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Capacity of the noisy quantum channel

Seth Lloyd*
D’Arbeloff Laboratory for Information Systems and Technology, Department of Mechanical Engineering,
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An upper limit is given to the amount of quantum information that can be transmitted reliably down a noisy,
decoherent quantum channel using the high-probability states of quantum sources. A class of quantum error-
correcting codes is presented that allows the information transmitted to attain this limit. The result is a quantum
analog of Shannon’s bound and code for the noisy classical channel@C. E. Shannon and W. Weaver,The
Mathematical Theory of Communication~University of Illinois Press, Chicago, 1948!#.
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I. INTRODUCTION

The ‘‘quantum’’ in quantum mechanics means ‘‘ho
much’’—in quantum mechanics, classically continuous va
ables such as energy, angular momentum and charge com
discrete units called quanta. This discrete character
quantum-mechanical systems such as photons, atoms,
spins allows them to register ordinary digital information.
left-circularly polarized photon can encode a 0, for examp
while a right-circularly polarized photon can encode a
Quantum systems can also register information in ways
classical digital systems cannot: a transversely polari
photon is in a quantum superposition of left and right pol
ization and in some sense encodes both 0 and 1 at the
time. Even more surprising from the classical perspective
so-called entangled states, in which two or more quan
systems are in superpositions of correlated states, so tha
photons can encode, for example, 00 and 11 at once. S
entangled states behave in ways that apparently violate
sical intuitions about locality and causality~without, of
course, actually violating physical laws!.

Information stored on quantum systems that can exis
superpositions and entangled states is called quantum in
mation. The unit of quantum information is the quantum b
or qubit ~pronounced ‘‘Q bit’’ ! @1#, the amount of quantum
information that can be registered on a single two-state v
able such as a photon’s polarization or a neutron’s spin. T
paper puts fundamental limits on the amount of quant
information that can be transmitted reliably along a no
communication channel such as an optical fiber. Theore
are presented that limit the rate at which arbitrary super
sitions of qubits can be sent down a channel with given no
characteristics, and encoding schemes are presented th
tain that limit.

It is important to compare the results presented here—
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551050-2947/97/55~3!/1613~10!/$10.00
-
in

of
nd

,
.
at
d
-
me
re
m
wo
ch
s-

in
or-
,

i-
is

y
s
-
e
at-

e

use of a quantum channel to transmit quantum informatio
with schemes that use quantum channels to transmit clas
information, as in Caves and Drummond’s comprehens
review of quantum limits on bosonic communication rat
@2#. The limit to the rate at which arbitrary sequences
ordinary classical bits, suitably encoded as quantum sta
can be transmitted down a quantum channel such as an
tical fiber is given by Holevo’s theorem. In contrast, the r
sults presented here limit the rate at which arbitrarysuper-
positionsof sequences of quantum bits can be sent relia
down a noisy, decoherent quantum channel. As such,
theorems presented in this paper are complementary to
results of Schumacher@1# and Josza and Schumacher@3# on
the noiseless quantum channel. Any channel that can tr
mit quantum information can be used to transmit class
information as well. It is possible, however, for a channel
be able to transmit classical information without being a
to transmit quantum information: examples of such co
pletely decoherent channels will be discussed below.

The difference between quantum and classical inform
tion does not arise from a fundamental physical distinct
between the systems that register, process, and transmi
information. As just noted, quantum channels can be use
transmit classical information. And after all, classic
information-registering systems such as capacitors and
rons are at bottom quantum mechanical. The differe
arises from the conditions under which such systems ope
When properly isolated from their environment, photons a
atoms can exist in superpositions and entangled states
long periods of time, with experimentally measurably resu
Capacitors and neurons, in contrast, interact strongly wit
thermal environment, which prevents them from exhibiti
coherent quantum effects. As a result, quantum informa
can be used to perform tasks that classical information c
not.

A full theory of quantum information and its propertie
does not yet exist. However, the ability to transmit and p
cess quantum information reliably provides the solution
1613 © 1997 The American Physical Society
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1614 55SETH LLOYD
problems for which no classical solution is known: if e
tangled quantum bits can be transmitted and received, q
tum cryptographic techniques can be used to create prob
secure shared keywords for unbreakable codes@4#, while the
ability to process quantum information allows quantum co
puters efficiently to factorize large numbers and to simul
local quantum systems@5#.

For quantum information to prove useful, it must be tran
mitted and processedreliably. Quantum superpositions an
entangled states tend to be easily disrupted by noise an
interactions with their environment, a process called de
herence@6,7#. Until recently, decoherence and noise seem
insurmountable obstacles to reliable quantum informat
transmission and processing. However, in 1995, Shor ex
ited a quantum error-correcting routine@8#. Since then, sev-
eral such routines have been proposed@9–13#. These rou-
tines have the feature, common to many classical er
correcting codes as well, that the rate of transmission
quantum information goes to zero as the reliability of tra
mission goes to 1. This paper shows that arbitrarily com
cated quantum states can in principle be encoded, subje
to high levels of noise and decoherence, then decoded to
a state arbitrarily close to the original state, all with a fin
rate of transmission of quantum information. The pap
states and gives the proof of theorems that put an up
bound to the capacity of noisy, decoherent quantum chan
to transmit quantum information reliably, and exhibits a cla
of quantum codes that attain that bound. As with Shanno
theory of the noisy classical channel@14#, the quantum theo-
rems bound the amount of information that can be sent
using as codewords the ‘‘typical’’ or ‘‘high-probability’’
states emitted by a source. In particular, theorems bound
amount of quantum information that can be sent using c
words of finite length. Unlike the classical case, however
the quantum case it may still be possible to circumvent th
bounds by using an ‘‘atypical’’ or measure-zero set
infinite-length codewords.

II. QUANTUM SOURCES

A quantum channel has asource that emits systems in
quantum states~the signal! to the channel and a receiver th
receives the noisy, decohered signal emitted by the chan
For example, the source could be a highly attenuated l
that emits individual monochromatic photons, the chan
could be an optical fiber, and the receiver could be a pho
cell. Or the source could be a set of ions in an ion-tr
quantum computer@15# that have been prepared by a s
quence of laser pulses in an entangled state, the cha
could be the ion trap in which the ions evolve over time, a
the receiver could be a microscope to read out the state
the ions via laser-induced fluorescence. This second exam
indicates that a quantum channel can transmit quantum
formation from one time to another as well as from one pla
to another. As Shannon emphasized, a computer memory
communications channel.

