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Modeling of an injected gas laser

P. Even, K. Ait Ameur, and G. M. Ste´phan
Laboratoire d’Optronique, Associe´ au Centre National de la Recherche Scientifique (EP001), ENSSAT, 6 rue de Ke´rampont,

22305 Lannion Cedex, France
~Received 22 July 1996; revised manuscript received 16 September 1996!

We develop a model to compute the line shape of an injected gas laser. The model describes the competition
that occurs between the injected field and the usual resonant field of the laser, which are both considered as
separate dynamic variables. A small signal stability analysis of the stationary solutions is used to study this
competition: the laser field may be destroyed due to gain quenching by the injected field, which explains the
frequency locking phenomenon. We give the connection with the standard Adler model. Theoretical and
experimental results that describe the line shape inside or outside the locking range are given for the typical
He-Ne laser operating at 3.39mm. @S1050-2947~97!01902-1#

PACS number~s!: 42.55.Lt, 42.55.Ah, 42.65.Pc
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I. INTRODUCTION

One of the most spectacular phenomena observed
coupled lasers is frequency locking. This phenomenon
usually theoretically described by the so-called Adler mod
which was initially developed for coupled electronic oscill
tors @1#. The phenomenon is well known in laser physics a
widely used for many purposes, for instance, to stabilize
frequency@2#, to lock the phase of separate lasers@3#, to
spectrally narrow the linewidth, to select the frequency of
injected laser@4#, or to obtain single-mode operation@5,6#. It
was first studied on He-Ne lasers@7# and later on all kinds of
lasers such as CO2 @4#, argon @5#, erbium @6#, dye @8#,
Nd:YAG ~where YAG denotes yttrium aluminum garne!
@9,10#, or semiconductor lasers@11#.

In the most simple experiment, one injects the light me
ing from a single-mode laser, called the master laser~ML !,
into the slave laser~SL! across an optical isolator. In thi
study we will also consider single-mode lasers. When b
lasers are decoupled, their respective fields have diffe
frequencies: the SL works atv1 and the ML atv2. Locking
of the SL onv2 occurs whenv1 andv2 are close enough an
when the injected intensity is high enough. Here we will
interested in the injected laser output intensity when
length is scanned for a fixed frequency of the ML. It is th
output that we will call ‘‘line shape’’ in the remaining of thi
paper.

Up to now, the theory of injected lasers has been aim
essentially at the description of locking conditions. T
locked response is studied as a function of the amplitud
the injected signal, which is viewed as an additional pu
mechanism. In Adler’s model, the interpretation of the eff
depends on a locking of the phase of the free running m
to that of the external signal@12#. However, an injected lase
shows other peculiarities and the most important of them
its line shape as defined above. In fact, if a theory can
scribe the line shape it will necessarily describe the lock
phenomenon because both phenomena are intrinsic
linked. Up to now, it seems that such a theory does not e
and it is the aim of this article to present a model designe
compute this line shape and to include, in a synthetic w
551050-2947/97/55~2!/1441~13!/$10.00
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various observable phenomena belonging to the physic
an injected laser.

Our motivation in achieving this goal was essentially
set up the basis for an alternative method to study injec
lasers: we have noticed that in previous studies, the term
represents the losses of the cavity in the equations for
fields is taken as a constant, whatever the frequency of
injected field. This is in contrast with an ordinary Fabr
Pérot interferometer~FPI!, where the transmitted or interna
fields are strongly dependent upon frequency. Describe
the following is that we have split the field into its tw
frequency-component parts and that each is taken as a
namic variable with different frequency-dependent charac
istics. This view should improve the precision of form
studies.

It is our opinion that Adler’s model does not give a co
vincing or a complete physical explanation of injected lase
including the frequency locking phenomenon. Although it
widely used, it shows at least two failures:~i! it does not
contain the most simple phenomenon embedded in the u
Airy function that describes the passive FPI when the ac
medium is removed from the slave laser and~ii ! it cannot
describe the nonlocked regime since its validity is justifi
only in the locked regime.

Our theoretical description of an injected laser corre
these drawbacks. Indeed, we consider the field in the SL
have two frequency componentsE1 andE2. E1 is resonant
and represents the normal SL eigenmode with a freque
v1. E2 is generally nonresonant and builds up from t
external signal injected at the frequencyv2. Then we con-
siderE1 andE2 as competing fields whose gains are coup
through saturation. Their time evolution is described by t
complex rate equations that show two kinds of station
solutions:~i! E1 andE2Þ0 correspond to the unlocked re
gime and~ii ! E150 andE2Þ0 correspond to the locked re
gime. A stability analysis of these steady-state solutio
shows that the locked regime occurs when the gain of
resonant field is quenched by the injected field. It clea
appears that the passage from the unlocked to the loc
regime is due to the competition originating from the cro
saturation between the two componentsE1 andE2. The pro-
posed model is thus valid inside and outside the lock
1441 © 1997 The American Physical Society
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1442 55P. EVEN, K. AIT AMEUR, AND G. M. STÉPHAN
range. It also describes correctly the passive FPI and giv
good physical explanation of the locking process. It is illu
trated in the simpler case of a gas laser where the adiab
elimination of fast variables simplifies the equations, but
basic idea of the two-field components with different ch
acteristics is general and may be extended to other lasers
instance, the theory of instabilities of class-B injected lasers
@13# can be rewritten with the use of these two dynami
variables, which would give rise to five coupled nonline
equations instead of three in this particular case. Howe
this view should not be extended to every class of injec
lasers, for example, the laser with phase-conjugate op
feedback@14#, where the injected frequency is defined by t
same laser.

