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Equal-factors method for solutions of the extended Schrdinger equation
for (Zns)? states of heliumlike ions
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An approximate method using iterative techniques developed for solving the extendéediSgérequation
is applied to principles of the first and second kind of balance theory and an examp@nfgf heliumlike
ions is presented. The implementation of the equal-factors method presented here, which leads to a series of
self-consistent equations, has advantages that provide the results for an entire series of energy levels and an
entire isoelectronic sequence in a single calculation. Results for all two-electron ions for the ground-state
energies foZ=1 to 10 are tabulated and compared with other results for these systems. Theoretical predictions
of energy levels for Z2s)? to (Z11s)?, excited autoionizing states of heliumlike ions with=1,10, are
tabulated as wel[.S1050-29476)06512-2

PACS numbdss): 31.15-p, 03.65.Ge

I. INTRODUCTION Based on these ideas, the forming processigindH’
has been investigated and a principles of the first and second
Suppose we have an unperturbed subsystem kind of balancg PFSKB) theory is developed here as in pre-
vious[1] work. We assume that the wave functions of the
Ho(c) WO (r,0)=EQ ()P (F,c), (1)  total systemH in the short period of time of this forming

] ) i i process can be described in PFSKB theory by the extended
wherec is a structure constant that is contained in the uncnrginger equatioril]:

perturbed Hamiltoniat ,(C). As a perturbing potentiat’

imposes a forcgl] on the unperturbed system, the unper- HV (F,a)=E.(a)¥,(F,a), CX@ space, (6)
turbed subsystem will vary its structure to generate a resis-

tance that balances the external force. After a very shorj,q

period, the total system stabilizes at the energy minimum. In

other words, a certain forming processtbf+H' exists if a W (7F,a) =V O(F, a)+ ¢°(F,a), 7
perturbing potentiaH’ is present. In this formation period,

both the Hamiltonian$i,, H’', and the corresponding wave where W, (7,a) and H are wave functions with a varying

functions W (°)(F,c) and ¢P(F,c) are varying[1]: parameter and total Hamiltonida]:
Ho(c)—Ho(a), 2 H=Ho(a)+H(a), ®
H'—Hy(a), ©®  and[1
and
Ho(a@)=Hq(c)+AHy, (€)
P70~ (T, a), @
Hl(a)ZH’—AHO, (10)
0— ¢ P(F,a), ©)
AHOZHO(a)_HO(C)' (11)

wherea is a varying structure parametef,”(7, «) is a per-
turbing wave function.

Clearly, if the perturbing potential does not exist’ =0),
then bothH (@) and ¢ P(f,a) vanish and the varying struc-
ture parameterr takes a constant value If H' does exist,

We notice that the extended total Hamiltoniahremains
invariant, because we merely add or subtract suitable terms
in a standard Hamiltonian, namely

then a “forming process” ofH,+H’ takes place. After a H=Hgy(c)+H’

very short period of time this forming process finishes and 0

the systenH=H,+H’ becomes stable. This phenomenon is =Hg(a)+H(a)

guite similar to the deformation of a body in classical me-

chanics. =H, (12)

whereH is the original Hamiltonian. But we observe that
*Present address: Department of Physics, Southwest-Chinfgteresting changes of wave functipt] are taking place:

Teachers University, Chongging 630715, Sichuan, People’s Repub- . 0)/ = .
lic of China. Vo (F,0) =W (Fa) + ¢P(F,a). (13
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In fact, the wave functions with varying parameter play es- The method of “equal factors” is developed in the
sential roles in the beginning of the forming process. WePFSKB theory for solving the extended Sdtiirmger equa-

consider the orthonormal condition for these functions: tion (6) in some specific cases under investigation. Suppose
0 we have a subset in a complete set of orthonormal eigenfunc-
(WUT, )| Wo(F,a))=1, (14 tions. This subsef¥ (Q(F,a)} is defined by operatot:
which means that the perturbing wave functigf(f,a) is 2\1’%%(F,a)=LB\If§$(F,a), (23)

orthogonal tO‘I’EIO)(F,a) for varying parameter. Thus we
obtain the varying energy of the total system in the early parjyhereL  is a eigenvalue of. We assume that the solutions

of the forming procesgl]: we are looking for belong to this subspace; namely, they
0) . have common eigenvalugs;:
En(@)=(V(F,a)|H|V,(F,a)), (15
or L %CB(F,Q)=LB\I’%%(F,LY). (24
. (W (F, ) | HIW o(F o)) . 'Sl'h;(fet.he solutionaP 717(F,a) can be expanded in the sub-
T (Fa)[Vo(Fa)) bace:
Obviously, this forming process will be ended at the point e v V=P OF )+ > COGZ) PO F 25
«* and the energy in Eqé15) and(16) is a minimum at that znp(T @) =Wnp(F,a) ;1 i (2)Wig (Fra). (29
point:
_ As mentioned above in Eq§15) and (17):
En(a*)= n:1|r1{En(a)}. (17)
o - (@)= (W BT, ) [H|WE(F @) (26)
The perturbed wave function in balance positions of the total
system is and
V(7 a*) =Wn(Fa)|azar , (18 EZna(a™)= min{EZn(a)}
so both energies and wave functions of the systénare =F[C242)]. 27
obtained in Eqs(17) and (18).
Thus
Il. THEORY
a*=A[CH(2)], (28)
Suppose we have the extended Sdimger equation for a
guantum system of chargé if CEiq(Z) is known, where “exc” means exact, affdand A
oxc, o ox oxc o are some analytic functions. We assume that exact coeffi-
HYZ3 (M, a)=EZ{(a) V7T, a), (199 cientsC{Z) can be approached by tineth-order approxi-
mation:
C&9Z)= lim C{M1(z) (29)
Ho(@) ¥ O(F,a)=EX(a)¥V(F,a), (199 moT mee
and

where the exact wave functions are

exc 7y _ ~{m-1) exc 7y _ c{m-2)
‘If% F,a)=\I’$10)(f’,a)+ HP(F,a). (20) |Cmc(z) Chi (Z)|<|Cmc(Z) Chi (Z)| (30)
We define them—1)th-order approximation of coefficients

