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I. INTRODUCTION use of a quantum channel to transmit quantum information—
with schemes that use quantum channels to transmit classical
The “quantum” in quantum mechanics means “how information, as in Caves and Drummond’'s comprehensive
much”—in quantum mechanics, classically continuous vari-review of quantum limits on bosonic communication rates
ables such as energy, angular momentum and charge come[R]. The limit to the rate at which arbitrary sequences of
discrete units called quanta. This discrete character obrdinary classical bits, suitably encoded as quantum states,
guantum-mechanical systems such as photons, atoms, andn be transmitted down a quantum channel such as an op-
spins allows them to register ordinary digital information. A tical fiber is given by Holevo’s theorem. In contrast, the re-
left-circularly polarized photon can encode a 0, for examplesults presented here limit the rate at which arbitraumper-
while a right-circularly polarized photon can encode a 1.positionsof sequences of quantum bits can be sent reliably
Quantum systems can also register information in ways thadown a noisy, decoherent quantum channel. As such, the
classical digital systems cannot: a transversely polarizetheorems presented in this paper are complementary to the
photon is in a quantum superposition of left and right polar-results of Schumachéi] and Josza and Schumactidt on
ization and in some sense encodes both 0 and 1 at the sant noiseless quantum channel. Any channel that can trans-
time. Even more surprising from the classical perspective argit quantum information can be used to transmit classical
so-called entangled states, in which two or more quantuninformation as well. It is possible, however, for a channel to
systems are in superpositions of correlated states, so that tvise able to transmit classical information without being able
photons can encode, for example, 00 and 11 at once. Sugb transmit quantum information: examples of such com-
entangled states behave in ways that apparently violate claptetely decoherent channels will be discussed below.
sical intuitions about locality and causalitywithout, of The difference between quantum and classical informa-
course, actually violating physical lays tion does not arise from a fundamental physical distinction
Information stored on quantum systems that can exist itbetween the systems that register, process, and transmit that
superpositions and entangled states is called quantum infofaformation. As just noted, quantum channels can be used to
mation. The unit of quantum information is the quantum bit,transmit classical information. And after all, classical
or qubit (pronounced Q bit” ) [1], the amount of quantum information-registering systems such as capacitors and neu-
information that can be registered on a single two-state varirons are at bottom quantum mechanical. The difference
able such as a photon’s polarization or a neutron’s spin. Thiarises from the conditions under which such systems operate.
paper puts fundamental limits on the amount of quantumwWhen properly isolated from their environment, photons and
information that can be transmitted reliably along a noisyatoms can exist in superpositions and entangled states for
communication channel such as an optical fiber. Theoremidng periods of time, with experimentally measurably results.
are presented that limit the rate at which arbitrary superpo€apacitors and neurons, in contrast, interact strongly with a
sitions of qubits can be sent down a channel with given noisghermal environment, which prevents them from exhibiting
characteristics, and encoding schemes are presented that ebherent quantum effects. As a result, guantum information
tain that limit. can be used to perform tasks that classical information can-
It is important to compare the results presented here—thaot.
A full theory of quantum information and its properties
does not yet exist. However, the ability to transmit and pro-
*Electronic address: slloyd@mit.edu cess quantum information reliably provides the solution to
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problems for which no classical solution is known: if en- Noise Decoherence
tangled quantum bits can be transmitted and received, quan-
tum cryptographic techniques can be used to create probably
secure shared keywords for unbreakable c¢dgawhile the
ability to process quantum information allows quantum com-
puters efficiently to factorize large numbers and to simulate  FiG. 1. Diagram of the noisy, decoherent quantum channel. To
local quantum systeni$]. send an arbitrary quantum staig) down the channel, first encode
For quantum information to prove useful, it must be trans-it in a redundant fronC(|)). The encoded state is sent down the
mitted and processegtliably. Quantum superpositions and channel, where it is subjected to noise and decoherence. The arrows
entangled states tend to be easily disrupted by noise and Iiydicate that noise is added to the signal, while decoherence arises
interactions with their environment, a process called decofrom the environment getting information about the signal. The
herencd6,7]. Until recently, decoherence and noise seemedahoisy, decoherent sign&(C(|#))) is then fed through a decoder
insurmountable obstacles to reliable quantum informatiorthat recreates the original state together with extra random informa-
transmission and processing. However, in 1995, Shor exhilion that depends on what errors occurred.
ited a quantum error-correcting routip@]. Since then, sev-
eral such routines have been propo$@e13. These rou- Signal is then fed into a decoder that attempts to restore the
tines have the feature, common to many classical errororiginal signal. Quantum encoding and decoding requires the
correcting codes as well, that the rate of transmission o@bility to manipulate quantum states in a systematic fashion,
quantum information goes to zero as the reliability of trans-for example, by using Turchett al’s [16] photonic quan-
mission goes to 1. This paper shows that arbitrarily complitum logic gates or Monroet al's realization[15] of the
cated quantum states can in principle be encoded, subjecté@n-trap quantum computer proposed by Cirac and Zoller
to high levels of noise and decoherence, then decoded to gild7]. From a practical point of view, such decoding and en-
a state arbitrarily close to the original state, all with a finitecoding may prove the most difficult part of reliable quantum
rate of transmission of quantum information. The papernformation transmission and processing. This paper will
states and gives the proof of theorems that put an upp&imply exhibit coding and decoding schemes that attain the
bound to the capacity of noisy, decoherent quantum channef1annel capacity: it will not address how such schemes can
to transmit quantum information reliably, and exhibits a clas$be carried out in practice.
of quantum codes that attain that bound. As with Shannon’s The quantum analog of Shannon’s noisy coding theorem
theory of the noisy classical chanrié¥], the quantum theo- [14]is outlined in Fig. 2. In order to demonstrate this analog,
rems bound the amount of information that can be sent byt is helpful to set up a quantum formalism that corresponds
using as codewords the “typical” or “high-probability” closely to the classical picture of a noisy channel. Quantum
states emitted by a source. In particular, theorems bound tHystems and quantum signals are described by diajda a
amount of quantum information that can be sent using codélilbert spacel or, more generally, by density matricgs
words of finite length. Unlike the classical case, however, ine H* ® H. A quantum ensembl€={(|;),p;)} is a set of
the quantum case it may still be possible to circumvent thesguantum statefs);) belonging to the same Hilbert spatg
bounds by using an “atypical” or measure-zero set oftogether with their probabilitiep; . The expectation value of
infinite-length codewords. a measurement on the ensemble corresponding to a Hermit-
ian operatorM is (M)=3;pi{(;|M|¢;)=trMps, where
pe=2ipil i) {#| is the density matrix corresponding to the
[l. QUANTUM SOURCES ensemble. The statég;) need not be orthonormal. The en-
semble will be said to be normalized when
Sipi{ il i) =trps=1. That is, a quantum ensemble is just
;;we quantum analog of a classical ensemble, where care has

