
ReS n~v!

1n* ~v!@n~v!21#expS iv@n~v!11# l

c D
3HW~v!1

V~v!

2 FexpS 2ivn~v!x

c D
1expS 2

2ivn~v!x

c D G J D ~4.19!

is the power spectrum for an attenuating slab at zero t
perature and

SRL~x,v!5
\v

«0cS
@ uV~v!eivn~v!x/c1W~v!e2 ivn~v!x/cu2

1uW~v!eivn~v!x/c1V~v!e2 ivn~v!x/cu2#

~4.20!

contains the contributions to the spectrum from the incom
modesâR(v) and b̂L(v), respectively. For an attenuatin
slab with incoming modes from free-space regions ma
tained at the same temperatureT as the medium, the powe
spectrum can be obtained independently from
fluctuation-dissipation theorem in the form

Sin~x,v!5@2N~v,T!11#Svac~x,v!, ~4.21!

and the same result follows from Eq.~4.18! when
SRL(x,v) is neglected. ThusSRL(x,v) plays the role of a
correction to allow for the fact that the free spaces on b
sides of the slab are here assumed at zero temperature
there are accordinglyN(v,T) fewer photons incident on the
slab from each side.
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The exterior and interior power spectra~4.16! and ~4.18!
have similar structures with sums of temperature
independent and temperature-dependent terms. It can
shown by lengthy algebra that the former terms have equ
values and equal spatial derivatives atx5 l while the latter
terms have equal values and zero spatial derivatives the
The spectra show maxima at frequencies for which E
~3.27! is satisfied, when the round-trip phase shift~3.24! in-
side the dielectric slab is an integer multiple of 2p, leading
to a buildup of the field fluctuations.

Figure 2 shows two examples of the spatial dependenc
of the power spectrumS(x,v) of electric-field fluctuations
for a frequency at which amplification occurs. The fluctua
tions are symmetrical aroundx50, and only positive values
of x are included in the figure. Figure 2~a! shows the spatial
dependence for zero effective temperature, where the tw
level population is perfectly inverted, while Fig. 2~b! shows
the fluctuations for an elevated negative temperature, wh
the amplification is reduced by the effects of saturation. Th
population factor that occurs in the dielectric function~2.6!
for the two-level model can be written

Nl1Nu

Nl2Nu
5F22N~v,uTu!21

2N~v,T!11 G , ~4.22!

FIG. 2. Spatial variation of the spectrumS(x,v) of electric-field
fluctuations in the vicinity of an amplifying dielectric slab, normal
ized to the vacuum free-space value. The slab thickness
2l510pc/v and h(v)51.5. The other parameters are
(a) uTu50 and k(v)520.04, giving GR(v)519.8 and
GT(v)543.5, and (b) uTu5180\c/kBl andk(v)520.0017, giv-
ing GR(v)50.00055 andGT(v)51.12. The insets show the
boundary regions in more detail.
-
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where the definitions~2.25! and ~2.27! have been used for
the amplifier and attenuator, respectively. The change in t
population factor with an increase in the magnitude of th
temperature affects both the refractive index and extincti
coefficient. However, for a refractive index that greatly ex
ceeds the extinction coefficient, a change in the populat
factor mainly influences the extinction coefficient, whos
value at elevated negative temperature is assumed to be
lated to its valuek0(v) at zero negative temperature by@17#

k~v!5
k0~v!

2N~v,uTu!11
, ~4.23!

and this relation has been used in the construction of F
2~b!. Despite appearances to the contrary, the spectra h
continuous values and slopes atx5 l as is shown in the large-
scale inserts of the boundary region. For the parameter v
ues given in the figure caption, the value of the extinctio
coefficient at the lasing threshold obtained from Eq.~3.29! is
k(v)520.051, so that Fig. 2~a! represents conditions quite
close to threshold. Both the internal and external fluctuatio
are decreased for the conditions of elevated negative te
perature and reduced gain shown in Fig. 2~b!.

