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Electromagnetic field quantization in amplifying dielectrics
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The electromagnetic field is quantized for normal transmission of incident waves through a parallel-sided
dielectric slab. The dielectric material is dispersive and it acts as a linear amplifier over limited ranges of the
frequency and as a linear attenuator at the remaining frequencies. The field operators derived for the three
spatial regions within and on either side of the slab are shown to satisfy the canonical commutation relations.
The noise fluxes emitted by the slab are evaluated and shown to satisfy the general requirements for the
minimum noise associated with linear amplifiers and attenuators. The behavior of the amplifier gain profile on
the approach to the lasing threshold of the slab is determined, but the results are restricted to the below-
threshold state of the system. The spectra of the electric-field fluctuations are evaluated for the three spatial
regions and for amplifying and attenuating frequendi&4.050-294{@7)06402-(

PACS numbd(s): 12.20—m, 42.50-p

I. INTRODUCTION Despite the striking practical differences between media
that show attenuation and those that show amplification over
We have recently developed the quantum theory of thdimited ranges of the frequency, their theoretical descriptions
electromagnetic field in dielectric media that show both losgurn out to be remarkably similar. We can accordingly rely
and dispersior{1,2], building on earlier work that is re- on slightly modified forms of many of the results given in
viewed in these referencésee alsd3] for other work inthe  [2], and this paper and its equations are identified by the
same areR Explicit results were given for the quantized field abbreviation 1. Of course, in agreement with the practical
operators in propagation perpendicular to the interfaces ofjtuation, the physical predictions of the amplifier theory, in
dielectric samples with the geometries of an infinite mediumyerms for example of high-gain behavior, lasing threshold
a semi-infinite medium, and a parallel-sided slab. It waseffects, and enhanced electric-field fluctuations, are quite dif-
shown that the conjugate pairs of field operators correctlyerent from those of attenuator theory. The similarities be-
satisfy the required canonical commutation relations, and thg,een, their formal theories should not therefore obscure their
spectra of the vacuum field fluctuations were evaluated ,angery dissimilar physical natures. Brief details of our calcula-
illustrated for the three sample geometries. The fo_rmallsnlions have been given previoudig].
has been used to evaluate the effects of propagation of an The general features of the dielectric function and the

optical pulse through a dielectric slab on the pulse shape andoise operators for media that show amplification and attenu-
photon statistics, including the nonclassical effects of photoﬁ] P P

antibunching and squeezirid]. Similar quantization meth- ation in different spectral ranges are introduced in Sec.

ods have also been applied to other geometries of dielectri: 1he formal quantization of the electromagnetic field
material[5]. in the three spatial regions is performed in Sec. Ill. It is

The aim of the present paper is to extend the field quanshown thgt the fiel'd operatqrs satisfy the requirgd canonical
tization to a dispersive dielectric that shows amplificationcommutation relations provided that the magnitude of the
over some ranges of the frequency and attenuation over tHeund-trip gain inside the slab is less than unity, so that
remaining ranges of frequency. We consider particularly dhe lasing threshold is not achieved at any of the frequencies
parallel-sided slab constructed from such dielectric materialfor which the dielectric behaves as an amplifier. The output
again with electromagnetic wave propagation perpendiculanoise fluxes and the transmission and reflection gains
to its surfaces. The infinite or semi-infinite sample geom-or losses of the slab are determined in Sec. IV, and it is
etries considered for the lossy dielectric lead to difficulties inshown that these satisfy general requirements derived for
the presence of gain, as any amplification inevitably prothe minimum noise in amplifiers and attenuators. The behav-
duces infinite field fluctuations, and we do not consider themior of the gain profile on the approach to the threshold for
here. The slab geometry also gives rise to infinite patHaser action is determined and shown to display the well-
lengths in directions parallel to the surfaces and, althouglknown phenomena of divergent peak gain and narrowing of
transverse effects are not explicitly treated, we assume the width of the gain spectrum. The spectra of the electric
cross-sectional area sufficiently limited in its dimensions thafield fluctuations in the zero-temperature vacuum and at el-
only propagation perpendicular to the surfaces need be comvated temperatures are evaluated and illustrated for frequen-
sidered. cies at which the medium shows amplificatioregative ef-

fective temperatuje and at which it shows attenuation
(positive effective temperatureThe main conclusions of the
*Present address: Department of Physics, University of Kermarpaper and its relation to previous work are summarized in
Kerman, Iran. Sec. V.
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Il. DIELECTRIC PROPERTIES s(—w)=e*(0), N(—w)=n*(v),

