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Boundary conditions of the exact impulse wave function

M. S. Gravielle* and J. E. Miraglia
Instituto de Astronomı´a y Fı́sica del Espacio, Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Casilla de Correo 67,

Sucursal 28, 1428 Buenos Aires, Argentina
~Received 4 June 1996!

The behavior of the exact impulse wave function is investigated at intermediate and high impact energies.
Numerical details of the wave function and its perturbative potential are reported. We conclude that the
impulse wave function does not tend to the proper Coulomb asymptotic limit. For electron capture, however,
it is shown that the impulse wave function produces reliable probabilities even for intermediate velocities and
symmetric collision systems.@S1050-2947~97!09601-7#
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fo
en
he

.e
f
-

it
n
b

l,
th
he

T
igh

-

ion,

,

s,

n

so
-
e

the

-

The exact impulse wave function (c I) has been largely
employed with success in different theoretical methods
the calculation of inelastic cross sections at high impact
ergies@1–5#. In particular, for capture we have developed t
eikonal impulse~EI! approximation@6#, which is a distorted
wave method making use ofc f

I in the final channel and the
eikonal wave function (c i

E) in the initial channel. Both wave
functions do preserve the proper normalization, i
^ca

I ucb
I &5^ca

Eucb
E&5dab , which leads to conservation o

probability. Further,c i
E is known to satisfy the proper Cou

lomb boundary conditions~CBC!. A large amount of sym-
metric and asymmetric collision systems were studied w
the EI method in the intermediate and high energy regio
and the results were in all cases in accord with the availa
data@6#.

In spite of the generalized use ofc I , its asymptotic be-
havior was first called into question by Belkic´ et al @7#, and
more recently by Dewangan and Eichler@8#, who stressed
thatc I is not consistent with the CBC. In this work we cal-
culate the exact behavior ofc f

I and its perturbative potentia
reporting numerical details. The study is restricted to
final channel for electron capture; its application to the ot
channels is straightforward. As in Ref.@8#, the impact param-
eter formalism is used. The origin of the coordinate system
chosen to be at the target nucleus considered at rest.
classical movement of the projectile is defined by the stra
line trajectory:R(t)5b1vt, whereR(t)5rT2rP is the in-
ternuclear coordinate,b is the impact parameter,v is the
projectile velocity, andb–v50 ~see Fig. 1!. Atomic units are
used.

In the impact parameter treatmentc f
I reads@8#

c f
I ~rP ,t !5 f e~rP ,t !E dk

~2p!3/2
w

f̃
~k!exp~ ik–rP!

3D2~ZT ,v1k;rT!, ~1!

where f e(rP ,t)5exp@i(v–rP1v2t/22« f t)#, w
f
is the final

bound state with energy« f , and the tilde indicates the Fou
rier transform. The Coulomb distortionD2 is given by

*Also at Departamento de Fı´sica, Universided Nacional de Bue
nos Aires, Buenos Aires, Argentina.
551050-2947/97/55~2!/1540~4!/$10.00
r
-

.,

h
s,
le

e
r

is
he
t

D2~ZT ,k;r !5N~a!1F1~2 ia,1;2 ikr2 ik–r !, ~2!

whereN(a)5exp(pa/2)G(11 ia), a5ZT /k, andZT is the
target nuclear charge. From Eq.~1! the well-known con-
tinuum distorted wave~CDW! wave function

c f
CDW~rP ,t !5 f e~rP ,t !w f

~rP!D2~ZT ,v;rT! ~3!

can be derived by using the so-called peaking approximat
which is based on the argument thatw̃

f
(k) has a sharp peak

aroundk50 @9#. Notice thatc f
CDW does satisfy the CBC, i.e.

c f
CDW→f f

` as t→1`, being

f f
`~rP ,t !5 f e~rP ,t !w f

~rP!exp@ iaTlna~ t !#, ~4!

with a(t)5vR(t)1v–R(t), andaT5ZT /v. One should also
notice thatc f

CDW doesnotpreserve the normalization, that i
^ca

CDWucb
CDW&Þdab . The eikonal wave functionc f

E reads as
Eq. ~4! with b(t)5vr T1v–rT instead ofa(t).

Sincec f
CDW can be obtained fromc f

I , andc f
CDW→f f

` as
t→1`, we were led to believe thatc f

I also satisfied the
CBC @6#. As pointed out by Belkic´ et al. @7# and Dewangan
and Eichler@8#, that is not true. This failure will be studied i
detail in this work.

