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Modeling of an injected gas laser
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We develop a model to compute the line shape of an injected gas laser. The model describes the competition
that occurs between the injected field and the usual resonant field of the laser, which are both considered as
separate dynamic variables. A small signal stability analysis of the stationary solutions is used to study this
competition: the laser field may be destroyed due to gain quenching by the injected field, which explains the
frequency locking phenomenon. We give the connection with the standard Adler model. Theoretical and
experimental results that describe the line shape inside or outside the locking range are given for the typical
He-Ne laser operating at 3.38m. [S1050-294®@7)01902-1

PACS numbgs): 42.55.Lt, 42.55.Ah, 42.65.Pc

[. INTRODUCTION various observable phenomena belonging to the physics of
an injected laser.

One of the most spectacular phenomena observed in Our motivation in achieving this goal was essentially to
coupled lasers is frequency locking. This phenomenon iset up the basis for an alternative method to study injected
usually theoretically described by the so-called Adler modeljasers: we have noticed that in previous studies, the term that
which was initially developed for coupled electronic oscilla- represents the losses of the cavity in the equations for the
tors[1]. The phenomenon is well known in laser physics andfields is taken as a constant, whatever the frequency of the
widely used for many purposes, for instance, to stabilize thénjected field. This is in contrast with an ordinary Fabry-
frequency[2], to lock the phase of separate lasgB$ to  Peot interferomete(FPl), where the transmitted or internal
spectrally narrow the linewidth, to select the frequency of thefields are strongly dependent upon frequency. Described in
injected |ase[4]’ or to obtain Sing|e_m0de Operatiéﬁ,e]_ It the f0||OWing is that we have Sp“t the f|e|d into its two
was first studied on He-Ne lasdd and later on all kinds of ~ frequency-component parts and that each is taken as a dy-
lasers such as CO[4], argon[5], erbium [6], dye [8], namic var_lablg with d|ﬁere_nt frequency-depe_n_dent character-
Nd:YAG (where YAG denotes yttrium aluminum garpet |st|c§. This view should improve the precision of former
[9,10], or semiconductor lasefd1]. stud|_es. . , .

In the most simple experiment, one injects the light merg- . |t_|s our opinion that Adllers model d.oes not give a con-
ing from a single-mode laser, called the master la#r), vincing or a complete physical explanation of injected lasers,

: S . including the frequency locking phenomenon. Although it is
into the slave lasefSL) across an optical isolator. In this widely used, it shows at least two failure) it does not

study we will also consider single-mode lasers. When bOtr?:ontain the most simple phenomenon embedded in the usual

lasers are c'iecoupled, their respective fields have differerfjry, ¢ nction that describes the passive FPI when the active
frequencies: the SL works aj, and the ML atw,. Locking  megium is removed from the slave laser ajidl it cannot

of the SL onw, occurs whenw, andw, are close enough and gegcribe the nonlocked regime since its validity is justified
when the injected intensity is high enough. Here we will beonly in the locked regime.
interested in the injected laser output intensity when its Qur theoretical description of an injected laser corrects
length is scanned for a fixed frequency of the ML. It is thisthese drawbacks. Indeed, we consider the field in the SL to
output that we will call “line shape” in the remaining of this have two frequency componeris andE,. E; is resonant
paper. and represents the normal SL eigenmode with a frequency
Up to now, the theory of injected lasers has been aimed,. E, is generally nonresonant and builds up from the
essentially at the description of locking conditions. Theexternal signal injected at the frequeney. Then we con-
locked response is studied as a function of the amplitude dfiderE; andE, as competing fields whose gains are coupled
the injected signal, which is viewed as an additional pumphrough saturation. Their time evolution is described by two
mechanism. In Adler's model, the interpretation of the effectcomplex rate equations that show two kinds of stationary
depends on a locking of the phase of the free running modsolutions: (i) E; and E,#0 correspond to the unlocked re-
to that of the external signfl2]. However, an injected laser gime and(ii) E;=0 andE,#0 correspond to the locked re-
shows other peculiarities and the most important of them igime. A stability analysis of these steady-state solutions
its line shape as defined above. In fact, if a theory can deshows that the locked regime occurs when the gain of the
scribe the line shape it will necessarily describe the lockingesonant field is quenched by the injected field. It clearly
phenomenon because both phenomena are intrinsicalgppears that the passage from the unlocked to the locked
linked. Up to now, it seems that such a theory does not existegime is due to the competition originating from the cross
and it is the aim of this article to present a model designed tsaturation between the two componeBtsandE,. The pro-
compute this line shape and to include, in a synthetic wayposed model is thus valid inside and outside the locking
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range. It also describes correctly the passive FPI and givesthis usual approach, the injected signal operates like a source

good physical explanation of the locking process. It is illus-term only and not as a dynamical variable.

trated in the simpler case of a gas laser where the adiabatic In this model, the time evolution of the SL eigenfield

elimination of fast variables simplifies the equations, but the

basic idea of the two-field components with different char- Ec()=E(Hexdi(wt+ ¢e(1))] (1)

acteristics is general and may be extended to other lasers. For o )

instance, the theory of instabilities of claBsinjected lasers IS due to a number of contributions, namely, the cavity losses

[13] can be rewritten with the use of these two dynamicalféPresented by a decay rajg and two source terms: the

variables, which would give rise to five coupled nonlinear&tomic polarizatiorP and the external field

equations instead of three in this particular case. However, .