In this section we define the geometrical arrangements of
the slab and the electromagnetic fields to be quantized. We N(—ow)=n(w), k(-w)=-«k(w) 2.9
also consider the general properties of the dielectric func- . . . )
tions that describe amplifying and attenuating media, and ofontinue to define the optical functions at negative frequen-

the associated noise operators. cies. _ _ _ _
A simple dielectric model is provided by the example of a

system that has an upper level with populatip and a
A. Dielectric function lower level with populationN,, separated by energyw,.
The dielectric slab is taken to have a thicknes$s \ith The dielectric function for frequencies in the vicinity of the
the x coordinate perpendicular to its surfaces and the coortransition has the Lorentzian form
dinate origin at its center. With free space on both sides of

the slab, the system dielectric function is (@) =ep(w)— N —Ny 3
b N+ N, (0t wgtiy)(w—wt+iy)’
1 for x<-—I (2.6)
e(X,w)=1 e(w) for —I<x<lI (2.2 ) )
1 for l<x where y is a damping parametek, denotes the strength of

the resonance aby when all of the population is in one of
the levels, and,(w) is a real background contribution to the
The electromagnetic properties of the medium are specifiedielectric function from all of the other resonances. The
by its dielectric functions(w) at angular frequencw, re-  poles of the dielectric function always lie in the lower half
lated to the complex refractive indeX ) in the usual way plane atw= * wy—ivy, while the residue of the more impor-
tant pole atw= wy—ivy is negative for an attenuating reso-
nance with normal populationsl,>N,,, but positive for an
amplifying resonance with inverted populatids,<N,, .

As in |, we consider only electromagnetic waves that
where the real refractive index(w) and extinction coeffi- propagate perpendicular to the slab with their wave vectors

e(w)=[n(w)] (2.2

cient k(w) are defined by parallel to thex axis and with their transverse electric and
magnetic vector operatofs(x,t) and B(x,t) parallel to the
N(w)=7n(w)+ik(w). (2.3 Y andz axes, respectively. Thus with the usual decomposi-

tions of the operators into positive and negative frequency

. . o ) _ components and Fourier transform operators defined by
The dielectric function in an attenuating medium has well-

known analytic propertie$7], in particular that all of its

poles lie in the lower half of the complex plane, in accor- E*(x,t)= LJ do E*(x,w)e ", (2.7)
dance with causality requirements. As a consequence, the V2mlo

above optical functions satisfy a range of dispersion, or

Kramers-Kronig, relations and sum rulg&9]. the electric- and magnetic-field operators are related to the

An amplifying medium is characterized by the existencevector potential operator by
of frequencies» for which the extinction coefficient(w) is

negative and the loss is accordingly replaced by gain. The . oo - 0A+(x,w)
dielectric characteristics at such frequencies are calculated E'(X,@)=i0A™(X,w), B"(X,0)=—— —.
straightforwardly, using, for example, models of optically (2.8

pumped medig10], and they can be described by the same

functions as defined above. It is found that the dielectricgpstitution of these fields into Maxwell's equations pro-

function continues to have all of its poles in the lower half of y,,ces an equation for the vector potential operator in the
the complexw plane, with the difference that the signs of the form

residues are changed when an attenuating pole is replaced by

an amplifying pold11,12. In general, the dielectric function

of an amplifying medium has limited ranges &f where —
x(w) is negative, whilex(w) is positive or zero for all other
frequencies. The optical functions of a pumped medium con-

tinue to satisfy similar dispersion relations and sum rulegvhere the transverse current operajtor,w) plays the role
[12-14 to those for an entirely lossy dielectric. Further- Of @ Langevin force associated with the noise sources in the

more, the dielectric function continues to conform to thedielectric[2]. This operator vanishes in the absence of loss or
limit gain, while in their presence it has the form

&2 N w’e(X,w)
ax? c?

)A*(x,m:m](x,w), (2.9

J(X,0)=0(k(®)) [T (x,0)+ 8(— k() ] (X, ),

ge(w)—1 for w—o inany manner, (2.4 (2.10

and the crossing relations where 6(2) is the usual unit step function
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1 for Z>1 We shall see in the Sec. Il C that this normalization of the

0 for 7<1 (2.1) noise current commutator ensures compliance of the field
' operators with the canonical commutai@.16). It is seen

- . from Egs.(2.17) and(2.18), respectively, that in regions of

The replacement of the operatpf for the attenuating me- o for which amplification occursg(w) sometimes appears

dium by]~ for the amplifying medium is associated with the as a positive magnitude and sometimes as a negative quan-
inversion of the noise oscillators in the latisee[15,16]). tity.

The solution of Eq(2.9) for the vector potential operator ~ Again similar to the derivations in |, it is convenient to

is obtained by standard Green function methods in the form,co o normalized versidi(x, ) of the noise current opera-

tor, defined by

6(2)=

[

AT (X,0)= Sf dx'G(x,x",0)j(x", @), (2.12

f(x,0)=]"(x, )/ Vaeohw’n(w)| k(w)|IS, (2.19

whereS is an area of quantization in thez plane, and the  and it is seen from Eq(2.17) that this satisfies the simple
Green function is determined by solution of boson commutation relation

2 2 A A

_ (aiﬁ M)G(x,x’,w): %5()(_)(,)_ [F(x,0), (X, 0)]=8x-x")6(w-w0'). (2.20
X c

(2.13 The corresponding normalized version of E2.10 is given

b
The Fourier transform Green function is the same as in |, Y
. (%, ) = 0(k(@)F (x,0) + 0(= k()T (x,0),
G(X,k,(x)):\/? dX/G(X,X/'w)eikx’ (221)
T and this new noise operator has a boson-type commutator
o eikx - Yoyt o0 ’ ’