The idea of competition between two fields that is dev
oped here is not new: it has already been published inde
dently by Tang and Statz@15# and Boikova and Fradkin@16#
30 years ago and expressed again in more recent paper
instance, in Refs.@17–19#. However, in these papers, th
theory is not adapted to compute the line shape. Indeed
Refs.@15,16,20# the loss term is the same for both the res
nant and the injected fields and thus a precise study of
competition cannot be undertaken. It is probably this we
ness that prevented the success of the early theories and
ented toward the use of Adler’s model. The different id
here is to use a different term to represent the cavity los
for the two frequency components: this allows us to ma
the connection to the Airy function of an empty cavity whe
the frequency-dependent loss is known. This is also cohe
with a calculation developed@21# to compute the variation
undergone by the laser line shape from below to ab
threshold.

We have chosen to test our model on a He-Ne laser
erating at 3.39mm because of its simplicity. There are few
no experimental results in the literature about the influe
of the amplitude and frequency of the injected signal on
SL line shape. An example can be found in Ref.@22#, but the
theory given there was again not designed to describe
line shape. This lack of results is probably due to the abse
of correct models able to describe, for instance, the inten
peak that is added to the SL line shape around the inje
frequency. Here we will see that experimental and calcula
line shapes agree nicely.

The paper is organized as follows. In Sec. II we brie
recall Adler’s model and delimit its restrictions. In Sec.
we establish the equations of the present model. In Sec
we solve for the steady-state solutions and study their sta
ity. Experimental and theoretical line shapes are given
Sec. V.

II. ADLER’S MODEL OF INJECTION LOCKING

In this section we recall the standard method used to
scribe the laser with an injected signal. While this method
described in many laser textbooks@12#, we have chosen to
include it here rather than in an appendix in order to revi
some definitions and notions in a familiar context and
provide a linear path to the reader. A typical example of t
theory is given in Refs.@23,24#, where a few effects have
been predicted: for instance, pulsing when the system is
locked or bistable phenomena. It is important to note that
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this usual approach, the injected signal operates like a so
term only and not as a dynamical variable.

In this model, the time evolution of the SL eigenfield

Ec~ t !5Ec~ t !exp@ i „vt1fc~ t !…# ~1!

is due to a number of contributions, namely, the cavity los
represented by a decay rategc and two source terms: th
atomic polarizationP and the external field

Einj~ t !5Einj~ t !exp$ i @vt1f inj~ t !#% ~2!

injected at a rateginj . v is simply a reference for the fre
quency: the instantaneous frequencies depend also upo
derivatives offc(t) andfinj(t). We assume that the slav
laser cavity of lengthd is made up of two identical mirrors
of reflectivityR and transmissionT512R. The ratesgc and
ginj can be written as

gc5c/2d ln~1/R!>c/2d~12R!, g inj5c/2dAT.

In the following,Dc5c/2d denotes the free spectral range
the cavity and the loss termp52ln(R)>12R whenR is
close to unity. Equations of evolution are

dEc~ t !
dt

5@a2gc2bEc2~ t !#Ec~ t !

1g injEinj~ t !cos@fc~ t !2f inj~ t !#, ~3a!

dfc~ t !

dt
5~v02v!2g inj

Einj~ t !
Ec~ t !

sin@fc~ t !2f inj~ t !#.

~3b!

Herev0 is the oscillation frequency of the slave laser witho
injection in which pulling and pushing effects have be
included. The frequency-dependent quantitiesa and b are,
respectively, the gain and self-saturation coefficients.

The steady-state solution of Eqs.~3a! and ~3b! corre-
sponding to the particular case of an empty cavity~a5b50!
should describe the response of a Fabry-Pe´rot interferometer.
However, this is not the case, for one finds, whenR is close
to unity,

S EcEinjD
2

>
T

~12R!2
1

11@~v2v0!/Dc~12R!#2
. ~4!

Equation ~4! describes correctly the response of a pass
Fabry-Pe´rot interferometer only inside the small frequen
interval around resonance where the Airy function reduce
a Lorentzian. This usual Airy function writes

S EcEinjD
2

>
T

~12R!2
1

11
4

~12R!2
sin2S v2v0

2Dc
D . ~5!

The underlying cause of this inadequate description of
FPI is inherent to the phase-amplitude equations~3a! and
~3b!, which have a steady-state solution only
dfc(t)/dt50. This condition can be fulfilled only when th
injected frequency is close to the resonance frequency of
FPI.
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55 1443MODELING OF AN INJECTED GAS LASER
When the frequencyv of the injected signal is close
enough tov0, the slave laser is locked and oscillates with t
injected frequency. If the phase of the injected signal is
sumed as a constant reference, the locking condition is w
ten as

v2v01vmsin~fc!50 ~6!

with

vm5g inj

Einj
Ec

. ~7!

Taking into account that the sine function is bounded by21
and11, the locking condition writes

2vm<~v2v0!<vm , ~8!

which gives the locking range

Dv lock52vm52g injEinj /Ec ~9!

extending from~v02vm! to ~v01vm!. Outside this interval
there is no steady-state solution for the phasefc and Adler’s
model cannot describe the laser with an injected signal. T
treatment of the frequency locking phenomenon is absolu
opaque as for its physical origin.

To conclude this section one should note that numer
experiments with various lasers confirm the linear variat
of the locking range with the amplitude of the injected sign
@6,7,9# and this is probably why Adler’s model is so wide
used. Nevertheless, one notes that expression~9! tells us that
DvlockÞ0 when the injected fieldEinjÞ0. Sometimes this is
not experimentally verified: a threshold forEinj has been ob-
served below which locking does not occur@6,7,9#. In fact, a
bistable domain appears for small values ofEinj , as will be
seen below.