thqis view should not be extended 'E)o every class of injected Einj() = E(D) explil wt+ ¢in(1) ]} 2
jected at a ratey,;. w is simply a reference for the fre-

lasers, for example, the laser with phase-conjugate opticz"ilrl1
feedback 14], where the injected frequency is defined by thequency: the instantaneous frequencies depend also upon the
derivatives of¢(t) and ¢;,(t). We assume that the slave

same laser.
The idea of competition between two fields that is deVel'laser cavity of lengthd is made up of two identical mirrors
Bt reflectivity R and transmissioff = 1—R. The ratesy, and

oped here is not new: it has already been published indepe

dently by Tang and Stafd5] and Boikova and FradkifiL6] . can be written as
30 years ago and expressed again in more recent papers, B
instance, in Refs[17-19. However, in these papers, the ye=c/2d IN(LR)=c/2d(1—R), =c/2d\T.

theory is not adapted to compute the line shape. Indeed, in ¢ ’ '”J

Refs.[15,16,2Q the loss term is the same for both the reso-|n the following, A= c/2d denotes the free spectral range of
nant and the injected fields and thus a precise StUdy of thﬂ]e Cavity and the loss terrp:—m(R)gl—R whenR is
competition cannot be undertaken. It is probably this weakglose to unity. Equations of evolution are

ness that prevented the success of the early theories and ori-

ented toward the use of Adler's model. The different idea d&(t)

here is to use a different term to represent the cavity losses qi _La— Yo~ BEADIEL(D)

for the two frequency components: this allows us to make

the connection to the Airy function of an empty cavity where + Yini€inj(t) cog ¢c(t) — dinj(1) ], (39
the frequency-dependent loss is known. This is also coherent

with a calculation developef21] to compute the variation do(t) Einj(t)

undergone by the laser line shape from below to above ~—gq; (@0~ @)~ ¥inj ) S (1) = din(D].
threshold. (3b)

We have chosen to test our model on a He-Ne laser op-
erating at 3.3um because of its simplicity. There are few or Herewy is the oscillation frequency of the slave laser without
no experimental results in the literature about the influencénjection in which pulling and pushing effects have been
of the amplitude and frequency of the injected signal on théncluded. The frequency-dependent quantitieand 8 are,
SL line shape. An example can be found in BR8], but the  respectively, the gain and self-saturation coefficients.
theory given there was again not designed to describe the The steady-state solution of Eg&3a and (3b) corre-
line shape. This lack of results is probably due to the absencsponding to the particular case of an empty cavity: 3=0)
of correct models able to describe, for instance, the intensitghould describe the response of a FabryePiaterferometer.
peak that is added to the SL line shape around the injectedowever, this is not the case, for one finds, wifeis close
frequency. Here we will see that experimental and calculatetb unity,
line shapes agree nicely.

The paper is organized as follows. In Sec. Il we briefly & 2~ T 1
recall Adler's model and delimit its restrictions. In Sec. Il ?nj T (1-R)? 1+[(w—wo)/A(1—R)]?’
we establish the equations of the present model. In Sec. IV
we solve for the steady-state solutions and study their stabiEquation (4) describes correctly the response of a passive
ity. Experimental and theoretical line shapes are given irFabry-Peot interferometer only inside the small frequency
Sec. V. interval around resonance where the Airy function reduces to

a Lorentzian. This usual Airy function writes

4

Il. ADLER’S MODEL OF INJECTION LOCKING ( 5(: 2 T 1
. . = = .
In this section we recall the standard method used to de- Einj (1-R)? N 4 sire| £=0
scribe the laser with an injected signal. While this method is (1-R)? 2A,

described in many laser textbookk2], we have chosen to

include it here rather than in an appendix in order to reviewlhe underlying cause of this inadequate description of the
some definitions and notions in a familiar context and toFPI is inherent to the phase-amplitude equati@®® and
provide a linear path to the reader. A typical example of this(3b), which have a steady-state solution only if
theory is given in Refs[23,24], where a few effects have d¢.(t)/dt=0. This condition can be fulfilled only when the
been predicted: for instance, pulsing when the system is nahjected frequency is close to the resonance frequency of the
locked or bistable phenomena. It is important to note that, irfFPI.
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When the frequencyw of the injected signal is close the same frequency &, but a different phase and a dif-
enough tawy, the slave laser is locked and oscillates with theferent amplitude. This is exactly the same phenomenon that
injected frequency. If the phase of the injected signal is ashappens when an external field creates another field inside an
sumed as a constant reference, the locking condition is writempty Fabry-Peot cavity. The amplitude and phase are sepa-

ten as rated inE, and inE;:
0= wo+ 0,Sin(¢d.)=0 (6) E,=&€' %2, (1D
with E, =& €', (12)
Om= Yin % (77 The phase of the external signal will be taken later as the
c phase reference for both componegts, The rate of change

of the two field components is determined by the round-trip
method[21,25,28, where the effect of the active medium is
taken into account: we thus introduce the saturated suscepti-
bility y(w)=x'(w)+i x"(w) for the mean field. Following this

Taking into account that the sine function is bounded-dy
and +1, the locking condition writes

—on<(0—wg)< 8
em=(o=wo)=em, ® method, the rate equations for the componé&ntandE, are
which gives the locking range then written as
Awioek= 20m= 2¥ini€inj I € C)

JE .

—o=—Eq[1-e Pedk], (13)
extending from(wy— oy, t0 (wy+wy,). Outside this interval

there is no steady-state solution for the phgsand Adler's 9E

model cannot describe the laser with an injected signal. This —2— _E,[1-e Pe 2kd] g (14
treatment of the frequency locking phenomenon is absolutely 7

opaque as for its physical origin. . . . L
- ; hereris the time expressed in round-trip time unit$A.)
To conclude this section one should note that numerou¥ €€ . X i . c/.
ande”P=R. With this unit,s represents the rate with which

experiments with various lasers confirm the linear variation . . )
of the locking range with the amplitude of the injected signalthe external field enters into the slave laser:
[6,7,9 and this is probably why Adler's model is so widely

used. Nevertheless, one notes that expreg8ptells us that S= ‘ﬁgi”i'

Aw#0 when the injected field;,;#0. Sometimes this is
not experimentally verified: a threshold f6f,; has been ob-
served below which locking does not oc¢6r7,9. In fact, a
bistable domain appears for small valuesépf, as will be
seen below.