- \/ZTS kz_[a)ZS(X,w)/Cz], (214) [(P(X,(U),(P (X @ )]—Sgr[K((,!))](s(X_X )5((1)_(1)(2)22)
wheres(x,w) is independent ok within each of the three  The expectation values of these noise operators determine
spatial regions defined in EQ.1). the amounts of noise that are added to optical signals that

propagate through the attenuating or amplifying dielectric.
B. Noise operators The state of the dielectric slab at frequenciedor which

The momentum conjugate to the vector potential in theattenuation occurs is conveniently characterized by a positive

. A _ . frequency-dependent effective temperafliee T(w) and the

Coulomb gauge 'S_soE(X'.t)’ and their equal-time commu- - 550 operator expectation values are taken in the standard
tator can be expressed in terms of the Green function a8 rms
[5,17]

) . 2eqfi = (Fxw)=(F"(x,w))=0 (223

[A(x,t),—soE(x’,t)]=|Tf do o Im[G(X,x",w)].
0

(2.15

The commutator is required to reduce to the canonical form

and

FT(x,0) (X, 0"))=N(0,T)8(x—x" ) w—w").
(2.24

[AG1), —goE (X", 1)]=(IA/S)8(x=x"), (218  The population factor can be written in the equivalent forms

and this condition is used to establish the normalization of

the Langevin noise operators. Thus, for noise that is uncor- N(w,T)=
related at different positions and different frequencies, the

result obtained in (2.20 and in(4.38 of [17] is generalized
to

u

exphiolkgT)—1  N—N,’

(2.29

whereN, andN, are the upper- and lower-level populations

associated with the dielectric response at frequesagcyas

2 cl o, used in the specimen two-level dielectric functi@»), with
[I7(x0),] (X', 0")]={4eoh 0*7(w) | x()|/S} N,;>N, for frequencies at which attenuation occurs. Very

X 8(x—x")d(w—w') (2.17  high temperatures correspond to saturation of the transition
between the two levels, witN;=N, .

and it follows from the definition(2.10 of the generalized The corresponding results for an amplifying dielectric are

noise operator that obtained by taking a negative effective temperature, with use

of the property

[1(x,),](x",0") ]={4efi 0 () k(@)/S}S(x—X") N0 T)=N(wr [T = —N(w.[Th—1 for T<0
X (w—w'). 2.18 ' ’ ' (2.26
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Thus the expectation valug€.23 is unchanged, but Eg.
(2.24) is modified by the substitution dfi(w,|T|) for the a(w) é.(x,m) b(w)
population factor, which can be written in the equivalent > > >
forms - - -
a(@) | exo) | b(w)
N

N(w,|T])=

(2.27) | l
-1 l

1
exphiolkgT)—1 Ny—N,’

=y

with N,>N, for frequencies at which amplification occurs.

The effective temperaturld@|=0 corresponds to perfect in- FIG. 1. Representation of the dielectric slab, showing the nota-

version, withN, =0, while very high temper_qturd§'|—>oo tion for the destruction operators used in the definitions of the vec-
again correspond to saturation of the transition between thg potential operator

two levels, withN;=N,,.
The noise operator defined by E@.21) is used in all - U
subsequent calculations, and its expectation values deter- [ar(w),b(0")]=0. 32
mined by Egs(2.20, (2.23, (2.24), and(2.26) are
A. Exterior regions

~ T ) I\
(@' (x.0)¢(x,0"))={0(k(w))N(0,T) Consider first the complete fields exterior to the slab. The

+6(— k(@))[N(w,|T|)+17} field on the left can be written in the form
X S(x—x'")8(w— o' 2.2 ~ ® v2 .
(X X ) ((1) w ) ( 8) A+(X,t):J' dw( [aR(w)ele/C
and 0 4dmegCwS
+a (w)e i¥eleTiot x<—|, (3.3

(e(x,@)@" (X", 0"))={0(x(0))[N(w,T)+1]
_ oy where the operator for the leftward-propagating outgoing
FOC@IN@[TDIX) - feidis given by
Xo(w—w'"), (2.29 R R R R
, . a (0)=Rg(w)ar(w)+Tg(w)b (0)+F (w), (3.4
and these are seen to be consistent with (B@2).
similar to 1(5.11). The outward-propagating noise operator
IIl. FIELD QUANTIZATION is defined as

The formal quantization of the electromagnetic fields in . )
the slab and the free space regions on either side is per- FL(w)=i
formed in the present section. The methods are identical to
those used in |, and many of the results are also the same. I ion(w)x’
The account given below is therefore restricted to an outline X f_ dx [V(‘*’)eXF{ T)
of the procedure and presentation of those detailed results

2w7}(w)lf<(w)|)1’2
c

where the occurrence of amplifying behavior over some ion(w)x"\| -

ranges of frequency produces changes from the results for a tW(w)exp| — e ]QD(X"“’)- 3.9
purely attenuating medium. The physical significances of the

various results are discussed in Sec. IV. The amplitude reflection and transmission coefficients for the

