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We extend recent work on two closely spaced atoms interacting through the narrow band of strongly coupled
modes at the edge of a photonic band gap. The resonant dipole-dipole inte(&EDh is strongly modified
for atomic transition frequencies in the vicinity of the band-gap edge, but we show that an analytical approxi-
mation to the RDDI agrees very well with the exact RDDI obtained by numerical integration using the exact
dispersion relation. Having established the value of the RDDI, we can derive the amplitudes for the two atoms
without resorting to the pole approximation which is necessary due to the strongly modified mode structure in
the dielectric host. For a wide range of parameters we find beating and population trapping in the long time
limit. The distribution of population in the photonic continuum is investigated in the long time limit in the case
of one and two atoms. It is found to be strongly asymmetric and to exhibit a strong signature of the unusual
mode structure in the material at the band-gap ef§#050-294®7)05902-7

PACS numbgs): 42.50.Lc, 42.70.Qs, 42.50.Md

I. INTRODUCTION tory photon exchange and squeezing of two-atom resonance
fluorescence. And rather recently a natural generalization of

The behavior of a two-level atom in a modified radiation these phenomena has been addressed, namely, the study of
reservoir, such as a high-quality cavity, has become the stathe RDDI of closely spaced atoms inside a near-resonant
dard testing ground for novel effects of quantum electrodyperfect cavity{7]. The results predict a rather strong compe-
namics (QED) and has revealed a number of striking fea-tition between RDDI and the atom-cavity coupling in the
tures. For instance, the spontaneous exponential decay of &émit of small interatomic separations such that these two
excited atomic state in free space, traditionally thought of agouplings become comparable in magnitude.
an inherent property of the atom, can be enhanced or sup- These developments point to two further levels of gener-
pressed by enclosing the atom in a near-resonant cavity, delization. First, the interplay between RDDI and atom-cavity
pending on the magnitude of the atomic lifetime in vacuumcoupling in an openlossy cavity and, second, the same
relative to the lifetime of the photons in the cavity mode. interplay with the cavity replaced by a photonic band-gap

The recent emergence of materials with photonic bandénvironment. It is precisely these generalizations that we
gaps has given rise to a new direction of inquiry, namely, thehave undertaken in this paper thus extending recent y&rk
behavior of atomic decay inside such materials. By concep¥We have thus addressed the problem of two identical two-
tion and construction, the periodic modulation of the dielecHdevel atoms with a transition frequency in the vicinity of the
tric constant in these materials leads to a strongly modifiedband-gap edge and interacting through the narrow band of
mode structure such that photonic modes do not exist for atrongly coupled modes. This gives rise to many new effects
continuous range of frequencies that can be much larger thaand since it is important to distinguish the effects stemming
a typical atomic linewidth. from the modified mode structure from those coming from

For an atom with transition frequency in the band gap andhe interatomic interaction, we have contrasted the results
located inside the dielectric host, this may lead to a totalwith known results for atoms in free space as well as two
inhibition of spontaneous decdy], which in turn yields a atoms coupled to a lossy cavity which we have obtained
so-called photon-atom bound st@f in which the radiation here.
remains localized at the atom. For atomic transition frequen- The dynamics of a collection of two-level atoms with
cies closer to the band-gap edge, the rapidly varying densitiransition frequencies far inside the gap has been investi-
of modes leads to a splitting of the atomic level, which in thegated by John and Quan§]. In that case, the spontaneous
time domain yields the rather unusual phenomenon of adecay is strongly suppressed but the RDDI between the at-
oscillatory spontaneous decf%,4]. oms remains strong.

In parallel and independent developments, the issue of the In addition to the theoretical interest in these questions,
modification of atomic radiative behavior under atom-atomtechnological developments are making them accessible to
resonant dipole-dipole interacti¢RDDI) has been receiving experiment. Although the appropriate photonic band-gap ma-
renewed attention. Beginning with the pioneering Dicke paterials are not yet available in the optical regime, effects
per on super-radianckb,6], the interaction of two closely stemming from atom-atom coupling in an open cavity have
spaced atoms sharing a photon in open space has been adready been observédO].
dressed in numerous studies, with the prediction of interest- This paper is organized as follows: In the next section we
ing effects such as atomic level shifts due to RDDI, oscilla-present the model. In Sec. Il we calculate the couplings
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entering the equations of motion, which allows us to solvecable here since we have no incoherent pumping of the sys-
these equations in Sec. IV. The inversion is performed irtem under consideration and we do not perform a trace over
Sec. V and the dynamics is investigated in time domain irthe vacuum field modes.

Sec. VI. In Sec. VII we calculate the distribution of popula-  With the system initially in stata, the matrix elements of
tion in the photonic continuum in the long time limit. the resolvent operator read

IIl. MODEL (z— ©2)Gaa=1+ 2, VacGea,
C

We consider two two-level atoms situated at different lo-
cationsR, ,Rg in space. Taking. =1, the second quantized

Hamiltonian for the problem under consideration reads (z— wp)Gpa= > VbcGea,
Cc
H=Hy+V (2.0
) (2= 0c)Gea=VerGhat VeaGaa-
with
Eliminating the continuum amplitud&.,, we find the two
Ho= a0+ wgo+ 2 wkalak 2.2 coupled algebraic equations
K
|Vac|2 Vachb
neglecting the zero-point energy of the field modes, and (2= ©4)Gaa= 1+2 7 wCGaa 2 - o, Coa
2.7
V=i glae fao, —aje " Rag, ] 2
‘ (- 0p)Gpa= 3, o g 3 Voveag (g
‘ A b/“ba T Z—w, ba T 7w, aa :
+iY gfae*Reog —ale ™ Regg], (2.3
k containing several couplings, one of which is
which is the ordinary interaction Hamiltonian in the rotating [Vad?
wave approximation where™,o~,o* are the atomic opera- > (2.9