III. MODEL OF THE INJECTED LASER

In Adler’s model, the fieldE inside the monomode slav
laser is supposed to have a single-frequency compon
which is valid inside the locking range. Here we take th
opposite point of view, i.e., we assume thatE generally has
two components, one with the eigenfrequencyv1 and the
other with the ML frequencyv2. This assumption is valid
outside the locking range as well and enables a more p
erful theory. As noted above, this idea was originally giv
independently by Tang and Statz@15# and Boidkova and
Fradkin @16#. For the moment, we limit ourselves to field
that are linearly polarized along the same direction. O
writes

E5E1e
iv1t1E2e

iv2t, ~10!

whereE1 andE2 are complex and represent the slowly var
ing part of the mean-field components. In the following w
will neglect the field components having frequencies such
2v12v2, which are generated through nonlinear phenome
because they are weak and not resonant in the case co
ered here. The signal from the ML is characterized by
amplitudeEinj incident on the SL. Einj creates, inside the
laser, another, nonresonant field, which we denoteE2. E2 has
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the same frequency asEinj , but a different phase and a dif
ferent amplitude. This is exactly the same phenomenon
happens when an external field creates another field insid
empty Fabry-Pe´rot cavity. The amplitude and phase are sep
rated inE2 and inE1:

E25E2eiw2, ~11!

E15E1eiw1. ~12!

The phase of the external signal will be taken later as
phase reference for both componentsE1,2. The rate of change
of the two field components is determined by the round-t
method@21,25,26#, where the effect of the active medium
taken into account: we thus introduce the saturated susc
bility x~v!5x8~v!1ix9~v! for the mean field. Following this
method, the rate equations for the componentsE1 andE2 are
then written as

]E1

]t
52E1@12e2pe22ik1d#, ~13!

]E2

]t
52E2@12e2pe22ik2d#1s, ~14!

wheret is the time expressed in round-trip time units~1/Dc!
ande2p5R. With this unit,s represents the rate with whic
the external field enters into the slave laser:

s5ATEinj . ~15!

The source term corresponding to spontaneous emission
been neglected here as compared tos @21#. The wave number
k is related to the frequencyv and the susceptibilityx by the
relation

k~v!'
v

c S 11
x~v!

2 D . ~16!

Subscripts 1 and 2, attributed to the wave numbers in E
~13! and~14!, mean thatk is evaluated, respectively, for th
frequenciesv1 andv2. From Eq.~16! one sees thatk~v! is
complex and for convenience we will separate the phase
amplitude contributions of exp~2ik1,2d! in Eqs. ~13! and
~14!, which become

]E1

]t
52E1F12e2 iF1expS 2p1

vcd

c
x19D G , ~17!

]E2

]t
52E2F12e2 iF2expS 2p1

vcd

c
x29D G1s, ~18!

wherevc52NpDc is the resonance frequency of the ba
cavity. Strictly, one should writev1,2 instead ofvc in Eqs.
~17! and~18!: this is necessary in the phase term, but not
the gain. The round-trip accumulated phasesF1,2 for each
component in the SL are expressed as

F1,25
v1,2

Dc
F11

x1,28

2 G . ~19!
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1444 55P. EVEN, K. AIT AMEUR, AND G. M. STÉPHAN
The phase term disappears from Eq.~17! since the SL
eigenfield is resonant:F152Np and exp~iF1!51. On the
contrary, the phase term in Eq.~18! exp~iF2!Þ1 since the
injected signal is not resonant and this is the different fea
of our model. This means, in particular, that the loss lev
experienced by the componentsE1 and E2 are different.
Moreover, the effective loss associated with the compon
E2 is frequency dependent even though that associated
E1 is constant. This can be understood if we remember
behavior of an empty, passive Fabry-Pe´rot cavity depicted by
Eq. ~5!. In that case, a nonresonant field is characterized b
decay rateDc@12R cos~Dv/Dc!#, while a resonant field is
characterized byDc[12R]. Here Dv is the detuning be-
tween the injected and resonant frequencies. In the case
laser the phase depends also upon the saturated suscept
and thus the theory contains a phase-coupling term. Rel
to this point, we have to recall the treatment given in Re
@15,16#. Here the two components of the field are charac
ized by the same loss term. Lamb’s equations are o
adapted to describe resonant fields~modes!: for instance,
they cannot be reduced to the description of the empty ca
by removing the active medium, thus they cannot be app
to the problem of an injected laser with a nonresonant fie

Before we proceed further, we note that one can ve
that Eq.~18! describes correctly the passive Fabry-Pe´rot in-
terferometer when the susceptibilityx~v! reduces to zero
We look for the steady state ofE2, knowing thatE150 in
this case. Doing that, we find a result identical to Eq.~5!.

The frequency dependence of the saturated susceptib
x~v! depends on the considered line profile, which can
Lorentzian ~homogeneous broadening!, Gaussian~inhomo-
geneous broadening!, or a mixture of both~Voigt!. We have
considered the latter case and the emission line shape i
scribed by the complex plasma-dispersion functionZ~z!. The
expression of the saturated susceptibility is given in App
dix A. The complex variablez is defined as

z5X1 iY, ~20!

whereY represents the ratio of the homogeneous~GL! to the
inhomogeneous~GG! widths of the laser transition

Y5
GL

GG
~21!

andX is the reduced frequency defined by

X5
v2v0

GG
. ~22!

The real and imaginary parts of Eqs.~17! and ~18! can be
written as

dE1
dt

52E1@12exp~2p1r1
i !#, ~23a!

dw1

dt
50 ~23b!
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dE2
dt

52E2@12cos~F2!exp~2p1r2
i !#1s cos~w2!,

~23c!

dw2

dt
52sin~F2!exp~2p1r2

i !2
s

E2
sin~w2!, ~23d!

with r1,25pg[a1,22b1,2I 1,22u12,21I 2,1]. g is the reduced
gain normalized at threshold. Superscriptsr and i stand for
the real and imaginary parts of the quantities. Subscripts
2, assigned to the atomic variablesa, b, andu, refer to quan-
tities that are evaluated for the frequencyv1 or v2, respec-
tively. The intensity associated with each signal is defined
the square of the field amplitude, i.e.,I 1,25E1,22 . a repre-
sents the complex gain where the imaginary part descr
the low-signal gain and the real part describes pulling
fects. b and u are the complex self- and cross-saturati
coefficients. The quantitiesa, b, andu are frequency depen
dent and their expressions are given in Appendix A.