A more complete picture of a quantum channel is sho
in Fig. 1: the input signal is some unknown quantum sta
the input is fed into an encoder that transforms it into
redundant form, the encoded signal is sent down the chan
subjected to noise and decoherence; the noisy, decoh
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signal is then fed into a decoder that attempts to restore
original signal. Quantum encoding and decoding requires
ability to manipulate quantum states in a systematic fashi
for example, by using Turchetteet al.’s @16# photonic quan-
tum logic gates or Monroeet al.’s realization @15# of the
ion-trap quantum computer proposed by Cirac and Zo
@17#. From a practical point of view, such decoding and e
coding may prove the most difficult part of reliable quantu
information transmission and processing. This paper w
simply exhibit coding and decoding schemes that attain
channel capacity: it will not address how such schemes
be carried out in practice.

The quantum analog of Shannon’s noisy coding theor
@14# is outlined in Fig. 2. In order to demonstrate this analo
it is helpful to set up a quantum formalism that correspon
closely to the classical picture of a noisy channel. Quant
systems and quantum signals are described by statesuc& in a
Hilbert spaceH or, more generally, by density matricesr
PH* ^H. A quantum ensembleE5$(uc i&,pi)% is a set of
quantum statesuc i& belonging to the same Hilbert spaceH,
together with their probabilitiespi . The expectation value of
a measurement on the ensemble corresponding to a Her
ian operatorM is ^M &E5S i pi^c i uM uc i&5trMrE , where
rE5S i pi uc i&^c i u is the density matrix corresponding to th
ensemble. The statesuc i& need not be orthonormal. The en
semble will be said to be normalized whe
S i pi^c i uc i&5trrE51. That is, a quantum ensemble is ju
the quantum analog of a classical ensemble, where care
been taken to take into account the inherently statistical
ture of quantum mechanics.

Two ensembles that have the same density matrix are
tistically indistinguishable: no set of measurements can d
tinguish whether a sequence of states is drawn from
ensemble rather than the other. An example of statistic
indistinguishable ensembles is

E15$(u↑&, 12 ),(u↓&, 12 )%

and

E25$~ u↑&, 13 !,~ 1
2 u↑&1A3/2u↓&, 13 ),~ 1

2 u↑&2A3/2u↓&, 13 )%,

both with density matricesr5 1
2u↑&^↑u1 1

2u↓&^↓u. Note that
an ensemble over a finite-dimensional Hilbert space can c
tain an infinite number of states, e.g
E5$(eifu↑&,p(f)51/2p)%, in which case each state i

FIG. 1. Diagram of the noisy, decoherent quantum channel.
send an arbitrary quantum stateuc& down the channel, first encode
it in a redundant fromC(uc&). The encoded state is sent down th
channel, where it is subjected to noise and decoherence. The ar
indicate that noise is added to the signal, while decoherence a
from the environment getting information about the signal. T
noisy, decoherent signalN„C(uc&)… is then fed through a decode
that recreates the original state together with extra random infor
tion that depends on what errors occurred.
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55 1615CAPACITY OF THE NOISY QUANTUM CHANNEL
FIG. 2. Comparison of classical and quantum channels.~a! The noisy classical channel. The message is encoded as one of a
codewords~0110, 0111, and 1000 are shown in the diagram! which are sparsely distributed in a large space of possible inputs. The code
is sent through the channel: since the channel adds noise, each codeword input can result in many possible outputs, represented b
in the center of the diagram. These circles do not overlap, signifying that the code has been constructed so that different inputs alm
give the same output, in spite of the noise. As a result, the noisy outputs can be uniquely decoded and mapped back to the original
total number of messages that can be reliably encoded and decoded is given by the ratio between the volume of the output spa
volume of the set of possible outputs corresponding to a typical codeword input: the channel capacity is the logarithm of this ratio~b! The
noisy quantum channel. The situation is much the same as the classical channel, with the nontrivial complication that quantum
vectors, that quantum ‘‘messages’’ can be arbitrary superpositions of states, and that the coding and decoding procedure must a
preserve the phases and amplitudes of quantum states. The coding proceeds as follows: each basis vector of the quantum mess
encoded as a codeword (ua0110&,ua0111&, andua1000& in the diagram! and sent down the channel. The channel adds noise and decoher
encoded message, so that each input codeword can result in many possible output states, once again represented by circles in
Here the vector character of quantum mechanics comes in. As shown in the text, the outputs for a given input lie with high prob
some minimal subspace of the output Hilbert space; these subspaces are represented by the squares that almost contain the circ
as the minimal subspaces have vanishingly small overlap, the noisy outputs can be mapped back to the original codewords rel
maximum number of codewords that can be decoded reliably is given by the ratio of the dimension of the output Hilbert spac
dimension of the minimal subspace corresponding to a typical codeword, and the quantum channel capacity is the logarithm of thi
the classical case, this would be the end of the story: in the quantum case it is not. Quantum coding must preserve phases and
In the output subspace, arrows have been drawn to indicate that when one codeword is perturbed by the channel in direction 1
codewords are also perturbed in direction 1; when one codeword is perturbed in direction 2, the other codewords are perturbed in
2, etc. For the decoding procedure to recreate superpositions reliably, the amplitudes of the perturbations 1 and 2 and the angle
them must be thesamein the subspaces corresponding to the different codewords. This is a necessary and sufficient condition
quantum decoding procedure to recreate superpositions and entangled states reliably. The random coding of Theorem 3 obeys th
and provides reliable transmission of quantum information.
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paired with a continuous probability density,p(f), and
r5*0

2p(1/2p)eifu↑&^↑ue2 ifdf5u↑&^↑u: an ensemble with
an infinite number of states can have the same density m
as an ensemble with a single state. Because of the inher
statistical nature of quantum mechanics, different quan
ensembles can be statistically indistinguishable, while t
classical ensembles are statistically indistinguishable if
only if they are identical. Further properties of quantum e
sembles can be found in Appendix A.

A particularly interesting type of continuous quantum e
semble is the uniform ensemble over a Hilbert spaceH,
EH5$(uf&PH,pf51/volH)%, where volH is the volume of
the unit sphere inH. This ensemble contains every possib
state and superposition of states isH, all with equal prob-
abilities. The corresponding density matrix
rH5(1/d)S i51

d uf i&^f i u, whered is the dimension ofH and
$uf i&% is an orthonormal basis forH. If we wish to transmit
arbitrary superpositions of states down quantum chann
the sources of interest are of the formEH for someH.