. L Z-w
tors andal ,a, are the creation and annihilation operators of ¢ ¢

the vacuum .modes, respectively, and_the dependence. on tla‘éscribing the emission of a photon by aténfollowed by a
atomic positionsRa,Rg is shown explicitly. The coupling o004 5ation of all the modes, before the photon is eventually
constant is given by reabsorbed by atorA.
- Up to this point we have made no approximations specific
Ok= [ .- d (2.4  to a band-gap material and the two equations above could
2gqV . therefore as well describe two atoms in the vacuum of free
space. The propagation of photons in a band-gap material is
strongly modified and it is therefore natural to expect a
modification of the couplings, which will indeed be the case,
ergy. as we show in the next section. But before proceeding to this
The relevant states of the problem are issue, let us for instructive purposes investigate the cases of
two atoms first in vacuum and second in an open cavity.

Here d;; is the atomic dipole moment/ the quantization
volume, g, the polarization vector, and, the photon en-

a=|ex,0s.0),
_ A. Atom-atom interaction in free space vacuum
b=1|gx.€z.,0), P

In this case we can perform the usual pole approximation
c=|ga ,93,1ke|>, (2.9 in the couplings which consists in replacing the Laplace vari-
ablez by the atomic transition frequenay, . The justifica-
wheregag),€ag) denote lower and upper states of the at-tion for performing this approximation is that the free space
oms A(B), respectively, and the statesrepresent the pho- continuum(vacuun) is flat and changing the Laplace vari-
tonic continuum. ablez aroundw, does not change the value of the coupling
As a means of deriving the appropriate equations for theignificantly. In the pole approximation the couplings yield
atom-field dynamics nonperturbatively, we employ the resol-

\Vj 2

vent operatof11], 2 izA—ir, (2.10
L c Z—wg
@)= @8 Vel ?

> 2 AT, (2.11)

I . . z—
which is the Laplace transform of the time-evolution opera- ¢ @e

tor, with z being the complex transform variable akdthe V.V
full Hamiltonian of the system. This formalism, in terms of z acteb _m o (2.12
the wave functions instead of the density operator, is appli- c ZT ¢ an
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assuming identical atoms and thus identical shifts an o |Vad|2 VaaVdb
widths. The dipole-dipole matrix elemeM,, is in general z-o+il'- —mtie  MaT TNk
) . b 1> dtik Z—wqtik Gaa

complex and diverges when the interatomic distaRagoes }
to zero. This formal divergence stems from the fact thatourf  ,,  VbdVda =T [Vodl? Gpa
model does not allow for molecule formation as the atoms ba 7 Bgtik zroTl Z—wgtik
approach each other and for our purposes, we do not need to
allow for that case. 1

Inserting these quantities in the equations for the resolvent ol (2.17

operator and writing these in matrix form, we find

The motion of the coupled system is determined by the poles
of the resolvent operator which are the roots of the charac-

Z—o+il —Mgp ||Gaa| |1 01 teristic polynomial.

—Mpa  z—@+il'|| Gy, “lol’ (213 In general, all three roots are complex and thus contain
dissipative terms. This means that in the long time limit
t>I""1 k1, there will be no population trapping as opposed

where the shift has been absorbediin to two atoms located in a photonic band-gap material, which
The eigenvalues, which are easily found as is the case we treat in the rest of this paper.
lIl. CALCULATION OF THE COUPLINGS
z.=o—il' My, (2.19

As a model for the photonic band-gap material, we con-
sider the isotropic crystal introduced by JdHr2], for which
lead to a damped sinusoidal dynamics in the time domainthe dispersion relation can be found analytically as
Whether the damping or the sinusoidal behavior is dominant )
depends on the strength bf,;,, which in turn is determined o c “rcco%‘m cogkL)+(1-n) 3.
by the atomic configuration and separation. In the long time K" 4na” (1+n)? ' '

limit and for finite separations there is no population trap- ) )
ping. wherec is the speed of light and, L, anda are constants

pertaining to the crystal. The dispersion relati@nl) exhib-

its gaps in frequency at the spherds=ms/L with
B. Atom-atom interaction in a cavity m=1,2, ... . In the following we choose the refractive in-
dex n=1.082, which yields a gap center frequency
wo=(mc/L)[(1+n)/2n] and a relative gap width
Awl/wy=0.05. At (nearjoptical frequencies, this gap is

Equations(2.7) and (2.9) are easily extended to accom-
modate the presence of an open cavity

[Vadl? VacVep much larger than any typical atomic coupling and the influ-
(2- 02)Gaa=1+2 7o Caat > = ba ence of the lower band-gap edge on the atomic dynamics can
¢ ¢ ¢ ¢ therefore be neglected for atomic transition frequencies in
[Va4l? VaaVdb the vicinity of the upper band edge.
Z—wgtix 22 7 Gatix b The a_ssu_mption undgrlying Eq3.D) is .that phqtons
propagating in the photonic band-gap material experience the
(219  same mode structure for both polarizations and in all spatial
directions. Close to the band edge, the dispersion relation
V2 (3.1) can be approximated by the effective mass dispersion
Ve VpcVea relation[12]
—_ = +
(z— 0p)Gpa EC: 7— wCGba 2 - w, aa ,
o =wetA(k—Kg)?, (3.2
[Ved® VboVda G wherek, is the wave vector corresponding to the band-edge
Z—Bgtin P2 Gtk aa 0 bonding 9

frequency andA is given by

(2.16
—clL? 1

A= 2a(1+n)? sin(4naw,/c)

