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Atom-atom interaction in strongly modified reservoirs
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We extend recent work on two closely spaced atoms interacting through the narrow band of strongly coupled
modes at the edge of a photonic band gap. The resonant dipole-dipole interaction~RDDI! is strongly modified
for atomic transition frequencies in the vicinity of the band-gap edge, but we show that an analytical approxi-
mation to the RDDI agrees very well with the exact RDDI obtained by numerical integration using the exact
dispersion relation. Having established the value of the RDDI, we can derive the amplitudes for the two atoms
without resorting to the pole approximation which is necessary due to the strongly modified mode structure in
the dielectric host. For a wide range of parameters we find beating and population trapping in the long time
limit. The distribution of population in the photonic continuum is investigated in the long time limit in the case
of one and two atoms. It is found to be strongly asymmetric and to exhibit a strong signature of the unusual
mode structure in the material at the band-gap edge.@S1050-2947~97!05902-7#

PACS number~s!: 42.50.Lc, 42.70.Qs, 42.50.Md
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I. INTRODUCTION

The behavior of a two-level atom in a modified radiati
reservoir, such as a high-quality cavity, has become the s
dard testing ground for novel effects of quantum electro
namics ~QED! and has revealed a number of striking fe
tures. For instance, the spontaneous exponential decay
excited atomic state in free space, traditionally thought o
an inherent property of the atom, can be enhanced or
pressed by enclosing the atom in a near-resonant cavity
pending on the magnitude of the atomic lifetime in vacuu
relative to the lifetime of the photons in the cavity mode.

The recent emergence of materials with photonic ba
gaps has given rise to a new direction of inquiry, namely,
behavior of atomic decay inside such materials. By conc
tion and construction, the periodic modulation of the diele
tric constant in these materials leads to a strongly modi
mode structure such that photonic modes do not exist fo
continuous range of frequencies that can be much larger
a typical atomic linewidth.

For an atom with transition frequency in the band gap a
located inside the dielectric host, this may lead to a to
inhibition of spontaneous decay@1#, which in turn yields a
so-called photon-atom bound state@2# in which the radiation
remains localized at the atom. For atomic transition frequ
cies closer to the band-gap edge, the rapidly varying den
of modes leads to a splitting of the atomic level, which in t
time domain yields the rather unusual phenomenon of
oscillatory spontaneous decay@3,4#.

In parallel and independent developments, the issue o
modification of atomic radiative behavior under atom-ato
resonant dipole-dipole interaction~RDDI! has been receiving
renewed attention. Beginning with the pioneering Dicke p
per on super-radiance@5,6#, the interaction of two closely
spaced atoms sharing a photon in open space has bee
dressed in numerous studies, with the prediction of inter
ing effects such as atomic level shifts due to RDDI, oscil
551050-2947/97/55~2!/1485~12!/$10.00
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tory photon exchange and squeezing of two-atom resona
fluorescence. And rather recently a natural generalization
these phenomena has been addressed, namely, the stu
the RDDI of closely spaced atoms inside a near-reson
perfect cavity@7#. The results predict a rather strong comp
tition between RDDI and the atom-cavity coupling in th
limit of small interatomic separations such that these t
couplings become comparable in magnitude.

These developments point to two further levels of gen
alization. First, the interplay between RDDI and atom-cav
coupling in an open~lossy! cavity and, second, the sam
interplay with the cavity replaced by a photonic band-g
environment. It is precisely these generalizations that
have undertaken in this paper thus extending recent work@8#.
We have thus addressed the problem of two identical tw
level atoms with a transition frequency in the vicinity of th
band-gap edge and interacting through the narrow band
strongly coupled modes. This gives rise to many new effe
and since it is important to distinguish the effects stemm
from the modified mode structure from those coming fro
the interatomic interaction, we have contrasted the res
with known results for atoms in free space as well as t
atoms coupled to a lossy cavity which we have obtain
here.

The dynamics of a collection of two-level atoms wi
transition frequencies far inside the gap has been inve
gated by John and Quang@9#. In that case, the spontaneou
decay is strongly suppressed but the RDDI between the
oms remains strong.

In addition to the theoretical interest in these questio
technological developments are making them accessibl
experiment. Although the appropriate photonic band-gap m
terials are not yet available in the optical regime, effe
stemming from atom-atom coupling in an open cavity ha
already been observed@10#.

This paper is organized as follows: In the next section
present the model. In Sec. III we calculate the couplin
1485 © 1997 The American Physical Society
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entering the equations of motion, which allows us to so
these equations in Sec. IV. The inversion is performed
Sec. V and the dynamics is investigated in time domain
Sec. VI. In Sec. VII we calculate the distribution of popul
tion in the photonic continuum in the long time limit.

II. MODEL

We consider two two-level atoms situated at different
cationsRA ,RB in space. Taking\51, the second quantize
Hamiltonian for the problem under consideration reads

H5H01V ~2.1!

with

H05vAsA
z1vBsB

z1(
k

vkak
†ak ~2.2!

neglecting the zero-point energy of the field modes, and

V5 i(
k
gk@ake

ik•RAsA
12ak

†e2 ik•RAsA
2#

1 i(
k
gk@ake

ik•RBsB
12ak

†e2 ik•RBsB
2#, ~2.3!

which is the ordinary interaction Hamiltonian in the rotatin
wave approximation wheres1,s2,sz are the atomic opera
tors andak

† ,ak are the creation and annihilation operators
the vacuum modes, respectively, and the dependence o
atomic positionsRA ,RB is shown explicitly. The coupling
constant is given by

gk5A vk

2«0V
ek•di j . ~2.4!