Like Shannon, we will restrict our attention to a mat
ematically tractable subset of all possible sources@17#. Sh-
annon concentrated on stationary, ergodic sources for
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classical channel. A stationary source is one for which
probabilities for emitting states does not change over tim
an ergodic source is one in which each subsequence of s
appears in longer sequences with a frequency equal to
probability. Stationary, ergodic sources have a finite, thou
potentially arbitrarily large correlation time. We will concen
trate on quantum sources with similar properties. First,
investigate ‘‘memoryless’’ ensembles, whose density ma
r ^ r ^ •••^ r is the tensor product ofN times its density
matrix over a single time step.

There are many different quantum ensembles with den
matrix r ^ •••^ r. But as noted by Schumacher@1#, and
Josza and Schumacher@3#, there is one ensemble in particu
lar that effectively contains all such ensembles. L
rS i pi uf i&^f i u, where thef i are orthonormal. Consider th
subspaceH̃N spanned by the ‘‘high-probability’’ produc
statesuf i1

&•••uf i N
&, where eachuf i& occurs in the product

approximatelypiN times. These states are the analog
high-probability sequences of symbols for a classical sou
The following theorem then follows as an immediate cor
lary to the noiseless quantum channel source theorem
Schumacher@1# and Josza and Schumacher@3#.
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Theorem 1. ~Quantum source theorem.! Let uc& be se-
lected fromany ensemble with density matrixr ^ •••^ r.
Then, asN→`,uc& is to be found in the high-probability
subspaceH̃N with probability 1.H̃N is a minimal subspace
with this property, in the sense that any other such subsp
containsH̃N asymptotically asN→`.

That is, asN→`, the ensembleEH̃N contains with prob-
ability one of the members of any ensemble with dens
matrixr ^ •••^ r. A more precise statement of Theorem 1
that asN→`,S uc&puc&^cuPH̃Nuc&→1, wherePH̃N is the pro-

jection operator ontoH̃N. The proof of Theorem 1 is found
in Appendix B. By Shannon’s source theorem, the dimens
of EH̃N is approximatelyeNS, whereS52trr lnr.

We would like to find similar minimal subspaces fo
sources with memory. In fact, we can adequately appro
mate arbitrary stationary, ergodic sources with finite corre
tion lengthm by looking at ‘‘block’’ sources of the form
r l ^ •••^ r l , wherer l is the reduced density matrix ove
l qubits of the stationary, ergodic source, andl @m. As
shown in Appendix B, the minimal subspace for such a blo
source asymptotically contains all but a set of measure z
of the states generated by the stationary, ergodic sourc
addition, the entropy of the block source asymptotically a
proaches the entropy of the stationary, ergodic source al
becomes much larger thanm. As a result, by takingl suf-
ficiently large, the minimal subspace for the block source
be made arbitrarily close to a minimal subspace for the
tionary, ergodic source.

As with Shannon’s theorems for classical sources, wh
simplify the analysis of the classical noisy channel by foc
ing on high-probability inputs, and as with the use of hig
probability subspaces in the noiseless quantum channel t
rem in Refs. @1# and @3#, the quantum source theore
simplifies the analysis of the noisy quantum channel by
cusing on a particular subspace of inputs. A coding sche
that works for any ensemble with density matr
r l ^ •••^ r l works for the states in the high-probabilit
subspace. Conversely, a coding scheme that works for
high-probability subspace works for any of the ensemb
that it contains. Accordingly, from this point on, quantu
sources will be taken to be ensembles over high-probab
subspaces of block sources unless otherwise stated. It sh
be kept in mind, however, that the resulting theorems do
hold for coding schemes in which the codewords are ta
from the measure zero set of states that do not fall in
high-probability subspace. This is not a strong restriction:
example, the theorems apply to all coding schemes that
codewords of finite length.

III. QUANTUM CHANNEL

A quantum communications channel takes quantum in
mation as input and produces quantum information as out
An optical fiber is an example of a quantum channel: a p
ton in some quantum state goes in, suffers noise and dis
tion in passing through the fiber, and, if it is not absorb
and does not tunnel out, emerges in a transformed quan
state. In the normal formulation of quantum mechanics,
ingoing system that carries quantum information is descri
by a density matrixr in and the outgoing system is describ
ce

y

n

i-
-

k
ro
In
-

n
a-

h
-
-
o-

-
e

he
s

ty
uld
ot
n
e
r
se

r-
t.
-
r-
d
m
e
d

by a density matrixrout5S(r in), where S is a trace-
preserving linear operator called a superscattering opera
S plays the same role for the quantum channel as
Markoff matrix that gives the probability for outputs in term
of inputs plays for the classical channel. For simplicity, t
quantum channel will be assumed to be stationary
memoryless, so that it has the same effect on each bloc
quantum bits that goes through.

An equivalent method of formulating the channel’s d
namics specify its effect on each of an orthonormal ba
$uf i&% of input states: the output of the channel for inp
uf i& is then given by the ensembleEuf i &

5$(uc j ( i )&,pj ( i ))% of

output states into whichuf i& can evolve, together with the
probabilitiespj ( i ) that uf i& evolves into the stateuc j ( i )&. The
density matrix and ensemble pictures of the effect of
channel are related as follows: S(uf i&^f i 8u)
5S j ( i )Apj ( i )pj ( i 8)uc j ( i )&^c j ( i 8)u, which for i5 i 8 gives
S(uf i&^f i u)5S j ( i )pj ( i )uc j ( i )&^c j ( i )u. The ensemble picture
of the time evolution of open quantum systems is equival
to the operator sum decomposition of the superscattering
erator discussed in Ref.@18#. A further discussion of the
properties of the ensemble picture can be found in Appen
A. For example, if the channel is noiseless and distort
free, thenS is the identity operator andEuf i &

5$(uf i&,1)%.
This channel transmits both classical and quantum inform
tion perfectly. Another example is the completely decoher
channel, which can be thought of as the chan
that destroys off-diagonal terms in the density matr
S(S i ja i j uf i&^f j u)5S ia i i uf i&^f i u or, equivalently, and per-
haps more intuitively, as the channel that randomizes
phases of input states: uf i&→Euf i &

5$„eiluf i&,p(l)

51/2p…%. The completely decohering channel highlights t
difference between the use of quantum channels to c
classical information and their use in carrying quantum
formation: it transmits classical information perfectly, b
transmits no quantum information at all: no superpositions
entanglements survive transmission.