3.3

whereV,q, (Vpg) are the dipole-mode couplings of atom

A (B), respectively,@q is the resonance frequency of the containing constants only pertaining to the structure of the

cavity shifted due to the coupling to a reservoir, andhe  crystal.

cavity decay width. These equations show that the presence In this section we address the calculation of the couplings

of the cavity can be thought of as a Lorentzian superimposed

on the flat background of vacuum modes. 3 VincVen
Since the summations in the couplings are over the flat T Z— W,

continuum(vacuum), we perform the pole approximation as

in Egs.(2.10—(2.12 and bring the equations to the matrix with m,ne{a,b} which when using the interaction Hamil-

form tonian(2.3) can be written more explicitly as

(3.9
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Vo Ven o, (ehdm yeldn,. dent whether this also holds for atomic transition frequencies
2 = 9 9% gik-R (3.5 at the edge of the gap. To explore the sensitivity of the value
c Zmwe K 280V £ 0 of the integral orez, we have performed a careful numerical
investigation of the coupling3.8) using the exact dispersion
relation (3.2) for the crystal and have indeed found that the
value Eq.(3.8) assumes in the vicinity of the band edge is
§ensitively dependent anand as a result we cannot replace

y (OFNS

Before proceeding to the numerical results, we present an
D . approximate analy_tical calcula’_rion qf the coupling. Th(_e com-
|=212 €i €xj = i — Kik; (3.0 plex Laplace variablez can in this context be written

’ z=x+in, where 5 is a small positive quantity. Using the
identity

with R=R,— R, the relative distance between the two at-
oms if m#n, i,j e{x,y,z} and we have introduced a sum-
mation over polarizatioriindex|) in the first equation. It is
easily shown that the summation over polarization vector:
yields

where k= (sind cosp,sind sing,cod). Inserting this relation
in the expression above and turning the summation &ver 1 70 1

into an integral, the relation reads X+ip = P;—iwé(x) (3.10
> M:_lgg d3k( s, —kik:) where P denotes principal value part, in the integfal8)
¢ Z-wg (2m)°F . . and leaving out for the moment the multiplicative coeffi-
m an cients yields
s degidgeieik.R (3.7)
280 Z_(Dk ' '

1
dkkza)kTii(k,R)—:Pf dkkzwkTii(k,R)
. . . . . . Z— wyg X— wg
Since we have assumed an isotropic dispersion relation
which contains no angular dependence, the angular integral . 2
can thus be performed. —im | dkKwy7ii(k,R)

The general result reads

X 8(X— wy). (3.11
m n

> M:iz iz f dkkzwkTii(k,R)m For m#n, we denote the first part of E¢3.11) by V,,, and
¢ Zmwe 2T 2807 Zm ok this gives rise to the divergent part of the dipole-dipole in-

(3.8 teraction, diverging for small interatomic distances aR1/
with By numerical integration of this quantity, we have estab-
lished that it is to a very good approximation given by the
sinkR cokR sinkR sinkR co%kR real part of the RDDI obtained for two atoms in free space.
Ti(kR) =77+ kRZ (kR x|l wr T (KR)? For m=n the principal value part gives rise to the Lamb

shift of the excited atomic states. We absorb this energy shift

in the eigenenergies of the excited atomic states. To evaluate
Sz, (3.9  the second integral of E¢3.11), we apply the effective-mass

approximation(3.2). Inserting this expression in the integral

where we have taken theaxis along the interatomic sepa- (3.11) yields

sinkR 5 2cokR 2sirkR
TR T kR T KR

ration axis.
The steps leading to Eq3.8) are standard and well f dkiRw, 7 (K,R) 8(X— wy)
known. Form#n, Eq. (3.8 yields the RDDI between two

neighboring atoms and fan=n the effective coupling of an 1

atom with the reservoir. In that cage=0. ~k2 wy Tii(Ky | R) ————
For two atoms in free space, the free space dispersion * 2\/x—we\/ﬂ

relation w,= ck applies and the integr&B.8) can be evalu-

ated by contour methods yielding the matrix elemiing, of ~ Wherek, =Ko+ J(X— we)/A.

Egs.(2.14 and(2.17. In the present context, the dispersion ~ For atomic transition frequencies at the edge of the gap

relation(3.1) is rather complicated and the integt8l8 has wa=w,, the contribution(x—wc)/A will be negligible

to be performed numerically. since the resolvent operator has a pole&twa=w.. Ne-
The question of major interest here is whether we carglecting v(X— w¢)/A compared tdkg, we thus find the sim-

replace the variable by the atomic transition energy, in  pler expression

Eq. (3.9). This requires that the integral as a functiorzaé

slowly varying. Calculatio_ns by J_qh[r12] and Kyveo'n[13] f dkiw, 7 (k,R) S(X— ;)

have shown that for atomic transition frequencies in the gap

far from the edge, the value of the dipole-dipole matrix ele-

ment approaches that of vacuum, i.e., for two closely spaced ~Kwor; (Ko, R) 1

atoms with transition frequencies in the gap, the virtual pho- 0Tetiit R0 2X— wa A’

tons exchanged are of such energy that the atoms do not

experience the existence of the gap. It is, however, not eviwhich applies to the case afi=n as well asm#n.

(3.12

(3.13
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For notational convenience, we define a
'E 20.0 [ .
1 dg] Idnel =
C S99 2 7 (ko,R 3.1 =)
M E 4,”_60 2\/— oWe || 0 ) ( 4) E
= oof
o)
for m#n and a
Z =
Co=2 Tren 2} Kswerii(ko,R=0) 200}
B 1 |dggl® , 2 -
4 A 2\/— @e3 (319 4000

for m=n.