(15

The source term corresponding to spontaneous emission has
been neglected here as compared {31]. The wave number

k is related to the frequenay and the susceptibility by the
relation

) X()
IIl. MODEL OF THE INJECTED LASER k(w)~< | 1+75—]. (16)

In Adler's model, the fielc inside the monomode slave
laser is supposed to have a single-frequency componenBubscripts 1 and 2, attributed to the wave numbers in Egs.
which is valid inside the locking range. Here we take the (13) and(14), mean thak is evaluated, respectively, for the
opposite point of view, i.e., we assume tiiagenerally has frequenciesw; and w,. From Eq.(16) one sees thdt(w) is
two components, one with the eigenfrequency and the complex and for convenience we will separate the phase and
other with the ML frequencyw,. This assumption is valid amplitude contributions of exp-ik, ) in Egs. (13) and
outside the locking range as well and enables a more powl4), which become
erful theory. As noted above, this idea was originally given

independently by Tang and Stafz5| and Boidkova and oE; _io wd
Fradkin[16]. For the moment, we limit ourselves to fields -, - Eil-e 1eXF< Pt x| (17)
that are linearly polarized along the same direction. One
writes JE, B wd
_ _ —=—-E,/1-e '¢2ex;{—p+ X2/ |+s, (18
E=E,ele1t+ Eelvat, (10) a7 c

whereE, andE, are complex and represent the slowly vary-Where w.=2NwA_ is the resonance frequency of the bare
ing part of the mean-field components. In the following we CaVity. Strictly, one should write, , instead ofw. in Egs.
will neglect the field components having frequencies such a&t?) and(18): this is necessary in the phase term, but not for
2w,— wy, which are generated through nonlinear phenomendn® 9ain. The round-trip accumulated phases, for each
because they are weak and not resonant in the case consfmPonent in the SL are expressed as

ered here. The signal from the ML is characterized by an

amplitude &y incident on the SL. & creates, inside the (Dlzzw_lz

X . 1+—==
laser, another, nonresonant field, which we deloteE,, has A

5 (19

i
X1,2}
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The phase term disappears from Efj7) since the SL dé, _
eigenfield is resonan®;=2Nx and expi®;)=1. On the EZ—52[1—005(492)9XP(—D+P'2)]+S cog ¢3),
contrary, the phase term in E(L8) exp(id,)#1 since the (239

injected signal is not resonant and this is the different feature

of our model. This means, in particular, that the loss levels P _ s

experienced by the componenks and E, are different. d—2 = —sin(®,)exp —p+ph) — = sin(e,), (230
Moreover, the effective loss associated with the component T 2

E, is frequency dependent even though that associated with. _ .
E, is constant. This can be understood if we remember th@/th p1o=pglas ;= B1al 1= O1z21d24]. 9 is the reduced

behavior of an empty, passive Fabryrftecavity depicted by gain normali;ed at threshold. Superscript;andi stand. for
Eqg. (5). In that case, a nonresonant field is characterized by e real and imaginary parts of the quantities. Subscripts 1 or

decay rateA [1—R cogAw/A,)], while a resonant field is 2 2SSigned to the atomic variabless, and, refer to quan-
characterized byA [1—R]. Here Aw is the detuning be- t!tles that are evgluated f(_)r the ffeq“e”ﬂi/?r @, respec-
tween the injected and resonant frequencies. In the case oftiyely. The intensity lassouate_d W|th_each 5'9”""' Is defined as
laser the phase depends also upon the saturated susceptibiﬁ square of the field amplitude, i.¢4,,=E7,  a repre-

and thus the theory contains a phase-coupling term. Relat nts the complex gain where the imaginary part describes

to this point, we have to recall the treatment given in Refs! '€ low-signal gain and the real part describes pulling ef-

[15,16]. Here the two components of the field are characterIECtS: _'8 and ¢ are the_ _complex self- and cross-saturation
oefficients. The quantities, 8, and 6 are frequency depen-

ized by the same loss term. Lamb’s equations are onl% t and thei . ) in A dix A
adapted to describe resonant fielg@sodes: for instance, ent and their expressions are given in Appendix A.

they cannot be reduced to the description of the empty cavit Examination of Eqs(23) shows th".it the wo field com-
by removing the active medium, thus they cannot be applieéonems are coupled through saturation effects. In particular,

to the problem of an injected laser with a nonresonant field. e effective gain experienced by each component depends

Before we proceed further, we note that one can verif)Pn the intensity of the other. This effective gain writes
that Eq.(18) describes correctly the passive Fabrydeén- P i i i
terferometer when the susceptibilitw) reduces to zero. —P+p1=—PTPYer B O1p0d2a] (29
We look for the steady state &,, knowing thatE;=0 in
this case. Doing that, we find a result identical to E5).