Most quantum channels are neither noiseless nor c
pletely decohering. The next theorem quantifies just h
much quantum information can be sent down a noisy, de
hering channel. As above, we restrict our attention to blo
sources with density matrixr in

l 5S i pi uf i&
l^f i u, where

$uf i&
l% is a basis for blocks ofl qubits andi ranges from 1

to 2l . The inputs to the channel are then described by a d
sity matrixr in

lN5r in
l

^ •••^ r in
l and the output is described b

a density matrixrout
lN 5rout

l
^ •••^ rout

l , whererout
l 5S l(r inl )

5S i , j ( i )pipj ( i )uc j ( i )&
l^c j ( i )u and S l gives the effect of the

channel onl qubits.
As N→`, input states come from the subspaceH̃in

lN with
probability 1, and output states lie in the subspaceH̃out

lN

spanned by high-probability sequences of outpu
uc j 1( i1)

& l . . . uc j N( i N)
& l , where eachuc j ( i )&

l appears in the

sequence approximatelypipj ( i )N times. The dimension

of H̃out
lN is '22N trrout

l log2rout
l
. To gauge the quantity o

quantum information sent down the channel, look
the effect of the channel on a typical input sta
uaN

l &5S i1,...,i N
a i1,...,i N

uf i1
& l••• uf i N

& lPH̃in
lN , where the sum
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55 1617CAPACITY OF THE NOISY QUANTUM CHANNEL
is over high-probability intput sequences in whichuf i&
l ap-

pears approximatelypiN times. We have the following.
Theorem 2. ~Quantum channel theorem.! As N→`, when

uaN
l & is input to the channel, the output lies with probabili

1 in a minimal subspaceH̃a
lN whose average dimension ov

aN is the minimum ofeNSout, eNSā, whereSā52trrā
l lnrā

l

andrā
l 5S i ,i 8Apipi8S

l(uf i)&
l^f i 8u)^ uf i&

l^f i 8u.
The proof of Theorem 2 is found in Appendix C. Th

proof is somewhat involved, but the form ofrā can be un-
derstood simply. One of the primary uses of a quantum ch
nel is the distribution of entangled quantum states for
purpose of quantum cryptography or teleportation. Tak
two-variable entangled state of the formS iApi uf i&

l uf i&
l ,

whereuf i&
l is a state of a block ofl qubits. Like the state

(1/A2)(u0&u0&1u1&u1&) described in Sec. I, this state is
maximally entangled state that registers all the sta
uf i&

l uf i&
l at once; the factors ofApi ensure that each of th

two quantum variables taken on its own is described b
density matrixr in

l . Now send the first variable down th
channel. The result is a partially entangled state for the
variables described by density matrixrā

l . That is,Sā
l is the

entropy increase when one of two fully entangled variable
sent down the channel. A thorough treatment of the effec
noisy channels on entangled states can be found in Refs.@18#
and @19#. The effect of the channel on anlN-qubit state
uaN

l & can be understood as follows: almost all input sta
uaN

l & are fully entangled, with the density matrixr in
l describ-

ing each block ofl qubits on its own@20#. Sendingn of the
variables through the channel then increases the entrop
nSā , which is in turn the logarithm of the dimension of th
minimal subspace that can encompass the channel’s pos
outputs. IfSā.Sout, then sending all the variables throug
completely randomizes the output asN→` and no coheren
quantum information survives the transmission through
channel.

Theorem 2 suggests that the amount of quantum infor
tion transmitted down the channel from a stationary, ergo
source with density matrixr in

l be defined as (1/l )I Q(r in
l )

5(1/l )(2trrout
l log2rout

l 1trrā
l log2rā

l 5(1/l)(Sout2Sā) if
Sout.Sā ,50 otherwise.~Nielsen and Schumacher calle
this quantityI Q , coherent information@19#.! This definition
of quantum information transmitted is the quantum analog
mutual information between channel inputs and outpu
when pure states are sent down the channel,I Q tells how
much information one obtains about which pure st
PH̃in

lN went in by looking at the noisy mixed statePH̃out
lN

that comes out.
Figure 2 provided a schematic comparison of noisy cl

sical and quantum channels. The full justification ofI Q as the
quantum information transmitted down a quantum chan
will be presented in Sec. IV, in which quantum codin
schemes will be presented that allow the reliable transm
sion of quantum information at a rate governed byI Q , and in
which it will be noted that no coding schemes exist for blo
sources that can surpass this rate. For the moment, con
three examples of quantum channels, each with source
scribed byr in5

1
2(u0&^0u1u1&^1u). ~i! In the noiseless quan

tum channel, 2trroutlog2rout51,2trrā log2rā50, and
I Q51 qubit, reflecting the fact that each qubit is received
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sent.~ii ! In the completely decohering or dephasing chann
2trroutlog2rout51, rā5 1

2(u0&^0u ^ u0&^0u1u1&^1u ^ u1&
3^1u), 2trrā log2rā51, andI Q50 qubits, so that no quan
tum information is sent.~iii ! Consider a partly dephasin
channel in which u0&^0u→u0&^0u, u1&^1u→u1&^1u and
u0&^1u→(1
2e)u0&^1u, u1&^0u→(12e)u1&^0u. Here

rā5 1
2 ~ u0&^0u ^ u0&^0u1u1&^1u ^ u1&^1u!

1~12e!~ u1&^0u ^ u1&^0u1u0&^1u ^ u0&^1u!,

and 2trrā log2rā52(12e/2)ln(12e/2)2(e/2)log2(e/2),
giving an I Q that ranges continuously from 1 fore50 ~no
decoherence! to 0 for e51 ~complete decoherence!.

IV. OPTIMAL CODES FOR THE NOISY QUANTUM
CHANNEL

Define the capacity of a quantum channel to carry qu
tum information encoded by sources with block lengthl to
be CQ

l 5maxrin(1/l )I Q(r in). CQ is the maximum over all

sources with block lengthl of the coherent informationI Q
per bit transmitted down the channel. We then have the
lowing.