Lo

[#) — Encoder — C(|4)) — Channel — N(C(|¢))) = Decoder — [1p)+ Noise

A guantum channel has sourcethat emits systems in
guantum stateghe signal to the channel and a receiver that
receives the noisy, decohered signal emitted by the chann
For example, the source could be a highly attenuated las

that emits individual monochromatic photons, the channe ur_er ogiﬁigt;r&en;?ﬁgﬁgfsé the same density matrix are sta-
could be an optical fiber, and the receiver could be a photo- w v S sty X

cell. Or the source could be a set of ions in an ion-trapt'St'Ca”y indistinguishable: no set of measurements can dis-

quantum computef15] that have been prepared by a Se_tinguish whether a sequence of states is drawn frqm_ one
guence of laser pulses in an entangled state, the chann%rI]S.er.nble. rather than the Other' An example of statistically
could be the ion trap in which the ions evolve over time, anoandstmgwshable ensembles is
the receiver could be a microscope to read out the states of N .
the ions via laser-induced fluorescence. This second example E={(1).2).(11).2)}
indicates that a quantum channel can transmit quantum in-
formation from one time to another as well as from one placélnd
to another. As Shannon emphasized, a computer memory is a
communications channel. E={(11).3),311)+V3/21),5).(51)—V3/21).5)},

A more complete picture of a quantum channel is shown
in Fig. 1: the input signal is some unknown quantum statepoth with density matricep=73|1)(1|+3|1)(]|. Note that
the input is fed into an encoder that transforms it into aan ensemble over a finite-dimensional Hilbert space can con-
redundant form, the encoded signal is sent down the channdhin ~ an infinite number of  states, e.g.,
subjected to noise and decoherence; the noisy, decoherég{(e'¢|1),p(¢)=1/27)}, in which case each state is

een taken to take into account the inherently statistical na-
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FIG. 2. Comparison of classical and quantum chanr@sThe noisy classical channel. The message is encoded as one of a set of
codewordg0110, 0111, and 1000 are shown in the diagramich are sparsely distributed in a large space of possible inputs. The codeword
is sent through the channel: since the channel adds noise, each codeword input can result in many possible outputs, represented by the circle:
in the center of the diagram. These circles do not overlap, signifying that the code has been constructed so that different inputs almost never
give the same output, in spite of the noise. As a result, the noisy outputs can be uniquely decoded and mapped back to the original input. The
total number of messages that can be reliably encoded and decoded is given by the ratio between the volume of the output space, and the
volume of the set of possible outputs corresponding to a typical codeword input: the channel capacity is the logarithm of thisTaéo.
noisy quantum channel. The situation is much the same as the classical channel, with the nontrivial complication that quantum states are
vectors, that quantum “messages” can be arbitrary superpositions of states, and that the coding and decoding procedure must accordingly
preserve the phases and amplitudes of quantum states. The coding proceeds as follows: each basis vector of the quantum message space
encoded as a codeworth{;9,| @117, and|aqge in the diagramand sent down the channel. The channel adds noise and decoheres the
encoded message, so that each input codeword can result in many possible output states, once again represented by circles in the diagran
Here the vector character of quantum mechanics comes in. As shown in the text, the outputs for a given input lie with high probability in
some minimal subspace of the output Hilbert space; these subspaces are represented by the squares that almost contain the circles. As lon
as the minimal subspaces have vanishingly small overlap, the noisy outputs can be mapped back to the original codewords reliably. The
maximum number of codewords that can be decoded reliably is given by the ratio of the dimension of the output Hilbert space to the
dimension of the minimal subspace corresponding to a typical codeword, and the quantum channel capacity is the logarithm of this ratio. In
the classical case, this would be the end of the story: in the quantum case it is not. Quantum coding must preserve phases and amplitudes.
In the output subspace, arrows have been drawn to indicate that when one codeword is perturbed by the channel in direction 1, the other
codewords are also perturbed in direction 1; when one codeword is perturbed in direction 2, the other codewords are perturbed in direction
2, etc. For the decoding procedure to recreate superpositions reliably, the amplitudes of the perturbations 1 and 2 and the angles between
them must be thesamein the subspaces corresponding to the different codewords. This is a necessary and sufficient condition for the
quantum decoding procedure to recreate superpositions and entangled states reliably. The random coding of Theorem 3 obeys this condition
and provides reliable transmission of quantum information.

paired with a continuous probability densitp(¢), and classical channel. A stationary source is one for which the
p=f§”(1/2w)ei¢|T)<T|e*‘¢d¢=|T)(T|: an ensemble with probabilities for emitting states does not change over time;
an infinite number of states can have the same density matri ergodic source is one in which each subsequence of states
as an ensemble with a single state. Because of the inherenfjPPears in longer sequences with a frequency equal to its
statistical nature of quantum mechanics, different quanturprobability. Stationary, ergodic sources have a finite, though
ensembles can be statistically indistinguishable, while twdPotentially arbitrarily large correlation time. We will concen-
classical ensembles are statistically indistinguishable if angfaté on quantum sources with similar properties. First, we
only if they are identical. Further properties of quantum en-investigate “memoryless” ensembles, whose density matrix

sembles can be found in Appendix A. pRpPR---®p is the tensor product o times its density
A particularly interesting type of continuous quantum en-matrix over a single time step. _ _
semble is the uniform ensemble over a Hilbert spate There are many different quantum ensembles with density