The Green functions determined by solution of 13  slab are given by
are the same as for a purely attenuating dielectric and the
results are given by (5.2), (5.6), and (5.7). A particular _ n(w)’-1 2iol
integral solution for the vector potential operator is obtained - &xp
by substitution of the appropriate Green function into Eq. _
(2.12. The complete solution also contains complementary x[l— exr{ dion(w)l )]
function parts that correspond to free fields incident on the
slab surfaces from the regions of free space to its left and
right. The notation for the operators associated with theand
rightwards and leftwards parts of the fields in the three spa- ,
tial regions is illustrated in Fig. 1. The operators for the Ty(w)= 4n(w) ex;{ 2'“’[”(“’)_1]|> 3.7
incoming fields on the left and right of the slab have the S D(w) c ) ’
free-space commutators

(3.6

The coefficients in the integrand of the noise operator are

(3.1 V(w)ZZ[n[()c(vSl] o p(iw[n(‘;’)_l]'

[ag(w),ak(w")]=[b (®),b](0")]=8(w—w"),

) (3.8

and the operators for the two kinds of incoming wave com-
mute, and
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W(w)=

2[n(w)—1] iw[3n(w)—1]l
D(w) ex;{ c ) (3.9

where

D(w)=[Nn(w)+1]?—[n(w)—1]%exd 4i wn(w)l/c].

1627

Expressions for the electric- and magnetic-field operators on
the left and right of the slab are readily obtained from Egs.
(3.3) and(3.11), respectively, with the use of EQ.8).

B. Interior region

The vector potential operator inside the dielectric slab has

(3.19 the form
The field on the right of the slab is given by A - fmd (o) 12
0 % 1/2 R e (X’t)_ 0 w 4’7780(:60”((1))28 [CR(X!w)
Atn= [ d (—) [be(w)ei®
AdegCwS +e (x,w)]eiet —1<x<I, (3.18
+B|_(w)e‘i"""°]e““", x>1, (3.1])

where the operators associated with the rightward- and
where the operator for the rightwards-propagating outgoindeftward-propagating fields are again linear combinations of

field is given by
forms

br(w)=Tg(w)ag(®)+Rsg( )b (w)+Fr(w), (3.12

similar to 1 (5.15), and the form of the noise operator on the Cr(X,®)=

right is obtained from that on the left, given by E@®.5),
according to the prescription
with x'— —x’

Frlo)=F (o) in the exponents.

(3.13

These outward propagating noise operators differ from those
given in | by the occurrence of the modulus of the extinction
coefficient in the square-root prefactors and by the generali-
zation of the normalized noise current operator to the form
defined in Eq(2.2)).

It is straightforward, but algebraically lengthy, to show
with the use of the commutatd2.22 and the forms of the
coefficients(3.6)—(3.9) that the noise operators i3.4) and
(3.12 have the commutators

[FL(w),Fl(0")]=[Fr(o),Fk(o")]

and
=[1-|R(0)|*~|T(0)[*]8(0— ")
(3.19 6L(x,w)=
and
[FL(0),Fi(o)]=—[Re(®)Té(w)+Ts(0)RE(w)]

X(w—w'). (3.195
These noise-operator commutators and the forms of the out-
going field operators defined in Eg&8.4) and (3.12 have
been applied if18] to derive the field commutation relations

in an optical cavity. It follows from the above expressions
that the outgoing field operators have the simple free-space
commutators

[a(w),a] (0")]=[br(w),bi(0")]= 80— ")
(3.16

and

the incoming field operators and noise contributions, with the

n(w) V(w)a +W(w)b
(W[ (w)ag(w)+W(w)b ()]

.(2w|K<w>|)“2
+i|———

c
I [n(w)*-1 ion(w)(21+x")
x[fldx D(w) e [{ c

_ 2 H !
+[n(w) 1] eXl{lwn(w)((:Afl X)) o

D(w)
x ion(w)x"\ .
+J_Idx exp(—T)Mx ,w)})
(3.19

i wn(w)X
=]

X', w)

X exp

( %}Z[W(a’)aR(w)‘FV(‘”)bL(Q’)]

2w|K(w )1/2

n(w)>—1 ion(w)(21—x")
XUF’X D(w) ex"( c )

[N(w)—1]% ion(w)(4l+x)\]. |
+ D(w) ex c o(X', )
+jldx’ ex;{ M)&(X’,w)])
ion(w)x
xXexp| — T), (3.2@

similar to 1 (5.17) and(5.18. The commutation relations for

[a(@),bE(w)]=0. (3.17)

these operators are the same as given in the Appendix of |,
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and there is no need to reproduce them here. Their equations |g(w)|=|r(w)|2eX[[—4wK(w)|/C],
of propagation are easily derived from E¢3.19 and(3.20
as dg(w)=2¢(w)+[4wn(w)l/c]. (3.29
9Cr (X, ®) “on(w) . The denominato(3.10 that occurs in the coefficients de-
ax =i c CrL(X,®) fined in Eqs.(3.6)—(3.9 can be written in the form
20| K(w)]| Y2, D(w)=[n(w)+1][1—g(w)]. (3.25
* il —] e(Xw), (3.2) o )
c The numerators of these coefficients and the denominator