We rewrite the orthonormal condition:
as follows:

W O(F, )| WEIF,a))=1, (21)
o naltane) . CiP(2)+ACTV(Z), m=3 (319
which means that a perturbing wave functigr’(f,a) is ni C<1»>(Z) m=2 (31b
orthonormal to¥ O)(F,a) for the varying paramete. e '

In general, the wave function can be expanded in a comghere C%rin—a(z) is the (m-2)th-order approximation,
plete set{ ¥ (%)(7, @)} of eigenfunctions oH(a): namely

VT, )=V (7 )+ > CHA2V(O(T,a). (22 Cffi“_l><z>=C<n1i>(Z>+Ac<n2i)(Z)+---+AC${F‘1)(Z),(32)
1#n

At this point we have not found a general means to deterwhere

mine the coefficientCS (Z). But for some specific cases (1) (n-2)

the coefficient<C®Z) can be obtained in practice. [ACHT P (2)[<[ACH(Z)]. (33
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Thus, we rewrite Eqs(27) and (28) for the mth-order ap-
proximation:

EfM(a™)= min {ESV(a)}
a:a<m)

=F[C "(2)]
=F[C{P(Z2)+ACP(Z)+---+ACMV(Z)]

(34)
and
o™= A[CHT Y (2)]
=A[CH(2)+AC(Z)+ -+ ACT V(2)], -
and we define thenth-order energy-level difference:
AES=Ef) (™)~ EfF2(a™2)
=F[C{ (2 ]-FICi2(2)]
=AF[ACTT V(D). (36)
We notice the following relations:
E<zmn>(01(m))|Ac<n’i“*1>(Z)zo: ESn P (a(m1), (37
01(m)|Ac<nri”*1)(Z)zo: al™ b, (39

and

AE(Zmn)|Ac§]T’1)(Z)EO+ E<Zmn—2>(a(m—2)) — E<Zmn_1>(a(m_l))-
(39

Suppose that relations between coefficie@t&" (2)

andCﬁH‘*”(Z:l) for chargeZ andZ=1 quantum systems

by separation of variables are
ACTT P(Z)=gi" Y(2)AC{? P (1), m=3 (408
and
C@)=gP(2)CP(1), m=2, (40D
whereg{™ 1(1)=1 andg {"(1)=1 for chargeZ=1 quantum
system and<n, j=i;i>n, j=i—1 are conventions.
We now rewrite Eqs(34) and(36) as follows:

EZY (™) =Floi"(Z)C{V(1) +gP(2)ACH (1) +- -

+gim V(Z)AC M (1)] (41)
and
AESY=AF[g™ Y (Z)ACHT Y (1)]. (42
So if mis odd,
EM(a™)=EXN+AER +---+AEYY, (439

and if m is even,
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ESV(a™)=ERQ+AES +---+AEYY, (43D
whereE%ln> is the first-order approximate energy that can be
obtained[1]:

ESX(aM)= min {{(PO(F,a)|HIV(F,a))}. (44

a=aV

First we observe that the energy expressiém) in the
second-order approximation for chargesystems is
ES=Flg{"(Z)CiP(1)]. (45)
Assumption .| We assume that the first-order approxi-
mate coefficients<C {¥'(1) for the chargeZ=1 system have
equal-factor relations with the second-order approximate en-

ergy levels of the neutral guantum system of charfe
namely,

CR=tYER, it i<n, j=i, i>n, j=i-1, (40

where the first-order approximate energy levels should be

nondegenerate in Eq44) because the one-to-one relations

are required in Eq(46) and f () is the corresponding first-

order equal factor, meaning that they are the same factor for

all energy levels in the second-order approximation.
Substituting the coefficient §11i>(1) in Eqg. (46) into Eq.

(45)

EQ=Flg"(2)fVER,]. (473

We notice that if chargeZ takes the value oZ* on the
left-hand side of Eq(473, the set{E<22*>n} and{E<22*>j} on
both sides become the same; i.e., E&(a now is a self-
consistent equation:

ES =Flgj"(z*)f ER ], (47b)
which can be solved in an exact manner with Hartree-Fock
self-consistent-field calculationg].

If a reasonable equal factdr! is determined by any
means, the second-order approximate energy levels for the
neutral systerj E<22*>n} will be obtained by an iterative tech-
nique using the method of successive approximations. How-
ever, if the second-order approximate energy levels set
{E<22*>n} is known, we consider the third-order approximation
energy-level difference:

AER=AF[gV(DfVEZ +0iP(2)ACT (1)]. (48)

Assumption Il. We assume that the second-order ap-
proximate coefficient differencAC ?)(1) has equal-factor
relations with the third-order approximate energy-level dif-
ference se{A E(Z:i)j} for the neutral system with chargg,

namely,

ACP()=fPAER), if i<n, j=i; i>n, j=i-1.
(49)

As mentioned above, Eq48) becomes the self-consistent
equation:



158 GUO F. CHEN 55

(3) _ (1) (HE(2) (2) (2) (3) _ _
AEZ:n = AF[9;(Z) Bz +057(Z°) 7 AE . (509 Hl<a)=ri‘ Zr - Zr =, (560
12 1 2

Thus we can solve these equations by an iterative technique

and third-order approximate energy levels: where « is the varying effective nuclear charge when two
electrons are in the same shells é&havave state. We shall