The frequency dependence of the saturated susceptibili

One expects that the energy exchange between these compo-
ents plays an important role in the behavior of the laser with
() depends on the considered line profile, which can bgn injec’ged signal and that a competition may occur.between
Lorentzian (homogeneous broadeningGaussian(inhomo- hem. Itis also clear that the cumulqted phase experienced by
geneous broadenifgor a mixture of both(Voigt). We have both components depends on the |ntenS|_ty of the other gnd
Tg_us mutual frequency push-pull effects will appear. We will

considered the latter case and the emission line shape is dnot study such effects in the present work. The next step is to
scribed by the complex plasma-dispersion funcgg). The determine the steady-state solutions of E@S) and study

expression of the saturated susceptibility is given in Appentheir stabilit
dix A. The complex variablg is defined as Y.
I=X+iY, (20) IV. STEADY-STATE AND STABILITY ANALYSIS
Since we are interested in the steady-state operation of the
whereY represents the ratio of the homogenedis to the  SL, the time derivatives are set to zero and the four E2f).

inhomogeneousl's) widths of the laser transition are solved fo€,, &,, ¢, andg,. After some straightforward
algebra Eqgs(23) can be cast into

r .
Y:F—; (21) I1[1—exp(—p+p})]*=0, (253
1,[1—2 cogd,)exp —p+ph) +expA —p+ph) =52,
andX is the reduced frequency defined by 2 2) XA P+ P P TP (25b)
w—w NS .
X= " (22 cog ¢,) = <2 [1-cogdp)exp —p+py)], (250
The real and imaginary parts of Eq4d7) and (18) can be ) \/G . .
written as sin(¢gy) = — 5 sin(®)exp(—p+ p3). (250
d&; : The set of equation&@5) shows two groups of solutions, for
9, - Gll-exp—p+py)], (2339 the amplitude of the two fields:
£,=0, &#0 (caseA),
des (23b)
dr £#0, &#0 (caseB).
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Case A The first group of solutions, which will be labeled (a)

A, corresponds to the locked regime, i.e., the laser oscillation  g20|
is quenched by the external signal. This can be easily under-
stood from Eq(253 with the expressiori24) for the effec-

tive gain. If the intensityl , is high enough to force the term
(—p+p}1) toward negative values, the componéptis de-
stroyed because it experiences no gain. In other words, the.;l 010 /
locking of the laser has to be closely associated with the™
cross saturatiofat least, at first sight In the locked regime,

the output of the slave laser corresponds to an injected signal %%
that is amplified by the regenerative gain, resulting from the

0.15

nonoscillating slave laser. 0.00 . s . s )
Case B The second group of solutions, labelBd indi- 0.00 0.01 ooz oo o 0.05
cates a coexistence of the two uncorrelated components with Normalized injection coefficient n

frequenciesw; and w,, i.e., the slave laser is not locked.

These two groups of solution can be exclusive of each
other, but they can overlap as well, depending on the experi- 020 (b)
mental conditions. One sees that, because of the nonlinearity
of the equations, several solutions for the intensity are pos-
sible, for a given parameter set. The main control parameters %151
in an injected laser experiment are the ggiand the optical
length of the slave laser, the frequensy, and the strength /
of the injected signal. One should note that, for the same
length, one can have several solutions for the frequency of™
the SL. This is because the round-trip phadsg=2N de-
pends upomp’, which itself depends upon the intensities. As
soon as there are several possible solutions for the intensities
for a given length, there are also several possible frequen- . . . . ;
cies. 0.00 0.01 0.02 0.03 0.04 0.05

Thus one is led to study the stability of the steady-state Normalized injection coefficient 1
solutions of Egs(25) for different sets of control parameters.
For instance, in our experiment, we scanned the SL length G, 1. Intensityl 5 inside the slavéhere lockedl laser vs the
with a constant injected signal. In the following we will per- normalized injected intensityy when the normalized frequency
form a stability analysis of the steady-state solutions: thex;=0 (frequency of the slave laser at line ceitén the numerical
intensity of the slave laser inside and outside the lockingalculations, we took/=0.5, d,=45 cm. These values have been
range can be found with this method and this is what weused in the computations leading to Figs. 148. X,=0. (b)
want to compare with the experimental observations. On&,=0.003. It should be noted that the stability analysis reveals that
should be well aware that three dynamical varialigs £,,  these stationary solutions can be unstable.
and¢g,) govern the system and thus there are three Lyapunov
exponents for each stationary solution. Following the experiequations(25) gives one or three real and positive solutions
ment, one has to choose the proper path in the complicatefdr |,. Figure 1 shows a plot of the solutidg, as a function
phase domain. In the present work, we have chosen to limitf the injected amplitude field for two values of the reduced
ourselves to the particular situation where the control paramfrequency X, of the master laser: X,=0 [Fig. 1(a)] and
eter is the optical length of the slave laser. However, itX,=0.003[Fig. 1(b)]. In both cases the SL frequency is at
should be noted that the theoretical results also describkne center, i.e.X;=0, which corresponds to the laser length
other effects such as jumps of intensity from solut®iiB)  d,. We will call 5d the variation of this length with respect
to solutionB (A) accompanied by hysteresis effects. Theseto d,. The caséX;=0 leads to simpler numerical calculations
bistable effects can be observed with the intensity of thebecause some dispersive effects vanish. As a first comment,
master laser as the control parameter, for fixed frequencies @he sees that the lengtie., the frequengyof the slave laser
both the ML and the SL. They will be described in detail in plays a role, even though ,=0. This becomes clear if one
another paper. examines the phase terd,, which is given by Eq(19) in

Before we proceed further, it is important to characterizewhich the length appears inside :
the strength of the injected signal. This is done by the injec-
tion factor » defined as the amplitude of the injected field Wy
normalized by the same value as that used for the SL field ‘DZ:A_C
(see Appendix A

Xé 2dw2

1+2

X2
+?}

The curve in Fig. tb) shows that the solutioh,, can be
single or triple valued depending on the strength of the in-
Here the SL eigenfield is switched off by the injected jected field. This could mean bistability in the intensity re-
signal and this is the most simple situation becaluse0.  sponse of the SL if solutiod were alone. This is a conse-
Now, depending on the values of the parameters, the set gfuence of Eqs(25), which, forl;=0, describe the evolution