Examination of Eqs.~23! shows that the two field com
ponents are coupled through saturation effects. In particu
the effective gain experienced by each component depe
on the intensity of the other. This effective gain writes

2p1r1,2
i 52p1pg@a1,2

i 2b1,2
i I 1,22u12,21

i I 2,1#. ~24!

One expects that the energy exchange between these co
nents plays an important role in the behavior of the laser w
an injected signal and that a competition may occur betw
them. It is also clear that the cumulated phase experience
both components depends on the intensity of the other
thus mutual frequency push-pull effects will appear. We w
not study such effects in the present work. The next step i
determine the steady-state solutions of Eqs.~23! and study
their stability.

IV. STEADY-STATE AND STABILITY ANALYSIS

Since we are interested in the steady-state operation o
SL, the time derivatives are set to zero and the four Eqs.~23!
are solved forE1, E2, w1, andw2. After some straightforward
algebra Eqs.~23! can be cast into

I 1@12exp~2p1r1
i !#250, ~25a!

I 2@122 cos~F2!exp~2p1r2
i !1exp2~2p1r2

i !#5s2,
~25b!

cos~w2!5
AI 2
s

@12cos~F2!exp~2p1r2
i !#, ~25c!

sin~w2!52
AI 2
s

sin~F2!exp~2p1r2
i !. ~25d!

The set of equations~25! shows two groups of solutions, fo
the amplitude of the two fields:

E150, E2Þ0 ~caseA!,

E1Þ0, E2Þ0 ~caseB!.
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55 1445MODELING OF AN INJECTED GAS LASER
Case A. The first group of solutions, which will be labele
A, corresponds to the locked regime, i.e., the laser oscilla
is quenched by the external signal. This can be easily un
stood from Eq.~25a! with the expression~24! for the effec-
tive gain. If the intensityI 2 is high enough to force the term
~2p1r 1

i ! toward negative values, the componentE1 is de-
stroyed because it experiences no gain. In other words,
locking of the laser has to be closely associated with
cross saturation~at least, at first sight!. In the locked regime,
the output of the slave laser corresponds to an injected si
that is amplified by the regenerative gain, resulting from
nonoscillating slave laser.

Case B. The second group of solutions, labeledB, indi-
cates a coexistence of the two uncorrelated components
frequenciesv1 andv2, i.e., the slave laser is not locked.

These two groups of solution can be exclusive of ea
other, but they can overlap as well, depending on the exp
mental conditions. One sees that, because of the nonline
of the equations, several solutions for the intensity are p
sible, for a given parameter set. The main control parame
in an injected laser experiment are the gaing and the optical
length of the slave laser, the frequencyv2, and the strength
of the injected signal. One should note that, for the sa
length, one can have several solutions for the frequenc
the SL. This is because the round-trip phaseF152Np de-
pends uponr 1

r , which itself depends upon the intensities. A
soon as there are several possible solutions for the intens
for a given length, there are also several possible frequ
cies.

Thus one is led to study the stability of the steady-st
solutions of Eqs.~25! for different sets of control parameter
For instance, in our experiment, we scanned the SL len
with a constant injected signal. In the following we will pe
form a stability analysis of the steady-state solutions:
intensity of the slave laser inside and outside the lock
range can be found with this method and this is what
want to compare with the experimental observations. O
should be well aware that three dynamical variables~E1, E2,
andw2! govern the system and thus there are three Lyapu
exponents for each stationary solution. Following the exp
ment, one has to choose the proper path in the complic
phase domain. In the present work, we have chosen to l
ourselves to the particular situation where the control par
eter is the optical length of the slave laser. However
should be noted that the theoretical results also desc
other effects such as jumps of intensity from solutionA (B)
to solutionB (A) accompanied by hysteresis effects. The
bistable effects can be observed with the intensity of
master laser as the control parameter, for fixed frequencie
both the ML and the SL. They will be described in detail
another paper.

Before we proceed further, it is important to character
the strength of the injected signal. This is done by the inj
tion factor h defined as the amplitude of the injected fie
normalized by the same value as that used for the SL fi
~see Appendix A!.

A. Steady state: Case A

Here the SL eigenfield is switched off by the inject
signal and this is the most simple situation becauseI 150.
Now, depending on the values of the parameters, the se
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equations~25! gives one or three real and positive solutions
for I 2. Figure 1 shows a plot of the solutionI 2A as a function
of the injected amplitude field for two values of the reduce
frequencyX2 of the master laser:X250 @Fig. 1~a!# and
X250.003 @Fig. 1~b!#. In both cases the SL frequency is at
line center, i.e.,X150, which corresponds to the laser length
d0. We will call dd the variation of this length with respect
to d0. The caseX150 leads to simpler numerical calculations
because some dispersive effects vanish. As a first comme
one sees that the length~i.e., the frequency! of the slave laser
plays a role, even thoughI 1A50. This becomes clear if one
examines the phase termF2, which is given by Eq.~19! in
which the length appears insideDc :

F25
v2

Dc
F11

x28

2 G5
2dv2

c F11
x28

2 G .
The curve in Fig. 1~b! shows that the solutionI 2A can be
single or triple valued depending on the strength of the in
jected field. This could mean bistability in the intensity re
sponse of the SL if solutionA were alone. This is a conse-
quence of Eqs.~25!, which, for I 150, describe the evolution