In the 2 configuration, for instance, i.e., the atomic di- FIG. 1. RDDI as a function of the interatomic distanRefor
poles parallel and aligned perpendicular to the interatomigoms in thes, configuration withz=0.998v, . The solid line is the
separation axisCy reads numerical solution of Eq(3.8) and the dotted curve that of Eq.

(3.19.
We dg]gdge koslnko Cod(oR SirkoR
dmey 2\A R R koR® |’ from Eq.(3.18 and by numerical integration of E(3.8). In
(3.1 Fig. 1, we compare the results obtained by numerical inte-
gration of the exact expression for the coupl{BgB) with the

Collecting the terms, we find approximate analytical resuf8.18 obtained in the effective-
5 ) mass approximation as a function of the interatomic separa-
3 |Vadl —iCy (3.17) tion with z=0.998v,. As the real part of the RDDI of Eq.
c Z— wc Z—w, ' (3.18 we have used the coupling obtained for two atoms in

vacuum. There is indeed a very good agreement. For this
where the Lamb shift part of the coupling has been absorbeghoice of parameterg<w, which yields a negative argu-

in the atomic eigenenergies and ment in the square root part of E®.18 and the coupling is
thus purely real.
3 VacVeb —iCy (3.18 In Fig. 2, we plot the coupling witlz=1.002w,. Again
=Vpt , A i i
=~ 7~ o, ab \/Z——we we find a very good agreement between the exact expression

(3.8) and the approximate expressi18. We have tested

whereV,, is the principal value part of the RDDI integral in ;Ehe sensitivitylof qu_'g) ﬁn z_b_y_calcfulatingdthﬁ cc&upling
Eq. (3.11). We note that the RDD(3.18 has a term diverg- or various values ok in the vicinity of we and the depen-

: . o : . dence onz as given by the approximate expression in Eq.
ing asz— w,. For atomic transition frequencies outside the .
gap, i.e.z> w,, this yields an imaginary contribution to the (3.18 has been confirmed. We have thus shown that the

interatomic coupling. For atomic transition frequencies in theRDD! given by Eq.(3.8) can be replaced by the more ex-

gap, i.e.,z<w,, the argument of the square root changes
sign and the square root term and thus the whole interatomic &

(2]
coupling becomes purely real. As has been noted in the lit- T 400 T
erature[12], the occurrence of the square root terms in Egs. =’
(3.18 and(3.17) corresponds to a density of states given by -‘% 200 ¢
(o= g 2 G B
w (00— wg), .
p (2m)3 2JA Jo— we € = 00r
where®(w— w,) is the Heaviside step function. The diver- 200
gence of the density of states at the band edge is an artifact =
and stems from the assumption of an isotropic dispersion
relation, i.e., a spherical crystal. A real photonic crystal will 400 .
in general have a spatial anisotropy which in turn will be 0.0 1.0 2.0 3.0 4.0

reflected in the dispersion relation. In the following, we as- koR

sumeV,, and Cy, to be real quantities, which is not a re-
striction, since this can be achieved by a proper phase trans- FiG. 2. RDDI as a function of the interatomic distanRefor
formation of the interaction Hamiltonian turning the dipole atoms in thes, configuration withz=1.002w,. The solid and long-
moments into real quantities. dashed lines are the numerical computations of Egs) and

To check the validity of the effective-mass approximation( 3.18, respectively. The dotted and dashed lines are the imaginary
in calculating the RDDI, we present the results obtainecparts of Eqs(3.8) and(3.18), respectively.
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plicit expression(3.18, whereV,, is the real part of the negligible contribution to the dynamics of the system. But

dipole-dipole coupling for two atoms in the vacuum of free for the moment, we proceed as usual by finding the roots of
space. the characteristic polynomial of the above equations. It reads
0=[zyz+ 6+iC]?>—[Vz+ 6Vap—iCpy]?

IV. REVISITING THE RESOLVENT 4.3

OPERATOR EQUATIONS . . . L
assuming thaV,, is real. To obtain a polynomial ia, we

Using Egs.(3.17 and(3.18 in the equation for the resol- multiply by the conjugate, which yields the characteristic
vent matrix elements, we find polynomial

—ic, —iCy h(z)=[z%(z+ 6) — C>— V2 (z+ 6)+ C31?
(Z—w )G :1+V bi + G + Gb f
v e B zmwe Y Vzmwe +4(z+ 8)[Cz+ CyVap]?. (4.9
—iCy —iCy By multiplying the characteristic equation with its conjugate,
(z— wp)Gpa=VpaGaa™ Gpat Gaa, we have of course introduced extra roots and thereby extra
VZ™ e VZ™ We poles. These extra poles, however, do not contribute when

we perform the inversion integral.
In general, the roots of Eq4.4) are complicated expres-
sions and they read

assuming as before that the matrix elem€gt is real. The
equations can be slightly simplified by multiplying both
sides of the equations witfz— w, and transforming the

Laplace variable by z— w,— z, which corresponds to trans- —6—2V,u, 2Y3(6—V,p)? B_
forming to an interaction picture rotating at,. We further 2= 3 + 3B + 3% 2173 (4.9
assumew,= wp andC,=C,=C, i.e., the atoms are identical -
and defines= Wy~ We. —5—2V 21/3 5—V 2 B
Writing the equations in matrix form finally yields zZ:Tab —é ”’3(3Tab) —e*“”’?’)W,
ZJz+ 6+IC = \z+ oVa+iCy ][ Gaa (4.6
~VpaVz+6+iCy  zyz+8+iC || Goa —0=2Vap 0 2%(6-Vap)? . B-
B3 ¢ T 3Bl ¢ 3™
VZ+ 4 -
=l o | (4.2) (4.7
—5+2V,, 2Y3(5+Vg,)? B.
. . . . . _ ab
Eliminating the continuum amplitude, we have obtained two Z4= 3 + 3B 3% 213 (4.9
coupled algebraic equations for two two-level atoms interact- *
ing through RDDI and through a narrow band of strongly —5+2V 23 54\ )2 B
coupled modes. As opposed to standard treatments dealingzsz—ab—ei ”/3M—e—i<7/3>%§,
with system-reservoir interactions, we have at no point per- 3 3B, 3x2
formed a pole-approximation simply because the reservoir in (4.9
our case is very far from being “flat.” The peculiar features . 1/3 2
of the continuum are reflected by the square root terms ap- ZG:w_e—iw/SM_ei(wﬂ)%'
pearing in the resolvent operator equations. 3 3B, 3X 2(4 10