E=1{(l¢) e H,p4=1N0IH)}, where voH is the volume of ~Matrix p®---®p. But as noted by Schumachgt], and
the unit sphere irH. This ensemble contains every possibleJ0sza and Schumacha, there is one ensemble in particu-
state and superposition of statesHs all with equal prob- lar that effectively contains all such ensembles. Let
abilittes. The corresponding density matrix is P2iPil$i){¢il, where theg; are orthonormal. Consider the
ps=(1d)SL | 4|, whered is the dimension of{ and  subspaceH" spanned by the “high-probability” product
{|$:)} is an orthonormal basis fdt. If we wish to transmit ~ States|¢; )- - -|¢; ), where each;) occurs in the product
arbitrary superpositions of states down quantum channelapproximatelyp;N times. These states are the analog of
the sources of interest are of the foffp for some™H. high-probability sequences of symbols for a classical source.
Like Shannon, we will restrict our attention to a math- The following theorem then follows as an immediate corol-
ematically tractable subset of all possible souriEd. Sh-  lary to the noiseless quantum channel source theorem of
annon concentrated on stationary, ergodic sources for th8chumachef1] and Josza and SchumachBak.
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Theorem 1 (Quantum source theoreynLet ) be se- by a density matrixpy,=S(pi,), Where S is a trace-
lected fromany ensemble with density matrixg®---®p.  preserving linear operator called a superscattering operator.
Then, asN—,|¢) is to be found in the high-probability s plays the same role for the quantum channel as the
subspacéHy with probability 1.7y is a minimal subspace Markoff matrix that gives the probability for outputs in terms
with this property, in the sense that any other such subspacst inputs plays for the classical channel. For simplicity, the
containsHy asymptotically agN— . quantum channel will be assumed to be stationary and

That is, asN—, the ensembl&yn contains with prob-  memoryless, so that it has the same effect on each block of
ability one of the members of any ensemble with densityquantum bits that goes through.
matrixp® - - - ® p. A more precise statement of Theorem 1is  An equivalent method of formulating the channel’s dy-
that asN—, 3, || P [#) — 1, wherePjn is the pro-  namics specify its effect on each of an orthonormal basis
jection operator ontd{". The proof of Theorem 1 is found {|¢#;)} of input states: the output of the channel for input
in Appendix B. By Shannon’s source theorem, the dimension;) is then given by the ensembfqa¢i>={(|wj(i)>,pj(i))} of
of Exn is approximatelye™S, whereS= —trp Inp. output states into whichg;) can evolve, together with the

We would like to find similar minimal subspaces for_probabilitiespj(i) that| ;) evolves into the statgy;;)). The
sources with memory. In fact, we can adequately approXigensity matrix and ensemble pictures of the effect of the
mate arbitrary stationary, ergodic sources with finite Correla'channel are related as follows: S(|&) &)

. i II

tion lengthm by looking at “block” sources of the form . AT
; 9 y: y /_g X . =2 VPimPiinl¥ii{¥jinl, which for i=i’" gives
p’®---®p”, wherep” is the reduced density matrix over oy Th bl .
/ qubits of the stationary, ergodic source, asigbm. As S(|¢‘><.¢i|)_ J'(‘)PJ'(‘)MJ'(‘)X%(‘)" e ensemble picture
' ' l?f the time evolution of open quantum systems is equivalent

shown in Appendix B, the minimal subspace for such a bloc th i d i f1h teri
source asymptotically contains all but a set of measure zer® € operator sum decomposition of the superscattering op-
ator discussed in Refl18]. A further discussion of the

of the states generated by the stationary, ergodic source. fl - . ; )
addition, the entropy of the block source asymptotically apProperties of the ensemble picture can be found in Appendix
proaches the entropy of the stationary, ergodic sourcé as A. For example, |f_the _channel is noiseless and distortion
becomes much larger than. As a result, by taking” suf-  free, thenS is the identity operator and,,={(|¢),1)}.
ficiently large, the minimal subspace for the block source cafhis channel transmits both classical and quantum informa-
be made arbitrarily close to a minimal subspace for the station perfectly. Another example is the completely decohering
tionary, ergodic source. channel, which can be thought of as the channel
As with Shannon’s theorems for classical sources, whichhat destroys off-diagonal terms in the density matrix:

;implify 'ghe analysi_s_of Fhe classical noisy channel by fO_CUS_S(Eija'ij|¢i><¢j|):2iaii|¢i><¢i| or, equivalently, and per-
ing on high-probability inputs, and as with the use of high-naps more intuitively, as the channel that randomizes the
probability subspaces in the noiseless quantum channel theBhases of input states:| ¢i>_>5‘¢i>:{(ei)\| #),p(\)

rem in Refs.[1] and [3], the quantum source theorem . -
simplifies the analysis of the noisy quantum channel by fo- . 1/2m);. The completely decohering channel highlights the
ifference between the use of quantum channels to carry

cusing on a particular subspace of inputs. A coding schemg Co X . . . _
that works for any ensemble with density matrix classical information and their use in carrying quantum in-

p’®---®p” works for the states in the high-probability formation: it transmits classical information perfectly, but