FIG. 1. IntensityI 2A inside the slave~here locked! laser vs the
normalized injected intensityh when the normalized frequency
X150 ~frequency of the slave laser at line center!. In the numerical
calculations, we tookY50.5, d0545 cm. These values have been
used in the computations leading to Figs. 1–6.~a! X250. ~b!
X250.003. It should be noted that the stability analysis reveals th
these stationary solutions can be unstable.
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1446 55P. EVEN, K. AIT AMEUR, AND G. M. STÉPHAN
of an optical signal injected into a Fabry-Pe´rot cavity filled
by a resonant saturable medium. The variations ofI 2A alone
with the amplitude of the injected field show a hysteret
cycle whose width decreases when the detuningdX in-
creases. If the input frequency is resonant, i.e.,dX50, the
curve touches theI 2A axis @Fig. 1~a!# and moves away from
it for dX.0 as shown in Fig. 1~b!. This effect can also be
found from Adler’s model and has already been reported
the literature@23#. It is also coherent with what happens in
the ordinary dispersive bistability. However, as we will se
the lower and the middle branches are unstable here beca
one has to consider the set of the three Lyapunov expone
simultaneously and thus the hysteresis cycle ofI 2A is not
experimentally observable alone.

B. Steady state: Case B

The field in caseB, contrary to caseA, is characterized by
the coexistence of the laser and the injected compone
Figure 2 displays the variations of the intensitiesI 1B andI 2B
as a function of the injection factor forX250 and dd50
@Fig. 2~a!# andX250.003 anddd50 @Fig. 2~b!#. As in Fig. 1,
one can again observeS-shaped curves that will introduce
some complexity to the phenomenon. At this point, we d
not yet know which solutionA ~locked! or B ~nonlocked!
will be chosen by the laser.

FIG. 2. Intensities of the field componentsI 1B andI 2B inside the
slave ~here unlocked! laser vs the normalized injected intensityh
for the same control parameters as in Fig. 1. Dashed lines,I 1B;
continuous lines,I 2B. Again these solutions can be unstable.
n

,
use
ts

ts.

o

In order to answer this question, one has to study
stability of the stationary solutions. This is done by making
standard small signal linear stability analysis of the stead
state solutionsA andB. This stability is governed by three
Lyapunov exponents associated with the dynamical variab
E1, E2, andw2. The existence of at least one Lyapunov e
ponent with a positive real part means that the steady s
under consideration is unstable. The calculation of the
Lyapunov exponents is standard and details are given e
where@28#. The main steps and an example are indicated
Appendix B.

Figure 3 describes a hysteresis cycle@Fig. 3~c!# for the
total SL intensity that can be observed when the inject
power h is increased and then decreased for a fixed f
quency of both lasers. In this example, we have takenX250
anddd50.001mm. Whendd50.001mm, one can note that
there are three values of the frequencyX1 ~which are around

FIG. 3. Intensities~a! I 1B and I 2B in the unlocked regime,~b!
I 2A in the locked regime, and~c! total measurable intensity showing
the bistable domain between the limitsh1 and h2 vs the injected
intensity. HereX250 and the variationdd50.001mm of the SL
length with respect to the line center.



se

b

o

up

t

e
r
is

th
l

a

pr
th

an
lity
e
t

e
h

n
ne

he

, i
th
de
a

ng
c
y
g
ty
he
tio

e

ga
h

ith

la-
ar-

30
io
ser
ck
are
he

to

y
the
do-

55 1447MODELING OF AN INJECTED GAS LASER
0.001 23, corresponding to a detuning of 180 kHz!. Figures
3~a! and 3~b! display the intensities in the unlocked ca
@Fig. 3~a!#, and in the locked case@Fig. 3~b!#. In Figs. 3~a!
and 3~b! vertical lines have been drawn separating unsta
and stable regions as a function ofh. This has been done
after examination of the numerical values of the Lyapun
coefficients. For small values ofh, on the left ofh1 @Fig.
3~a!#, the calculated Lyapunov exponents tell us that the
per (I 1B) and the lower branch (I 2B) of solutionB are stable
~unlocked laser!. They also tell us that, on the right of poin
h2 @Fig. 3~b!#, the upper branch of solutionA is stable. Thus
one sees that an increase ofh starting fromh50 brings the
laser from the unlocked regime@Fig. 3~a!# into the locked
regime ath1. Now a decrease ofh from upper values, i.e., in
the locked region@Fig. 3~b!#, forces the laser to jump to th
unlocked solution forh2. Thus the bistability range is, fo
this frequency,Dh5h22h1. Let us note that this hysteres
effect is frequency dependent:Dh decreases whendX in-
creases. The output intensity of the SL is proportional to
total intensityI T available inside the cavity: it is proportiona
to I T5I 2A in caseA and to I T5I 1B1I 2B in caseB. The
curve in Fig. 3~c! shows the predicted observable intensity
a function ofh.

Calculated line shapes can also be obtained from the
ceding analysis. Graphs in Fig. 4 show an example of
total intensityI T of the slave laser@Fig. 4~a!# together with
the variations ofI 1 @Fig. 4~b!# andI 2 @Fig. 4~c!# as a function
of the SL length. The resonant frequency is at line center
the injected intensity is high enough to avoid any bistabi
~h54%!. As the eigenfrequency of the slave laser com
closer to the injected frequency, one sees a collapse of
intensityI 1 @Fig. 4~b!# and a simultaneous increase inI 2 @Fig.
4~c!#. The interval of length of the slave cavity for which th
intensity I 1 vanishes corresponds to the locking range. T
line shape of the slave laserI T @Fig. 4~a!# shows an intensity
peak surrounded by two dips. This peak is a sensitive fu
tion of the injection factor as shown in Fig. 5, where the li
shape is drawn for four values ofh. One should have a
double-valued curve for small values ofh. We have drawn
here the solution with the lower intensity only, leaving t
complete study of bistable effects for another paper.

Another interesting case, not studied in the literature
the line shape of the slave laser when the frequency of
injected signal is not at line center. Such a situation is
picted in the curves in Fig. 6, showing a similar behavior
in Fig. 5, but with asymmetric peaks and dips.