Here di j is the atomic dipole moment,V the quantization
volume, ek the polarization vector, andvk the photon en-
ergy.

The relevant states of the problem are

a5ueA ,gB,0&,

b5ugA ,eB,0&,

c5ugA ,gB,1kel&, ~2.5!

wheregA(B) ,eA(B) denote lower and upper states of the
omsA(B), respectively, and the statesc represent the pho
tonic continuum.

As a means of deriving the appropriate equations for
atom-field dynamics nonperturbatively, we employ the res
vent operator@11#,

G~z!5
1

z2H
, ~2.6!

which is the Laplace transform of the time-evolution ope
tor, with z being the complex transform variable andH the
full Hamiltonian of the system. This formalism, in terms
the wave functions instead of the density operator, is ap
e
n
n

-

f
the

-

e
l-

-

li-

cable here since we have no incoherent pumping of the
tem under consideration and we do not perform a trace o
the vacuum field modes.

With the system initially in statea, the matrix elements of
the resolvent operator read

~z2va!Gaa511(
c
VacGca ,

~z2vb!Gba5(
c
VbcGca ,

~z2vc!Gca5VcbGba1VcaGaa .

Eliminating the continuum amplitudeGca , we find the two
coupled algebraic equations

~z2va!Gaa511(
c

uVacu2

z2vc
Gaa1(

c

VacVcb

z2vc
Gba ,

~2.7!

~z2vb!Gba5(
c

uVbcu2

z2vc
Gba1(

c

VbcVca

z2vc
Gaa ~2.8!

containing several couplings, one of which is

(
c

uVacu2

z2vc
~2.9!

describing the emission of a photon by atomA followed by a
propagation of all the modes, before the photon is eventu
reabsorbed by atomA.

Up to this point we have made no approximations spec
to a band-gap material and the two equations above co
therefore as well describe two atoms in the vacuum of f
space. The propagation of photons in a band-gap materi
strongly modified and it is therefore natural to expect
modification of the couplings, which will indeed be the cas
as we show in the next section. But before proceeding to
issue, let us for instructive purposes investigate the case
two atoms first in vacuum and second in an open cavity.

A. Atom-atom interaction in free space vacuum

In this case we can perform the usual pole approximat
in the couplings which consists in replacing the Laplace va
ablez by the atomic transition frequencyvA . The justifica-
tion for performing this approximation is that the free spa
continuum~vacuum! is flat and changing the Laplace var
ablez aroundvA does not change the value of the coupli
significantly. In the pole approximation the couplings yiel

(
c

uVacu2

z2vc
.D2 iG, ~2.10!

(
c

uVbcu2

z2vc
.D2 iG, ~2.11!

(
c

VacVcb

z2vc
.Mab , ~2.12!
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assuming identical atoms and thus identical shifts a
widths. The dipole-dipole matrix elementMab is in general
complex and diverges when the interatomic distanceR goes
to zero. This formal divergence stems from the fact that
model does not allow for molecule formation as the ato
approach each other and for our purposes, we do not nee
allow for that case.

Inserting these quantities in the equations for the resolv
operator and writing these in matrix form, we find

Fz2ṽ1 iG 2Mab

2Mba z2ṽ1 iGGFGaa

Gba
G5F10G , ~2.13!

where the shift has been absorbed inṽ.
The eigenvalues, which are easily found as

z65ṽ2 iG6Mab , ~2.14!

lead to a damped sinusoidal dynamics in the time dom
Whether the damping or the sinusoidal behavior is domin
depends on the strength ofMab , which in turn is determined
by the atomic configuration and separation. In the long ti
limit and for finite separations there is no population tra
ping.

B. Atom-atom interaction in a cavity

Equations~2.7! and ~2.8! are easily extended to accom
modate the presence of an open cavity

~z2va!Gaa511(
c

uVacu2

z2vc
Gaa1(

c

VacVcb

z2vc
Gba

1
uVadu2

z2ṽd1 ik
Gaa1

VadVdb

z2ṽd1 ik
Gba ,

~2.15!

~z2vb!Gba5(
c

uVbcu2

z2vc
Gba1(

c

VbcVca

z2vc
Gaa

1
uVbdu2

z2ṽd1 ik
Gba1

VbdVda

z2ṽd1 ik
Gaa ,

~2.16!

whereVad, (Vbd) are the dipole-mode couplings of ato
A (B), respectively,ṽd is the resonance frequency of th
cavity shifted due to the coupling to a reservoir, andk the
cavity decay width. These equations show that the prese
of the cavity can be thought of as a Lorentzian superimpo
on the flat background of vacuum modes.

Since the summations in the couplings are over the
continuum~vacuum!, we perform the pole approximation a
in Eqs. ~2.10!–~2.12! and bring the equations to the matr
form
d

r
s
to

nt

n.
nt

e
-

ce
d

t

F z2ṽ1 iG2
uVadu2

z2ṽd1 ik
2Mab2

VadVdb

z2ṽd1 ik

2Mba2
VbdVda

z2ṽd1 ik
z2ṽ1 iG2

uVbdu2

z2ṽd1 ik

G FGaa

Gba
G

5F10G . ~2.17!

The motion of the coupled system is determined by the po
of the resolvent operator which are the roots of the char
teristic polynomial.

In general, all three roots are complex and thus cont
dissipative terms. This means that in the long time lim
t@G21,k21, there will be no population trapping as oppos
to two atoms located in a photonic band-gap material, wh
is the case we treat in the rest of this paper.