(3) _ (3) (1)
Ezn=AEze,HEzey- (50D always employ the conventions that

We rfapeat this routine for theth-order energy-level differ- |an$) = R0, (57)
ence:

AESY=AF[g{™ Y(Z)AC M (1)]. (51) ((ans)(ans)|(ajs)(ajs))=onj, (58)

Assumption Ill. We assume that th@n—1)th-order ap-

proximate coefficient difference sefAC{"™ (1)} has Jne2(a)= < (ans)(ans)|— (anS)(anS)> =] (ns22,
equal-factor relations with thenth-order approximation of 12 (59)

energy-level difference semE(ZT)j} of the neutral quantum

system with charg&*, namely, 1
Acgi”*)(l) K(ns)(js)(a)=<(ans)(a]s) r_l2 (ajs)(ans)>
=Kng)(is) @ (60)
=f"YAEDY if i<n, j=i; i>n, j=i-1 o

(52 whereJ(,g2(a) andK ¢ js)(a) are Coulomb and exchange
integrals, respectively. Thg,g2 andk g s are both pro-
portional coefficients and are listed in Tablgol.

We consider the specific cases in which a subset

Thus Eq.(51) becomes a self-consistent equationZaskes
the valueZ*. Finally we obtain

EM _ A 4 g(m-2) (53) {\Ifg()ﬁ)(a,Fl,r*z)} of the complete set of orthonormal eigen-
Z*n Z*n Z*n 1 . . .
funcggns otl—lzo(a) is defined by angular-momentum opera-
and the isoelectronic sequengg? as well. torsL{andL3:
In summary the equal-factors assumption yields: — ©
(m-1) (D) 4 £ @AE®) (m-1) Fi¥ng =l W ey
Cni (D) =By + 7 AE S + -+
LW D =1,(l,+ 1)WY, (62)

XAEGY if i<n, j=i; i>n, j=i-1,
(54)  Wwhere eigenvalue$;=0 and|,=0 are required. In other
words, the subsdi(ns)(ns),(n’s)(n"s)} defines a subspace
where the first-order approximate energy-level @83} in  charactered by common eigenvalligs0 andl,=0, namely,
Eq. (44) should be nondegenerate because one-to-one relghe electrons remain in tHg, orbital and theS, orbital sepa-
tions between setAC (" V'(1)} and{AEY}} are required.  rately.
The so-called equal factdrém_m means that it is a con- Solutions for Zns)? states can be divided into two parts:

stant factor for the corresponding s{ﬁE(ZT)j}.

‘I’(Zns)Z(ayflrz):‘Pg)ns)z(aflfz)"'¢p(a:F1-F2)- (63
I1l. CALCULATIONS ] ]
) In general, the perturbing wawg®(«,f,F,) may contain
~ As an example of applying the equal-factors method, wesych terms 1is)(n’p),(ns)(n"d),(np)?,(nd)?,... . But
InveStlgate the SpeCIfIC case In Wthh both ele.CtronS are Iginder such Consid_)eration_)ims)z states are perfecﬂy Spheri-
the same shell foS-wave states in heliumlike ions.  The ca)ly symmetric inR; andRy; the possible terms are only the
nonrelativistic extended Schiimger equation for Zns) terms (1S)(ns),(n’s)(n"s). We notice that as the two elec-

states of two-electron ions in a forming process that lasts §,ns are in different shells’ andn”: the corresponding’
very short time in the PFSKB theory is, on neglecting thegnq 7 will differ from « '

motion of the nucleus, given by

HY zng2(a,11,72) =Ezng2(a) ¥ zng2(@,F1,13), (59 a'#a'*a, (643
and[3-5] o]
H=Hy(c)+H’ ((ans)(ans)|(a’n’s)(a"n"s)) #0. (64b)
=Ho(a) +Hi(a), (569

According to the orthonormal condition E¢L4), the terms

(n’s)(n"s) drop out as well.

Ho(a)=—3V2-1vi— —— —, (56h) Finally we obtain t?e(m—})th—order approximate wave
r{ 2 functions for the Zn9)“ state in the forming process:
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TABLE |I. Coefficients ofJ(a) andK(a); j(g2 in diagonal positions anl(,q sy in nondiagonal positions fan=1 to 11,i=1 to 12,
respectively. The accuracy is estimated to-hk in the last digit(in a.u). Numbers in square brackets indicate powers of 10.

ns 1s 2s 3s 4s 5s 6s
is \
1s 5/8 0.219478[~1] 0.5767828-2] 0.2339636-2] 0.1176830-2] 0.674577 §—3]
2s 0.219 478 7—1] 77/512 0.747 601[3-2] 0.239349 2] 0.1098300-2] 0.601 155 3]
3s 0.576 782 f—2] 0.747601B8-2] 0.6639928-1] 0.377503[-2] 0.1327116-2] 0.650426 p—3]
4s 0.2339636-2] 0.2393496-2] 0.377503[-2] 0.3723608-1] 0.2277530-2] 0.849 063 7—3]
5s 0.1176830-2] 0.1098300-2] 0.1327117-2] 0.2277530-2] 0.2382888-1] 0.152 068 #—2]
6s 0.674577 §—3] 0.6011556-3] 0.650426(0—-3] 0.8490637—-3] 0.1520684-2] 0.165316 #—1]
7s 0.422388P—-3] 0.3664959-3] 0.3741868-3] 0.4324345-3] 0.5844348-3] 0.108 800 f—2]
8s 0.2819246-3] 0.2405190-3] 0.237196 P-3] 0.256660 F—3] 0.307463f—3] 0.429936 [-3]
9s 0.1975055-3] 0.1665888-3] 0.1606190-3] 0.167101p-3] 0.1872628-3] 0.230298 (—3]
10s 0.1437229-3] 0.1202509-3] 0.1141319-3] 0.1157538-3] 0.124395p-3] 0.142 991 3]
11s 0.1078370—3] 0.8969378-4] 0.8418920-4] 0.838733[-4] 0.8758529-4] 0.964 688 H—4]
12s 0.8297789-4] 0.6870907—4] 0.6395458-4] 0.628978P-4] 0.6434718-4] 0.688023 [-4]
7s 8s 9s 10s 11s

