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Boundary conditions of the exact impulse wave function

M. S. Graviell¢ and J. E. Miraglia
Instituto de Astrononaiy Fisica del Espacio, Consejo Nacional de Investigaciones Gieasiy Tenicas, Casilla de Correo 67,
Sucursal 28, 1428 Buenos Aires, Argentina
(Received 4 June 1996

The behavior of the exact impulse wave function is investigated at intermediate and high impact energies.
Numerical details of the wave function and its perturbative potential are reported. We conclude that the
impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however,
it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and
symmetric collision system$S1050-29477)09601-7

PACS numbds): 34.70+e

The exact impulse wave function{) has been largely D (Zy,k;r)=N(a);F,(—ia,1;—ikr—ik-r), 2)
employed with success in different theoretical methods for
the calculation of inelastic cross sections at high impact enwhere N(a) =exp@@a/2)I'(1+ia), a=Z;/k, andZy is the
ergies/ 1-5]. In particular, for capture we have developed thetarget nuclear charge. From E(l) the well-known con-
eikonal impulse(El) approximlatior[G], which is a distorted tinuum distorted wavgCDW) wave function
wave method making use @f; in the final channel and the Wy =tu(te D (o)D" (Zr Vire) 3

eikonal wave function a(/iE) in the initial channel. Both wave
can be derived by using the so-called peaking approximation,

functions do preserve the proper normalization, i.e.,
which is based on the argument tﬁ'caf(k) has a sharp peak

(i )y =(WE|WE)= 6., which leads to conservation of
e E . . _

probability. Furtherg;~ is known to satisfy the proper Cou arounck =0 [9]. Notice that¢$DW does satisfy the CBC, i.e.,

CDW_, 47 ast— + =, being

lomb boundary condition$CBC). A large amount of sym-
metric and asymmetric collision systems were studied with/t
the EI method in the intermediate and high energy regions, o _ ;

and the results were in all cases in accord with the available ¢ (e, =Te(Tp, Do (re)exiliarina(t)], @
data[6].

In spite of the generalized use ¢f, its asymptotic be-
havior was first called into question by Belkit al [7], and
more Irecently by Dewangan and Eich[&], who stressed
that ¢¢' is not consistent with the CBQn this work we cal- _ CcDwW . | CDW o
culate the exact behavior @f and its perturbative potential, Sinceyy ™ can be obtained fron;l/f,land U b as
reporting numerical details. The study is restricted to thd >+, we were led to behevg thal; also satisfied the

CBC [6]. As pointed out by Belkiet al.[7] and Dewangan
channels is straightforward. As in RéR], the impact param- and !Ei_chler[s], that is not true. This failure will be studied in
eter formalism is used. The origin of the coordinate system id€tail in th'gD"\Xf’rk' _ . _
chosen to be at the target nucleus considered at rest. The Unlike ¢~ the expression o in terms of the impact
classical movement of the projectile is defined by the straighParameter cannot Pe obtained in closed-form. We were so
line trajectory:R(t) =b+vt, whereR(t)=r;—rp is the in- forcgd to calc'ulategbf by performmg the 3D numerical inte-
ternuclear coordinatey is the impact parametew; is the ~ gral involved in Eq.(1). The task is more complex than the
projectile velocity, and-v=0 (see Fig. 1 Atomic units are evaluation of the correspondingmatrix element due to the
used. presence of the hypergeometric functigi,, which causes

In the impact parameter treatmepi reads[8] the integrand to oscillate greatly. The numerical error of the
results was estimated to be less than 1%.

with «(t)=vR(t) +v-R(t), anda;=Z;/v. One should also
notice thats"°" doesnot preserve the normalization, that is,
(SO 4Py £ 5,,,. The eikonal wave functiogt reads as
Eq. (4) with B(t)=vrr+v-ry instead ofa(t).

| dk ,
t//f(rp,t)=fe(rp,t)f(ZT)sfstf(k)eXp(Ik-rp)

XD~ (Z7,v+k;ry), 1)

where fo(rp,t)=exdi(v-rp+vit/i2—et)], ®, is the final
bound state with energy;, and the tilde indicates the Fou-
rier transform. The Coulomb distortidd ™ is given by