Unlike c f
CDW the expression ofc f

I in terms of the impact
parameter cannot be obtained in closed-form. We were
forced to calculatec f

I by performing the 3D numerical inte
gral involved in Eq.~1!. The task is more complex than th
evaluation of the correspondingT-matrix element due to the
presence of the hypergeometric function1F1, which causes
the integrand to oscillate greatly. The numerical error of
results was estimated to be less than 1%.

FIG. 1. Coordinate systems.
1540 © 1997 The American Physical Society
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We restrain our calculations to the simplest collision
system

H11H~1s!→H~1s!1H1 ~5!

for v52 a.u. This impact velocity corresponds to the lowe
energy range~intermediate energies! for which the impulse
hypothesis holds. Although the behavior ofc f

I (rP ,t) is here
analyzed for the particular caseb50 in terms ofR(t)5vt,
the conclusions drawn below can be extended for other
evant impact parameters. The module of the electronic co
dinaterP is taken to be the valuer 051.5 a.u. corresponding
to the mean value of the orbital radius for the 1s bound state.

Figure 2 shows the absolute value ofc f
I for two directions

of rP , namely,uc f
I (1r 0v̂,t)u and uc f

I (2r 0v̂,t)u. To have a
reference ast→1` we also displayuc f

CDWu, which tends to
the proper limit ast increases. By defining the arguments
the wave functions,u f

I and u f
CDW, asc f

I5uc f
I uexp(iuf

I) and
c f
CDW5uc f

CDWuexp(iuf
CDW), respectively, we find thatu f

I and
u f
CDW are quite like each other. From Fig. 2 it becomes e
dent thatc f

I does not satisfy the CBC, i.e.,c f
I does not tend

to f f
` as t→1`. We also observe that for the cas

rP5r 0b̂ ~not shown here! the discrepancy betweenc f
I and

c f
CDW, in the t range considered in Fig. 2, is in the order

the numerical uncertainty. Therefore, the departure ofc f
I

from the proper limit is more important forrP in the direc-
tion of v than in the perpendicular direction.

A crude estimation ofc f
I for large t can be derived from

Eq. ~1! by takingfirst the limit ast→1` and makingafter-
wardsa perturbative expansion. In first order the asympto
deviation, defined asD f

I (rP ,t)5c f
I (rP ,t)2f f

`(rP ,t) as
t→1`, reads

FIG. 2. Module of the final wave function for the case of impa
parameterb50 as a function ofR(t)5vt ~in atomic units!. The
process considered isH11H(1s)→H(1s)1H1 at v52 a.u.
Theories: solid line,uc f

I u; dashed line,uc f
CDWu. The electronic coor-

dinate is~a! rP5r 0v̂; ~b! rP52r 0v̂; with r 051.5 a.u.
l
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D f
I ~rP ,t !.2

ZT
v2

f f
`~rP ,t !@ lna~ t !21#

3 v̂–¹rP
ln@w

f
~rP!#1OS ZTv3 D . ~6!

From this expression two points can be qualitatively o
served in accordance with the exact numerical calculati
First, for ns final electronic statesD f

I (rP ,t)} v̂–r̂P , and this
dependence clearly describes the asymptotic behavior ofc f

I

for different directions ofrP , as observed in Fig. 2. And
second,D f

I (rP ,t) vanishes as the velocity increases.
For high velocities it is found thatc f

I andc f
CDW show a

good agreement in almost the whole relevant range oft val-
ues, the discrepancy being only a few percent. Further, as
velocity tends to infinity the impulse approximation, whic
usesc I in one channel and the nonperturbed wave functi
in the other one, converges to the second order Born appr
mation, while the CDW approximation that employscCDW

in both channels does not@10#.
In the impact parameter treatment the perturbative pot

tial Wf
I associated toc f

I reads

Wf
I ~rP ,t !5

1

c f
I ~rP ,t !SH2 i

d

dtDc f
I ~rP ,t !

5
f e~rP ,t !

c f
I ~rP ,t !