0.4223888-3] 0.2819246-3] 0.1975055-3] 0.143722Pp-3] 0.107 837 (3]

0.366 495 9-3] 0.2405190-3] 0.1665888-3] 0.1202509-3] 0.896 947 6—4]

0.374186 8—3] 0.23719692-3] 0.1606190-3] 0.114131p-3] 0.841807 54|

0.4324345-3] 0.2566607—3] 0.1671019-3] 0.1157729-3] 0.838792 5-4]

0.5844349-3] 0.307463B8-3] 0.1872628-3] 0.1243817-3] 0.875853 p—4]

0.108 800 p—2] 0.429936 [-3] 0.230298 0—3] 0.142991 f-3] 0.964 737 §—4]

0.121378(0-1] 0.8169034-3] 0.3294587—3] 0.1790108-3] 0.112841 3]

0.816 903 4—3] 0.9293975-2] 0.6356457-3] 0.2535426-3] 0.143 271 3]

0.329458 7-3] 0.6356457-3] 0.733769[-2] 0.508868F7—3] 0.2108716—3]

0.1790108-3] 0.2595426-3] 0.5088687—3] 0.594763p-2] 0.416 231 8-3]

0.112847 [-3] 0.1432819-3] 0.2108659-3] 0.4162318-3] 0.4913318-2]

0.7700412-4] 0911317 [-4] 0.1172417-3] 0.1734384-3] 0.347 247 p-3]

\I,E;w;s)lg(a,r»l,r»z)z |(ans)(ans)) Recalling the principle of the second kind of balance in the

If one is only interested in energy levels uphb (M>m),
then themth-order approximate wave functions faZ rfs)?

+> C
J#n

(m-1)
Znsjs

states can be expandedih terms:

‘I’Erzn{sfg(a-ﬂfz)= [(ans)(ans))

M+1

+> C
J#n

(m-1)
Znsjs

|[(@js)(ajs)). (65)

|(@js)(ajs)), (66)

where an infinite series of energy levels is truncated/at
terms (M>m) under an approximation. Thus tineth-order

approximate varying energy levels at short times can be obginger equation forZns)? states are obtained:

tained:

a
Efonse( )=~ 2

2 2Z-a)a

n

M+1
. -1
+| Jng2t ;:n C<Zmnsjs>k(n5)(is) a. (67)

—_——

PFSKB theory{1], the condition of the second kind of bal-
ance for gns)? orbitals is carried out by

d (m) 20 27
da E(Zns)z(a) = hm2 n?2 +

M+1
. m—1
J (ns)2+ j;n C%nsjgk(ns)(js)}

=0 (68

and the second kind of balance pointing to téh-order
approximation is found:

(m)

2 M+1
a(Zns)ZZZ_ 2 [

Jne2t J.;n C%mn;jjgk(ns)(js)}a (69)

and themth-order approximate energy levels for the Sehro

m _=(m
E(Zns)z_ E(Zns)z(a) | a= az;;s)z

nz M+1 2
=—{Z—7 {i(ns)fr ;n C<ZT1;jls>k(ns)(js)” / n.
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TABLE Il. Coefficients of 1Z expansion foiZ heliumlike ions up to the fourth-order approximation.
VA 1 2 3 4 5 6 7 8 9 10
u(z) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
u®@(z) 575 -0.069 -1.144 -20 -20 -20 -20 -20 -20 -20
U(S)(Z) —-3.6 —-6.0 -0.10 —-274.5 —-55.0 88.0 190.0 264.0 325.0 370.0
We consider that the coefﬂmeﬁt%nSJS can be expanded (Mm=1(Z)
i b m=3 (79
in terms of ACUT Y= 7 ACipnsjs» M=
_~ 2 1
C<Zmn315> C<Zn>SJS+AC(Zn)SJS +ACZT13]5)1 (71) and
as mentioned above in E(32). Hence Eqgs(69) and(70) h((Z2)
can be rewritten as follows: C = — esr m=2, (79)

n2 M+1
)
aEanns)Z_Z_ ? ﬂS)2+ E [CZHSJS+ACZHS,JS
+AC(Zn;J:Ls]k ns)(]s)} (72)
and
n2 M+1
2
Egl:]s)z [Z [J(ns)2+ 2 [CZnst+AC(Zr1)st
2
+ACZns,]s]k(ns)(js)“ / n2- (73)
It is easy to verify the following relationships:
1
aEZmns)z)_ Zns 2|AC(ZrL‘511) 0 (74)
and
-1
Eﬁ?nS)gz EE?AS)AAC%;QEO' (79

Furthermore, we calculate the difference of energy levels

between thanth-order andm—2)th-order approximations

m) (m) (m-2)
AE| (Zng)2 ™ E(Zns)z_ E(Zns)2

n2 M+1
=|Z— > {j(ns)Z‘*’ j;n C<Zmn;j35>k(n5)(js)}

n2 M+1
1S e acm o)
M+1
><| P (AcgﬁsfﬁAC&“&th>k<ns)<Js>’, (76)
where
C<Zmns]3;>_c<zlr1>sjs+AC(er1>sjs +ACZns]s . (77)

Now we consider the Z/ expansior]7—11] for the cases
of nuclear chargeZ=2 heliumlike ions. According to rela-
tions (40),

whereh(™ 1(Z) are the correct coefficients of aZlexpan-
sion andh(™ Y(1)=1 for m=2 and if j<n, i=j; j>n,
i=j—1is chosen as a convention.