The main result of Adler’s model concerns the locki
range, which was found to increase linearly with the inje
tion factor, as shown in Eq.~9! and observed experimentall
by several authors@6,7#. Here one can define the lockin
range Dvlock in a natural way based on the stabili
analysis: Dvlock is the frequency domain where at least t
real part of one Lyapunov exponent associated with solu
B is positive ~for a given set of control parameters!. It is
represented in Fig. 7 for two values of the reduced gaing of
the slave laser~g is normalized to threshold!. It should be
recognized that~i! the variation of the locking range with th
amplitude of the injected signal is globally linear and~ii ! the
frequency locking mechanism can have a threshold and
dependence that are not expected from Adler’s model. T
threshold has already been experimentally observed@6,27#.
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In the next section we compare the theoretical results w
experimental line shapes.

V. EXPERIMENTAL OBSERVATIONS

The experiment consists of two single-mode He-Ne
sers, sketched in Fig. 8, working on the same linear pol
ization at the wavelengthl53.39mm. The plasma tubes are
homemade: the bore diameter is 3.5 mm, their length is
cm, and the total pressure is 2 Torr with a rat
He:Ne2055:1. The master laser is coupled into the slave la
through an optical isolator to prevent any optical feedba
from the SL to the ML. Both the master and slave lasers
working on a single longitudinal and transverse mode. T

FIG. 4. Theoretical curves showing~a! the total intensity of the
slave laser as a function of its length,~b! the intensity of the SL
eigenmode, and~c! the intensity of the component corresponding
the injected signal. Here the gaing51.1 and the laser is outside the
bistability range,h50.04. It should be noted that the frequenc
does not change inside the locking region where it is fixed by
master laser and two frequency components exist outside this
main.
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1448 55P. EVEN, K. AIT AMEUR, AND G. M. STÉPHAN
output mirror of the slave laser is held by a piezoelec
transducer~PZT! that allows the slave laser frequency to
swept freely. The adjustment of the master laser frequenc
also done by a PZT, holding the rear mirror.

The object of the experiment is to measure the SL l
shape, i.e., its intensity as a function of its optical length a
the locking range for different parameters, which are
master laser frequency, the amplitude of the injected sig
and the gain of the slave laser or, more precisely, the

FIG. 5. Calculated line shape of the slave laser with increas
injection factor forX250.

FIG. 6. Evolution of the calculated line shape of the slave la
with increasing injection factor forX250.3.
c

is

e
d
e
l,
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charge current in the slave laser. The first point to be di
cussed here is the strength of the coupling between the m
ter and slave lasers. The incident powerPin at the entrance of
the SL can be expressed as

Pinj5TiKGPM ,

wherePM is the output power of the master laser,Ti is the
transmission of the isolator made up of two calcite polarize
and a YIG crystal~where YIG denotes yttrium iron garnet!,
andKG is a geometrical factor, less than unity, accountin
for the geometrical overlap of the incident beam and the las
mode, both in the tranverse and longitudinal directions. For
given experiment, the value ofKG changes with respect to
alignment. That makes experimental measurements on
jected lasers difficult to reproduce quantitatively. We not
that our experiment has not been designed to allow for a
very precise control onKG .

Experimental curves in Fig. 9 display the evolution of th
SL line shape for different values of the injection facto
when the injected frequency corresponds to the center of
Ne line. As in the theoretical results Fig. 5, an intensity pea
appears around the injected frequency. This peak may
considered as an extension of the Airy function for the in
jected laser. It appears because the energy of the active m
dium is concentrated only in a single frequency componen
while outside the locking range, it is split into two mutually
incoherent fields. The shape of the intensity peak evolv
according to the strength of the injected signal. Indeed, o
sees that dips grow on both sides of the peak for high
injection levels. The case of the injection on one side of th
slave laser line is shown in Fig. 10. The comparison of the
experimental observations with the line shapes of Figs. 5 a
6 shows good agreement between our theoretical and exp
mental results.

VI. CONCLUSION

In this paper we have reexamined the early idea given
Tang and Statz@15#, which states that the frequency locking
phenomenon in injected lasers results from gain quenchi
by the imposed field. For this purpose, we have written tw

g

r

FIG. 7. Theoretical locking range as a function of the injectio
factor for two values of the gain of the slave laser. The upp
branch crosses zero and the lower branch shows a threshold.
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FIG. 8. Experimental setup: ML, master laser; SL, slave laser; 1, alignment laser; 2-22, piezoceramic transducer and laser mir
rotatable plates to control light polarization; 4-6-18-20, plates closing the laser tube; 5-19,m metal shieldings; 7-17, apertures to obta
single-frequency lasers; 8-16, laser mirrors; 9, tiltable plate to control the role of the phase of the master laser; 10-11, mirrors; 12,l/2 plate
to control the polarization; 13-14-15, optical isolator.
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equations, one for each component of the field, which
both considered as dynamical variables competing toge
in the case of a class-A laser. As the injected field is no
resonant, the cavity losses associated with it are diffe
from those of a resonant mode and vary with its frequen
as in an empty Fabry-Pe´rot cavity. We have thus introduce
a different way of writing the basic equations. These t
ideas—competing fields~leading to gain quenching! and
frequency-dependent losses—when put together, give a

FIG. 9. Experimental SL line shape for increasing injection s
nal.X250. Compare to Fig. 5.
re
er

nt
y,

ar-

monious model of the slave laser. We were able to comp
the injected laser line shapes, whether or not the injec
field frequency is tuned to line center. Theoretical results
obtained and compared to line shapes measured wit
He-Ne laser operating at 3.39mm. This comparison undoub
tly proves the validity of our model, which also allows us
make the connection with the standard stability analysis. T
locking range is thus defined in a standard way. We h
tried to show the weaknesses of the traditional Adler mod