E dk

~2p!3/2S k
2

2
2
ZP
r P

2« f D
3w

f̃
~k!exp~ ik–rP!D2~ZT ,v1k;rT!, ~7!

whereH is the electronic Hamiltonian andZP is the projec-
tile charge. Note that the peaking approximation that lea
from c f

I to c f
CDW does not conduct fromWf

I to the perturba-

FIG. 3. Similar to Fig. 2 for the module of the perturbativ
potentialWf . Dotted line, absolute value of the Coulomb potenti
2ZT /r T .
t
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tive potential corresponding toc f
CDW (Wf

CDW), as was argued
by Dewangan and Eichler@8# to perceive the ill-behavior o
c f
I .
In Fig. 3 we plotuWf

I u along withuWf
CDWu and the absolute

value of the Coulomb potentialVT52ZT /r T . Again we
consider two directions ofrP , namely, rP51r 0v̂ and
rP52r 0v̂. From Fig. 3 it can be seen that in both cas
uWf

I u increases asR(t)5vt grows. This inconsistency with
the scattering theory is certainly a direct consequence of
improper limit ofc f

I . Anyway, it should be observed that i
averageuWf

I u,uWf
CDWu for R(t),2 a.u., i.e., at short time

@in the proximities ofR(t)5vt;0# where the most impor-
tant contribution to the transition amplitude takes place.

For the caserP52r 0v̂ @Fig. 3~b!# the potentialWf
CDW is

not well defined forR(t),r 0, this behavior being consisten
with the fact thatWf

CDW is not well behaved for negativ
time. This problem was pointed out by Crothers@11#, who
devised a symmetrized version of the CDW approximat
to solve it. From Fig. 3~b! we can also observe that a
R(t).r 0 (rP.0), uWf

I u is much smaller thanuWf
CDWu.

Again, we found that the separation betweenuWf
I u and

uWf
CDWu is more important forrP in the direction ofv than in

FIG. 4. Transition probability for the processH1

1H(1s)→H(1s)1H1 at v52 a.u., as a function of the impac
parameterb ~in atomic units!. Theories: solid line, EI approxima
tion; dashed line, CDW approximation; dotted line, Brinkma
Kramers approximation.
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the perpendicular direction. ForrP perpendicular tov the
separation is of the order of the numerical uncertainties.

Finally, we attempt to explain why the use ofc f
I permits

us to describe a large variety of collisional data, even thou
this wave function does not satisfy the CBC, as obser
before. Two reasons are posed.

First, the most important contribution to the transition a
plitude comes from the region of small values oft, where
c f
I andWf

I behave rather soundly. For example, in the co
sion system considered in this work the capture probab
reaches 90% of its final value atR(t)5vt;3a.u.; hence the
transition amplitude is mostly defined in the region cor
sponding to small values ofR(t).

Second, whenc f
I is averaged by integrating on all pos

sible directions ofrP , i.e., ^c f
I &5*dr̂Pc f

I (rP ,t), this value
differs from that corresponding toc f

CDW in much less than
10% in the range 3 a.u.<R(t)<30 a.u. Therefore, the val
ues ofc f

I for different directions ofrP should partially cancel
their wrong contributions for largeR(t) as they are inte-
grated to obtain the transition amplitude.

As a further examination it is useful to inspect the tran
tion probability as a function of the impact parameterb, as
shown in Fig. 4. We observe that EI and CDW approxim
tions give very similar probabilities in the rang
3 a.u.<b<6 a.u., and both methods largely differ from th
first order Brinkman-Kramers results. Atb56 a.u. the tran-
sition probability is four orders of magnitude smaller th
the maximum value atb50, and consequently the
discrepancy—if any—between EI and CDW transition pro
abilities forb.6 a.u. is unimportant for evaluating the tot
cross section. Since large impact parameters correspond
essarily to large internuclear distances, the agreement
tween EI and CDW approximations for 3 a.u.<b<6 a.u.
would indicate that the improper limit ofc f

I may be unes-
sential, at least for the calculation of total cross sections

In conclusion, by inspecting the numerical results w
have shown thatc f

I does not satisfy the CBC, as observed
Belkić et al. @7# and Dewangan and Eichler@8#, and in con-
trast with our previous assertion@6#. However, arguments
have been put forward to explain the success ofc f

I in de-
scribing a large variety of capture results, including symm
ric collisional systems at intermediate impact velocitie
These arguments suggest that the asymptotic failure h
minor influence at level to the total cross section. We th
that the ill-asymptotic condition of the impulse wave fun
tion may be counterbalanced by a sound description of
collisional process at small distances as well as the pro
normalization.
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