We here apply the equal-factors assumption to arid.
First, the coefficient of thém— 1)th-order approximate wave
function in expanding of equal factors is

_ 2 3
C<lrrr11$,]%s> 1:(1)E<2|>s) +f(2)AEEZ|)s) +f moy AE(2|s)2
if j<n, i=j; j>n, i=j-1, (80)

where Egi)S)z andAEE;”i)S)z correspond to energy levels and
the energy-level difference of a neutral helium at(fs=2).
Thef® £ M1 are equal factors for an Hion. In
this case they are independent of the principle quantum num-
ber n. We have determined these equal factors up to the
fourth-order approximation by the trial

fl=1, f®=-3.6.

f(2 =575, (81)

Finally we obtain the coefficients for charg@esystems:

(m— 1)_

oy h<1>(Z)f<1>E§§i>s)2+ h(@(z2)fPAE §?S)2+

i
+h(M=D(Z)f M DAEG o}

=5 {u (2)EZ) 2+ UP(Z)AED o+

+U M N(Z)AE G o), (82
where
um-b(z)y=hm-1(Z2)fm=H  m=2, (83

and ifj<n,i=j; j>n,i=)—1is chosen as a convention.
We have determined these correct coefficidntd1)(z)
of 1/Z expansion up to the fourth-order approximation and
tabulate them in Table II.
We are also interested in the second-order approximate
coefficient

1 1
e :h( )(Z)f( ) @
Znsjs i

(2is)2 - (84)
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We suppose in the second-order approximation of the coef€learly, as mentioned in E¢44), the nondegenerate condi-

ficient an exact # expansion, namely,

hY(z) =1, (85)

where f is the first-order equal-factor constant and
h®(1)=1. Thus, we obtain the first-order equal-factor con-

stant

fl=1. (86)

Substituting coefficientC mnsjls in Eq. (82) into Egs.

(69), (70), and(76), we obtain

2

n .
agr)@z:z- 5 LmgztArtAgt -+ An4],
n=1,2,...M, (87)
2
EM =z b A At
(zn®2~ — _7[J<ns)2 1T A2
2
+Am—1]] /nz, n=12,...M, (89
and
n2
AE(ZI’]S)Z [ ? [J(ns)2+A1+A2+ e +Am73]
2
= 7 [Am2 T Ano1] [ (An—2+An_y).
(89
Notations in Eqs(87)—(89) are defined as
M+1 =(2) , M+l E(2) ,
(2js) [2(j-1)s]
Al:z ]S Kins(js) + E _]J'*l—sk(ns)(js)’
J<n >n Z
(90)
M+1 2 (3)
Ae UP(Z)AEG.
2" = Zi Knsi(s)
M+1 (2) (3)
=n 771 (ns)(js) »
_M+1 U(mfl)(Z)AEEg])S)Z
Am-1= “h Zl (ns)(js)
M+1 (m—-1)
U (Z)AE 5
[2(j—1)s]
+ J King(js) - (92)

i>n z-t

tion is suitable for Zns)? cases.
First we perform calculations in the second-order approxi-
mation in Eq.(88)

M+1 (2)
2 _ (215
EEZ>ns)2_ _[ 5 |92t E 1 Kns)(js)
o iy ’
i—Us 2
+ ]Zn 2R Kins)(is) ns
n=1.2,...M. (949

We notice that if charg& takes the value 2 on the left side
of Eq. (948, the energy set@Egils)z} and{E 213)2} become
the same, i.e., the E494a becomes a self-consistent equa-
tion:
M+1 —(2)
(2ns)? [

2 (ZJS
ES 5 |Tng2t gn Kins)(is)

M+1 £(2) , 2
[2-1s]
+§n o T k(ns)(js)] n?,
n=12,...M. (94b)

Thus, this equation can be solved in an exact manner with
Hartree-Fock self-consistent field calculatidi®d. Here we

show how these SE{EE;),]S)z} can be obtained by an iterative
technique using the method of successive approximation. We
notice that the first-order approximation of the energy levels
in Eq. (993 is just the initial solution. So we repeat iteratively
substituting expressiof®3) into the right-hand side of Eq.
(94b) until the difference between energy-level sets in the
right- and left-hand sides in Eq94b) is less than a given
smalle, i.e., the energy-level sets for the right- and left-hand
sides lead to the same value, such that

k+1 K
E:|E22ns))2 Egz)ns)z’|<8 (959
and
(k) (k+1) _ =(2)
E(Zns)z_ E(2ns)2 E(Zns)z' (95b)

where the integek is the index of the repeated process. Thus
the second-order approximate energy levels of an He atom
are obtained for (8s)? states.

Second we obtain the third-order approximation to the
energy level

We can obtain the first-order approximate energy levels

for (Zns)? states of heliumlike ions with charge[1]:

n2 2
EY Z—fj(ns)z} /nz, n=12,..M. (93

(zng2~

3 n2 nZ
AE(Zns) =\Z ? Jins)2— Z (A1+A2) (A1+A2),
n:112!---M! (96)
and
(1)
E(Zns)2 AE Zns 2+E (Zng)2* (97)

Similarly, we notice that if chargZ takes the value of 2 on
the left-hand side of Eq(96), the sets{AE 2ns)2} and
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TABLE IIl. Comparison of other theoretical results of Reffg, 8, 12—17 for (Z1s)? ground states(Negative signs are omitted for
energies and the accuracy is estimated ta-ldein the last digit in a.y.