A. Steady state: Case A
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b

0.5 | /
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FIG. 2. Intensities of the field componentg andl ,g inside the ©
slave (here unlockejllaser vs the normalized injected intensigy s
for the same control parameters as in Fig. 1. Dashed lihgs,
continuous linesl,g. Again these solutions can be unstable.
, 0.000 0.0‘05 0.0‘10 0.0.15 0.0.20
of an optical signal injected into a Fabry+Becavity filled Normalized injection coefficient 1

by a resonant saturable medium. The variationk,gfalone
with the amplitude of the injected field show a hysteretic 5 5 Intensities(a 1, and g in the unlocked regime(o)

cycle whose W,idth decreases _vvhen the dgtun&)g in- I,5 in the locked regime, an@) total measurable intensity showing
creases. If the input frequency is resonant, i@ =0, the  he pistable domain between the limits and 7, vs the injected

Curve touches théys axi's [F!g. 1a)] and moves away from jntensity. HereX,=0 and the variationsd=0.001 um of the SL
it for 6X>0 as shown in F|g (b) This effect can also be |ength with respect to the line center.

found from Adler’s model and has already been reported in
the literature]23]. It is also coherent with what happens in In order to answer this question, one has to study the

the ordinary dispersive bistability. However, as we will see, . ; X g ;
the lower and the middle branches are unstable here becauséteablllty of the stationary solutions. This is done by making a

, tandard small signal linear stability analysis of the steady-
one has to consider the set of the three Lyapunov exponen . ; e
. ; . State solution®A and B. This stability is governed by three
simultaneously and thus the hysteresis cycld gf is not

: Lyapunov exponents associated with the dynamical variables
experimentally observable alone. .

&1, &, and ¢,. The existence of at least one Lyapunov ex-
ponent with a positive real part means that the steady state
under consideration is unstable. The calculation of these

The field in casdB, contrary to cas@, is characterized by Lyapunov exponents is standard and details are given else-
the coexistence of the laser and the injected componentshere[28]. The main steps and an example are indicated in
Figure 2 displays the variations of the intensitigg andl,; ~ Appendix B.
as a function of the injection factor fox,=0 and §d=0 Figure 3 describes a hysteresis cyfég. 3(c)] for the
[Fig. 2(a@)] andX,=0.003 andsd=0[Fig. 2(b)]. As in Fig. 1,  total SL intensity that can be observed when the injected
one can again obsen@®-shaped curves that will introduce power # is increased and then decreased for a fixed fre-
some complexity to the phenomenon. At this point, we doquency of both lasers. In this example, we have takgn0
not yet know which solutiorA (locked or B (nonlocked and 6d=0.001 um. Whensd=0.001um, one can note that
will be chosen by the laser. there are three values of the frequenGy(which are around

B. Steady state: Case B
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0.001 23, corresponding to a detuning of 180 kHzigures
3(a) and 3b) display the intensities in the unlocked case 020
[Fig. 3(@], and in the locked cadé-ig. 3(b)]. In Figs. 3a)

and 3b) vertical lines have been drawn separating unstable 5 15
and stable regions as a function gf This has been done §
after examination of the numerical values of the Lyapunov g o}
coefficients. For small values af, on the left of 5, [Fig. 2

3(a)], the calculated Lyapunov exponents tell us that the up- 005
per (1,g) and the lower branchi §z) of solutionB are stable
(unlocked laser They also tell us that, on the right of point 0.00 L—oit 3 o 55 o] o =5
7, [Fig. 3(b)], the upper branch of solutioh is stable. Thus Mirror displacement ( pm)

one sees that an increase mbtarting from#»=0 brings the

laser from the unlocked regiméig. 3(a)] into the locked

regime aty,. Now a decrease af from upper values, i.e., in I, (b)

the locked regioriFig. 3(b)], forces the laser to jump to the 0-08 -
unlocked solution forz,. Thus the bistability range is, for
this frequency An=7,— ;. Let us note that this hysteresis 0.06
effect is frequency dependenkyn decreases whenX in-
creases. The output intensity of the SL is proportional to the 0o
total intensityl ; available inside the cavity: it is proportional

to I+=1,, in caseA and toly=1,5+1,5 in caseB. The 0.02 |

curve in Fig. 3c) shows the predicted observable intensity as

a function of 7. . 0.00 345 32 ] 5.0 a1 02 03
Calculated line shapes can also be obtained from the pre- Mirroir displacement (xm)

ceding analysis. Graphs in Fig. 4 show an example of the
total intensityl; of the slave lasefFig. 4(@)] together with

the variations of ; [Fig. 4(b)] andl, [Fig. 4(c)] as a function

of the SL length. The resonant frequency is at line centerand %21 (c)
the injected intensity is high enough to avoid any bistability
(7=4%). As the eigenfrequency of the slave laser comes 015
closer to the injected frequency, one sees a collapse of the
intensityl ; [Fig. 4(b)] and a simultaneous increasd y{Fig. 010 |-
4(c)]. The interval of length of the slave cavity for which the
intensity I ; vanishes corresponds to the locking range. The  oo0s5}
line shape of the slave lasky [Fig. 4@)] shows an intensity

peak surrounded by two dips. This peak is a sensitive func- g0
tion of the injection factor as shown in Fig. 5, where the line

shape is drawn for four values af. One should have a
double-valued curve for small values gf We have drawn

here the solution with the lower intensity only, leaving the | | functi fits | the intensity of the SL
complete study of bistable effects for another paper. siave jaser as a function of 1ts engffiy) the intensity of the ]
eigenmode, angt) the intensity of the component corresponding to

theAlnr?éhef:am;ei)efsttng ?:S§,|anoetr5tuhd(;?]dﬂ:2 ;h: Ilteer:z;ltu:)ef, t;ﬁhe injected signal. Here the gagr=1.1 and the laser is outside the
In€é shap slav Ser w requency Bistability range,»=0.04. It should be noted that the frequency

injected signal is not at line center. Such a situation is deEjoes not change inside the locking region where it is fixed by the

,piCt(_ed in the Cu_rves in Fig. 6_’ showing a Sim”ar behavior ASmaster laser and two frequency components exist outside this do-
in Fig. 5, but with asymmetric peaks and dips. main.