subspace. Conversely, a coding scheme that works for t§nsmits no quantum information at all: no superpositions or
high-probability subspace works for any of the ensembleg€ntanglements survive transmission.
that it contains. Accordingly, from this point on, quantum Most quantum channels are neither noiseless nor com-
sources will be taken to be ensembles over high-probabilit@letely decohering. The next theorem quantifies just how
subspaces of block sources unless otherwise stated. It shourelich quantum information can be sent down a noisy, deco-
be kept in mind, however, that the resulting theorems do noltering channel. As above, we restrict our attention to block
hold for coding schemes in which the codewords are takesources with density matrixpl,.=3pi|#1)'(¢i|, where
from the measure zero set of states that do not fall in thq|¢i>'} is a basis for blocks of qubits and ranges from 1
high-probability subspace. This is not a strong restriction: foo 2. The inputs to the channel are then described by a den-
example, the theorems apply to all coding schemes that usg;y matrixpiN=p! ® - - - ®p!, and the output is described by
codewords of finite length. a density matrixoN=p. ®---®p. ., wherep! =S'(ph)
=31 imPiPiw] Yian (¥im| and S' gives the effect of the
channel onl qubits.
o . As N— o, input states come from the subspaﬂ:ﬁ' with
Aquant_um communications channelltakes qgantum infors robability 1, and output states lie in the subspa‘dﬁﬂt
mation as input and produces quantum information as OUtp“Epanned by high-probability sequences of outputs,
An optical fiber is an example of a quantum channel: a phowjl(il)>| - -|lﬂjN(iN)>|: where each ¢j(i)>| appears in the

ton in some quantum state goes in, suffers noise and disto imatel Nt The di .
tion in passing through the fiber, and, if it is not absorbedseqﬂ?,\?ce approximatelp;p;)N times. The dimension

and does not tunnel out, emerges in a transformed quantuf Hou iS NZ_Nt.rpoutl()gZPout_ To gauge the quantity of
state. In the normal formulation of quantum mechanics, thgluantum information sent down the channel, look at

Ill. QUANTUM CHANNEL

..........
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is over high-probability intput sequences in whi|ebg>' ap- sent.(ii) In the completely decohering or dephasing channel,

pears approximatelp;N times. We have the following. —trpoud0gz00u= 1, p==13(10)(0|®|0)(0|+|1){1|®]|1)
Theorem 2(Quantum channel theoreys N—, when  X(1|), —trpglog,pe=1, andl =0 qubits, so that no quan-

|ak) is input to the channel, the output lies with probability tum information is sent(iii) Consider a partly dephasing

1 in a minimal subspacN whose average dimension over rohaqTel 1in which [0)(0]—0)(0[, [1)(1[—[1)(1] and
~ —

an islthe minimum ofeN%u, eNSz, whereS;= —trp'inp’- —>e<)|0)<§.|, 11)(0] — (1 €)|1)(0)|. Here

andpL=3; i \pip/ S'(|6)) (/) ®[ i) (ir].

The proof of Theorem 2 is found in Appendix C. The 4
proof is somewhat involved, but the form pf-can be un- pa=2(10)(0[@[0)0[+[1){1[@|1)(1])
derstood simply. One of the primary uses of a quantum chan- +(1-€)(]1)(0|®|1)(0[ +]0)(1]|®|0)(1]),
nel is the distribution of entangled quantum states for the
purpose of quantum cryptography or teleportation. Take And
two-variable entangled state of the for®yp;| &) &),
where| ;) is a state of a block of qubits. Like the state
(1/4/2)(|0)]|0)+|1)|1)) described in Sec. I, this state is a
maximally entangled state that registers all the states
|#:)!|#;) at once; the factors ofp; ensure that each of the IV. OPTIMAL CODES FOR THE NOISY QUANTUM
two quantum variables taken on its own is described by a CHANNEL
density matriXp:n. Now send the first variable down the

channel. The result is a partially entangled stateI for the tw?um information encoded by sources with block lengtto
variables described by density matriiae. That is,S_-is the be C! =max, (1/1)lo(pi). Co is the maximum over all
entropy increase when one of two fully entangled variablesis 2 . hmbl K ? mlh thh h tinf tiom

sent down the channel. A thorough treatment of the effect opources with block length of the coherent informatioig
noisy channels on entangled states can be found in Refs. per.blt transmitted down the channel. We then have the fol-
and [19]. The effect of the channel on aiN-qubit state lowing.

|a'N) can be understood as follows: almost all input statesC Theorem 3.(Noisy quantum channel coding theorgm.

| . . N 4 onsider a quantum channel with capacmg. The output
|ay) are fully entangled, with the density matyix, describ of a stationary, ergodic source with density majsixover|

ing_each block of qubits on its OVW{Z_O]‘ Sendingn of the bits can be encoded as high-probability states of a source
variables through the channel then increases the entropy lWith block lengthl, sent down the channel, and decoded with
nS;, which is in turn the logarithm of the dimension of the reliability —1 asi\leoo if and only if (1/i)(—tr p'log,p)
minimal subspace that can encompass the channel’s possibfed 2
outputs. IfS;> Sout,_then sending all the variables through L?I;e Shannon’s noisy coding theorem, Theorem 3 comes
completely randor_nlzes th? Output is- <o a_nd_no coherent with the caveat that it applies to high-probability sources
guantum information survives the transmission through th‘fZl] The proof of Theorem 3 is found in Appendix D. The

channel. ; idea behind the proof, as well as the theorem’s meaning and
Theorem 2 suggests that the amount of quantum informa- = .~ . ’ !
mplications can be understood as follows. The noisy, deco-

tion transmitted down the chlannel from a stationary, ?rgOdi¢1ering quantum channel has two effects on the quantum in-
source with |dens't¥ matr|l>pm b? defined as (”IQ(’)"]) formation that it transmits. First, like the classical channel, it
= (1/1) (= poul0Gapourt trp10Gap = (1M)(Sou— Sa) if  adds noise to the signal, flipping qubits and adding random
Sour>Sa»=0 otherwise.(Nielsen and Schumacher called jnformation. Second, it decoheres the signal by randomizing
this quantityl o, coherent informatioi19].) This definition  phases and acquiring information about the quantum infor-
of quantum information transmitted is the quantum analog onation transmitted. Decoherence is an effect with no classi-
mutual information between channel inputs and outputsga| analog: classical signals do not have phases, and acquir-
when pure states are sent down the chanhgltells how  jhg information about a classical signal is harmless as long
much information one obtains about which pure statezs the signal is not altered in the process. In quantum me-

eﬁf,’f went in by looking at the noisy mixed state !\,  chanics, however, acquiring information about the signal