III. CALCULATION OF THE COUPLINGS

As a model for the photonic band-gap material, we co
sider the isotropic crystal introduced by John@12#, for which
the dispersion relation can be found analytically as

vk5
c

4na
arccosF4n cos~kL!1~12n!2

~11n!2 G , ~3.1!

wherec is the speed of light andn, L, anda are constants
pertaining to the crystal. The dispersion relation~3.1! exhib-
its gaps in frequency at the spheresk5mp/L with
m51,2, . . . . In the following we choose the refractive i
dex n51.082, which yields a gap center frequen
v05(pc/L)@(11n)/2n# and a relative gap width
Dv/v050.05. At ~near-!optical frequencies, this gap i
much larger than any typical atomic coupling and the infl
ence of the lower band-gap edge on the atomic dynamics
therefore be neglected for atomic transition frequencies
the vicinity of the upper band edge.

The assumption underlying Eq.~3.1! is that photons
propagating in the photonic band-gap material experience
same mode structure for both polarizations and in all spa
directions. Close to the band edge, the dispersion rela
~3.1! can be approximated by the effective mass dispers
relation @12#

vk.ve1A~k2k0!
2, ~3.2!

wherek0 is the wave vector corresponding to the band-ed
frequency andA is given by

A5
2cL2

2a~11n!2
1

sin~4nave /c!
~3.3!

containing constants only pertaining to the structure of
crystal.

In this section we address the calculation of the couplin

(
c

VmcVcn

z2vc
~3.4!

with m,nP$a,b% which when using the interaction Hami
tonian ~2.3! can be written more explicitly as
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(
c

VmcVcn

z2vc
5 (

k,i , j ,l

vk

2«0V

~eki
~ l !degi

m !ek j
~ l !dge j

n

z2vc
eik•R ~3.5!

with R5Rm2Rn the relative distance between the two a
oms ifmÞn, i , jP$x,y,z% and we have introduced a sum
mation over polarization~index l ) in the first equation. It is
easily shown that the summation over polarization vect
yields

(
l51,2

eki
~ l !ek j

~ l !5d i j2 k̂i k̂ j ~3.6!

where k̂5(sinu cosf,sinu sinf,cosu). Inserting this relation
in the expression above and turning the summation ovek
into an integral, the relation reads

(
c

VmcVcn

z2vc
5

1

~2p!3(i j E d3k~d i j2 k̂i k̂ j !

3
vk

2«0

degi
m dge j

n

z2vk
eik•R. ~3.7!

Since we have assumed an isotropic dispersion rela
which contains no angular dependence, the angular inte
can thus be performed.

The general result reads

(
c

VmcVcn

z2vc
5

1

2p2

1

2«0
(
i
E dkk2vkt i i ~k,R!

degi
m dgei

n

z2vk

~3.8!

with

t i i ~k,R!5FsinkRkR
1
coskR

~kR!2
2
sinkR

~kR!3Gd ix1FsinkRkR
1
coskR

~kR!2

2
sinkR

~kR!3Gd iy1F2
2coskR

~kR!2
1
2sinkR

~kR!3 Gd iz , ~3.9!

where we have taken thez axis along the interatomic sepa
ration axis.

The steps leading to Eq.~3.8! are standard and we
known. FormÞn, Eq. ~3.8! yields the RDDI between two
neighboring atoms and form5n the effective coupling of an
atom with the reservoir. In that caseR50.

For two atoms in free space, the free space disper
relationvk5ck applies and the integral~3.8! can be evalu-
ated by contour methods yielding the matrix elementMab of
Eqs.~2.14! and~2.17!. In the present context, the dispersio
relation~3.1! is rather complicated and the integral~3.8! has
to be performed numerically.

The question of major interest here is whether we c
replace the variablez by the atomic transition energyvA in
Eq. ~3.8!. This requires that the integral as a function ofz is
slowly varying. Calculations by John@12# and Kweon@13#
have shown that for atomic transition frequencies in the
far from the edge, the value of the dipole-dipole matrix e
ment approaches that of vacuum, i.e., for two closely spa
atoms with transition frequencies in the gap, the virtual p
tons exchanged are of such energy that the atoms do
experience the existence of the gap. It is, however, not
s

n
ral

n

n

p
-
d
-
ot
i-

dent whether this also holds for atomic transition frequenc
at the edge of the gap. To explore the sensitivity of the va
of the integral onz, we have performed a careful numeric
investigation of the coupling~3.8! using the exact dispersio
relation ~3.1! for the crystal and have indeed found that t
value Eq.~3.8! assumes in the vicinity of the band edge
sensitively dependent onz and as a result we cannot repla
z by vA .

Before proceeding to the numerical results, we presen
approximate analytical calculation of the coupling. The co
plex Laplace variablez can in this context be written
z5x1 ih, whereh is a small positive quantity. Using th
identity

1

x1 ih
5

h→0

P
1

x
2 ipd~x! ~3.10!

whereP denotes principal value part, in the integral~3.8!
and leaving out for the moment the multiplicative coef
cients yields

E dkk2vkt i i ~k,R!
1

z2vk
5PE dkk2vkt i i ~k,R!

1

x2vk

2 ipE dkk2vkt i i ~k,R!

3d~x2vk!. ~3.11!

FormÞn, we denote the first part of Eq.~3.11! by Vmn and
this gives rise to the divergent part of the dipole-dipole
teraction, diverging for small interatomic distances as 1/R3.
By numerical integration of this quantity, we have esta
lished that it is to a very good approximation given by t
real part of the RDDI obtained for two atoms in free spac

Form5n the principal value part gives rise to the Lam
shift of the excited atomic states. We absorb this energy s
in the eigenenergies of the excited atomic states. To eval
the second integral of Eq.~3.11!, we apply the effective-mas
approximation~3.2!. Inserting this expression in the integr
~3.11! yields

E dkk2vkt i i ~k,R!d~x2vk!