We can immediately identify the eigenstates of the matrix
in Eq. (4.1) as the symmetric and antisymmetric product
states defined by

where the following abbreviations have been introduced:

1 B_=[A_+ JAZ—4(6—V,)®1*3, (4.11)
Ys@y=—=[1€ags) * |gacs)]. (4.2
V2 B, =[A. + JAZ —4(6+ V,p)°]1/3 (4.12
The symmetric product statg is a Dicke state and would gpqg
for atoms in free space correspond to a superradiant state.
We shall, however, see that in a photonic band-gap material A_=2(Vap—8)3—27(C—Cy)?,
we can actually have population trapping in this symmetric
state. A,=—-2(Vapt+ 8)3-27(C+Cy)2 4.13

In the study of the interactions of atoms with cavity

modes, the dynamics of the systems under consideration I&is easily seen that the six roots can be viewed as being the
exclusively determined by the location of the poles of theroots of two different third order polynomials. One triplet of
resolvent operator in the complex plane. This is, howevergigenvalues corresponds to the symmetric product state, and
not the full truth in this problem; on performing the inversion the other triplet to the antisymmetric product st&4e?).

integral to obtain the time dependent amplitudes, there is a We found in Eq.(4.1) coupled algebraic equations gov-
contribution coming from the cut in the complex plaiagis-  erning the motion of the system. Eliminating the amplitude
ing from the photonic continuumwhich yields a non- Gy, we find forG,,
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y Applying the residue theorem, we find
§ ' Z/[k(t):; (Z_Zj)Gka(Z)e_iZt|z=zj
1

7 — ﬁjydzeiZt\/Z+ 5pk(2) (52)

with k={a,b} and since all poles are simple. For higher-
order poles, the residues are more complicated. The sum
over j is a sum over all poles that do not have a positive
imaginary part since those poles fall outside the integration
contour. The functiom,(z) introduced in the last integral is
the part of the expressions f@,, and G, containing the

FIG. 3. The contour used to invert the amplitudes to time do-Square root terms, thus

main. S 8)(—CZ2—CV2,—2CyVpa2) + C(C4— C?)
PalZ)=1 ,
2(z+6)+iCyz+ 8 h(2)
aa= o [(Z=VEa)(z+8)+CF—C?
Pu(2)
—2iyz+8(Cz+CyV 4.1
( uVap)] 419 Cul(Z2+VE)(z+ 8)+ C4— C?]+ 2V (z+ 6)Cz
and forGy, - h(z) '
(5.3
Vpa(z+6)—iCy\z+ 4o
pa=—2 hi) M [(Z2—VE,)(z+6)+CZ—C?  Let us look at the detour integral along the path
— 2iVZF 8(Cz+CyVap)] (4.15 f dze 277 Bpy(2)
Y
whereh(z) is the characteristic polynomial of E¢4.4). As
is evident from Eqgs(4.14 and (4.19, the expressions for y=245 0
the amplitudes contain square root terms. This means that the — f dyé(Sﬂ'/Z)e*iyei?mlzt
amplitudes have a branch cut in the complex plane and we o
must therefore be very careful when performing the inver- ' .
sion. We take the branch cut along the negative imaginary x e\ [e32y p, (ye (3712 — )
axis thereby defining the first Riemann sheet to #e
el —m/2:37w/2[. " o i (m12) aiye” 172
We could discuss the behavior of the system in different + fo dye "'m7e e
regimes in terms of the location of the eigenvalues in the
complex plane. As we mentioned above, however, there is a el [e 172y, e iml2_ 5
non-negligible contribution to the inversion integral which ypdy )
stems from the photonic continuum and which cannot be 3 [ .
discussed in terms of eigenvalues. In order to see the precise =2ie'Tf dye Yot yp (—iy— 6)
behavior of the system, we therefore perform the inversion 0
integral and investigate the system in time domain. 5.4
with ke {a,b}.
V. INVERSION With the normalization of i, the detour part thus reads
The inversion integral reads 1
—J dze '?z+ 6py(z)
1 [-wtie o 51 2mi )y
u(t)_ﬁ wtie dzGz)e 5.2 oi(3714)

= f dye Yoy p(—iy - 4).
wheree is an infinitesimal small positive quantity. To evalu- ™ Jo
ate the integral, we close the contour with a semicircle in the (5.5)
lower half of the complex plane as depicted in Fig. 3 and use
the residue theorem. When the radius of the semicircle goeBhe integral cannot be computed analyticg#xcept for cer-
to infinity, this part of the contour does not contribute. Sincetain limits) but is easily computed numerically. The influence
the functions to invert have a branch cut, we have to do &f the integrals can, however, be found in the long time limit.
detour around the branching point. This detour, dengted In that case only the lowest order incontributes to the
does contribute. integrals, and we thus find
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1 ) ei(37r/4) % ) ] ' '
o | dzeErap 0= “dye 2 yp 0 o
277' Y w 0 ,’\\ /"\ Vi TR WL VP2 ST D PP UL S R
r NS ~ ~
ei(311'/4)+i(5‘t 1"(3/2) 08 11/
= ———Pa(0) 1 ol |
N
(5.6 S
. o . . 04| 1
In the long time limit, the detour integral thus contributes as
t~%2. A similar behavior is found for the other detour inte- 0z | . |
gral. ' NV .
The prefactop,(0) in Eg.(5.6) determines the influence Ao . N
of the detour integral on the total wave function. By exam- %0 5.0 100 15.0 20.0
ining the expression fop,(z), one findsp,(0)xs"* for v C*3¢