—trp4logopa=—(1—€/2)In(1—€/2) — (e/2)l0g,(€/2),
giving anlgq that ranges continuously from 1 fer=0 (no
decoherengeto 0 for e=1 (complete decoherence

Define the capacity of a quantum channel to carry quan-

that comes out. means effectively making a measurement on it, and quantum
Figure 2 provided a schematic comparison of noisy clasmeasurement unavoidably alters most quantum systems.
sical and quantum channels. The full justificatior gfas the The problem of decoherence implies that signal must be

guantum information transmitted down a quantum channeéncoded in such a way that any information the channel ob-
will be presented in Sec. IV, in which quantum coding tains about the encoded state reveals nothing about which
schemes will be presented that allow the reliable transmisstate of the source was sent. Otherwise, the channel can ef-
sion of quantum information at a rate governed gy and in  fectively “measure” the output of the source, irretrievably
which it will be noted that no coding schemes exist for blockdisturbing it in the process. As noted by Shor, this may be
sources that can surpass this rate. For the moment, consideccomplished by encoding the signal as an entangled state
three examples of quantum channels, each with source dgg8]. In fact, each encoded signal must have the same density
scribed byp;,=3(|0)(0[+]1){1]). (i) In the noiseless quan- matrix p;, as each other encoded signal for each qubit sent
tum channel, —trpy,dog.p0u=1,—trpz100,p,=0, and down the channel: otherwise the channel can distinguish be-
lo=1 qubit, reflecting the fact that each qubit is received adween different signals and decohere them. If the signals are
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encoded as entangled states in this fashion, the channel cibcked together in groups of as described for quantum
decohere the codeword, but it cannot decohere the origing&ources above. Each block 6fqubits can be regarded as a
signal. _ composite quantum symbol, so that the block source has a
Suppose someone hands you a quantum system in sorgensity matrixp” ® - --®p”, wherep” is a density matrix
unknown state generated by a stationary, ergodic source wityer /' quantum symbols, as discussed in the section on
density matrixp' and asks you to transmit it reliably down a quantum sources above.
noisy, decoherent quantum channel. What do you @b?  Theorems 2 and 3 apply to block sources over the com-
someone hands you a system in a known quantum state, Msite symbols. The coherent informatit@(p/) can be de-
quantum channel is necessary: you can just use a classigGahed as above to be the difference between the entropy of
channel to transmit instructions for recreating the state usingye output— trpo/u11092pgut and the entropy increase when the
a quantum computer.The following encoding attains the first / pits (with reduced density matrix”) of a pure, fully
channel capacity. First, identify a source forlthe channel thagntangled state of 2 bits are sent down the channel. The
attains the channel capacity, so thg€pi,) =ICqo . Next, en-  channel capacity for sources with block lengtftan then be
code the state to be transmitted by applying a transformatiogefined as in Theorem 3 to hi%= (1//)max, | Q(P/)- The
that maps an orthonormal basis for the input high-probabilityy, 4 ximization procedure used for finding the quantum chan-
subspace to eandomly choseset of orthogonal states taken nq| capacity in general yields a different, potentially higher
from the hlgh—probgblhty subspace of the source that attaingnannel capacity for codes composed of the composite sym-
the channel capacity. Ra}ndo‘r‘nl_y chosg'n states have on avefas. (For the classical memoryless channel, in contrast,
age the maximum possible “distance” between them, and,jqcking symbols in groups yields the same channel capacity
are the hardest for the channel to'm|x L82]. In addition, o< for the ordinary stationary, ergodic chanfig#].) The
such random states have the desired property that they a&g,or-smolin code of Ref[21] blocks inputs together in
fully entangled, and each block of qubits in the e“COdedgroups of /=5: for the depolarizing channel discussed

signal has density matrig;, [20]. Now send the encoded 5poye, this code surpasses by a small amount the channel
signal down the channel. Becal_Jse the states are fully erb'apacitycé for sources with blocks of length 1, but does not
tangled, the channel cannot obtain any information about th

Y ; urpasgnor necessarily attajrihe quantum channel capacity
original preencodeq state: all the charlmel can do to dlsrupésQ for stationary, ergodic sources over blocks of length 5.
the encoded state is add entrofiy,—ICq per block trans- Theorem 3 gives a constructive procedure for reading the
| | | i rThuantum channel capacity obtainable using codewords with a
decoherence, and as long asl{i/ trp'logp)<Cq there is  finite correlation length. The maximum error rate for which
enough redundanqy in the encpded state to recreate the O"QYuantum information can be reliably transmitted down such
nal state, just as in the classical case. This method workgepolarizing channels using codewords with an infinite cor-
equally well if the initial state is pure, mixed, or entangled relation length is not known. Theorem 3 shows, however,
with some other system. , _ that for any noisy quantum channel, the maximum rate of

Examples In the three cases discussed in Sec. lll, theyansmission of quantum information using sources with ar-

channel capacity is just,, as calculated. The important fact bitrary block size is given by the maximum over al of
to note is that even very high levels of decoherence~~
(e—1) can be tolerated in principle. A case of considerable Q
interest is that in which each qubit system sent down the
channel has a probability of being decohered and random-
ized (the “depolarizing” channel of Refl12]). In this case, V1. DISCUSSION