is

FIG. 3. Spatial variation of the spectrumS(x,v) of electric-field
fluctuations in the vicinity of an attenuating dielectric slab, norma
ized to the vacuum free-space value. The slab thickness
2l510pc/v andh(v)51.5. The other parameters are (a)T50
and k(v)50.04, givingGR(v)50.034 andGT(v)50.075, and
(b) T5180\c/kBl and k(v)50.0017, givingGR(v)50.000 44
andGT(v)50.89. The insets show the boundary regions in mo
detail.
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Similar remarks apply to Fig. 3, where the two parts sh
the spatial dependences of the electric-field fluctuations
sociated with an attenuating slab at zero and an elev
temperature, the extinction coefficients at the two tempe
tures being related by~4.23! with the modulus sign removed
Fig. 3~a! is similar to Fig. 3 in I and corresponds to cond
tions of equilibrium at zero temperature where t
fluctuation-dissipation theorem is valid. It shows the effe
of the slab in causing oscillations of the mean-square elec
field around the usual free-space value in the exterior reg
and around a value reduced by the factorh(v)/un(v)u2 in
the interior, as discussed in I. Figure 3~b! shows the en-
hanced internal fluctuations and reduced external fluctuat
at an elevated temperature. The insets again show the c
nuities of the slopes of the spectra atx5 l .

It is evident from Figs. 2~b! and 3~b! that similar electric-
field fluctuations occur for an amplifier at elevated negat
temperature and an attenuator at elevated positive temp
ture. It can be shown that for frequencies su
that 4vh(v) l /c is an integer multiple of 2p the spectra
~4.16! and ~4.18! tend to the common high-temperatu
forms

Sex~x,v!5
\v

«0cS
H 11

vuk0~v!u l
c

h~v!211

h~v! J ~4.24!

and

Sin~x,v!5
\v

«0cS

1

2h~v!2 H 11
vuk0~v!u l

c

h~v!211

h~v! J
3$h~v!2111@h~v!221#

3cos@2vh~v!x/c#cos@2vh~v!l /c#%. ~4.25!

These expressions are valid asT→2` for the amplifier and
asT→` for the attenuator, where the physical states of
medium are identical, with equal populations in the upp
and lower levels of the dipole-active transitions.

V. CONCLUSIONS

We have generalized earlier work on the quantization
the electromagnetic field in attenuating dielectrics to cove
dielectric slab that shows amplification over some range
frequency. The extinction coefficientk(v) is thus allowed to
take negative as well as positive values, with a functio
form that is limited only by the requirements of causali
We have derived the forms of the electromagnetic field
erators inside the slab and in the free-space regions on e
side for waves propagated normal to the slab surfaces.
slab approaches a threshold for laser action whenk(v) takes
increasing negative values up to a point where the gain
side the slab overcomes the losses to the outside by tr
mission through the surfaces. We have identified the p
ence of laser threshold effects in the quantized fi
operators, but have confined our treatment to the regim
linear amplification below threshold. The appropriate cano
cal commutation relations for the conjugate vector poten
s-
ed
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and electric-field operators in the three spatial regions
satisfied in this regime.

The quantum formalism has been used to derive the
plification and noise properties of the dielectric slab in ter
of the intensity gains for a signal incident from free spa
observed in reflection from or transmission through the sl
The gain profiles show the usual narrowing effects on
approach to the lasing threshold. The amounts of noise ad
to the amplified, or attenuated, signals have been show
accord with the minimum values required by a generalizat
of standard amplifier theory for a slab with two inputs a
two outputs. The quantum-mechanical nature of the form
ism ensures that it applies to the amplification of nonclass
light, as well as light whose gain characteristics could
obtained from a classical derivation. For any kind of incide
light, the added noise is a basic quantum-mechanical p
nomenon that can only be rigorously computed by the qu
tum theory.

Previous work on the quantization of the electromagne
field in dielectrics has employed models in which the cent
of amplification or attenuation are represented by be
splitters, whose input-output relations allow for illuminatio
of the spare input ports with light from harmonic oscillato
in inverted or normal states, respectively@15#. This method
has been applied to sections of amplifying and attenua
media embedded in inert media of infinite extent@16#. It
has also been used in quite sophisticated modeling of sp
and temporal effects in semiconductor lasers in Fabry-P´rot
cavities @27#. The results obtained by such models a
in qualitative agreement with the more rigorous theo
developed here. However, it is difficult to combine th
beam-splitter representation with a satisfactory fulfilment
the standard electromagnetic boundary conditions at
surfaces of a finite specimen. By contrast, the formali
presented here can be applied to the study of linear amp
cation in a finite inverted-population medium, wit
rigorous inclusion of the spatial effects caused by its s
faces.

The theory developed here is adequate for a wide rang
experiments where the light beams are propagated norm
through the surfaces of the optical components. Extens
to include all directions of propagation are needed
the treatment of processes such as the spontaneous em
by atoms close to or inside dielectrics and the Casimir pr
sures exerted on dielectric surfaces, where there is no res
tion on the spatial directions involved. Such extensio
greatly complicate the derivations, and they are reserved
future work.
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