The main result of Adler's model concerns the locking
range, which was found to increase linearly with the injec-|n the next section we compare the theoretical results with
tion factor, as shown in Ed9) and observed experimentally experimental line shapes.
by several author$6,7]. Here one can define the locking
range Awoe IN @ natural way based on the stability V. EXPERIMENTAL OBSERVATIONS
analysis: Awy iS the frequency domain where at least the
real part of one Lyapunov exponent associated with solution The experiment consists of two single-mode He-Ne la-
B is positive (for a given set of control parametgrdt is  sers, sketched in Fig. 8, working on the same linear polar-
represented in Fig. 7 for two values of the reduced gagf  ization at the wavelength=3.39 um. The plasma tubes are
the slave lasefg is normalized to thresholdIt should be homemade: the bore diameter is 3.5 mm, their length is 30
recognized thai) the variation of the locking range with the cm, and the total pressure is 2 Torr with a ratio
amplitude of the injected signal is globally linear afiid the ~ He:N&°=5:1. The master laser is coupled into the slave laser
frequency locking mechanism can have a threshold and gaithrough an optical isolator to prevent any optical feedback
dependence that are not expected from Adler's model. Thif'om the SL to the ML. Both the master and slave lasers are
threshold has already been experimentally obsef6e?i7l.  working on a single longitudinal and transverse mode. The

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Mirror displacement (um)

FIG. 4. Theoretical curves showirig) the total intensity of the
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r 20 -
L =1.06
15k
il B
2 = =11
= | £
3 g‘) 10 |
g o 1n=0.04 E
& >
= £
S 0 1n=0.02 -
©
2 0lZ A 1 . 1 N ) N ) N 1
a 0.00 0.01 0.02 0.03 0.04 0.05
o o n=0.01 Normalized injection coefficient n
! FIG. 7. Theoretical locking range as a function of the injection
=0 factor for two values of the gain of the slave laser. The upper
) n= ‘ branch crosses zero and the lower branch shows a threshold.
04 02 00 02 04 charge current in the slave laser. The first point to be dis-
Mirror displacement (m) cussed here is the strength of the coupling between the mas-

ter and slave lasers. The incident powgy at the entrance of

FIG. 5. Calculated line shape of the slave laser with increasinéhe SL can be expressed as
injection factor forX,=0.
2 Pinj=TiKcPwm.

output mirror of the slave laser is held by a piezoelectric . :
transducefPZT) that allows the slave laser frequency to beWherePM s the output power of the master las@y,is the

swept freely. The adjustment of the master laser frequency 2hd 2 YIG crystalwhere YIG denotes yttrium iron garnet

als?hdeogggztaoriz gslde”r}?ntehnet :ga}[;r?r;rerggure the SL lin and K is a geometrical factor, less than unity, accounting
object ¢ _EXp X . . or the geometrical overlap of the incident beam and the laser
shape, i.e., its intensity as a function of its optical length an

the locking range for different parameters, which are the ode, both in the tranverse and longitudinal directions. For a

. . . iven experiment, the value &g changes with respect to
master Iase_r frequency, the amplitude of the 'UJeCted S'gn.aglignment That makes experimental measurements on in-
and the gain of the slave laser or, more precisely, the dis- :

Jected lasers difficult to reproduce quantitatively. We note
that our experiment has not been designed to allow for any
very precise control ofg .

F Experimental curves in Fig. 9 display the evolution of the
SL line shape for different values of the injection factor
when the injected frequency corresponds to the center of the
Ne line. As in the theoretical results Fig. 5, an intensity peak
appears around the injected frequency. This peak may be
considered as an extension of the Airy function for the in-

n=0.04 jected laser. It appears because the energy of the active me-

dium is concentrated only in a single frequency component,
while outside the locking range, it is split into two mutually
incoherent fields. The shape of the intensity peak evolves
according to the strength of the injected signal. Indeed, one
sees that dips grow on both sides of the peak for higher
injection levels. The case of the injection on one side of the
n=0.01 slave laser line is shown in Fig. 10. The comparison of these
experimental observations with the line shapes of Figs. 5 and
6 shows good agreement between our theoretical and experi-
mental results.

transmission of the isolator made up of two calcite polarizers

n=0.02

‘ Optical power (arb. units)
. — .

n=0

o7 @z 00 o0z 04 VI. CONCLUSION
Mirror displacement (pm)

In this paper we have reexamined the early idea given by
Tang and Statl5], which states that the frequency locking

FIG. 6. Evolution of the calculated line shape of the slave lasephenomenon in injected lasers results from gain quenching
with increasing injection factor foX,=0.3. by the imposed field. For this purpose, we have written two
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E 12 13 14 15 16 1|718 19 20 21 22 23 24
7
' 1o 9 g8 |6 5 43 2 1
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———>time

programmable HT

power supply PZT
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FIG. 8. Experimental setup: ML, master laser; SL, slave laser; 1, alignment laser; 2-22, piezoceramic transducer and laser mirror; 3-21,
rotatable plates to control light polarization; 4-6-18-20, plates closing the laser tube;/b+h8fal shieldings; 7-17, apertures to obtain
single-frequency lasers; 8-16, laser mirrors; 9, tiltable plate to control the role of the phase of the master laser; 10-11, mi2nsiale,
to control the polarization; 13-14-15, optical isolator.

equations, one for each component of the field, which arenonious model of the slave laser. We were able to compute
both considered as dynamical variables competing togethehe injected laser line shapes, whether or not the injected
in the case of a clash-laser. As the injected field is not field frequency is tuned to line center. Theoretical results are
resonant, the cavity losses associated with it are differembtained and compared to line shapes measured with a
from those of a resonant mode and vary with its frequencyHe-Ne laser operating at 3.38m. This comparison undoub-

as in an empty Fabry-Pat cavity. We have thus introduced tly proves the validity of our model, which also allows us to

a different way of writing the basic equations. These twomake the connection with the standard stability analysis. The
ideas—competing fieldgleading to gain quenchingand locking range is thus defined in a standard way. We have
frequency-dependent losses—when put together, give a harried to show the weaknesses of the traditional Adler model.