In practice, even if the channel capacity is not exceeded,

the amount of noise and decoherence that can be tolerated is

PFHEOI (1= m2i)i" @ [i)i] limited by the ability to encode and decode: Ns-x, the
o error in the transmitted state goes to zero, but the amount of
+(pld)]i(i|@[i")i']). guantum information processing that must be done to encode

and decode becomes large. The encoding and decoding itself
HereS;-can be calculated for blocks of length 1 and is equalmust be performed reliably.
to —(3#n/4)logy(n/4)—(1—3n/4)log,(1—3%/4), which is The usefulness of the classical noisy coding theorem is
equal to 1 forp~0.252. The highest rate of errors that canalso limited by coding difficulties: in particular, random
be corrected by an optimal coding procedure for sources witlcodes are hard to encode and decode. In this respect, how-
block length 1 is just above 1l/kee also Ref[12]). This  ever, the quantum theorem has a considerable advantage. As
example contrasts with the classical channel, in which arbiShannon and Weaver noted, random codes are effective be-
trarily high levels of noise can be tolerated in principle: cause the bits that make up the signal have no apparent or-
guantum coding can correct for arbitrarily high levels eitherder. In the classical case, this implies that sequences of bits
of noise, or of decoherence, but not of both together. must appear random. In the quantum case, however, as long
as the encoded signal is fully entangled, each qubit in the
signal taken on its own appears to be completely random. As
a result, the code words themselves may be highly regular:

The examples discussed above have looked at memoryhe hashing procedure of Ref21] is an example of a

less sources with block length 1. The methods developed istraightforward computational procedure for constructing
Sec. IV can give higher transmission rates if qubits arecodewords that are sufficiently random to attain the limits of

V. METHODS FOR IMPROVING THE LIMITS
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Theorems 2 and 3. In the classical case, random codes atteat is obtained by superposing corresponding states from
hard to construct. In the quantum case, codes that are suffiwo ensembles. If corresponding states have the same prob-
ciently random to attain the channel capacity may be conability, for example, if pj=q; for the ensemblest,,&,
structed by a brief quantum computation. above, then thénot necessarily normalizéénsemble of su-

In conclusion, this paper has derived fundamental limitsperpositions ofa times the states of,, plus B8 times the
about the amount of quantum information that can be sentorresponding states &F, is just{(a|#;)+ B|#;),p;)}, with
reliably down a quantum channel using high-probability density matrixo as above. In fact, because we will work with
states of block sources, and has exhibited codes that attaghsembles of high-probability states, which have approxi-
those limits. In fact, almost all codes attain those limits. Themately equal probabilities, this is the type of ensemble that
limits given for block sources apply to any coding schemewe will have occasion to use below. If the corresponding
that was codewords of finite length and to stationary, ergodistates from the different ensembles do not have the same
sources with finite correlation length. As with Shannon’sprobabilities, then we write the ensemble of superposed
classical noisy coding theorem, the rate of transmission oftates asea¢+ﬁ¢,={(a|¢J—)+,8|¢/;j>,quj)} to indicate the
quantum information remains finite as the probability of er-ensemble obtained by superposingimes the states of
ror goes to zero. plus B times the corresponding states&f, together with a

list p;q; of the probabilities of the individual states in the
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APPENDIX A Peueps™ 2 @ 4+ G PI|y)
Here we discuss the properties of ensembles of states. The o _
idea behind the ensemble picture of quantum mechanics is to + Bap;a;| )] &il+ BBP; ).

deal with mixtures and superpositions in the same formalism.

Accordingly, a primary purpose of the ensemble picture istaf we wish to superpose many ensembles,
make an explicit distinction between quantum states that cagi:{(|¢j(i)>,pj(i))}, we will usei to index the ensembles,
interfere with each other and quantum states that cannot. Théndj to index the different members of each ensemble: e.g.,
ensemble picture is cqnstructed so that different mgmbers (Zfﬁ:{(ziﬁi|¢j(i)>:pj(i))} is the ensemble obtained by super-
an ensemble cannot interfere with each other, while correposing the jth members of each of the ensembles

sponding members of different ensembles can interfere. Thgith probability Py associated with thejth member
second purpose of the ensemble picture is to keep track egf the ith ensemble. & has density matrix

plicity of the normalization of states, so that high- 5= i0y.i"BiBi Pj(i)pj(i/)ll!{j(i/))(llfj(i)l-|nthiS notation,

probability sets of states can be identified correctly. states with differenf cannot interfere, but states with the
As noted in Sec. Il above, a quantum ensemble

i . f h ith thei samej but differenti can interfere.
€,={(|¢),p))} is a set of quantum states together with their " pis” jefinition of superpositions of ensembles allows us

probabilities. En_sembles are collections of vectors and sh_arl% complete the identification of ensembles with vectors by
many ~ properties  of vectors. For example, if gefining s, + BE,=E, 4. 4y In addition, this definition of
£s={(l¢;),01)} we can define a scalar produdf,  gyperposition makes a self-consistent connection between
Ey=2Vpiai(yl ). If € is normalized, then &  the ensemble and superscattering pictures of time evolution,
-E=1r pe=1. (Note that the rule for obtaining the proper j fact that will prove useful below. The ensemble picture is
statistics is to associate a factor @b; with each occurrence equivalent to the operator sum representation of superscatter-
of |#;).) This vectorlike character of ensembles allows theing operators described, e.g., in REZ0], but makes explicit
straightforward characterization of properties of quantum opthe normalization of the “superscattered” states, a feature
erators. For example, the trace-preserving character of th@hich will be required below to identify high-probability
superscattering operat@gec. I) can be summarized by the subspaces.

requirement tha£‘¢j>-6|¢j,>= djj- The ensemble picture of

open system time evolution declares tbiher| ;) goes to

| 12)) With probability p; 1, (i.€., with probability ampli- APPENDIX B

tude Vpy(1)) and [¢,) goes to|yy ) with probability Proof of Theorem 1Theorem 1 follows directly from the
P1(2) - - - OF | 1) goes to] (1)) with probability p,;y and  results of Refs[1] and [3], where a detailed treatment of
|#2) goes to[i,2)) with probability p,;), etc., with  high-probability subspaces may be found. The proof goes as
j=34,.... follows. If | ) is selected from the ensemble with probability