.k1
2 vk1

t i i ~k1 ,R!
1

2Ax2veAA
~3.12!

wherek15k01A(x2ve)/A.
For atomic transition frequencies at the edge of the g

vA.ve , the contributionA(x2ve)/A will be negligible
since the resolvent operator has a pole atx.vA.ve . Ne-
glectingA(x2ve)/A compared tok0, we thus find the sim-
pler expression

E dkk2vkt i i ~k,R!d~x2vk!

.k0
2vet i i ~k0 ,R!

1

2Ax2veAA
, ~3.13!

which applies to the case ofm5n as well asmÞn.
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For notational convenience, we define

CM5(
i

1

4pe0

degi
m dgei

n

2AA
k0
2vet i i ~k0 ,R! ~3.14!

for mÞn and

Cn5(
i

1

4pe0

udegi
n u2

2AA
k0
2vet i i ~k0 ,R50!

5(
i

1

4pe0

udegi
n u2

2AA
k0
2ve

2

3
~3.15!

for m5n.
In the S configuration, for instance, i.e., the atomic d

poles parallel and aligned perpendicular to the interato
separation axis,CM reads

CM5
ve

4pe0

deg
m dge

n

2AA
Fk0sink0RR

1
cosk0R

R2 2
sink0R

k0R
3 G .

~3.16!

Collecting the terms, we find

(
c

uVacu2

z2vc
5

2 iCa

Az2ve

, ~3.17!

where the Lamb shift part of the coupling has been absor
in the atomic eigenenergies and

(
c

VacVcb

z2vc
5Vab1

2 iCM

Az2ve

, ~3.18!

whereVab is the principal value part of the RDDI integral i
Eq. ~3.11!. We note that the RDDI~3.18! has a term diverg-
ing asz→ve . For atomic transition frequencies outside t
gap, i.e.,z.ve , this yields an imaginary contribution to th
interatomic coupling. For atomic transition frequencies in
gap, i.e.,z,ve , the argument of the square root chang
sign and the square root term and thus the whole interato
coupling becomes purely real. As has been noted in the
erature@12#, the occurrence of the square root terms in E
~3.18! and~3.17! corresponds to a density of states given

r~v!5
V

~2p!3
k0
2

2AA
1

Av2ve

Q~v2ve!, ~3.19!

whereQ(v2ve) is the Heaviside step function. The dive
gence of the density of states at the band edge is an art
and stems from the assumption of an isotropic dispers
relation, i.e., a spherical crystal. A real photonic crystal w
in general have a spatial anisotropy which in turn will
reflected in the dispersion relation. In the following, we a
sumeVab andCM to be real quantities, which is not a re
striction, since this can be achieved by a proper phase tr
formation of the interaction Hamiltonian turning the dipo
moments into real quantities.

To check the validity of the effective-mass approximati
in calculating the RDDI, we present the results obtain
ic

d

e
s
ic
it-
.

ct
n
l

-

s-

d

from Eq.~3.18! and by numerical integration of Eq.~3.8!. In
Fig. 1, we compare the results obtained by numerical int
gration of the exact expression for the coupling~3.8! with the
approximate analytical result~3.18! obtained in the effective-
mass approximation as a function of the interatomic sepa
tion with z50.998ve . As the real part of the RDDI of Eq.
~3.18! we have used the coupling obtained for two atoms
vacuum. There is indeed a very good agreement. For t
choice of parameters,z,ve which yields a negative argu-
ment in the square root part of Eq.~3.18! and the coupling is
thus purely real.

In Fig. 2, we plot the coupling withz51.002ve . Again
we find a very good agreement between the exact express
~3.8! and the approximate expression~3.18!. We have tested
the sensitivity of Eq.~3.8! on z by calculating the coupling
for various values ofz in the vicinity of ve and the depen-
dence onz as given by the approximate expression in E
~3.18! has been confirmed. We have thus shown that t
RDDI given by Eq.~3.8! can be replaced by the more ex

FIG. 1. RDDI as a function of the interatomic distanceR for
atoms in theS configuration withz50.998ve . The solid line is the
numerical solution of Eq.~3.8! and the dotted curve that of Eq.
~3.18!.

FIG. 2. RDDI as a function of the interatomic distanceR for
atoms in theS configuration withz51.002ve . The solid and long-
dashed lines are the numerical computations of Eqs.~3.8! and
~ 3.18!, respectively. The dotted and dashed lines are the imagin
parts of Eqs.~3.8! and ~3.18!, respectively.
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plicit expression~3.18!, whereVab is the real part of the
dipole-dipole coupling for two atoms in the vacuum of fr
space.

IV. REVISITING THE RESOLVENT
OPERATOR EQUATIONS

Using Eqs.~3.17! and~3.18! in the equation for the resol
vent matrix elements, we find

~z2va!Gaa511VabGba1
2 iCa

Az2ve

Gaa1
2 iCM

Az2ve

Gba ,

~z2vb!Gba5VbaGaa1
2 iCb

Az2ve

Gba1
2 iCM

Az2ve

Gaa ,

assuming as before that the matrix elementCM is real. The
equations can be slightly simplified by multiplying bo
sides of the equations withAz2ve and transforming the
Laplace variablez by z2va→z, which corresponds to trans
forming to an interaction picture rotating atva . We further
assumeva5vb andCa5Cb[C, i.e., the atoms are identica
and defined5va2ve .