*Also at Departamento de $ica, Universided Nacional de Bue-
nos Aires, Buenos Aires, Argentina. FIG. 1. Coordinate systems.
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R(H)= vt (a.u.)
R(t)= vt (a.u.)
FIG. 3. Similar to Fig. 2 for the module of the perturbative
FIG. 2. Module of the final wave function for the case of impact potentialW; . Dotted line, absolute value of the Coulomb potential
parametetb=0 as a function ofR(t)=vt (in atomic unit3. The —Ztlrt.
process considered isl*+H(1s)—H(1s)+H" at v=2 a.u.
Theories: solid line|y}|; dashed line|y$°Y|. The electronic coor-

. . - A z
dinate is(a) rp=rqV; (b) rp=—rqgv; with ry=1.5 a.u. A'f(rp A)=— U%d);f’(rp DIne(t)—1]
We restrain our calculations to the simplest collisional R Z:
system XUV, In[¢ (rp)]+0 ?). ()
H*+H(1s)—H(1s)+H" 5

From this expression two points can be qualitatively ob-

for v=2 a.u. This impact velocity corresponds to the Iowests.eweOI N acc ordance W'.th the e>|<act nunlerAlcaI calcul_atlon.
First, for ns final electronic stated(rp,t)v-rp, and this

energy rangdintermediate energi¢gor which the impulse . X )

hypothesis holds. Although the behaviorzd,f(rp ,t) is here depepdence glearl_y describes the asympto_tlc b,ehav'mlf of

analyzed for the particular cage=0 in terms ofR(t)=ut, for dlffer(?nt dlrectlops ofrp, as obseryeq in Fig. 2. And

the conclusions drawn below can be extended for other reff€CONdA(re.t) vanishes as the velo|C|ty INCTeases.

evant impact parameters. The module of the electronic coor- For high velocities it is found thag; and ¢t~ show a

dinater  is taken to be the valug,= 1.5 a.u. corresponding 900d agreement in aimost the whole relevant rangevafl-

to the mean value of the orbital radius for thetound state.  Ues, the discrepancy being only a few percent. Further, as the
Figure 2 shows the absolute valueydffor two directions velocnly_tends to infinity the impulse approximation, which

of rp, namely, ¢|f(+fo\7,t)| and |¢'f(—r0\7,t)|. To have a gsesw in one channel and the nonperturbed wave functlon_

reference a$— + o we also displawaCDWL which tends to N the other one, converges to the second order Born approxi-

. : o DW
the proper limit ag increases. By defining the arguments of mation, while the CDW approximation that employ$

. | CDW S in both channels does nfit0].
?gDVY’VéTZCng?’ELOpr&SH%DV?)ndrg;peéti?/;;/;f ;\I'e‘/’]{i':é(rt)r(:z;), er:g In the impact parameter treatment the perturbative poten-
¥ t ) , f

= o _tial W} associated ta); reads
6PV are quite like each other. From Fig. 2 it becomes evi- f ¥

dent thaty} does not satisfy the CBC, i.a/; does not tend
to ¢; ast—+x. We also observe that for the case
re=rob (not shown herethe discrepancy betweep; and
%W, in thet range considered in Fig. 2, is in the order of
the numerical uncertainty. Therefore, the departureypf =— eI
from the proper limit is more important for, in the direc- Pi(rp,t) ) (2m)
tion of v than i_n th(_a perptlendicular direction. _ ><’<pw(k)exp(ik-rp)D*(ZT,v+ kirp), (7)

A crude estimation ofy; for larget can be derived from f
Eq. (1) by takingfirst the limit ast— +< and makingafter-
wardsa perturbative expansion. In first order the asymptotiovhereH is the electronic Hamiltonian and is the projec-
deviation, defined asA}(rp,t)=yi(rp,t)— @7 (rp,t) as tile charge. Note that the peaking approximation that leads
t— +o0, reads from ¢} to P does not conduct frondV; to the perturba-

| 1 H d |
Wf(rp,t)=a|f(rp,t) H—|& Yi(rp,t)