large detunings. The influence of the detour integral there-

fore becomes negligible when the atomic transition fre- FIG. 4. The time evolution of the excited state population as a
quency is detuned far from the band-gap edge in which casfnction of time for different detuningss= —10C?? (solid line),

the atomic evolution becomes exponentipbsitive detun- 8= —3C??(dashed ling 5=0 (dotted ling, 5=C?* (dash-dotted

ing) or the decay is inhibitednegative detuning line), and 5=3C?" (long-dashed ling
The behavior of the system resembles the departure from

exponential decay for an atom in free space due to correc- z,=¢'("3 23,

tions to the pole approximatiofiL4]. We recall, however,

that in our problem the photon continuum is strongly modi- zz=e ("2,

fied compared to the free space case, and the pole-
approximation does not provide a valid starting point for ourj, the |ong time limit, only the real root contributes and the

calculation. atomic population is then given by
VI. WAVE FUNCTIONS IN TIME DOMAIN Zi—iC\/Z_l 2 4
. . . . )= —————| ==, 6.4
Having established the influence of the detour integral, we [aal V)] (21— 2,)(2,— 23) 9 ©.4

investigate the system in different limits in the time domain.
which means that a considerable part of the population is
A. One atom bound on the atom in the long time limit. This is what has
been referred to as a “bound photon-atom state” in the lit-
erature[3]. For atomic transition frequencies in the gap, the
population trapping can be close to 1 as is evident from Fig.
4, where we have plotted the atomic population as a function
of time for different detunings with respect to the band-gap
0=[22(z+8)+C?P?, (6.1  ©dge. o _
Spontaneous emission is taking place on a fast time scale
which seems to indicate that this one-atom system has thré@ughly given byC~2? and in this transient regime, part of
poles that are all of order 2. The expression @y, does, the atomic population is lost. On a longer time scale, the

If the interatomic separation is very large, we have
Cn~Vap~0 and the problem reduces to the one-atom prob
lem already treated in the literatuf8,4]. In that case the
characteristic polynomia.4) simplifies to

however, simplify and we find population remains almost constant but we see a slight oscil-
lation which stems from the beating between the stable, non-

Z(z+6)—iyz+6C decaying state and the detour integral. Physically, this effect

0= 271 5)+CZ (6.2 stems from the emitted photon which is reflected in the di-

electric host and thus oscillates back and reexcites the atom.

which is the expression also derived by John and Qiahg Even for at(_)mic tr:?\ns_it.ion frequencjes outsiQe the gap
This expression has three poles, of which only two contrib{6>0), we find a significant population trapping, as has
ute since the third pole has a positive imaginary part and thugeen noted in the literatufe,4].
falls outside the inversion contour. Of the two remaining
poles, one has an imaginary part and thus gives rise to a B. Two atoms at the band edgg 6=0)
transient, dissipative dynamics, whereas the second pole is B - . .
purely real and thus corresponds to a stable, nondecaying At the band edges=0 and for negligible dipole-dipole
state of the system. In the transient regime, both poles wilFOUP!iNg Vap=0, the roots of the characteristic polynomial
contribute to the dynamics which gives rise to beating, whicH™® the following:
i;sa)i/ndeed a rather unusual phenomenon in spontaneous de- 2, =e™3(C+Cyy)?3, (6.5

For an atomic transition frequency at the band edge

— i3 2/3
(56=0), the roots are z,=e '"(C+Cn), (6.6)

z,=—C?3, (6.3 z3=—(C+Cy)?~3, (6.7
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FIG. 5. The time evolution of the excited state populations as a
function of time for atomic transition frequencies at the band edge

(6=0). The solid line is the population of the initially excited atom 0.0 5.0 ‘O-C,Oz/at 15.0 200
A and the dashed line is for atoB1 Cy, /C=3, V4,=0.