Writing the equations in matrix form finally yields

F zAz1d1 iC 2Az1dVab1 iCM

2VbaAz1d1 iCM zAz1d1 iC
GFGaa

Gba
G

5FAz1d

0 G . ~4.1!

Eliminating the continuum amplitude, we have obtained t
coupled algebraic equations for two two-level atoms intera
ing through RDDI and through a narrow band of strong
coupled modes. As opposed to standard treatments de
with system-reservoir interactions, we have at no point p
formed a pole-approximation simply because the reservo
our case is very far from being ‘‘flat.’’ The peculiar feature
of the continuum are reflected by the square root terms
pearing in the resolvent operator equations.

We can immediately identify the eigenstates of the ma
in Eq. ~4.1! as the symmetric and antisymmetric produ
states defined by

cs(a)5
1

A2
@ ueAgB&6ugAeB&#. ~4.2!

The symmetric product statecs is a Dicke state and would
for atoms in free space correspond to a superradiant s
We shall, however, see that in a photonic band-gap mate
we can actually have population trapping in this symme
state.

In the study of the interactions of atoms with cavi
modes, the dynamics of the systems under consideratio
exclusively determined by the location of the poles of t
resolvent operator in the complex plane. This is, howev
not the full truth in this problem; on performing the inversio
integral to obtain the time dependent amplitudes, there
contribution coming from the cut in the complex plane~aris-
ing from the photonic continuum! which yields a non-
o
t-

ing
r-
in

p-

x
t

te.
ial
c

is

r,

a

negligible contribution to the dynamics of the system. B
for the moment, we proceed as usual by finding the roots
the characteristic polynomial of the above equations. It re

05@zAz1d1 iC#22@Az1dVab2 iCM#2 ~4.3!

assuming thatVab is real. To obtain a polynomial inz, we
multiply by the conjugate, which yields the characteris
polynomial

h~z!5@z2~z1d!2C22Vab
2 ~z1d!1CM

2 #2

14~z1d!@Cz1CMVab#
2. ~4.4!

By multiplying the characteristic equation with its conjuga
we have of course introduced extra roots and thereby e
poles. These extra poles, however, do not contribute w
we perform the inversion integral.

In general, the roots of Eq.~4.4! are complicated expres
sions and they read

z15
2d22Vab

3
1
21/3~d2Vab!

2

3B2
1

B2

3321/3
, ~4.5!

z25
2d22Vab

3
2eip/3

21/3~d2Vab!
2

3B2
2e2 i ~p/3!

B2

3321/3
,

~4.6!

z35
2d22Vab

3
2e2 ip/3

21/3~d2Vab!
2

3B2
2ei ~p/3!

B2

3321/3
,

~4.7!

z45
2d12Vab

3
1
21/3~d1Vab!

2

3B1
1

B1

3321/3
, ~4.8!

z55
2d12Vab

3
2eip/3

21/3~d1Vab!
2

3B1
2e2 i ~p/3!

B1

3321/3
,

~4.9!

z65
2d12Vab

3
2e2 ip/3

21/3~d1Vab!
2

3B1
2ei ~p/3!

B1

3321/3
,

~4.10!

where the following abbreviations have been introduced:

B25@A21AA2
2 24~d2Vab!

6#1/3, ~4.11!

B15@A11AA1
2 24~d1Vab!

6#1/3 ~4.12!

and

A252~Vab2d!3227~C2CM !2,

A1522~Vab1d!3227~C1CM !2. ~4.13!

It is easily seen that the six roots can be viewed as being
roots of two different third order polynomials. One triplet o
eigenvalues corresponds to the symmetric product state,
the other triplet to the antisymmetric product state~4.2!.

We found in Eq.~4.1! coupled algebraic equations gov
erning the motion of the system. Eliminating the amplitu
Gba we find forGaa
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Gaa5
z~z1d!1 iCAz1d

h~z!
@~z22Vba

2 !~z1d!1CM
2 2C2

22iAz1d~Cz1CMVab!# ~4.14!

and forGba

Gba5
Vba~z1d!2 iCMAz1d

h~z!
@~z22Vba

2 !~z1d!1CM
2 2C2

22iAz1d~Cz1CMVab!# ~4.15!

whereh(z) is the characteristic polynomial of Eq.~4.4!. As
is evident from Eqs.~4.14! and ~4.15!, the expressions for
the amplitudes contain square root terms. This means that
amplitudes have a branch cut in the complex plane and
must therefore be very careful when performing the inve
sion. We take the branch cut along the negative imagina
axis thereby defining the first Riemann sheet to beu
P]2p/2:3p/2@ .

We could discuss the behavior of the system in differe
regimes in terms of the location of the eigenvalues in t
complex plane. As we mentioned above, however, there i
non-negligible contribution to the inversion integral whic
stems from the photonic continuum and which cannot
discussed in terms of eigenvalues. In order to see the pre
behavior of the system, we therefore perform the inversi
integral and investigate the system in time domain.

V. INVERSION

The inversion integral reads

U~ t !5
1

2p i È 1 i e

2`1 i e

dzG~z!e2 izt ~5.1!

wheree is an infinitesimal small positive quantity. To evalu
ate the integral, we close the contour with a semicircle in t
lower half of the complex plane as depicted in Fig. 3 and u
the residue theorem. When the radius of the semicircle go
to infinity, this part of the contour does not contribute. Sinc
the functions to invert have a branch cut, we have to do
detour around the branching point. This detour, denotedg,
does contribute.

FIG. 3. The contour used to invert the amplitudes to time d
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Applying the residue theorem, we find

Uk~ t !5(
j

~z2zj !Gka~z!e2 iztuz5zj

2
1

2p i Eg
dze2 iztAz1dpk~z! ~5.2!

with k5$a,b% and since all poles are simple. For highe
order poles, the residues are more complicated. The
over j is a sum over all poles that do not have a posit
imaginary part since those poles fall outside the integrat
contour. The functionpk(z) introduced in the last integral is
the part of the expressions forGaa andGba containing the
square root terms, thus

pa~z!5 i
~z1d!~2Cz22CVba

2 22CMVbaz!1C~CM
2 2C2!

h~z!
,

pb~z!