- FIG. 10. Experimental SL line shape for increasing injecti
signal.X2;0.3. Compare to Fig. 6.
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We have obtained other theoretical and experimental res
related to bistability effects. Up to now we have not y
measured them very precisely with our laser, but similar
fects have been observed on semiconductor lasers and
well known by the specialists of the field@29#. Our ideas can
be extended to these lasers by adding a dynamic equatio
the injected field with the proper parameters to the se
equations that is normally used. They can also be extende
the vectorial case@22# or to the study of the dynamic prop
erties of injected lasers@13#; our model contains the physic
of the dispersive optical bistability and finally it is close
related to the theory of the laser linewidth@21#, where the
source term is spontaneous emission only.
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APPENDIX A

The aim of this appendix is to give expressions for t
gain and saturation coefficients and also to give the norm
ization coefficient for the intensity. We use the usu
iteration-perturbation method applied to the density-ma
elements. The third-order polarizability is deduced from t
calculation. This calculation has already been performed
Ref. @30#, for instance, following standard methods.

The usual two energy levels are considered in the con
of the dipolar approximation.H0 represents the nonperturbe
Hamiltonian,mW is the dipolar moment, andEW represents the
field, which is written as a sum of the frequency compone
v1 andv2. The polarizabilityaip for each componentEi can
be written

a1p52
S0N0

\ku
Z* ~z1!1

N0

\3k3u3
~S11S21S3!

3H I 1 1Y iU 1*1I 2F iV12*
1

Y
2W12*

1

X22X11 iYG J ,
a2p52

S0N0

\ku
Z* ~z2!1

N0

\3k3u3
~S11S21S3!

3H I 2 1Y iU 2*1I 1F iV21*
1

Y
2W21*

1

X12X21 iYG J .
The following symbols are used in these expressions:

S05(
m

umbm61,amu2,

S15(
m

umbm61,amu4,

S25(
m

umbm61,amu2umbm61,am62u2,

S35(
m

umbm61,amu2umbm71,amu2.
lts
t
f-
are

for
f
to

.

l-
l
x
s
in

xt

ts

These are sums over powers of matrix elements of
dipolar moments. For the 3.39-mm Ne line, one has the re
duced sums

S1546umabu4, S2521umabu4, S35umabu4.

FunctionsU, V, andW are velocity integrals. They are ex
pressed as functions of the plasma dispersion functionZ
@23#,

U15Z182
Z1
z1

2
Z1
i

Y
1
Z1
r

X1
, U25Z282

Z2
z2

2
Z2
i

Y
1
Z2
r

X2
,

Vi j5
Zi2Zj

Xi2Xj
2

Zi1Zj

Xi1Xj12iY
2

Zi2Zj*

Xi2Xj12iY
1
Zi1Zj*

Xi1Xj
,

Wij5Zi82
Zi

Xi1 iY
2

Zi2Zj*

Xi2Xj12iY
1
Zi1Zj*

Xi1Xj
.

X1 andX2 are the detunings:Xi5(v i2v0)/ku normal-
ized byku, which is half the inhomogeneous linewidth.Y is
the ratio of the homogeneous over the inhomogeneous wi
Typically Y50.5. One hasz i5Xi1 iY; N0 is the population
inversion. I 1 and I 2 are the intensities of the field compo
nents. Pumping is defined with respect to threshold, whic
itself defined in such a way that for this gain, losses
exactly compensated at line center. Thus one writes

v0d0
«0c

S0N0th

\ku
Z0
i 5 lnF 1

r 1r 2
G5p.

iZ 0
i is the value ofZ for X50. This relation definesN0th, the

population inversion at threshold. A normalized polarizab
ity for both components of the field can thus be written

r15pgH 2
Z* ~z1!

Z0
i 1S S11S21S3

\2k2u2S0Z0
i D

3S I 1 1Y iU 1*1I 2F iV12*
1

Y
2W12*

1

X22X11 iYG D J ,
r25pgH 2

Z* ~z2!

Z0
i 1S S11S21S3

\2k2u2S0Z0
i D

3S I 2 1Y iU 2*1I 1F iV21*
1

Y
2W21*

1

X12X21 iYG D J .
The normalization factor for intensities follows:

I r5I s~v0!5
S0\

2k2u2yZ0
i

~S11S21S3!U0
r .

Here the subscript 0 means that the quantities are evalu
at line center and the superscriptsi andr stand, respectively
for the imaginary and real parts of the complex function
Finally, polarizabilities can be written under the more co
pact form

r15pg$a12b1I 12u12I 2%,

r25pg$a22b2I 22u21I 1%,
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with the abbreviations for the normalized quantities, inclu
ing the ~negative! self- and cross-saturating terms:

a152
Z* ~z1!

Z0
i , a252

Z* ~z2!

Z0
i ,

b152
iU 1*

U0
r , b252

iU 2*

U0
r ,

u1252F iV12* 2W12*
y

X22X11 iYG 1

U0
r ,

u2152F iV21* 2W21*
y

X12X21 iYG 1

U0
r .

I 1 and I 2 now stand for intensities normalized byI r .

APPENDIX B

The aim of this appendix is to give a few details on t
calculations leading to the theoretical curves represente
Figs. 1–7. The system of equations~23! is first solved for the
stationary solutions in casesA andB, i.e., with one or both
components of the field. Then a small signal stability ana
sis is performed that shows the bistable regions and the
teresis domains.

The system of equations~23! writes

«̇1552«1@12e2p1r1
i
#,

ẇ150,

«̇2552«2@12cos~F2!e
2p1r2

i
#1ATh cos~w2!,

ẇ252sin~F2!e
2p1r2

i
2

ATh

«2
sin~w2!.