A type of ensemble that will prove useful below is one p; , then
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; Py ¥IP7n|¢) = tr Prnp™ la)(a|l—p,= > ail,...,iNa_ii,-..,i&
! ETRNN TV A 1
is just the total probability of the set aflassical high- ><S(|¢il><¢i1|)®...®5(|¢iN><¢i&|)’ 1)

probability sequences, in the manner of Shanfb#i, and
—1 asN—x. As a result, for anye>0, N can be picked
sufficiently large so that a state picked from any stationary
ergodic ensemble with density matjixhas overlap=1—e
with some state ift{", with probability =1— e. Minimality
follows, since&nn is itself an ensemble with density matrix
PiNn/trPin—p®---®p as N—o. As a result, any other _

SJ{bspacZ:- th;t obeys ’ihe requirements of Theorem 1 asymp- |a>_)€“_{(-12 iy ’iN|¢il<i1>>' a

totically contains all members 6{" except a set of measure

0 asN—o. Minimality is a relatively weak propertyxN X|'/’1N<iN>>’pJ’1(i1)'"piN(iN>)] (C2
need not be the only minimal subspace. But all other such

minimal subspace®(™ hav~e approximately the same dimen-
sion: log(din¥{")/log(dim+N—1) asN—o. In analogy to _NE | i), p )] (C3)
i1 Picy |

where the sum is taken over high-probability sequences in
Wwhichi appears approximately;N times.
Equivalently, in the ensemble picture,

the classical case, for the purposes of rating the channel ca- -
pacity the quantity of interest is the dependence of the loga-
rithm of the dimension of the minimal subspacesNn

To see that a stationary, ergodic source with finite correyvhere the superposition ensemble is defined as in Appendix

A and has density matriy,. [As in Appendix A, the en-

lation lengthm can be adequately approximated by block . i .
sources, divide up the sequences emitted by the source inﬁ?mble of output states corresponding can also be written in
’ unnormalized form la)—{(]a'),1)}, where

blocks of length/”, where/>m. Because of the finite cor- - .

relation length, the even blocks taken as a group have densi{g‘]»_zzi“i Wpio| ¥y, with p,=%j|a))(c)].] Theorem 1
matrix p’ ® - - - ® p’, wherep” is the reduced density matrix ' plies that asN—m?, then, .Wlth probability 1, the statgs of
for / bits of the stationary, ergodic source. The odd blocks« are to be found in the Hilbert spage], spanned by high-
have the same density matrix. That is, the even blocks for therobability states of the fornPyg|a!)~|alp), where Pyp
stationary, ergodic source taken on their own are in fact #rojects onto the high-probability set of states
block source, as are the odd blocks. The two taken togethé; (i) - - - [#j,(,)) In which |¢;.)) appears approximately
can be regarded as two correlated block sources and theip;;)N times. By the same reasoning as in Theorem 1, the
states fall with probability one into the tensor product of thepropjection of p, onto HY, pHP=Ppp,Pup, is indistin-
high-probability Hilbert spaces for the two block sources. iy

. > . - =~ guishable fromp, asN— <. The minimality of HN follows
But this tensor product space is just the high-probability H|I-as in Theorem 1: sincéal|alyp) = (al| Pyl ad) — (al| ) as

bert space for a single block source that includes both eveB % anv Hilbert space that asvmptotically contains the
and odd blocks. The entropy per qubit of the block source i , any pac ymp y i
states| o)) also asymptotically contains the stategp|a’),

(1) (—trp”log,p”), which, as” becomes large, converges : i Th !
to the entropy per qubit of the stationary, ergodic source: s@nd hence their span, which#g, . This proves the first part

as / becomes>m, the dimension of the high-probability °f Theorem 2. -

Hilbert space for the block source converges to the high- FOr the purposes of Theorem 2, it is not necessary to
probability Hilbert space for the stationary, ergodic sourcecalculate the dimension of the output Hilbert spa¢k ex-

As a result, ag’ becomes much larger than, the minimal ~ actly, but only to identify the part of the logarithm of this
subspace for the block source can be made arbitrarily closéimension that grows linearly withl asN—vc. The dimen-

to a minimal subspace for the stationary, ergodic sourcesion of the output Hilbert space('(j is equal to one over the
Since Theorems 1, 2, and 3 are theorems about minimalverage overlap of two members of that space:
subspaces for various sources, they hold not only for bloclﬁimﬂgz(tmppi)—l, where the trace i is taken over high-
sources, but for stationary, ergodic sources as well. The digsrobability sequences only. We wish to calculate the average

cussion in Appendixes C and D holds for sources with blockgimension of the output Hilbert space ower We have,
lengthl as described in Secs. 11-V above; in the interest of

compactness of notation, the indewill be suppressed.

trpp’= ; (thipl abip)( el )

APPENDIX C
Proof of Theorem 2There are several ways to prove the = > ajat @ NPy Py Pico Prik
noisy channel theorem. One way is to follow along the lines ik JOH
suggested in the text and analyze the channel's effect on % ca
entangled states. The following method of proof is closer in g [ (il o), (C4

spirit to the classical derivation of channel capacity.
In the density matrix picture of the channel, the channelwhere the sum is taken over high-probability states only.
has the effect Now average ovet: using the fact that
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<ai1 ’’’’’ iNa_i, _____ iN,>a=dim7"-2i’;‘15 — some state in the ensemb&Il with minimal subspace
Hgl. The average over, of the 0ver|ap|(z,ba1|¢aj)| of
states| ¢ai>EH2i1 |z,0a]_>e7-[§j, for i#] can be calculated
=Dibi. as in Appendix C and is equal to 1Ld}n§‘ut= 2N UPoutoGapout