52 i
CM@~z21Vba

2 !~z1d!1CM
2 2C2#12Vba~z1d!Cz

h~z!
.

~5.3!

Let us look at the detour integral along the pathg

E
g
dze2 iztAz1dpk~z!

5
y5z1d È0

dyei ~3p/2!e2 iyei3p/2t

3eidtAei3p/2ypk~ye
i ~3p/2!2d!

1E
0

`

dye2 i ~p/2!e2 iye2 ip/2t

3eidtAe2 i ~p/2!ypk~ye
2 ip/22d!

52iei
3p
4 E

0

`

dye2yt1 idtAypk~2 iy2d!

~5.4!

with kP$a,b%.
With the normalization of 2p i , the detour part thus read

1

2p i Eg
dze2 iztAz1dpk~z!

5
ei ~3p/4!

p E
0

`

dye2yt1 idtAypk~2 iy2d!.

~5.5!

The integral cannot be computed analytically~except for cer-
tain limits! but is easily computed numerically. The influen
of the integrals can, however, be found in the long time lim
In that case only the lowest order inz contributes to the
integrals, and we thus find

-
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1

2p i Eg
dze2 iztAz1dpa~z!.

ei ~3p/4!

p E
0

`

dye2yt1 idtAypa~0!

5
ei ~3p/4!1 idt

p
pa~0!

G~3/2!

t3/2
.

~5.6!

In the long time limit, the detour integral thus contributes
t23/2. A similar behavior is found for the other detour int
gral.

The prefactorpa(0) in Eq. ~5.6! determines the influenc
of the detour integral on the total wave function. By exa
ining the expression forpk(z), one findspk(0)}d21 for
large detunings. The influence of the detour integral the
fore becomes negligible when the atomic transition f
quency is detuned far from the band-gap edge in which c
the atomic evolution becomes exponential~positive detun-
ing! or the decay is inhibited~negative detuning!.

The behavior of the system resembles the departure f
exponential decay for an atom in free space due to cor
tions to the pole approximation@14#. We recall, however,
that in our problem the photon continuum is strongly mo
fied compared to the free space case, and the p
approximation does not provide a valid starting point for o
calculation.

VI. WAVE FUNCTIONS IN TIME DOMAIN

Having established the influence of the detour integral,
investigate the system in different limits in the time doma

A. One atom

If the interatomic separation is very large, we ha
CM;Vab;0 and the problem reduces to the one-atom pr
lem already treated in the literature@3,4#. In that case the
characteristic polynomial~4.4! simplifies to

05@z2~z1d!1C2#2, ~6.1!

which seems to indicate that this one-atom system has t
poles that are all of order 2. The expression forGaa does,
however, simplify and we find

Gaa5
z~z1d!2 iAz1dC

z2~z1d!1C2 , ~6.2!

which is the expression also derived by John and Quang@3#.
This expression has three poles, of which only two contr
ute since the third pole has a positive imaginary part and t
falls outside the inversion contour. Of the two remaini
poles, one has an imaginary part and thus gives rise
transient, dissipative dynamics, whereas the second po
purely real and thus corresponds to a stable, nondeca
state of the system. In the transient regime, both poles
contribute to the dynamics which gives rise to beating, wh
is indeed a rather unusual phenomenon in spontaneous
cay.

For an atomic transition frequency at the band ed
(d50), the roots are

z152C2/3, ~6.3!
s
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z25ei ~p/3!C2/3,

z35e2 i ~p/3!C2/3.

In the long time limit, only the real root contributes and th
atomic population is then given by

uUaa~ t !u25U z1
22 iCAz1

~z12z2!~z12z3!
U25 4

9
, ~6.4!

which means that a considerable part of the population
bound on the atom in the long time limit. This is what h
been referred to as a ‘‘bound photon-atom state’’ in the
erature@3#. For atomic transition frequencies in the gap, t
population trapping can be close to 1 as is evident from F
4, where we have plotted the atomic population as a func
of time for different detunings with respect to the band-g
edge.

Spontaneous emission is taking place on a fast time s
roughly given byC22/3 and in this transient regime, part o
the atomic population is lost. On a longer time scale,
population remains almost constant but we see a slight o
lation which stems from the beating between the stable, n
decaying state and the detour integral. Physically, this ef
stems from the emitted photon which is reflected in the
electric host and thus oscillates back and reexcites the a
Even for atomic transition frequencies outside the g
(d.0), we find a significant population trapping, as h
been noted in the literature@3,4#.

B. Two atoms at the band edge„d50…

At the band edged50 and for negligible dipole-dipole
couplingVab.0, the roots of the characteristic polynomi
are the following:

z15eip/3~C1CM !2/3, ~6.5!

z25e2 ip/3~C1CM !2/3, ~6.6!

z352~C1CM !2/3, ~6.7!

FIG. 4. The time evolution of the excited state population a
function of time for different detunings:d5210C2/3 ~solid line!,
d523C2/3 ~dashed line!, d50 ~dotted line!, d5C2/3 ~dash-dotted
line!, andd53C2/3 ~long-dashed line!.
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z45eip/3~C2CM !2/3, ~6.8!

z55e2 ip/3~C2CM !2/3, ~6.9!

z652~C2CM !2/3. ~6.10!