Knight
Frankowski and Pekerid4—17 Freund and co-workels,13] This work and Scherf7]
z 264 terms Extrapolated 230 terms Eg?ls)z Egﬁs)z Egés)z Third-order
RSPT
1 0.527 751036 35 0.527 751 016 38 0.527 7510153 0.5215697 0.5277454 0.5277510 0.523 97
2 29037243770326 2.9037243770333 2.903724 3770340 29037976 29037149 29037244 2.903 32
3 7.2799134126660 7.279913412 667 8 7.279 913 412 669 2 7.2812986 7.2799129 7.2799134 7.279 77
4 13.655566 238428 13.655566 238 421 13.655 566 238 423 5 13.657 561 3 13.6551285 13.6555662 13.65549
5 22.030971580235 22.030971580 239 22.030971580242 7 22.033 3214 22.0308838 22.0309715 22.03093
6 32.406 246 601 889 32.406 246 601 894 32.406 246 601 898 4 32.408 828 7 32.406 387 3 32.406 2462 32.406 22
7 44.781 445148 763 44.781 445 148 768 44,781 445 148 772 6 44,784 1949 44,781 7497 44.781 4445 44,781 42
8 59.156 595122749 59.156 595 122 755 59.156 595 122 757 8 59.159 465 8 59.157 0206 59.156597 1 59.156 58
9 75.531712363950 75.531712 363957 75.531 712 363 959 4 75.534 6832 75.5322342 75.5317078 75.53170
10 93.906 806 515025 93.906 806 515 031 93.906 806 515 037 4 93.909 8511 93.907 4020 93.906 806 9  93.906 80

(3)
{AE g2} O _
(96) now is self-consistent.
{AEB),=0} on the right-hand side of Eq96). Then we

obtain a nonzero sgtA EE

3)

ang2t from the left-hand side of
Eq. (96). Routinely we iterate this process until the set
{A Egzls)z} converges. By repeating this process, final result

} on both sides of Eq(96) are the same; i.e., Eq. fourth-order approximation to energy levels of heliumlike
As a first step, we setions withZ=1 to 10. An infinite series of energy levels is
truncated aM =11 terms and the iterative processes for all
results show stable convergence. Energies for the ground
states Z1s)2 with Z=1 to 10 are shown in Table I, in
which comparisons are made with the works of Prankowski
and Pekerig264 term$, Freund(230 term$, and Knight and

for the mth-order approximate energy levels of a helium Scherithird-order Rayleigh-Schrdinger perturbation theory

atom can be obtained and the isoelectronic sequence as welRSPT]. As is well known, these latter works require a huge
If we limit the work to the computational ability of a amount of computer time on very powerful computers. The

personal computer, we can perform calculations of thdourth-order approximate energy levels of heliumlike ions

TABLE IV. The fourth-order approximate energy levels of heliumlike ions vidth1 to 10 andn=1 to 11. The accuracy is estimated
to be =1 in the last digit(in a.u).

Z E§4Z>15)2 EE§>ZS)2 Eggés)z EEZs)Z EE?SS)Z EE;>BS)2
1 —-0.5277510 —0.184 364 3 —0.076 565 2 —0.040 1388 —0.024 424 6 —0.016 3835
2 —2.903724 4 —0.779 698 6 —-0.3387911 —0.188 028 6 —0.119336 1 —0.082 459 4
3 —7.2799134 —1.879 663 1 —0.827 2839 —0.462994 5 —0.2953751 —0.204 7517
4 —13.655 566 2 —3.479 606 4 —1.538 408 2 —0.863 157 2 —0.551 5055 —0.3826455
5 —22.0309715 —5.579456 3 —2.4718742 —1.3883723 —0.887658 1 —0.616 1054
6 —32.406 246 2 —8.1792431 —-3.6276159 —2.0386090 —1.303 8194 —0.9051250
7 —44.781 444 5 —11.2789850 —5.005 606 7 —2.8138556 —1.799 984 5 —1.2497017
8 —59.156 597 1 —14.878 700 3 —6.6058359 —3.714 108 2 —2.376 1518 —1.6498352
9 —75.531707 8 —18.978 387 8 —8.428 2951 —4.739 3637 —3.0323198 —2.1055245
10 —93.906 806 9 —23.578 067 8 —10.4729853 —5.889 6217 —3.768 489 1 —2.616 769 8
Eizro? E\zs? E{zo9? ElZioy? Elzi2

—-0.0117350 —0.008 809 4 —0.006 858 7 —0.005 483 8 —0.004 487 1

—0.060 374 4 —0.046 099 2 —0.036 3597 —0.0293970 —0.024 2670

—0.1502419 —0.114 908 9 —0.090 736 6 —0.0734400 —0.060 669 3

—0.2809511 —0.214 9839 —0.169814 8 —0.1374897 —0.113 605 3

—0.452482 3 —0.346 3123 —0.273 586 5 —0.2215409 —0.1830713

—0.664 8320 —0.508 8919 —0.402 050 4 —0.325592 7 —0.269 066 7

—0.917 998 9 —0.702722 2 —0.555206 0 —0.449 644 7 —0.3715911

—1.2119827 —0.927 802 7 —0.733 053 2 —0.593 696 9 —0.490 644 6

—1.546 783 1 —1.184 1333 —0.935591 8 —-0.7577491 —0.626 227 1

—1.922 4000 —-1.4717141 —1.162 8219 —0.941 801 4 —0.778 3385
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TABLE V. Energy levels up to the fourth-order approximation of a helium atom fej{fo (11s)? states
and the corresponding energy differences. The accuracy is estimatedtd imethe last digit.