(3.25 are analytic functions ofv in the upper half of the
complexw plane and the coefficients are themselves analytic
unctions if 1-g(w) has no zeros there. The zeros of
1—-g(w) occur for frequencies that simultaneously satisfy

where + and — refer to right and left propagation, respec-

tively. The electric- and magnetic-field operators inside th

slab are straightforwardly derived from E@-8) with the use

of Egs.(3.18 and (3.2]). It has been shown if6] that the

same expressions for the vector potential operator as derived lg(w)|=1 (3.26

in the present section can be obtained by taking the propa-

gation equatior(3.21) as the starting point and applying the and

usual boundary conditions to the field operators at the sur-

faces of the slab. cog pg(w)]=1. (3.27
All of the field operators in the three spatial regions are . . .

expressed in terms of the two incoming fields associated witH-he functiong(w) Is also analytic in the upper half plane

N N : o , and |g(w)| accordingly takes its maximum value on the
ar(w) and b (w), together with the noise field associated boundary of the half plangL9]. Now |g(w)| clearly tends to

with ¢(x, ). The states of the entire system are thus definegdero on the infinite semicircle, so that its maximum value
by the states of the two incoming optical fields and by themust occur on the real axis. A sufficient condition for ana-
expectation values of the noise operator. For specified input$ytic coefficients is therefore

the formalism allows the time development of the optical

fields from their initial input states to be calculated. lg(w)|<1 forreal w, (3.28

and this is always satisfied for frequencies associated with

loss, wherex(w) is positive. However, for frequencies asso-
The correctness of the quantized field operators can bgiated with gain, wherex(w) is negative, the condition

tested by evaluation of the canonical commuator, which3.28 is satisfied only for

should have the value given in E.16). The test can be

carried out by use of the explicit forms of the field operators, r(w)|<exd —2w|x(w)|l/c]. (3.29

as in[6], or more concisely by use of the expressi@ril5), i - , ) i

which is determined by the same Green functions as the fieli! this case the coefficients are indeed analytic functions of

operators themselves. The calculations are largely the sanfe N the upper half plane, and the proofs of the canonical

as presented for the attenuating dielectric in I, and it is nofPmmutation relatiori2.16 for the different regions of space

necessary to repeat most of the detail. However, the possproceed in exactly the same ways as presented in | for the
bility that «(w) may be negative for some ranges of the Purely attenuating dielectric. These proofs justify the nor-

frequencyw requires additional consideration of the struc- Malization of the noise commutator assumed in €qL7).
tures of the poles in the various reflection and transmission 1he conditions(3.26 and (3.27) determine the threshold

coefficients. Thus, whiles(w) continues to have all of its (O laser action, when the state of the optical field in the
poles in the lower half of the complex plane, as outlined in al”r_]pllfylng slab transfqrms into one of §e!f-su§taln|ng oscil-
Sec. Il, this condition is no longer automatically the case for@tion. The two conditions must be satisfied simultaneously
some of the coefficients that are derived frefw). for the lasing frequencies. Condition (3.26 specifies a

The reflection coefficient at each surface for light incidentgam in the dielectric that is sufficient to offset. the Ioss_ .Of
from inside the dielectric slab is optical energy through the slab surfaces while condition

(3.27 specifies phase matching of the light after a round trip
n(w)—1 in the slab. We do not consider the properties of the lasing

C. Canonical commutation relation

Nw)= mzh(a)ﬂexr{i d(0)], (322  slab here.
where the amplitude has the propeftyw)|<1 for all val- IV. SLAB AMPLIFICATION OR ATTENUATION
ues of the frequency, whethes corresponds to dielectric AND NOISE

loss or gain. The com_plex round-trip loss or gain for light The slab acts as an amplifier or attenuator for radiation
that travels from a point in the slab and back to the same

. : . incident from the free space on its left or right. The system
point after two surface reflections is R -
must also produce noise in amounts whose minimum values
9(w)=r2(w)exg 4i wn(w)l/c]=|g(w)|exdi dq(w)] are controlled by very general requirements derived from the
g 3.23  relations between input and output opera{@8]. We show
in the present section how the gain and the noise derived
where from the slab properties obtained above conform to these
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requirements. We also evaluate the electric-field fluctuation¥hus, as the round-trip gajg(w)| approaches the threshold

in the three spatial regions. value of unity,¢4(w) at half maximum gain differs from its
value at maximum gairtan integer multiple of zr) by ap-
A. Gain and noise proximately +[1—|g(w)|]. The full width of the gain pro-

- : , file at half maximum height close to threshold is now ob-
The slab geometry shown in Fig. 1 is symmetrical, and W& ined from the second line of E(B.24) as

need consider only its effects on light that is incident from

the free space on its left, with the incident field from the right c[1-|g(w)|]
taken to be in its vacuum state. Thus, with the use of Egs. Aw= ool (4.9
(3.4) and(3.12), the output photon-number fluxes on the left 7(w)

and right of the slab are determined by the expectation VaIThe divergence in peak gai#.7) and the narrowing of the

ues gain profile shown by Eq4.9) on the approach to threshold
are well-known features of standard laser the@4].