—— &

forpt) [ dk (K2 Zp
2 Tp
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FIG. 4. Transition probability for the processH*
+H(1s)—H(1s)+H™ atv=2 a.u., as a function of the impact
parameteib (in atomic unit3. Theories: solid line, El approxima-

tion; dashed line, CDW approximation; dotted line, Brinkman-

Kramers approximation.

tive potential corresponding w¢PY (WP, as was argued
by Dewangan and Eichl¢B] to perceive the ill-behavior of
Yy
In Fig. 3 we plot| W}| along with|W°"| and the absolute
value of the Coulomb potentidVt=—Z;/ry. Again we
consider two directions ofrp, namely, rp=-+rov and
re=—rov. From Fig. 3 it can be seen that in both case
|W{| increases af(t)=uvt grows. This inconsistency with

the scattering theory is certainly a direct consequence of th

improper limit of w'f. Anyway, it should be observed that in
averagelW;| <|WFPY| for R(t)<2 a.u., i.e., at short times
[in the proximities ofR(t)=vt~0] where the most impor-
tant contribution to the transition amplitude takes place.
For the casep=—r,V [Fig. 3b)] the potentiaW/{PW is
not well defined folR(t) <r, this behavior being consistent
with the fact thatwP" is not well behaved for negative

the perpendicular direction. Fat, perpendicular tov the
separation is of the order of the numerical uncertainties.

Finally, we attempt to explain why the use #f permits
us to describe a large variety of collisional data, even thought
this wave function does not satisfy the CBC, as observed
before. Two reasons are posed.

First, the most important contribution to the transition am-
plitude comes from the region of small valuestofwhere
z,/x'f andW'f behave rather soundly. For example, in the colli-
sion system considered in this work the capture probability
reaches 90% of its final value R(t)=vt~3a.u.; hence the
transition amplitude is mostly defined in the region corre-
sponding to small values d¥(t).

Second, When/;'f is averaged by integrating on all pos-
sible directions ofrp, i.e., ()= [dfpii(rp,t), this value
differs from that corresponding t¢$°" in much less than
10% in the range 3 a.&R(t)<30 a.u. Therefore, the val-
ues ofy; for different directions of » should partially cancel
their wrong contributions for larg&(t) as they are inte-
grated to obtain the transition amplitude.

As a further examination it is useful to inspect the transi-
tion probability as a function of the impact parametieras
shown in Fig. 4. We observe that EI and CDW approxima-
tions give very similar probabilities in the range
3 a.usb=6 a.u., and both methods largely differ from the
first order Brinkman-Kramers results. At=6 a.u. the tran-
sition probability is four orders of magnitude smaller than
the maximum value atb=0, and consequently the
discrepancy—if any—between El and CDW transition prob-
abilities forb>6 a.u. is unimportant for evaluating the total
cross section. Since large impact parameters correspond nec-
essarily to large internuclear distances, the agreement be-

Stween EI and CDW approximations for 3 ath=<6 a.u.

would indicate that the improper limit ny'f may be unes-
Sential, at least for the calculation of total cross sections.

In conclusion, by inspecting the numerical results we
have shown thaaf/'f does not satisfy the CBC, as observed by
Belkic et al.[7] and Dewangan and Eichlg8], and in con-
trast with our previous assertidi®]. However, arguments
have been put forward to explain the succesapbﬁn de-
scribing a large variety of capture results, including symmet-
ric collisional systems at intermediate impact velocities.

time. This problem was pointed out by Croth¢ls], who  These arguments suggest that the asymptotic failure has a
devised a symmetrized version of the CDW approximationminor influence at level to the total cross section. We think
to solve it. From Fig. @) we can also observe that at that the ill-asymptotic condition of the impulse wave func-
R(t)=ro (rp=0), |Wi| is much smaller thanfW®"|.  tion may be counterbalanced by a sound description of the
Again, we found that the separation bet\NebNH and  collisional process at small distances as well as the proper
|WEPY| is more important forp in the direction ofv thanin  normalization.
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