If Pgl is the projection operator onﬂi&‘l, we have

.y ..
Illl ININI

~PiyPiyiis i

for high-probability sequencesy, ..., iy=i and that

(g, kg @y @my, .. my @,y ) 1S €QUAI O ZeTO unless

eitherk,=l,, m,=n,, ork,=n,, |,=m,, we obtain trpzl_pg_:2—N(—trpoudogzpouﬁtrpﬁogzp;):2—NCQ_ (D1)
i

truop2) = OuLD; - -
(tippe)a i,j%,l PiPwPy i Prco (Yol i X Wi | 1) That is, asN—, the overlap between any two individual

output subspaces approaches 0 as long as the quantum chan-
+ijzkl PP pj(i>pj<k>p|<k)p|(i)<¢|(i>|¢j(i>> nel capacity is not zero. The dimension of the direct sum of

the output subspaces remains less than or equal to the dimen-

sion of Hy,, if and only if —tr plogp<Cq:

X<¢j(k)|¢|(k>>—ijzk Pizpj(i)p|(i)<¢|(i>|¢j(i>>

Xl i) (C5) dim@Z gy, — 27 NP 10920 = 100200 — PN Pt ozpou0),
where the sums are taken over high-probability sequences (D2)
and states as before. Equati@@b) reduces to
where{=Cy—(—trp log,p). So if =0, the source entropy

(tripp%) o= trip( pou) "+ triap( p2) "~ triplpi), () goes not egceed the channel capacity and the output states
, corresponding to different input basis states all fall into dis-
where po,; and p,-are dgﬂned as abov¢a2,i,o=2ipi8(| %) tinct subspaces. The overlap of any one output subspace with
X(bil)®|pi)(il, and %) =p & ®p'. We can NOW  he direct sum of all the remaining subspaces goes as
use the fact that NR(PZ)N_: 2’\,1 b ,ngp* which can be simply = 5-N¢ |t r<0 the output subspaces overlap and no unique
verified in a basis in whiclp is diagonal. We then have decoding is possible. This proves th@g is an upper limit
on the channel capacity for “typical” codewords belonging

2 \N_ 9N trpodoGopout— 92— NS . L. .
trup(poyy) " =27 "Pout®%RPout=2 " (C7) to the high-probability subspacee., for a set of measure 1
2 N_ AN tro—totoo— - NS— asN—®), but it does not rule out the possibility of the use
tryp(p) =27 TPa092Pa= 27, (€8 of a set of codewords of measure 0.

In the case/=0, a unitary decoding transformation can
. (C9 now be applied to the output states to put each vector
' |y,) €My, into the form [x)®|yM), in which vectors in

As N—oo ((dimHY) 1), goes to the largest of these three different output subspaces but with the sajg;) in Eq.
terms, of which the third is less than or equal to either of the(C3) give the samgy"). The decoding transformation can
first two. We have actually calculated the average of thede constructed along the lines of a Schmidt orthogonalization
inverse of the dimension of the output subspace; howevegrocedure as fQ"OWS('-'l& PiCNk aj and map the unnormalized
the standard deviation/{(trupp2)2),— (trupp2)2 can be  output statesal) to [xi)|y"), where|y) is also not nec-
shown to be proportional to (fgp2,trupp2)V2 and so goes essarily normalized2) Pick aj’ and map the unnormalized
to zero exponentially faster iN than(trypp2),, except when statesal ) to |Xi’\|>|wj’\!> by mapping the part ofe] ) that is
Sz=Sout, in Which case g=0. As a result, the average of orthogonal td«!) to the part of xI')| z/;ff) that is orthogonal
the inverse is thgilnverse of the averagi anjd the averagg |XiN>|‘»[/jN>: as noted schematically in Fig(18, this step
. . H : trpalog,pa i il

dimension of dirfit, is the smaller of 27 ™% and  |4jies crucially on the fact thatel|al') is asymptotically
2~ NP tpoulo%raut proving the second half of Theorem 2. Note T .

. . .= equal to{a;,|ai,) as N—w. In fact, the same averaging
also that the standard deviation of the dimensiof{fas a . U - . .
fraction of the average dimension also goes to zero agechnlqu_es used in deriving the dimension .Of the output sub-
N—o, showing that almost allx correspond to an output Spaces in the proof of Theorem 2 above give
space of the same dimension.

trHP(Pso) N — 9N trpsglogapijo= 2 = N( Z Sout )+ Sin

((allal) = (al lal )P,

i i'\2 i i'\2 112
Proof of Theorem 3The high probability subspace for ([l )P all{at [ )P)a,)
this source has dimension P 1°%¢  Encode the basis — N(trpof0gppoue— rp410020)
states|y!') for the source asandomly choserorthogonal
states/a!') in the high-probability subspace of a source that
attains the channel capacity. The channel takes g&thto =27NG

APPENDIX D
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which approaches 0 a¢— e if and only if Co,>0. (3) Pick N
aj” and continue as before, mapping the parkajf”) that is Ek: ka)_)[
orthogonal to the subspace generatedddy and| a{”) to the
part of |X{\'>|l//yr> that is orthogonal to|x\)|#") and ><IzﬁjN(iN))pjl(ily"ij(iN)) }; (D3b)
x| lﬁ;\f). (4) Continue until all thg’s have been mapped.
Because of the asymptotic orthogonality of the outputand finally, decoding
spaces, this decoding recreatg%‘) with fidelity arbitrarily
close to 1 asN—oe. The crucial point is that this decoding H[(E nxoe > Biy i i)
also recreatesuperposition®f input states with fidelity ap- X eIy

.....

.....

proaching 1 asN—x: the decoding process is unitary and
preserves the amplitudes and phases of |ff® so that X[t Py Pigtiy)
Svdxl) is mapped to an  ensemble[(S vl xt)
N g :
®[4"),pjyn) - The steps are as follows: first, encoding :{(Ek: yk|Xk>®|¢N>1pr>) } (D30)

The fact that the decoding process faithfully recreates super-
positions can also be verified in the density matrix picture by
E 7k|XE>_’E Vi E a:< iyl ) using the correspondence in Appendix C. Since the encoding
k L o N N and decoding preserves pure states with their phases, it also
(D33 preserves mixed states and any entanglement between the
input state and another quantum system.
This proves the if part of the theorem. The only if part for
codewords from the high-probability subspace was proved

next, the effect of the channel above. This proves the theorem as stated.
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