Theorem 3.~Noisy quantum channel coding theorem!
Consider a quantum channel with capacityCQ

l . The output
of a stationary, ergodic source with density matrixr l over l
bits can be encoded as high-probability states of a sou
with block lengthl , sent down the channel, and decoded w
reliability →1 asN→` if and only if (1/l )(2tr r l log2r

l)
<CQ

l .
Like Shannon’s noisy coding theorem, Theorem 3 com

with the caveat that it applies to high-probability sourc
@21#. The proof of Theorem 3 is found in Appendix D. Th
idea behind the proof, as well as the theorem’s meaning
implications can be understood as follows. The noisy, de
hering quantum channel has two effects on the quantum
formation that it transmits. First, like the classical channel
adds noise to the signal, flipping qubits and adding rand
information. Second, it decoheres the signal by randomiz
phases and acquiring information about the quantum in
mation transmitted. Decoherence is an effect with no cla
cal analog: classical signals do not have phases, and ac
ing information about a classical signal is harmless as lo
as the signal is not altered in the process. In quantum
chanics, however, acquiring information about the sig
means effectively making a measurement on it, and quan
measurement unavoidably alters most quantum systems

The problem of decoherence implies that signal must
encoded in such a way that any information the channel
tains about the encoded state reveals nothing about w
state of the source was sent. Otherwise, the channel ca
fectively ‘‘measure’’ the output of the source, irretrievab
disturbing it in the process. As noted by Shor, this may
accomplished by encoding the signal as an entangled s
@8#. In fact, each encoded signal must have the same den
matrix r in as each other encoded signal for each qubit s
down the channel: otherwise the channel can distinguish
tween different signals and decohere them. If the signals
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encoded as entangled states in this fashion, the channe
decohere the codeword, but it cannot decohere the orig
signal.

Suppose someone hands you a quantum system in s
unknown state generated by a stationary, ergodic source
density matrixr l and asks you to transmit it reliably down
noisy, decoherent quantum channel. What do you do?~If
someone hands you a system in a known quantum state
quantum channel is necessary: you can just use a clas
channel to transmit instructions for recreating the state us
a quantum computer.! The following encoding attains th
channel capacity. First, identify a source for the channel
attains the channel capacity, so thatI Q(r in

l )5 lCQ
l . Next, en-

code the state to be transmitted by applying a transforma
that maps an orthonormal basis for the input high-probab
subspace to arandomly chosenset of orthogonal states take
from the high-probability subspace of the source that atta
the channel capacity. Randomly chosen states have on a
age the maximum possible ‘‘distance’’ between them, a
are the hardest for the channel to mix up@22#. In addition,
such random states have the desired property that they
fully entangled, and each block of qubits in the encod
signal has density matrixr in @20#. Now send the encode
signal down the channel. Because the states are fully
tangled, the channel cannot obtain any information about
original preencoded state: all the channel can do to dis
the encoded state is add entropySout2 lCQ

l per block trans-
mitted. That is, the encoding protects the original state fr
decoherence, and as long as (1/l )(2trr l log2r

l)<CQ
l there is

enough redundancy in the encoded state to recreate the o
nal state, just as in the classical case. This method w
equally well if the initial state is pure, mixed, or entangl
with some other system.

Examples. In the three cases discussed in Sec. III,
channel capacity is justI Q , as calculated. The important fa
to note is that even very high levels of decoheren
(e→1) can be tolerated in principle. A case of considera
interest is that in which each qubit system sent down
channel has a probabilityh of being decohered and random
ized ~the ‘‘depolarizing’’ channel of Ref.@12#!. In this case,

rā5 (
i i 850,1

„~12h!/2u i &^ i 8u ^ u i &^ i 8u

1~h/4!u i &^ i u ^ u i 8&^ i 8u….

HereSā can be calculated for blocks of length 1 and is eq
to 2(3h/4)log2(h/4)2(123h/4)log2(123h/4), which is
equal to 1 forh'0.252. The highest rate of errors that c
be corrected by an optimal coding procedure for sources w
block length 1 is just above 1/4~see also Ref.@12#!. This
example contrasts with the classical channel, in which a
trarily high levels of noise can be tolerated in princip
quantum coding can correct for arbitrarily high levels eith
of noise, or of decoherence, but not of both together.

V. METHODS FOR IMPROVING THE LIMITS

The examples discussed above have looked at mem
less sources with block length 1. The methods develope
Sec. IV can give higher transmission rates if qubits
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blocked together in groups ofl as described for quantum
sources above. Each block ofl qubits can be regarded as
composite quantum symbol, so that the block source ha
density matrixr l ^ •••^ r l , wherer l is a density matrix
over l quantum symbols, as discussed in the section
quantum sources above.

Theorems 2 and 3 apply to block sources over the co
posite symbols. The coherent informationI Q(r

l ) can be de-
fined as above to be the difference between the entrop
the output2trrout

l log2rout
l and the entropy increase when th

first l bits ~with reduced density matrixr l ) of a pure, fully
entangled state of 2l bits are sent down the channel. Th
channel capacity for sources with block lengthl can then be
defined as in Theorem 3 to beCQ

l 5(1/l )maxrl I Q(r
l ). The

maximization procedure used for finding the quantum ch
nel capacity in general yields a different, potentially high
channel capacity for codes composed of the composite s
bols. ~For the classical memoryless channel, in contra
blocking symbols in groups yields the same channel capa
as for the ordinary stationary, ergodic channel@14#.! The
Shor-Smolin code of Ref.@21# blocks inputs together in
groups of l 55: for the depolarizing channel discusse
above, this code surpasses by a small amount the cha
capacityCQ

1 for sources with blocks of length 1, but does n
surpass~nor necessarily attain! the quantum channel capacit
CQ
5 for stationary, ergodic sources over blocks of length

Theorem 3 gives a constructive procedure for reading
quantum channel capacity obtainable using codewords wi
finite correlation length. The maximum error rate for whic
quantum information can be reliably transmitted down su
depolarizing channels using codewords with an infinite c
relation length is not known. Theorem 3 shows, howev
that for any noisy quantum channel, the maximum rate
transmission of quantum information using sources with
bitrary block size is given by the maximum over alll of
CQ
l .

VI. DISCUSSION

In practice, even if the channel capacity is not exceed
the amount of noise and decoherence that can be tolerat
limited by the ability to encode and decode: asN→`, the
error in the transmitted state goes to zero, but the amoun
quantum information processing that must be done to enc
and decode becomes large. The encoding and decoding
must be performed reliably.