SteoNA NTPRV N Bt e
(al(@)a (w"))=Cr(w){ag(w)ar(w’)+(FL(w)F (o)) The output noise operator expectation values that occur in

4. Egs.(4.1) and(4.2) are readily obtained from essentially the
and same calculation that produces the commutation relations
(3.14), with the help of the corresponding expectation values
(b(w)br(w"))=Gr(w)(ak(w)ar(w')) for the noise current operator given in E¢®.28 and(2.29.
A A The results can be written in the forms
+(FR(w)Fr(0). (4.2

o _ L  (Fl@)F (@) =(FR(@)Fr(")
The intensity gains in reflection and transmission are defined

by N(w,|T))+1
Ge(w)=|Rg(w)? 4.3 N T)
X{Gr(w)+Gr(w)—1}d(w—w")
and
(4.10
Gr(w)=|Ts(w)?, 4.9
and
respectively, where the reflection and transmission coeffi- R R R
cients are given by Eq<3.6) and (3.7). We use the term (FLo)F(0"))=(Fr(w)FL(o"))
“gain” for simplicity to cover both amplifying and attenu-
ating frequencies, when th&(w) are greater or smaller than _ N(w,[T])
unity, respectively. These gains have the properties —N(w,T)—1
Gr(w)+Gr(w)>1 for k(w)<O X{Gr(w)+G1(w)—1}8(w—w"),
=1 for «(w)=0 (4.1

where here, and subsequently, the upper and lower entries in
the column matrix refer to frequencies for which the dielec-
(4.5 tric is amplifying and attenuating, respectively. These expec-

Both the reflection and transmission coefficients have th&ation values are always positive or zero in accordance with
denominatoD (), which can be written in the forr(8.25), the inequalities in Eq(4.5). The subtraction of Eq(4.10

<1 for «k(w)>0.

and they therefore have the proportionality from Eq. (4.11) produces expressions co_n_sist_ent with the
commutator(3.14) for both cases of amplification and at-
1 tenuation.
Sl T gol - 1+]g(w)|*~2|g(w)|cog dy(w)]’ The dielectric slab considered here is an example of a

phase-insensitive linear amplifier, whose output noise opera-
_ _ _tors must satisfy the requirements of general amplification
where Eq.(3.23 has been used. The gains have their maxitheory[20]. The theory needs some extensions to cover the

mum values for copgy(w)]=1 when kind of amplifier considered here, in which there are two
L inputs and two outputf22], and the generalizations of Egs.
G o 4 (4.19b and (4.2)) of [20] give
el ) [T Tg(w)] P @7 T
s . . F(w)F +F "
and infinite gain occurs fog(w)|=1, corresponding to the (Flo)F (") (0" )F(w)
threshold for laser action discussed in Sec. Il C. The gain =|Gr(w)+Gr(w)—1|8(w—w'), (4.12
remains finite for|g(w)|<1 and Eq.(4.6) takes half its
maximum valueg4.7) when which must be satisfied by the noise operators on both the
5 left and right of the slab. We note from E¢.5) that the
[1-]|g(w)]] modulus signs in Eq4.12) have no effect fok(w)<0, but

cod dglw)]=1- 2|g(w)] (4.9 they reverse the signs of the terms within fafw)>0. Use
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of the explicit noise operator expectation values for the amfor x>1, where Eqs(3.1), (4.3), (4.4), and(4.13 have been
plifying or attenuating slab obtained from Eq#.10 and  used. For a blackbody limit in which both the reflection and

(4.1 gives transmission coefficients vanish, the exterior spectrum of an
absorbing slab reduces to

(FL)Fl(0)+Fl(0")FL (@)

how
=(Fr(@)F(")+Fl(o ) Fr(o) Selx )= cglNle DL (@19
_ 2N(@,[T)+1 [Gr(w) +Gr(w)—1}8(w—') Here the thermal factor can be separated into a contribution
—2N(w,T)—1 T ' from N(w,T) blackbody photons plus & vacuum part

4.13 propagating away from the slab and anothemacuum con-
' tribution propagating towards the slab. The former contribu-

and the positive or zero values of the population factordion agrees with the one-dimensional form of the blackbody

N(w,T) and N(w,|T|) ensure that the inequality in Eq. SPECtrum4,17.
(4(&)2) i)s indeed(:a|tis|f)ied. ) mequatiy i =q. The electric-field operator in the interior of the slab is

similarly obtained with the use of Eg&.18—(3.20, and the
o ) resulting power spectrum can be written as
B. Electric-field fluctuations

The noise properties of the system are also manifested by N(w,|T|)+1
the electric-field fluctuation spectrum in the absence of any ~ Sin(X,@)=SwadX, )+ N(w,T)
input signal, which determines the contributions of the waves '
that propagate perpendicular to the slab to such properties as —2S,ad X, )} (4.18
atomic spontaneous emission rates and Casimir forces. The
power spectrunS(x,w) of the electric field fluctuations at for —I<x<I, where
positionx is defined by