24:ei ”/3(C—CM)2/3, (6.8 FIG. 6. The excited state populations as a function of time for
6=3,C=1, C\,=0.8 and different values &f,,. The solid line is
) the population in the excited state of atémThe dashed line is the
zs=e '™3(C—Cy)?"?, (6.9  sum of the populations in the excited states of atdmand B.
(@ Vap=1. (b) V4p=3.(c) V4p=5.
_ 2/3
%6 (C=Cw)™ (6.10 excitation is protected against dissipation, since it corre-
sponds to a photon with energy in the gap, tunneling between
Two of these roots are real, namels — (C+Cy)?2 and  the two atoms.
z=—(C—Cy)?? and by inserting these in the characteristic
equation(4.3), it is easily confirmed that these roots are also
roots in the original polynomial. That the roots are real
means that they correspond to stable, nondecaying states of When the interatomic separation becomes very small, i.e.,
the coupled system. The existence of two such stable stat&&<\, the real part of the dipole-dipole interactiol )
implies that the system has no steady state in the convefecomes the dominant part of the interaction. We investigate
tional sense of the word, since in the long time limit, thethis regime for different detunings.
system will beat between these two nondecaying states. On In Fig. 6 we plot the population in the excited state of the
the other hand, if the system is viewed in the basis of thdnitially excited atomA and the total population of ator
symmetric and antisymmetric product states, it is found tcandB as a function of time for different values b, with
have a steady state. 6=3. With this choice of parameters, the atomic transition
Of the four remaining roots, two will not contribute since frequencies are tuned outside the gap into the allowed part of
they have a positive imaginary part and thus fall outside théhe spectrum. For a relatively weak RDDV {,=1), the
integration contour and the two remaining roots will give riseatomic population is lost in the long time limit as is evident
to a transient, damped behavior. from the figure. For a slightly stronger RDDV{,=3), the
Now, one of the real poles corresponding to a stable stateoupling between the two atoms is now comparable to the
is actually the eigenvalue of the symmetric product state. Weletuning from the band-gap edge and the splitting of the
thus find the surprising result that the symmetric produciatomic levels due to the coupling is hence strong enough to
state which in free space is super-radiant in the photonignove part of the atomic level into the gap where it is pro-
band gap can be a stable nondecaying state. In Fig. 5 wiected from dissipation. We therefore find a non-negligible
have plotted the atomic populations as a function of timepopulation trapping for this choice of parameters. This be-
From the figure, we identify an initial transient regime in comes even more apparent for an even stronger coupling
which part of the population is lost. On a longer time scale,(Va,=5), in which case close to 50% of the initial excitation
the remaining population is exchanged between the atoms ifemains bound on the two atoms in the long time limit.
an oscillatory, nondissipative manner. This is also a rather The reverse case is illustrated in Fig. 7, where again the
surprising result: In the study of atoms coupled to cavitiesatomic population on ator and the sum of the atomic
we typically see beatingRabi oscillations when the Rabi populations are plotted fo6=—3 and various values of
frequency exceeds the decay width and the Rabi oscillatioi,,. For a relatively weak RDDI{,,=1), there is a sig-
is then a transient phenomena, which is eventually dampedificant population trapping in the long time limit. As the
out. In the present problem, dissipation only acts in a tranRDDI is becoming comparable to the detuning from the
sient regime, after which it is effectively turned off and then band-gap edge, the population trapping is decreased since the
only the coherent oscillation of the remaining excitation be-level splitting is now large enough to move part of the
tween the two atoms persists. Physically, this part of theatomic levels into the allowed part of the spectrum.

C. Small interatomic separation
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1.0 T T T T V..G
gz N T T T ST T E)—: Gea= ZCiAaa, (7.2
04 1 ] whereG,, is the one-atom amplitude given by E§.2).
02 ] In the long time limit, only the roots with no imaginary
1.0 N = ‘ ‘ ’ b) (dissipative part contribute to the dynamics in time domain
2 08NN e ] of the continuum mode. Assuming that the atomic transition
§ 08 T~ ] frequency is at the band-gap edgé=(0), there are two
g o4r poles contributing: One is the free evolution of the mode at
& o2 1 frequencyw and the other pole at C?® stems from the
nondecaying photon-atom bound state. In this case, the
population in the mode is
. IVed? A%+ C2A 4
. ‘ . ’ [Uea(D)] = (A+CP92| (AZ1 C_ACT)? 9
0.0 20 40 6.0 8.0 10.0
CZ/3t 4 AQ

— 2/
3 A7 M- acZeOI A+ CTY

FIG. 7. The excited state populations as a function of time for

6=-3,C=1,Cy=0.8, and different values o&f,,. The solid line 4 C \/K . 2/

: i . L + 5 a3 sSin(At+C%%) |, (7.3

is the population in the excited state of atémThe dashed line is 3 A+ C*3=—AC

the sum of the populations in the excited states of afoendB.

(@ Vap=1, (b) Vap=3, and(c) Vap=7. Equation(7.3) contains an implicit dependence on the orien-

tation of the atomic dipole in space. We perform an integra-
tion of Eq. (7.3 over the angular part. Furthermore, we per-
VII. PHOTONIC POPULATION DISTRIBUTION form a time average over the periodr& A +C?3) in order
. . . to eliminate the time-dependent terms.
In the literature, different quantities have been employed | the Jong time limit, the frequency distribution is there-

as a measure of the spectrisb]. For an atom in free space, fore given by the angular integrated, stationary terms of Eq.
the spectrum is the distribution of population in the con-(7.3)

tinuum modes in the long time limit. In the present case,

however, an initially excited atom with a transition fre-

quency close to the edge of the gap with a certain probabilityg v = f dQlis.|2
evolves into a photon-atom bound state which is a superpo—s( )=pl )|:21,2 Vel
sition of atomic excited state in the presence of no photon

and atomic ground state with a superposition of one-photon _ O(0—w) C A%+C%A 4
states. The superposition of photonic states yields a wave - N = (A+C?32| (A%+ C4’3—AC2’3)2+ 9|’
packet in real space which is well localized around the atom.

A detector located outside the large crystal does not detect (7.4

the localized photonic wave packet but only the fluorescent _ _ _ _ .
light lost in the initial transient regime of the atomic evolu- Wher€ @=wa+A=we+A since =0 and the density of

tion. The distribution of population in the photonic con- Statesp(w) is given by Eq.(3.19. Equation(7.4) does in-
tinuum does therefore not coincide with the spectrum w eed yield a rather unusual distribution of population quite

would measure with a detector located outside the CrystaF_iifferent from the usual Lorentzian form obtained for a two-

Kofman and co-workers have investigated the spectrum oftV€! &lom in free space, as can also be seen from Fig. 8,
one atom in a photonic band-gap matefisl. where we have plotted the frequency distribution as a func-

In this section we investigate the distribution of popula-ton of . . . .
tion in the continuum in the long time limit. The coupled _system consisting of “atemeservoir” has
a pole at exptim/3)C%? and we would thus expect the
population distribution to have a peak ¥8%°. The density
A. One atom of modes does, however, strongly suppress radiation at this
wavelength and instead the photon emission close to the
band-gap edgeX~0) is strongly amplified.