The usefulness of the classical noisy coding theorem
also limited by coding difficulties: in particular, random
codes are hard to encode and decode. In this respect,
ever, the quantum theorem has a considerable advantag
Shannon and Weaver noted, random codes are effective
cause the bits that make up the signal have no apparen
der. In the classical case, this implies that sequences of
must appear random. In the quantum case, however, as
as the encoded signal is fully entangled, each qubit in
signal taken on its own appears to be completely random
a result, the code words themselves may be highly regu
the hashing procedure of Ref.@21# is an example of a
straightforward computational procedure for construct
codewords that are sufficiently random to attain the limits
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Theorems 2 and 3. In the classical case, random codes
hard to construct. In the quantum case, codes that are s
ciently random to attain the channel capacity may be c
structed by a brief quantum computation.

In conclusion, this paper has derived fundamental lim
about the amount of quantum information that can be s
reliably down a quantum channel using high-probabil
states of block sources, and has exhibited codes that a
those limits. In fact, almost all codes attain those limits. T
limits given for block sources apply to any coding sche
that was codewords of finite length and to stationary, ergo
sources with finite correlation length. As with Shannon
classical noisy coding theorem, the rate of transmission
quantum information remains finite as the probability of
ror goes to zero.
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APPENDIX A

Here we discuss the properties of ensembles of states.
idea behind the ensemble picture of quantum mechanics
deal with mixtures and superpositions in the same formali
Accordingly, a primary purpose of the ensemble picture is
make an explicit distinction between quantum states that
interfere with each other and quantum states that cannot.
ensemble picture is constructed so that different member
an ensemble cannot interfere with each other, while co
sponding members of different ensembles can interfere.
second purpose of the ensemble picture is to keep track
plicitly of the normalization of states, so that high
probability sets of states can be identified correctly.

As noted in Sec. II above, a quantum ensem
Ec5$(uc j&,pj )% is a set of quantum states together with th
probabilities. Ensembles are collections of vectors and sh
many properties of vectors. For example,
Ef5$(uf j&,qj )% we can define a scalar productEc

•Ef5S jApjqj^c j uf j&. If E is normalized, then E
•E5tr rE51. ~Note that the rule for obtaining the prope
statistics is to associate a factor ofApj with each occurrence
of uc j&.) This vectorlike character of ensembles allows t
straightforward characterization of properties of quantum
erators. For example, the trace-preserving character of
superscattering operator~Sec. II! can be summarized by th
requirement thatEuf j &

•Euf j8&5d j j 8. The ensemble picture o

open system time evolution declares thateither uf1& goes to
uc1(1)& with probability p1(1) ~i.e., with probability ampli-
tude Ap1(1) ) and uf2& goes to uc1(2)& with probability
p1(2) , . . . or uf1& goes touc2(1)& with probabilityp2(1) and
uf2& goes to uc2(2)& with probability p2(2) , etc., with
j53,4, . . . .
A type of ensemble that will prove useful below is on
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that is obtained by superposing corresponding states f
two ensembles. If corresponding states have the same p
ability, for example, if pj5qj for the ensemblesEf ,Ec
above, then the~not necessarily normalized! ensemble of su-
perpositions ofa times the states ofEf plus b times the
corresponding states ofEc is just $(auf j&1buc j&,pj )%, with
density matrixr as above. In fact, because we will work wit
ensembles of high-probability states, which have appro
mately equal probabilities, this is the type of ensemble t
we will have occasion to use below. If the correspondi
states from the different ensembles do not have the s
probabilities, then we write the ensemble of superpo
states asEaf1bc5$(auf j&1buc j&,pjqj )% to indicate the
ensemble obtained by superposinga times the states ofEf
plusb times the corresponding states ofEc , together with a
list pjqj of the probabilities of the individual states in th
superposition. The superposition ensembleEaf1bc is
defined to be the ensemble of unnormalized sta
$(aAqj uf j&1bApj uc j&,1)%. ~Note that this ensemble is nor
malized even though its states and probabilities are not.! We
specify superposition ensembles in this fashion to keep tr
explicitly of the normalization of the individual states in th
superposition. The proper overall normalization of such
sembles is obtained as above by associating a factor ofApj
with eachuc j& and a factor ofAqj with eachuf j&, so that

rEaf1bc
5(

j
aāqj uf j&^f j u1ab̄Aqjpj uf j&^c j u

1bāApjqj uc j&^f j u1bb̄pj uc j&^c j u.

If we wish to superpose many ensemble
Ei5$(uc j ( i )&,pj ( i ))%, we will use i to index the ensembles
and j to index the different members of each ensemble: e
Eb5$(S ib i uc j ( i )&,pj ( i ))% is the ensemble obtained by supe
posing the j th members of each of the ensembl
with probability pj ( i ) associated with thej th member
of the i th ensemble. Eb has density matrix
rb5S j ( i ), j ( i 8)b i b̄ i 8Apj ( i )pj ( i 8)uc j ( i 8)&^c j ( i )u. In this notation,
states with differentj cannot interfere, but states with th
samej but differenti can interfere.

This definition of superpositions of ensembles allows
to complete the identification of ensembles with vectors
definingaEf1bEc5Eaf1bc . In addition, this definition of
superposition makes a self-consistent connection betw
the ensemble and superscattering pictures of time evolut
a fact that will prove useful below. The ensemble picture
equivalent to the operator sum representation of supersca
ing operators described, e.g., in Ref.@20#, but makes explicit
the normalization of the ‘‘superscattered’’ states, a feat
which will be required below to identify high-probability
subspaces.

APPENDIX B

Proof of Theorem 1. Theorem 1 follows directly from the
results of Refs.@1# and @3#, where a detailed treatment o
high-probability subspaces may be found. The proof goe
follows. If uc& is selected from the ensemble with probabili
puc& , then
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(
uc&

puc&^cuPH̃Nuc&5 tr PH̃NrN

is just the total probability of the set ofclassical high-
probability sequences, in the manner of Shannon@14#, and
→1 asN→`. As a result, for anye.0, N can be picked
sufficiently large so that a state picked from any stationa
ergodic ensemble with density matrixr has overlap>12e
with some state inH̃N, with probability>12e. Minimality
follows, sinceEH̃N is itself an ensemble with density matr
PH̃N /trPH̃N→r ^ •••^ r as N→`. As a result, any othe
subspace that obeys the requirements of Theorem 1 as
totically contains all members ofH̃N except a set of measur
0 asN→`. Minimality is a relatively weak property:H̃N

need not be the only minimal subspace. But all other s
minimal subspacesĤN have approximately the same dime
sion: log(dimĤN)/ log(dimH̃N→1) asN→`. In analogy to
the classical case, for the purposes of rating the channe
pacity the quantity of interest is the dependence of the lo
rithm of the dimension of the minimal subspaces onN.