ns AE(3) AE(4) E<l) E<2> E<3> E(4>

(2ns)2 (2ns)2 (2ns)2 (2ns)2 (2ns)2 (2ns)2
(1s) —0.0560587 0.0000732 —2.8476562 —2.9037976 —2.9037149 -2.9037244
(2s) —0.0578524 0.0000786 —0.7218360 —0.7797772 —0.7796884 —0.779 698 6
(3s) —0.0172214 0.0000296 —0.3215658 -—-0.3388207 —-0.3387872 —-0.3387911
(4s) —0.0069531 0.0000115 —0.1810740 -—-0.1880402 -—0.1880271 -0.1880286
(5s) —0.0034443 0.0000056 —0.1158911 -0.1193417 -0.1193354 -0.1193361
(65s) —0.0019515 0.0000031 —0.0805075 -—0.0824625 -—-0.0824590 -—-0.0824594
(7s) —0.0012123 0.0000019 —0.0591618 -—-0.0603763 —0.0603741 -—0.0603744
(8s) —0.0008049 0.0000013 —0.0452941 -0.0461004 -—0.0460990 —0.046 0992
(9s) —0.0005620 0.0000009 —0.0357976 -—-0.0363606 —0.0363596 —0.0363597

(10s) —0.0004079 0.0000006 —0.0289891 -0.0293977 -—0.0293970 —0.0293970
(11s) —0.0003055 0.0000005 —0.0239615 -—-0.0242675 —0.0242670 —0.0242670

with Z=1 to 10 are shown in Table IV. We note a reasonablemental interest and are difficult to calculate. Thus, a lack of
trend of the data in Table IV: As increases, the energy comparative data is revealed in the literature. However, for
levels decrease approximately a®’l/and asZ increases, the He ()2 state, the result from this work is in good agree-

the energies increase approximatelyZs ment with both theory and experiment.

In this work the result for the (23° state of a helium Energy levels up to fourth-order approximations and the
atom in fourth-order approximatiorEégés)f —0.779 698 corresponding energy-level differences of a helium atom are
a.u. can be compared to the experimental value ofhown in Table V. One can easily verify the results in this
—0.777 816 40.0014 a.u[9]. As is well known, such dou- work using the data listed in Tables I, Il, and V. The third-
bly excited autoionizing states are of theoretical and experierder approximate wave functions of)f to (11s)? states

TABLE VI. Coefficients of the third-order approximate wave functions of kdbn (1s)? to (11s)? states and the corresponding
fourth-order approximate effective nuclear char¢esa.u). Numbers in square brackets indicate powers of 10.

ns allye (als)?) (a25)?) (a3s)?) (ads)?) |(a5s)?) |(a6s)?)
(1s) 0.7264600] 0.1000001] —0.3199801] —0.10852+01] —0.42977+00] —0.2247¢+00] —0.1375300]
(2s) 0.8587500] —0.3199801] 0.1000001] —0.10852+01] —0.42977+00] —0.2247¢+00] —0.1375300]
(3s) 0.8301100] —0.3199801] —0.1085201] 0.10000+01] —0.42977+00] —0.2247¢+00] —0.1375300]
(4s) 0.8013900] —0.3199801] —0.1085201] —0.42977+00] 0.10000+01] —0.22476+00] —0.1375300]
(5s) 0.7814200] —0.3199801] —0.1085201] —0.42977+00] —0.22476+00] 0.10000+01] —0.1375300]
(65s) 0.7679900] —0.3199801] —0.1085201] —0.42977+00] —0.22476+00] —0.13753+00] 0.1000001]
(7s) 0.7583000] —0.3199801] —0.1085201] —0.42977+00] —0.22476+00] —0.13753+00] —0.92768—01]
(8s) 0.7508700] —0.3199801] —0.1085201] —0.42977+00] —0.22476+00] —0.13753+00] —0.92768—01]
(9s) 0.7453600] —0.3199801] —0.1085201] —0.42977+00] —0.22476+00] —0.13753+00] —0.92768—01]
(10s) 0.7405300] —0.3199801] —0.1085201] —0.42977+00] —0.2247¢+00] —0.13753+00] —0.92768—-01]
(11s) 0.7368400] —0.3199801] —0.1085201] —0.42977+00] —0.22476+00] —0.13753+00] —0.92768—-01]
(a75)? |(a83)? (a95)% (a105)% (al1s)% (a125)?)

-0.92768—01] —0.6677$—01] —0.5035{—01] —0.3932§—01] —0.3155[—01] —0.25881—01]
-0.92768—01] —0.6677$—01] —0.5035{—01] —0.3932§—01] —0.3155[—01] —0.25881—01]
-0.92768—01] —0.66778—01] —0.5035{—01] —0.3932§—01] —0.3155[—01] —0.2588{—01]
-0.92768—01] —0.66778—01] —0.5035{—01] —0.3932§—01] —0.3155[—01] —0.2588{—01]
-0.92768—01] —0.66778—01] —0.5035{—01] —0.3932§—01] —0.3155[—01] —0.2588{—01]
-0.92768—01] —0.66778—01] —0.5035{—01] —0.39328—01] —0.3155[—01] —0.2588{—01]

0.1000001]  —0.6677§—01] —0.5035{—-01] —0.3932§—01] —0.3155{—01] —0.25881{—01]
—0.6677§—01]  0.1000001]  —0.5035{—01] —0.3932§—01] —0.3155{—01] —0.25881{—01]
—0.6677§—01] —0.5035{—01]  0.10000+01] —0.3932§—01] —0.3155[—01] —0.25881{—01]
~0.6677§—01] —0.5035{—01] —0.3932§—01]  0.1000001]  —0.3155[—01] —0.2588{—01]

—0.66778—01] —0.5035{—01] —0.3932§-01] —0.3155{—01]  0.1000001]  —0.2588{—01]
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TABLE VII. Coefficients of the third-order approximate wave functions of the He atom fs)y4(tb (11s)? states and the corresponding
fourth-order approximate effective nuclear char¢jasa.u).

ns |(a1s)?) (a2s)?) |(a3s)?) |(ads)?) |(a5s)?) |(a65)?)