{SRL(X!w)

hw 1
(BE(x,0)E(X,0")=S(x,0)M0—0'), (414 Sad X ©) = e (e |2Re(”(“’)
%iw[n(w)-i—l]l)
C

where the angular brackets denote an expectation value with

X{ W(w)+

(4.19

c

respect to the vacuum states of the incoming fields described
by the operatorsagr(w) and b, (w) and the positive- or F(Ziwn(w)x)
ex
amplifying or attenuating slab. 2 c
We have previously used the fluctuation-dissipation theo- N ;< 2iwn(w)x) ]

e —
with various configurations of attenuating dielectrics at zero
temperature[1,2,5]. Fluctuation-dissipation theorems have
this approach cannot be used when the system as a wholeRgrature and
not in thermal equilibriun{26], as in the present example
positive or negative temperature is surrounded by free space
at zero temperature. 4 |W(w)elwn(w)xlc+ V(w)eflwn(w)xlc|2]
direct substitution of the electric-field operators in the defi- (4.20
nition (4.14). Consider first the free space on the right of the

n*(w)[n(w)—1]ex
negative-temperature thermal states of the noise field in the V(w)
rem to obtain expressions for the power spectra associated
also been derived for amplifying media3—25. However, is the power spectrum for an attenuating slab at zero tem-
where an attenuating or amplifying dielectric at elevated SeL(X, w)—h—[|V(w)e""”(“‘>x’°+W( )e~iwn(w)x/e|2
The required power spectra can, however, be derived by
slab where the electric field operator obtained from Egscontains the contributions to the spectrum from the incoming

(2.8), (3.11, and(3.12 is modesag(w) and b, (w), respectively. For an attenuating
slab with incoming modes from free-space regions main-

- ) w |2 - " tained at the same temperatureas the medium, the power
E" (X 0)=I 260CS {[Ts(w)ar(w) +Rs(w)b (w) spectrum can be obtained independently from the

fluctuation-dissipation theorem in the form

Sin(X,0)=[2N(w,T)+1]S,ad X, @), (4.21
Substitution in Eq(4.14) then leads to an exterior spectrum
and the same result follows from Eq4.18 when

+Fr(w)]e'“¥+b (w)e ¥}, (4.19

N(w,|T])+1 Sri(X,w) is neglected. ThuSg (X, w) plays the role of a
Se(X, w)— 1+ R Rg(w)e ¥/c]+ correction to allow for the fact that the free spaces on both
—N(o,T) sides of the slab are here assumed at zero temperature, and

there are accordingl(w,T) fewer photons incident on the
><[|Rs(w)|2+|TS(w)|2—1]] (4.16  slab from each side.
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FIG'.Z' Spatial vgr_iqtion of the spe_ct_nﬂnx_,w) of_electric-field FIG. 3. Spatial variation of the spectrusix, w) of electric-field
fluctuatlons in the vicinity of an amplifying dielectric slab,_ normal- fluctuations in the vicinity of an attenuating dielectric slab, normal-
ized to the vacuum free-space value. The slab thickness iS4 i) the vacuum free-space value. The slab thickness is
21=10mc/w and p(w)=1.5. Thg . other parameters are 2l=10nc/w and n(w)=1.5. The other parameters are (&)=0
(@) |T[=0 and «(w)=-0.04, giving Gg(w)=19.8 and 4\, 004 givingGa(w)=0.034 andG(w)=0.075, and
Gr(w)=43.5, and (b)|T|=180kc/kgl and x(w)=—0.0017, Giv- " T_ 1gc/ic 1 and x(w)=0.0017, givingGe(w)=0.000 44

Ing GR(w)z(.)'OOO.SS andGT(a_))=1.12. The insets show the G+1(w)=0.89. The insets show the boundary regions in more
boundary regions in more detail. detail

The exterior and interior power specl 16 and (4.18 where the definition$2.25 and (2.27) have been used for

have similar structures with ~sums of temperature-the amplifier and attenuator, respectively. The change in this
independent and temperature-dependent terms. It can be b , resp Y- 9

opulation factor with an increase in the magnitude of the
shown by lengthy algebra that the former terms have equ o o
i o : emperature affects both the refractive index and extinction
values and equal spatial derivativesxat! while the latter

. o coefficient. However, for a refractive index that greatly ex-
terms have equal values and zero spatial derivatives therg, _— - : .

: ; ; Céeds the extinction coefficient, a change in the population
The spectra show maxima at frequencies for which Eq

(3.27) is satisfied, when the round-trip phase k@24 in- factor mainly mfluences the extinction _coefﬂuent, whose

X X . . ; . . value at elevated negative temperature is assumed to be re-
side the dielectric slab is an integer multiple of 2leading lated to its valueco(w) at zero negative temperature F7]
to a buildup of the field fluctuations. 0 9 P

Figure 2 shows two examples of the spatial dependences
of the power spectruns(x,w) of electric-field fluctuations Ko(w)
for a frequency at which amplification occurs. The fluctua- K(w)= 2N(w,[TH+1"
tions are symmetrical around=0, and only positive values
of x are included in the figure. Figurda&® shows the spatial
dependence for zero effective temperature, where the twi
level population is perfectly inverted, while Fig(t2 shows