To see that a stationary, ergodic source with finite cor
lation lengthm can be adequately approximated by blo
sources, divide up the sequences emitted by the source
blocks of lengthl , wherel .m. Because of the finite cor
relation length, the even blocks taken as a group have den
matrix r l ^ •••^ r l , wherer l is the reduced density matri
for l bits of the stationary, ergodic source. The odd bloc
have the same density matrix. That is, the even blocks for
stationary, ergodic source taken on their own are in fac
block source, as are the odd blocks. The two taken toge
can be regarded as two correlated block sources and
states fall with probability one into the tensor product of t
high-probability Hilbert spaces for the two block source
But this tensor product space is just the high-probability H
bert space for a single block source that includes both e
and odd blocks. The entropy per qubit of the block sourc
(1/l )(2trr l log2r

l ), which, asl becomes large, converge
to the entropy per qubit of the stationary, ergodic source
as l becomes@m, the dimension of the high-probabilit
Hilbert space for the block source converges to the hi
probability Hilbert space for the stationary, ergodic sour
As a result, asl becomes much larger thanm, the minimal
subspace for the block source can be made arbitrarily c
to a minimal subspace for the stationary, ergodic sou
Since Theorems 1, 2, and 3 are theorems about min
subspaces for various sources, they hold not only for bl
sources, but for stationary, ergodic sources as well. The
cussion in Appendixes C and D holds for sources with blo
length l as described in Secs. II–V above; in the interest
compactness of notation, the indexl will be suppressed.

APPENDIX C

Proof of Theorem 2. There are several ways to prove th
noisy channel theorem. One way is to follow along the lin
suggested in the text and analyze the channel’s effec
entangled states. The following method of proof is closer
spirit to the classical derivation of channel capacity.

In the density matrix picture of the channel, the chan
has the effect
,
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ua&^au→ra5 (
i1,...,i N ,i18,...,i N8

a i1
,...,i Nā i

18
,...,i

N8

3S~ uf i1
&^f i

18
u! ^ •••^S~ uf i N

&^f i
N8
u!, ~C1!

where the sum is taken over high-probability sequences
which i appears approximatelypiN times.

Equivalently, in the ensemble picture,

ua&→Ea5H S (
i1,...,i N

a i1
,...,i Nuc j 1~ i1!&•••

3uc j N~ i N!&,pj 1~ i1!•••pjN~ i N!D J ~C2!

[H S (
i

a iuc j ~ i!&,pj ~ i!D J , ~C3!

where the superposition ensemble is defined as in Appe
A and has density matrixra . @As in Appendix A, the en-
semble of output states corresponding can also be writte
unnormalized form ua&→$(ua j&,1)%, where
ua j&5S ia iApj ( i)uc j ( i)&, with ra5S jua j&^a ju.# Theorem 1
implies that asN→`, then, with probability 1, the states o
Ea are to be found in the Hilbert spaceH̃a

N spanned by high-
probability states of the formPHPua j&;uaHP

j &, wherePHP

projects onto the high-probability set of stat
uc j 1( i1)

&•••uc j N( i N)
& in which uc j ( i )& appears approximately

pipj ( i )N times. By the same reasoning as in Theorem 1,
projection of ra onto H̃a

N , ra
HP5PHPraPHP , is indistin-

guishable fromra asN→`. The minimality ofH̃a
N follows

as in Theorem 1: sincêa juaHP
j &5^a juPHPua j&→^a jua j& as

N→`, any Hilbert space that asymptotically contains t
statesua j& also asymptotically contains the statesPHPua j&,
and hence their span, which isH̃a

N . This proves the first par
of Theorem 2.

For the purposes of Theorem 2, it is not necessary
calculate the dimension of the output Hilbert spaceH̃a

N ex-
actly, but only to identify the part of the logarithm of thi
dimension that grows linearly withN asN→`. The dimen-
sion of the output Hilbert spaceH̃a

N is equal to one over the
average overlap of two members of that spa
dimH̃a

N5(trHPra
2)21, where the trace trHP is taken over high-

probability sequences only. We wish to calculate the aver
dimension of the output Hilbert space overa. We have,

trHPra
25(

j ,l
^aHP

l uaHP
j &^aHP

j uaHP
l &

5 (
i,i8,j ,k,k8,l

a iā i8akāk8Apj ~ i!pj ~ i8!pl~k!pl~k8!

3^c l~k8!uc j ~ i!&^c j ~ i8!uc l~k!&, ~C4!

where the sum is taken over high-probability states on
Now average overa: using the fact that
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^a i1,...,i N
ā i

18,...,i N8
&a5dimH̃in

Nd i1i18•••d i NiN8

'pi1•••piNd i1i18•••d i NiN8

[pid i•n8

for high-probability sequencesi 1, . . . ,i N[ i and that
^ak1,...,kN

ā l1,...,l N
am1,...,mN

ān1,...,nN
&a is equal to zero unles

eitherkr5 l r , mr5nr , or kr5nr , l r5mr , we obtain

^trHPra
2&a5 (

i,j ,k,l
pipkpj ~ i!pl~k!^c l~k!uc j ~ i!&^c j ~ i!uc l~k!&

1 (
i,j ,k,l

pipkApj ~ i!pj ~k!pl~k!pl~ i!^c l~ i!uc j ~ i!&

3^c j ~k!uc l~k!&2(
i,j ,k

pi
2pj ~ i!pl~ i!^c l~ i!uc j ~ i!&

3^c j ~ i!uc l~ i!&, ~C5!

where the sums are taken over high-probability sequen
and states as before. Equation~C5! reduces to

^trHPra
2&a5trHP~rout

2 !N1trHP~r ā
2 !N2trHP~r i/o

2 !N, ~C6!

where rout and rā are defined as above,r i/o5S i piS(uf i&
3^f i u)^ uf i&^f i u, and (r2)N5r2^ •••^ r2. We can now
use the fact that trHP(r

2)N52N trr log2r, which can be simply
verified in a basis in whichr is diagonal. We then have

trHP~rout
2 !N52N trroutlog2rout522NSout, ~C7!

trHP~r ā
2 !N52N trrā log2rā522NSā, ~C8!

trHP~r i/o
2 !N52N trr i/olog2r i/o522NS(i Sout~ i !1SinD . ~C9!