Optical power (arb. units)

D3>
)

" 1 " L L 1 " 1 i L L
040 020 000 020 040 Y R — Y 02 07
Mirror displacement ( um) Mirror displacement ( pm)

FIG. 9. Experimental SL line shape for increasing injection sig- FIG. 10. Experimental SL line shape for increasing injection
nal. X,=0. Compare to Fig. 5. signal. X,~0.3. Compare to Fig. 6.
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We have obtained other theoretical and experimental results These are sums over powers of matrix elements of the
related to bistability effects. Up to now we have not yetdipolar moments. For the 3.39m Ne line, one has the re-
measured them very precisely with our laser, but similar efduced sums

fects have been observed on semiconductor lasers and are

well known by the specialists of the fieJ&9]. Our ideas can S;=46papl®, S2=2Upanl®,  Sz=|manl®

be extended to these lasers by adding a dynamic equation f
the injected field with the proper parameters to the set o
equations that is normally used. They can also be extended

roo. -
}Q—unctlonsU, V, andW are velocity integrals. They are ex-
essed as functions of the plasma dispersion funciion

the vectorial cas§22] or to the study of the dynamic prop- 3,
erties of injected laseld.3]; our model contains the physics 7 7 7 7 77
of the dispersive optical bistability and finally it is closely —y,=z/—- =222, 71 y -z _22_22,72
. . 1 1 ’ 2 2 ’
related to the theory of the laser linewidi®1], where the o Yy X LY X
source term is spontaneous emission only.
_Zi—Z Zi+Z Z-Zf Z+Zf
ACKNOWLEDGMENTS TUX =X XEX+2iY X=X +20Y XX
The optical isolator was kindly lent to us by N. B._Abra- z Zi—ZJ* Zi+Zj*
ham (BrynMawr College. We have benefited from discus- W =Z{- —— — + )
sions with him and with Dr. Sanchez, Dr. Meziane, and Dr. XitlY X=X +2IY  Xj+X;
Besnard.

X; and X, are the detuningsX;=(w;— wg)/ku normal-
ized byku, which is half the inhomogeneous linewidt.is
the ratio of the homogeneous over the inhomogeneous width.

The aim of this appendix is to give expressions for thelyPically Y=0.5. One hag;=X;+iY; N is the population
gain and saturation coefficients and also to give the normalnversion.|; and |, are the intensities of the field compo-
ization coefficient for the intensity. We use the usualnents. Pumping is defined with respect to threshold, which is
iteration-perturbation method applied to the density-matrixtSelf defined in such a way that for this gain, losses are
elements. The third-order polarizability is deduced from this€Xactly compensated at line center. Thus one writes
calculation. This calculation has already been performed in do SN
Ref.[30], for instance, following standard methods. @oo Oth

The usual two energy levels are considered in the context goC  fiku
of the dipolar approximatiorH; represents the nonperturbed 71 is the value of for X=0. This relation define. the

a7 ; 5 0 =U. Oths
Ejgm\}\?hr;lc%ni’gv:/sritttgi g'spglzrum%T?hr:’fz;ﬂu;ig;esggsotggm opulation inversion at threshold. A normalized polarizabil-
’ L for both components of the field can thus be written
w1 andw,. The polarizabilitye;, for each componeri; can y P
be written

APPENDIX A

Zi=In
0 rirs

:p.

pmpgl - T [Si+StSs
SoNo No 1 -z h2k?u?S,yZ;
w1p=— 22 2 () + 7353 (S1+5,+S)) 0 %%
1 1 1
Xy iUt 41, iV, =W, 0————— | | |,
)l iUt IV Wy PY TEUETRY XX Y ]
y o1 2y TRZX,—X,+iY ||’
Z* (L) [ S1tS$+S
SoNo No —pgl — 2 1

2=~ gy 20 g (St S+ Sy S I A PRt

X4 i iU*+1./iv* 1_W* . X[ 1, = iUs+14]iV3 E—W* ; .

2y V2t War o= Wor S o v | |- 2y T2y TR X, +iY
The following symbols are used in these expressions: The normalization factor for intensities follows:
21,2,,2 i
_ 2 - | ShKRu?yZ,
So % |Iu“bmt1,am| , I, =14(wg)= (Sl+Sz+Sg)U6.
-y 4 Here the subscript 0 means that the quantities are evaluated
S1= = | #omzam”, at line center and the superscriptandr stand, respectively,
for the imaginary and real parts of the complex functions.
, , Finally, polarizabilities can be written under the more com-
52:% |/-met1,am| |Mbmtl,ami2| ) pact form

p1=PO{a1—B1l1— 014l 5},

33:2 |Mb +1, |2|Mb +1, |2-
- m=1lam m=2lam p2=pg{a’2—,32|2_021|1}1
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with the abbreviations for the normalized quantities, includ-1,; andl,¢ are the stationary intensities, i.6;3= ¢4 and

ing the (negative self- and cross-saturating terms:

| ,s=&,5€5s. This system can be written under &3 matrix
form that can be diagonalized in order to obtain the

yad Z*
a,=— (Fl), ay=— (FZ), Lyapunov exponents.
Zy Zy Let us consider solutior first. This solution is charac-
iu* ius terized by
Bl:_U_B' BZZ_U_B' 81520, 8257&0.
0,,= —[iV’{z— W‘:’sz;_ i If we define the vectoﬁGE(ﬁsl,ﬁsz,ﬁgoz), the rate equa-
X=X +1Y ] Ug tion for 8U can be written
] y 1 -
=—|iV%— — | —. dsu -
051 iV~ Wy, X1—X+iY | U} ar =MpoU,
I, andl, now stand for intensities normalized by. with
APPENDIX B A Az A
Ma=| A2 Az A,
The aim of this appendix is to give a few details on the Az; Az Ag

calculations leading to the theoretical curves represented in
Figs. 1-7. The system of equatiof®s) is first solved for the ~where
stationary solutions in casésandB, i.e., with one or both :
components of the field. Then a small signal stability analy- A;;=—(1—e P™*1s), A;,=0, A;3=0, A,=0,
sis is performed that shows the bistable regions and the hys-
teresis domains.