Two of these roots are real, namely,z52(C1CM)
2/3 and

z52(C2CM)
2/3, and by inserting these in the characteris

equation~4.3!, it is easily confirmed that these roots are a
roots in the original polynomial. That the roots are re
means that they correspond to stable, nondecaying stat
the coupled system. The existence of two such stable s
implies that the system has no steady state in the con
tional sense of the word, since in the long time limit, t
system will beat between these two nondecaying states
the other hand, if the system is viewed in the basis of
symmetric and antisymmetric product states, it is found
have a steady state.

Of the four remaining roots, two will not contribute sinc
they have a positive imaginary part and thus fall outside
integration contour and the two remaining roots will give ri
to a transient, damped behavior.

Now, one of the real poles corresponding to a stable s
is actually the eigenvalue of the symmetric product state.
thus find the surprising result that the symmetric prod
state which in free space is super-radiant in the photo
band gap can be a stable nondecaying state. In Fig. 5
have plotted the atomic populations as a function of tim
From the figure, we identify an initial transient regime
which part of the population is lost. On a longer time sca
the remaining population is exchanged between the atom
an oscillatory, nondissipative manner. This is also a rat
surprising result: In the study of atoms coupled to caviti
we typically see beating~Rabi oscillations! when the Rabi
frequency exceeds the decay width and the Rabi oscilla
is then a transient phenomena, which is eventually dam
out. In the present problem, dissipation only acts in a tr
sient regime, after which it is effectively turned off and th
only the coherent oscillation of the remaining excitation b
tween the two atoms persists. Physically, this part of

FIG. 5. The time evolution of the excited state populations a
function of time for atomic transition frequencies at the band e
(d50). The solid line is the population of the initially excited ato

A and the dashed line is for atomB. CM /C5
1
2 , Vab50.
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excitation is protected against dissipation, since it cor
sponds to a photon with energy in the gap, tunneling betw
the two atoms.

C. Small interatomic separation

When the interatomic separation becomes very small,
R!l, the real part of the dipole-dipole interaction (Vab)
becomes the dominant part of the interaction. We investig
this regime for different detunings.

In Fig. 6 we plot the population in the excited state of t
initially excited atomA and the total population of atomA
andB as a function of time for different values ofVab with
d53. With this choice of parameters, the atomic transiti
frequencies are tuned outside the gap into the allowed pa
the spectrum. For a relatively weak RDDI (Vab51), the
atomic population is lost in the long time limit as is evide
from the figure. For a slightly stronger RDDI (Vab53), the
coupling between the two atoms is now comparable to
detuning from the band-gap edge and the splitting of
atomic levels due to the coupling is hence strong enoug
move part of the atomic level into the gap where it is pr
tected from dissipation. We therefore find a non-negligib
population trapping for this choice of parameters. This b
comes even more apparent for an even stronger coup
(Vab55), in which case close to 50% of the initial excitatio
remains bound on the two atoms in the long time limit.

The reverse case is illustrated in Fig. 7, where again
atomic population on atomA and the sum of the atomic
populations are plotted ford523 and various values o
Vab . For a relatively weak RDDI (Vab51), there is a sig-
nificant population trapping in the long time limit. As th
RDDI is becoming comparable to the detuning from t
band-gap edge, the population trapping is decreased sinc
level splitting is now large enough to move part of th
atomic levels into the allowed part of the spectrum.

a
e

FIG. 6. The excited state populations as a function of time
d53,C51,CM50.8 and different values ofVab . The solid line is
the population in the excited state of atomA. The dashed line is the
sum of the populations in the excited states of atomA and B.
~a! Vab51. ~b! Vab53. ~c! Vab55.
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VII. PHOTONIC POPULATION DISTRIBUTION

In the literature, different quantities have been employ
as a measure of the spectrum@15#. For an atom in free space
the spectrum is the distribution of population in the co
tinuum modes in the long time limit. In the present ca
however, an initially excited atom with a transition fre
quency close to the edge of the gap with a certain probab
evolves into a photon-atom bound state which is a supe
sition of atomic excited state in the presence of no pho
and atomic ground state with a superposition of one-pho
states. The superposition of photonic states yields a w
packet in real space which is well localized around the ato
A detector located outside the large crystal does not de
the localized photonic wave packet but only the fluoresc
light lost in the initial transient regime of the atomic evol
tion. The distribution of population in the photonic co
tinuum does therefore not coincide with the spectrum
would measure with a detector located outside the crys
Kofman and co-workers have investigated the spectrum
one atom in a photonic band-gap material@4#.

In this section we investigate the distribution of popu
tion in the continuum in the long time limit.

A. One atom

The one-photon part of the field in the time domain
given by

uc&5(
kl
Uca~ t !ukl &, ~7.1!

where the summation is over all continuum states andUca is
the amplitude for the continuum modec with frequency
vc5va1D, obtained by inverting the expression

FIG. 7. The excited state populations as a function of time
d523,C51,CM50.8, and different values ofVab . The solid line
is the population in the excited state of atomA. The dashed line is
the sum of the populations in the excited states of atomA andB.
~a! Vab51, ~b! Vab53, and~c! Vab57.
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Gca5
VcaGaa

z2D
, ~7.2!

whereGaa is the one-atom amplitude given by Eq.~6.2!.
In the long time limit, only the roots with no imaginar

~dissipative! part contribute to the dynamics in time doma
of the continuum mode. Assuming that the atomic transit
frequency is at the band-gap edge (d50), there are two
poles contributing: One is the free evolution of the mode
frequencyv and the other pole at2C2/3 stems from the
nondecaying photon-atom bound state. In this case,
population in the mode is

uUca~ t !u25
uVcau2

~D1C2/3!2
F D41C2D

~D21C4/32DC2/3!2
1
4

9

2
4

3

D2

D21C4/32DC2/3cos~Dt1C2/3t !