One writes the dynamic variables in the form

«15«1s1d«1 , «25«2s1d«2 ,

where the indexs stands for the stationary solutions and t
symbols beginning withd stand for small variations aroun
these stationary values. One thus obtains the linearized e
tions of evolution of the small variations

d«̇152d«1@12~112pgb1
i I 1s!e

2p1r1s
i

#

1d«22pg«1s«2su12
i e2p1r1s

i
,

dẇ150,

d«̇252d«2@12cos~F2s!e
2p1r2s

i
#

2«2s@d~F2!sin~F2s!e
2p1r2s

i

2dr2
i cos~F2s!e

2p1r2s
i

#2ATh sin~w2s!dw2 ,

dẇ252@d~F2!cos~F2s!e
2p1r2s

i
1dr2

i sin~F2s!e
2p1r2s

i
#

1
ATh sin~w2!

«2s
2 d«22

ATh

«2s
dw2cos~w2s!.
-

in

-
s-

ua-

I 1s andI 2s are the stationary intensities, i.e.,I 1s5«1s«1s* and
I 2s5«2s«2s* . This system can be written under a 333 matrix
form that can be diagonalized in order to obtain t
Lyapunov exponents.

Let us consider solutionA first. This solution is charac-
terized by

«1s50, «2sÞ0.

If we define the vectordUW [(d«1 ,d«2 ,dw2), the rate equa-
tion for dUW can be written

ddUW

dt
5MAdUW ,

with

MA5FA11

A21

A31

A12

A22

A32

A13

A23

A33

G ,
where

A1152~12e2p1r1s
i

!, A1250, A1350, A2150,

A2252@12cos~F2s!e
2p1r2s

i
#

22pgI2se
2p1r2s

i
@b2

r sin~F2s!2b2
i cos~F2s!#,

A2352ATh sin~w2!, A3150,

A325
ATh

«2s
2 sin~w2s!22pg«2s@b2

r cos~F2s!

1b2
i sin~F2s!#e

2p1r2s
i
,

A3352
ATh

«2s
cos~w2s!.

We have used the abbreviations

r2s5pg@a22b2I 2s#,

r1s5pg@a12u12I 2s#,

2F2s5
4p

l0
dd1aX21r2s

r .

In the case of solutionB, both components of the field ar
different from zero: «1sÞ0 and«2sÞ0. In matrix form, one
has againddUW /dt5MBdUW , with

MB5FB11

B21

B31

B12

B22

B32

B13

B23

B33

G ,
where

B1152pgb1
i I 1s ,

B1252pg«1s«2su12
i e2p1r1s

i
,
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B1350,

B21522pg«2s«1se
2p1r2s

i
@~u21

r 2b1
r !sin~F2s!

2u21
i cos~F2s!#,

B2252@12cos~F2s!e
2p1r2s

i
#22pgI2se

2p1r2s
i

3@~b2
r 2u12

r !sin~F2s!2b2
i cos~F2s!#,

B2352ATh sin~w2!,

B31522pg«1s@~u21
r 2b1

r !cos~F2!1u21
i sin~F2!#,

FIG. 11. Theoretical curves showing~a! the intensityI 2A inside
the slave laser vs its length,~b! the Lyapunov coefficients associ
ated with the solutionA, and~c! a zoom of the central part of the
curve for the Lyapunov coefficients. In the numerical calculatio
we tookY50.5,d0545 cm,X250, andh50.04. These values have
been used in the calculation leading to this figure and Fig. 12.
B325FATh

«2s
2 sin~ws2!22pg«2s@~b2

r 2u12
r !cos~F2s!

1b2
i sin~F2s!#Ge2p1rs2

i
,

B3352
ATh

«2s
cos~w2s!,

with the abbreviations

r2s5pg@a22b2I 2s2u21I 1s#,

r1s5pg@a12b1I 1s2u12I 2s#,

2F2s5r2s
r 2r1s

r 1a~X22X1!.

,

FIG. 12. Theoretical curves showing~a! the intensitiesI 1B and
I 2B in the unlocked regime, inside the slave laser as a function of
length,~b! the Lyapunov coefficients associated with the solutionB,
and ~c! a zoom of the central part of the curve for the Lyapuno
coefficients.
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55 1453MODELING OF AN INJECTED GAS LASER
Now the matricesMA andMB are diagonalized in order to
study the stability of each solution belonging to casesA and
B. Each solution is thus characterized by a set formed by
three eigenvalues, i.e., the Lyapunov exponents. For a s
tion to be stable, the real part of these three eigenvalues m
be negative. The calculation is done by a computer. CaseA
andB are illustrated in Figs. 11 and 12, respectively, whe
stationary solutions, together with their associated Lyapu
exponents, are drawn versus the mirror displacement of
slave laser and forh50.04. Figure 11~a! representsI 1B and
I 2B and Fig. 11~b! the associated real part of Lyapunov e
ponents notedl1B, l2B, andl3B. Figure 11~c! shows an en-
larged version of Fig. 11~b! in the central zone. Equivalen
curves for caseA are drawn in Fig. 12~a!, 12~b!, and 12~c!
with the evident notationl1A, l2A, andl3A.

One sees that for this value of the injection coefficient,
ys
J.

et

.

s.

J

e
lu-
ust

e
v
he

e

stability of both solutions is complementary, i.e., when so
tion A is unstable, solutionB is stable and vice versa. Th
central zone where solutionA is stable corresponds to th
locking zone. From these data, it is possible to study in
pendently the fieldsE1 andE2. On sees that in caseB, the
real part of the Lyapunov coefficientl2B and l3B are not
degenerate between the limits labeledM andM 8. The three
coefficients are all different in this area. The same rem
applies to the region limited byN andN8 in caseA. Finally,
let us remind the reader that this example corresponds to
simple situation where there is only one real solution in b
casesA andB. In the region whereI 2A, or I 1B andI 2B areS
shaped, one has three solutions for a given value ofh. The
calculations can become very long, especially if one has
converge toward the proper frequency linked toI 2A, or I 1B
and I 2B.
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