The system of equation23) writes

Agy= —[1—cog® g e P+ Pa]

—2pglyee P P2 BhSin( D) — BhCOg Do),

-81::_81[1_eip+pi1],
=0 As=—T7 sin(gz), Ag=0,
@1 ’
. o JT
g,==—¢g,[1—codd,)e PT 2]+ Ty cod ¢,), A= 8277 Sin(@,5) — 2pge o4 BHCOL D)

2s

. i T - i
pr,=—sin(d,)e PHra— Q sin(@5). + Bosin( @ ,5) Je P P2,
2

Ty
cog ¢y).

2s

One writes the dynamic variables in the form Agg=—

81:815+581, 82:825+582,
We have used the abbreviations
where the index stands for the stationary solutions and the
symbols beginning with$ stand for small variations around
these stationary values. One thus obtains the linearized equa-
tions of evolution of the small variations

p2s= PO ax— B2l x],
p1s=PO[ a1 — 61l 5],

Se1=— Se,[1— (1+2pgphl e PTrh]

41

2q)25= )\O

sd+aX,+ phs.

: i
+ de,2pge g8 250'126_ P P1s,

In the case of solutioB, both components of the field are

5(;01: 0,
has agairdsU/dt=MgsU, with

86,=— Se,[ 1— COg Do) P P2s]
Bll BlZ BlS

Mg=|B21 B2y Boas|,
Ba1 Bsz Bas

— £ S(D)SIN(Dpg)e PP

— 8p, cod D,0)e P P2s]— \[T 7 sin(@a) S0y,
where

5= —[8(D5)cog Dog)e P*Past Sphsin(d e P Pos]

+ﬁn32ir(¢z)5 VT7
2

511:2pgﬂi1|15a

£o— O¢p,CO . o
€2s 2 €2s #2004 ¢25) B1o=2pge1se2s01£ PP,

different from zero: &;,#0 ande,#0. In matrix form, one
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FIG. 11. Theoretical curves showirig) the intensityl ,5 inside FIG. 12. Theoretical curves showirig) the intensitied ;5 and

the slave laser vs its lengtkh) the Lyapunov coefficients associ- |,g in the unlocked regime, inside the slave laser as a function of its
ated with the solutiorA, and(c) a zoom of the central part of the length,(b) the Lyapunov coefficients associated with the soluBon
curve for the Lyapunov coefficients. In the numerical calculation,and (c) a zoom of the central part of the curve for the Lyapunov
we tookY=0.5,dy=45 cm,X,=0, and%=0.04. These values have coefficients.

been used in the calculation leading to this figure and Fig. 12.

Ty .
Bys=0, Bao= {?27 SIN(¢s2) —2Ppge 26l (85— 015)COL D)
S
By1= —2pgesse 1 p+p‘zs[( 65,— B5)sin(® ) + BLsin(@,) ] (e P Pe,
— 0h,c04D,9)],
n
Bas=— cog ¢ys),

€2s

Boo=—[1~ 005((1)25)67%');5] —2pg |2s,l:«'7p+pi2S

P i with the abbreviations
X[(Bz— 01)SIN(P2s) — B0 P5) ],

p2s= POl az— Bol 26— 021l 161,

Bas= \/fn sinte2). p1s= POl a1 — Bil1s— 012l 261,

Ba1= —2pged (651~ B1)COY P;) + bhysin(@;)], 2% 5= pos P1sT AN Xy).
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Now the matricedl , andM g are diagonalized in order to stability of both solutions is complementary, i.e., when solu-
study the stability of each solution belonging to ca8esnd  tion A is unstable, solutiom8 is stable and vice versa. The
B. Each solution is thus characterized by a set formed by theentral zone where solutioA is stable corresponds to the
three eigenvalues, i.e., the Lyapunov exponents. For a sollecking zone. From these data, it is possible to study inde-
tion to be stable, the real part of these three eigenvalues mugendently the field&€,; andE,. On sees that in cad®, the
be negative. The calculation is done by a computer. CAses real part of the Lyapunov coefficient,g and A;g are not
andB are illustrated in Figs. 11 and 12, respectively, wheredegenerate between the limits labeMdandM’. The three
stationary solutions, together with their associated Lyapunocoefficients are all different in this area. The same remark
exponents, are drawn versus the mirror displacement of thapplies to the region limited b andN’ in caseA. Finally,
slave laser and for=0.04. Figure 1(a) represents$,g and let us remind the reader that this example corresponds to the
I, and Fig. 11b) the associated real part of Lyapunov ex- simple situation where there is only one real solution in both
ponents noted g, \yg, and\gzg. Figure 11c) shows an en- casesA andB. In the region wheré,,, or |5 andl ,g areS
larged version of Fig. 1(b) in the central zone. Equivalent shaped, one has three solutions for a given valu@.dfhe
curves for casé\ are drawn in Fig. 1@&), 12(b), and 12c) calculations can become very long, especially if one has to
with the evident notatiom 4, Aya, @NdAga. converge toward the proper frequency linkedl $@, or |15

One sees that for this value of the injection coefficient, theand| 5.
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