1
4

3

CAD

D21C4/32DC2/3sin~Dt1C2/3t !G . ~7.3!

Equation~7.3! contains an implicit dependence on the orie
tation of the atomic dipole in space. We perform an integ
tion of Eq. ~7.3! over the angular part. Furthermore, we pe
form a time average over the period 2p/(D1C2/3) in order
to eliminate the time-dependent terms.

In the long time limit, the frequency distribution is there
fore given by the angular integrated, stationary terms of
~7.3!

S~v!5r~v! (
l51,2

E dVuUcau2

5
Q~v2ve!

pAv2ve

C

~D1C2/3!2 F D41C2D

~D21C4/32DC2/3!2
1
4

9G ,
~7.4!

where v5va1D5ve1D since d50 and the density of
statesr(v) is given by Eq.~3.19!. Equation~7.4! does in-
deed yield a rather unusual distribution of population qu
different from the usual Lorentzian form obtained for a tw
level atom in free space, as can also be seen from Fig
where we have plotted the frequency distribution as a fu
tion of v.

The coupled system consisting of ‘‘atom1reservoir’’ has
a pole at exp(2ip/3)C2/3 and we would thus expect th
population distribution to have a peak at1

2C
2/3. The density

of modes does, however, strongly suppress radiation at
wavelength and instead the photon emission close to
band-gap edge (D'0) is strongly amplified.

We calculate the population in the continuum modes
the long time limit, which is given by

E
0

`

dvS~v!5
5

9
. ~7.5!

To obtain this result, the integral has been performed
merically. In the long time limit, we therefore find that th

r
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atomic excited state population given by Eq.~6.4! and the
population in the photonic continuum add up to 1, as sho
be the case.

B. Two atoms

When the couplings between the two atoms cannot
neglected, the general expression for the continuum am
tude in frequency domain reads

Gca5
1

z2vc
@VcaGaa1VcbGba#. ~7.6!

Let us consider the simpler case ofVab5d50. The roots of
the system are then given by Eqs.~6.5!–~6.10! and the ex-
pression for the continuum amplitude reads

Gca5
1

z2vc

1

h~z!
@Vca~z

21 iCAz!2 iVcbCMAz#

3@z31CM
2 2C222iCAzz#, ~7.7!

while the stable roots of the system are given by Eqs.~6.7!
and ~6.10!. In the long time limit, these roots and the roo
z5v contribute. As before, we transform the amplitude
the time domain keeping only the contribution from re
roots, taking absolute square and leaving out terms depe
ing on frequency. In the end, we obtain for the angular in
grated continuum population

S~v!5r~v! (
l51,2

E dVuUca~ t !u25
Q~v2ve!

pAv2ve

CD

h~D!2

3@D31C22CM
2 #@~D31CM

2 2C2!214D3C2#

1
Q~v2ve!

pAv2ve

32C2CM
2

9h̃ 2 F C2CM

@~C2CM !2/31D#2

1
C1CM

@~C1CM !2/31D#2G , ~7.8!

FIG. 8. The photonic population distribution for one atom in
photonic band gap with transition frequency at the band-gap e
(d50).
ld

e
li-

l
d-
-

where we have defined

h̃5@~C2CM !4/31~C1CM !4/32~C22CM
2 !2/3#

3@~C1CM !2/32~C2CM !2/3#. ~7.9!

The population distribution~7.8! has been plotted in Fig. 9.
From the figure, we find that the population distribution ha
a ‘‘shoulder’’ which vanishes whenC;CM . The reason for
this becomes apparent by investigating the eigenvalues of
coupled system. The coupled system fluoresces at the en
gies 1

2(C2CM)
2/3 and 1

2(C1CM)
2/3. The shoulder in the

population distribution thus stems from the fluorescence
the energy12(C2CM)

2/3, which coincides with the band-gap
edge whenC;CM , in which case the shoulder disappears
As in the case of one atom, we have, by numerical integr
tion of the population distribution overv, made sure that the
population in the continuum modes and the atomic excite
state population add up to 1.

VIII. SUMMARY

In this paper we have presented a model calculation f
two atoms with transition frequencies near the edge of
photonic band gap and interacting through the narrow ba
of strongly coupled modes. We addressed the problem usi
the resolvent operator formalism by means of which th
wave functions of the system are obtained in Laplace spa
Eliminating the field mode amplitudes from the equations o
motion, we obtained two coupled, algebraic equations for th
amplitudes of the two atoms coupled through second-ord
expressions involving summations over the continuum state
One of these couplings is the RDDI between the two neig
boring atoms. We presented an analytical calculation of th
RDDI and showed that it agrees very well with a numerica
integration of the RDDI using the exact dispersion relatio
for the dielectric host. With the analytical expressions for th
couplings, the set of equations for the two atoms was solv
and we investigated the amplitudes of the two atoms in th
time domain. Although the atoms are coupled to a dissipativ
environment, we found population trapping and beating

ge

FIG. 9. The photonic population distribution for two atoms in a
photonic band gap with transition frequencies at the band-gap ed
(d50) andVab50. The solid line is forCM /C50.9 and the long-
dashed line is forCM /C50.1.
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the long time limit for a wide range of parameters.
We have also calculated the photonic population distri

tions for one and two atoms, respectively, and found that
location of the peaks of the distributions is mainly det
mined by the mode structure and not as is usually the c
-
e
-
e,

by the location of the poles of the coupled system in
complex plane. Furthermore, we found, not surprisingly, t
the mode structure acts as a frequency filter and effectiv
cuts off frequencies in the photon distribution below t
band edge.
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