(4.23

and this relation has been used in the construction of Fig.
(b). Despite appearances to the contrary, the spectra have

the fluctuations for an elevated negative temperature, Whei;éonltlngoustvaltéetﬁ ar;)d slodpes<atl as |sth02/r\]/n in the Ia;ge- |
the amplification is reduced by the effects of saturation. TheCale INSErLS of the bounadary reglon. ~or theé parameter val-

opulation factor that occurs in the dielectric functi¢hg ues giyen in the figgre caption, the v_alue of the extinction
Forpthe two-level model can be written @6 coefficient at the lasing threshold obtained from E529 is

x(w)=—0.051, so that Fig. (@) represents conditions quite

close to threshold. Both the internal and external fluctuations
(4.22 are decreased for the conditions of elevated negative tem-

perature and reduced gain shown in Fig.(b)2

Ni+N, [—2N(w,|T)-1
N—Ny, | 2N(w,T)+1
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Similar remarks apply to Fig. 3, where the two parts showand electric-field operators in the three spatial regions are
the spatial dependences of the electric-field fluctuations asatisfied in this regime.
sociated with an attenuating slab at zero and an elevated The quantum formalism has been used to derive the am-
temperature, the extinction coefficients at the two temperaplification and noise properties of the dielectric slab in terms
tures being related bi¢.23 with the modulus sign removed. of the intensity gains for a signal incident from free space
Fig. 3(@) is similar to Fig. 3 in | and corresponds to condi- gpserved in reflection from or transmission through the slab.
tions of equilibrium at zero temperature where theThe gain profiles show the usual narrowing effects on the
fluctuation-dissipation theorem is valid. It shows the eﬁeCt%pproach to the lasing threshold. The amounts of noise added

the interi i d in I Figurébs sh th of standard amplifier theory for a slab with two inputs and

€ Interior, as discussed in 1. Figur shows the en- g outputs. The gquantum-mechanical nature of the formal-

hanced internal fluctuations and reduced external fluctuations . ) e .

) X Sm ensures that it applies to the amplification of nonclassical

at an elevated temperature. The insets again show the conhl- ht as well as liaht whose aain characteristics could be
nuities of the slopes of the spectraxat|. gnt, 9 9

It is evident from Figs. gb) and 3b) that similar electric- obtained from a classical derivation. For any kind of incident

field fluctuations occur for an amplifier at elevated negativd!9nt: the added noise is a basic quantum-mechanical phe-

temperature and an attenuator at elevated positive temperd@menon that can only be rigorously computed by the quan-
ture. It can be shown that for frequencies suchtUm theory.

that 4w7(w)l/c is an integer multiple of 2 the spectra Previous work on the quantization of the electromagnetic
(416) and (41& tend to the common high_temperature field in dielectrics has employed models in which the centers
forms of amplification or attenuation are represented by beam

splitters, whose input-output relations allow for illumination
of the spare input ports with light from harmonic oscillators
(4.24  ininverted or normal states, respectivéhp]. This method
has been applied to sections of amplifying and attenuating
media embedded in inert media of infinite ext¢a®]. It
has also been used in quite sophisticated modeling of spatial
and temporal effects in semiconductor lasers in FabrptPe
cavities [27]. The results obtained by such models are
in qualitative agreement with the more rigorous theory
developed here. However, it is difficult to combine the
X{n(w)?+1+[n(w)*—1] beam-splitter representation with a satisfactory fulfilment of
the standard electromagnetic boundary conditions at the
X cod2wp(w)xiclecog2or(w)liclt. (4.29 surfaces of a finite specimen. By contrast, the formalism
presented here can be applied to the study of linear amplifi-
These expressions are valid s> — for the amplifier and cation in a finite inverted-population medium, with
asT— for the attenuator, where the physical states of th&igorous inclusion of the spatial effects caused by its sur-
medium are identical, with equal populations in the uppefaces.
and lower levels of the dipole-active transitions. The theory developed here is adequate for a wide range of
experiments where the light beams are propagated normally
through the surfaces of the optical components. Extensions
V. CONCLUSIONS to include all directions of propagation are needed for
the treatment of processes such as the spontaneous emission
We have generalized earlier work on the quantization oby atoms close to or inside dielectrics and the Casimir pres-
the electromagnetic field in attenuating dielectrics to cover &yres exerted on dielectric surfaces, where there is no restric-
dielectric slab that shows amplification over some ranges ofion on the spatial directions involved. Such extensions

frequency. The extinction coefficier(w) is thus allowed to  greatly complicate the derivations, and they are reserved for
take negative as well as positive values, with a functionakytyre work.

form that is limited only by the requirements of causality.
We have derived the forms of the electromagnetic field op-
erators inside the slab and in the free-space regions on either
side for waves propagated normal to the slab surfaces. The
slab approaches a threshold for laser action whgn) takes We thank Dr. C. R. Gilson, Dr. M. Harris, and Dr. C. H.
increasing negative values up to a point where the gain inHenry for helpful discussions. This work was supported by
side the slab overcomes the losses to the outside by tranie European Community Human Capital and Mobility Pro-
mission through the surfaces. We have identified the preggramme through its network on “Nonclassical Light” with
ence of laser threshold effects in the quantized fieldContract No. CHRX-CT93-0114. R.M. thanks the University
operators, but have confined our treatment to the regime aff Kerman Research Council and J.J. thanks the United
linear amplification below threshold. The appropriate canoniKingdom Engineering and Physical Sciences Research
cal commutation relations for the conjugate vector potentialCouncil for financial support.
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