“E‘z?us)z
(1s) 0.170 4001] 0.100 00Q01] —0.145 0201] —0.194 0600] —0.422 26—01] —0.11727-01] -0.37230-02]
(2s) 0.176 6Q01] —0.145 0201] 0.100 0Q01] —0.194 0600] —0.422 26—01] -0.11727-01] -0.37230-02]
(3s) 0.174 6201] —0.1450201] —0.194 0600] 0.100 0001] —0.422 26—-01] -0.11727-01] -0.37230-02]
(4s) 0.1734%01] —0.1450201] —0.194 0600] —0.422 26—-01] 0.100 0Q01] —0.117 27-01] —-0.372 30—-02]
(5s) 0.1727301] —0.1450201] —0.194 0600] —0.422 26—01] —0.11727-01] —0.100 0Q01] —0.372 30—-02]
(65s) 0.1722901] —0.1450201] —0.194 0600] —0.422 2¢—01] -0.11727-01] -0.3723(0—-02] 0.100 0Q01]

(7s) 0.1720001] —0.1450201] —0.194 0600] —0.422 2¢—01] -0.11727-01] -0.3723(0—02] -0.12867—-02]
(8s) 0.1717701] —0.1450201] —0.194 0600] —0.422 2¢—01] -0.11727-01] -0.3723(0—02] -0.12867—-02]
(9s) 0.1716101] —0.1450201] —0.194 0600] —0.422 26—01] -0.11727-01] -0.37230—-02] -0.12867—-02]
(10s) 0.1714601] -—0.1450201] —0.194 0600] -0.422 26—01] -0.11727-01] -0.37230—-02] -0.12867—-02]
(11s) 0.1713601] -—0.1450201] —0.194 0600] —0.422 26—01] -0.11727-01] -0.37230—-02] -0.12867-02]

(a7s)?) |(a83)?) (a98)?) |(a10s)?) |(a11s)?) |(a125)?)

—0.128 6T-02] —0.47113-03] —0.17989-03] —0.70951-04] -—0.2868%—-04] —0.1184(0—-04]
—0.128 6T-02] —0.47113-03] —0.17989-03] —0.70951-04] -—0.2868%—-04] —0.1184(0—-04]
—0.128 67-02] —0.47113-03] -0.17989-03] —0.70951-04] -0.2868%5—-04] —0.11840—-04]
—0.128 67-02] —0.47113-03] -0.17989-03] —0.70951-04] -0.2868%5—-04] —0.11840—-04]
—0.12867-02] —0.47113-03] -0.17989-03] —0.70951-04] -0.2868%—-04] —0.11840—-04]
—0.128 67-02] —0.47113-03] -0.17989-03] —0.70951-04] -0.2868%—-04] —0.11840—-04]

0.100 0001] —0.47113-03] —-0.17989-03] -0.70951-04] —0.2868%—-04] —0.118 40—-04]
—0.471 13-03] 0.100 0001] —0.17989-03] —0.70951-04] -0.2868%—-04] —0.1184(—-04]
—0.47113-03] -0.17989-03] 0.100 0001] —0.70951-04] —0.2868%5—-04] —0.11840—-04]
—0.47113-03] -0.17989-03] —0.709 51-04] 0.100 0Q01] —0.286 85—04] —0.118 40—-04]
—0.47113-03] -0.17989-03] —0.70951-04] —0.286 65—04] 0.100 0Q01] —0.118 40—-04]

and the corresponding fourth-order approximate effectivg={m—g(2) L AE@ ... L AEM™ | if m is even. (100
nuclear charges for Hand He are shown in Tables VI and " " " "
VII, respectively.

In particular, the equal-factors method leads to relations
IV. DISCUSSION AND CONCLUSIONS between the(m—21)th-order approximate coefficients set

In this paper and a previous wofk], we have discussed {AC ]~ P(1)} of chargeZ=1 system and the corresponding

the following: (i) concepts of a metastable period of forma- mth-order approximate energy-level s{eIE(ZT)i} of the neu-

tion in passing from an unperturbed to a perturbed systenral system. This yields a series of powerful iterative self-

and the extended Schiimger equation; consistent equations.
(i) step-by-step approaches using equal-factors assump- We see that higher-order calculations are based upon
tions and iterative self-consistent equations; those of one order lower for the initial values in an iterative

(iii) predictions for excited autoionizing states over aprocess. These ideas differ somewhat from traditional quan-
large range of (to n=11) of (Zng)? states of heliumlike tum theory in that any approximations deal with single-
ions. energy levels, and various-order approximations of energy

A metastable period exists in very short time periods andorrections{AE (™} are independent of each other.
the unperturbed wave functions vary until a balance position In particular, we note that in perturbation theory the
is reached. The equal-factors approach is developed in thid’'<1 is required, but in the PFSKB theory the equal-factors
work and is used to the extended Safinger equation in approach has no such requirements. As an example, the
some specific cases. Step by step approaches are made in {@ans)? states of heliumlike ions are investigated. The equal-
equal-factors method. We assume that the coefficientfactors method is computationally simple and easy to imple-

C§{}"l> can be expanded in terms of ment, and very accurate numerical results are obtained for
(m=1)_ ~(1) - (m=1) doubly excited autoionizing states over a large range @fp
Chj 7=Chf +AC +--+AC 7, (98)  ton=11). Such excited states are very troublesome to calcu-

) late in traditional theory due to the breakdown of the ordi-
and the corresponding energy levels also can be expanded #ary bound-state variational principl&8,19.

terms of In this work the results for the (2)> state of a helium
. . i . imatioe(4 . — _
EM=gM+AE®+---+AE™, if m is odd, (999  aom in fourth-order approxmatlorE(ZZS)z 0.779 698
a.u. are compared to the experimental value-6f777 816 4
and +0.0014 a. u[9]. Although the paucity of comparative data
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