As N→`,^(dimH̃a
N)21&a goes to the largest of these thre

terms, of which the third is less than or equal to either of
first two. We have actually calculated the average of
inverse of the dimension of the output subspace; howe
the standard deviationA^(trHPra

2)2&a2^trHPra
2&a

2 can be
shown to be proportional to (trHProut

2 trHPrā
2 )N/2 and so goes

to zero exponentially faster inN than^trHPra
2&a except when

Sā5Sout, in which case CQ50. As a result, the average o
the inverse is the inverse of the average and the ave
dimension of dimH̃a

N is the smaller of 22N trrā log2rā and
22NP trroutlog2rout, proving the second half of Theorem 2. No
also that the standard deviation of the dimension ofH̃a

N as a
fraction of the average dimension also goes to zero
N→`, showing that almost alla correspond to an outpu
space of the same dimension.

APPENDIX D

Proof of Theorem 3. The high probability subspace fo
this source has dimension 22N trr log2r. Encode the basis
statesux i

N& for the source asrandomly chosenorthogonal
statesua i

N& in the high-probability subspace of a source th
attains the channel capacity. The channel takes eachua i

N& to
es

e
e
r,

ge

s

t

some state in the ensembleEa1
with minimal subspace

H̃a1
N . The average overa l of the overlapz^ca1

uca j
& z of

statesuca i
&PH̃a i

N , uca j
&PH̃a j

N , for iÞ j can be calculated

as in Appendix C and is equal to 1/dimH̃out
N 52N trroutlog2rout.

If Pa1
N is the projection operator ontoH̃a1

N , we have

trPa i
N Pa j

N 522N~2trroutlog2rout1trrā log2rā !522NCQ. ~D1!

That is, asN→`, the overlap between any two individua
output subspaces approaches 0 as long as the quantum
nel capacity is not zero. The dimension of the direct sum
the output subspaces remains less than or equal to the di
sion ofHout

N if and only if 2tr r log2r<CQ :

dim% (
i
H̃a i

N→22N~ trr log2r2trrā log2rā!52N~2trroutlog2rout2z!,

~D2!

wherez5CQ2(2trr log2r). So if z>0, the source entropy
does not exceed the channel capacity and the output s
corresponding to different input basis states all fall into d
tinct subspaces. The overlap of any one output subspace
the direct sum of all the remaining subspaces goes
22Nz. If z,0, the output subspaces overlap and no uniq
decoding is possible. This proves thatCQ is an upper limit
on the channel capacity for ‘‘typical’’ codewords belongin
to the high-probability subspace~i.e., for a set of measure 1
asN→`), but it does not rule out the possibility of the us
of a set of codewords of measure 0.

In the casez>0, a unitary decoding transformation ca
now be applied to the output states to put each vec
uca1

N &PH̃a i
N into the form ux i

N& ^ ucN&, in which vectors in

different output subspaces but with the sameuc j ( i)& in Eq.
~C3! give the sameucN&. The decoding transformation ca
be constructed along the lines of a Schmidt orthogonaliza
procedure as follows:~1! Pick aj and map the unnormalize
output statesua i

j& to ux i
N&uc j

N&, whereuc j
N& is also not nec-

essarily normalized.~2! Pick a j 8 and map the unnormalize
statesua i

j8& to ux i
N&uc j8

N& by mapping the part ofua i
j8& that is

orthogonal toua i
j& to the part ofux i

N&uc j8
N& that is orthogonal

to ux i
N&uc j

N&: as noted schematically in Fig. 2~b!, this step

relies crucially on the fact that̂a i
j ua i

j8& is asymptotically

equal to ^a i 8
j ua i 8

j8& as N→`. In fact, the same averagin
techniques used in deriving the dimension of the output s
spaces in the proof of Theorem 2 above give

Šu^a i
j ua i

j8&2^a i 8
j ua i 8

j8&u2‹a ia i 8
~Šu^a i

j ua i
j8&u2‹a iŠu^a i 8

j ua i 8
j8&u2‹a i 8!

1/2

52N~ trroutlog2rout2trrā log2rā !

522NCQ
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which approaches 0 asN→` if and only if CQ.0. ~3! Pick

a j 9 and continue as before, mapping the part ofua i
j 9& that is

orthogonal to the subspace generated byua i
j& andua i

j9& to the
part of ux i

N&uc j9
N& that is orthogonal toux i

N&uc j
N& and

ux i
N&uc j8

N&. ~4! Continue until all thej ’s have been mapped.
Because of the asymptotic orthogonality of the outp

spaces, this decoding recreatesux i
N& with fidelity arbitrarily

close to 1 asN→`. The crucial point is that this decodin
also recreatessuperpositionsof input states with fidelity ap-
proaching 1 asN→`: the decoding process is unitary an
preserves the amplitudes and phases of theux i

N& so that
Skgkuxk

N& is mapped to an ensemble$(Skgkuxk
N&

^ ucN&,pucN&)%. The steps are as follows: first, encoding

(
k

gkuxk
N&→(

k
gk (

i1,...,i N
a i1,...,i N
k uf i1

&•••uf i N
&;

~D3a!

next, the effect of the channel
on
r

an
ce

ys

t-

f

.

t

(
k

gkuxk
N&→H S (

k
gk (

i1,...,i N
a i1,...,i N
k uc j 1~ i1!&•••

3uc j N~ i N!&pj 1~ i1!•••pjN~ i N!D J ; ~D3b!

and finally, decoding

→H S (
k

gkuxk& ^ (
i1,...,i N

b i1,...,i N
uc j 1~ i1!&•••

3uc j N~ i N!&pj 1~ i1!•••pjN~ i N!D J
5H S (

k
gkuxk& ^ ucN&,pucN&D J . ~D3c!

The fact that the decoding process faithfully recreates su
positions can also be verified in the density matrix picture
using the correspondence in Appendix C. Since the encod
and decoding preserves pure states with their phases, it
preserves mixed states and any entanglement between
input state and another quantum system.

This proves the if part of the theorem. The only if part f
codewords from the high-probability subspace was pro
above. This proves the theorem as stated.
J.

.
ys.

a-

lim-

en-

ns-
3,
es a
re-
an-
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