We calculate the population in the continuum modes in
the long time limit, which is given by

The one-photon part of the field in the time domain is
given by

|¢>=% Uea(t) K1Y, (7.1)
o 5
f de(w):§_ (7.5
0

where the summation is over all continuum statesngdis
the amplitude for the continuum mode with frequency To obtain this result, the integral has been performed nu-
w:=w,+ A, obtained by inverting the expression merically. In the long time limit, we therefore find that the
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FIG. 8. The photonic population distribution for one atom in a
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FIG. 9. The photonic population distribution for two atoms in a

photonic band gap with transition frequency at the band-gap edgghotonic band gap with transition frequencies at the band-gap edge

(5=0).

atomic excited state population given by E§.4) and the

population in the photonic continuum add up to 1, as shoul

be the case.

B. Two atoms

(6=0) andV,,=0. The solid line is foiIC,, /C=0.9 and the long-
dashed line is foCy, /C=0.1.

CYvhere we have defined

h=[(C~Cw)*+(C+Cy)*~(C?~CF??]

X[(C+Cy)?2—(C—-Cy)?". (7.9

When the couplings between the two atoms cannot be
neglected, the general expression for the continuum amplithe population distributiori7.8) has been plotted in Fig. 9.

tude in frequency domain reads

Gea=™ [VcaGaat VeuGpal- (7.6

Z— w;

Let us consider the simpler case\f,= 6=0. The roots of
the system are then given by Ed6.5—(6.10 and the ex-
pression for the continuum amplitude reads

_ 1 1
- z—w. h(2)

X[z3+C2,—C?-2iC\z7],

Gea [Vea(Z2+iC\Z) =iV ,Chvz]

(7.7

while the stable roots of the system are given by E§s/)

From the figure, we find that the population distribution has
a “shoulder” which vanishes whe@~C,,. The reason for
this becomes apparent by investigating the eigenvalues of the
coupled system. The coupled system fluoresces at the ener-
gies 3(C—Cy)?® and (C+Cy)?2 The shoulder in the
population distribution thus stems from the fluorescence at
the energys(C— Cy)?3, which coincides with the band-gap
edge whernC~Cy,, in which case the shoulder disappears.
As in the case of one atom, we have, by numerical integra-
tion of the population distribution oves, made sure that the
population in the continuum modes and the atomic excited
state population add up to 1.

VIIl. SUMMARY

In this paper we have presented a model calculation for

and (6.10. In the long time limit, these roots and the root two atoms with transition frequencies near the edge of a
z=w contribute. As before, we transform the amplitude tophotonic band gap and interacting through the narrow band
the time domain keeping only the contribution from real of strongly coupled modes. We addressed the problem using
roots, taking absolute square and leaving out terms depenthe resolvent operator formalism by means of which the
ing on frequency. In the end, we obtain for the angular inteawave functions of the system are obtained in Laplace space.
grated continuum population Eliminating the field mode amplitudes from the equations of
motion, we obtained two coupled, algebraic equations for the
amplitudes of the two atoms coupled through second-order
expressions involving summations over the continuum states.
One of these couplings is the RDDI between the two neigh-
boring atoms. We presented an analytical calculation of the
RDDI and showed that it agrees very well with a numerical
integration of the RDDI using the exact dispersion relation
for the dielectric host. With the analytical expressions for the
couplings, the set of equations for the two atoms was solved
and we investigated the amplitudes of the two atoms in the
time domain. Although the atoms are coupled to a dissipative
environment, we found population trapping and beating in

O(w—we) CA
= 2:
S(w) p(w)lel,Z f dQluca(t)| 77_\/w_—we h(A)Z

X[A%+C?—CI[(A%+C—C?)2+4A5C?]

+}xw—wgszﬂca
mo—w, 9h?
C+Cy
Ticren AT

C—Cy
[(C—CwZ+AT

(7.9
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the long time limit for a wide range of parameters. by the location of the poles of the coupled system in the
We have also calculated the photonic population distribucomplex plane. Furthermore, we found, not surprisingly, that

tions for one and two atoms, respectively, and found that théhe mode structure acts as a frequency filter and effectively

location of the peaks of the distributions is mainly deter-cuts off frequencies in the photon distribution below the

mined by the mode structure and not as is usually the casband edge.

[1] E. Yablonovitch, Phys. Rev. Leth8, 2059(1987.

[2] S. John, Phys. Rev. Leth8, 2486(1987).

[3] S. John and T. Quang, Phys. Rev58, 1764(1994).

[4] A. Kofman, G. Kurizki, and B. Sherman, J. Mod. Ogt, 353
(1994.

[5] R. H. Dicke, Phys. Rev93, 99 (1954.

[6] M. Gross and S. Haroche, Phys. R&g, 301 (1982.

[7] G. Kurizki, A. G. Kofman, and V. Yudson, Phys. Rev. 58,
R35 (1996, and references therein.

[8] S. Bay, P. Lambropoulos, and K. Aoer, Opt. Commun132,
257 (1996.

[9] S. John and T. Quang, Phys. Rev5& 4083(1995.

[10] R. G. DeVoe and R. G. Brewer, Phys. Rev. Lét6, 2049
(1996.

[11] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynbéigm-
Photon InteractiongWiley, New York, 1992.

[12] S. John and J. Wang, Phys. Rev4B 12 772(199)).

[13] G.-I. Kweon and N. M. Lawandy, J. Mod. Optl, 311(1994.

[14] M. L. Goldberger and K. M. WatsorGollision Theory(Wiley,
New York, 1964.

[15] J. H. Eberly and K. Wodkiewicz, J. Opt. Soc. ABiz, 1252
(2977.



