PHYSICAL REVIEW A VOLUME 55, NUMBER 2 FEBRUARY 1997
Reflection of the Jaynes-Cummings dynamics in the spectrum of a regularly pumped micromaser
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We derive approximate analytical expressions for the spectrum of a regularly pumped micromaser. Our
procedure is based on ensemble averaging rather than time averaging, and the results are obtained from the
solution of a non-Markovian evolution problem. For certain values of the atom-field interaction time the
spectrum is split into several equidistant peaks. We show that this line splitting reflects the phase reversal of the
entire cavity field caused by the transit of a single atom. This phenomenon is due to the occurrence of quantum
Rabi oscillations and it is closely related to the Jaynes-Cummings re{/&H050-29477)08601-0

PACS numbeps): 42.55—f, 42.50—p

. INTRODUCTION relation(a’(t+t;,)a(t))~—(a’(t)a(t)), which also cannot
be explained in classical terms. The field-field correlation
Recently, renewed attention has been paid to the experfunctions have to be considered when the phase of the field is
mental test of field quantization in a single-mode cavityyncertain, i.e.{(a)=0, as it is the case in lasers and micro-
which reveals itself in the occurrence of quantum Rabi 0Smasers which are pumped by atoms being in a definite en-
cillations at discrete frequencies when the cavity is probegygy state. To avoid confusion we note the following. When
by two-level atoms. For Rydberg atoms interacting with thegneaking of collapse and revivals in the Jaynes-Cummings-
vacuum or with a small coherent field in a microwave cavity, yunamics one is thinking of atoms that probe one and the
the Rabi nutation in the atomic population has been observe me field with increasing interaction times. However, when

for a wide range of interaction times, and the signal ha% e interaction time;,,; is changed, the field which is built up

indeed been found to exhibit discrete Fourier components 3 the atoms chanaes. too. Thus one cannot trace the dvnam-
frequencies proportional to the square root of successive inYY ges, 10o. y

tegerg 1]. Much earlier the oscillation of the atomic popula- Ics of the Jayngs-Cumr_‘nmg§ model in the original sense by
tion in a conventional micromaser had been detected for J'€asing the interaction time. Rather, for each value of
limited range of interaction timg]. The observed behavior tint ON€ obtains one single point of the collapse-revival curve
was reminiscent of the collapse and revival of the atomidOr one specific field. For properly chosen valuestigfthe
population which are obtained for a coherent field with the@bove-mentioned nonclassical phase reversal will occur.
help of the Jaynes Cummings-mo(i8] describing the inter- It is the aim of the present contribution to show by an
action of a single two-level atom with a single quantizedanalytical treatment that in the spectrum of a micromaser
mode of the radiation field. Whereas a collapse of the RabWith regular pumping5] clear evidence can be found for the
nutation could also be due to classical intensity fluctuationsionclassical phase reversal of the field-field correlation func-
giving rise to a spread of the Rabi frequencies, the revival igion caused by the quantum Rabi oscillations. The phase re-
a pure guantum effect which has its origin in the discretenessgersal reveals itself through a splitting of the power spectrum
of the possible values of the field energy. into several equidistant peaks, alternatively, through an os-
Another effect that arises from the granular structure ofcillatory decay of the correlation functiotia(7)a(0)) with
the field energy and that cannot be explained classically igrowing 7, for certain values of the interaction timyg,. The
the approximate reversal of the phase of the cavity fieldneasurement of the spectrum of a regularly pumped micro-
strength that occurs for certain values of the interaction timenaser at these values tf; therefore could provide an inde-
due to the transit of a single atom even at very large fielcdpbendent experimental means for the observation of one of the
amplitudes. For a coherent field this effect has been calcunost pronounced gquantum features of the Jaynes-Cummings
lated numerically with the help of the Jaynes-Cummingsmodel.
model [3]. It has been found that almost complete phase We mention that spectral splitting due to regular pumping
reversal occurs when the interaction timyg is an odd mul-  has been already found previously by numerical calculations
tiple of the revival timg/3]. More generally, th& function  [6] or by an approximate analytical treatmdm using a
of the coherent field turned out to be shifted by the phasetroboscopic approach with subsequent time averaging. In
anglew in the complex plane at these valuestgf[4]. contrast to this, we make use of the recently propd$dd
A phenomenon closely related to the phase reversal of thenified treatment of discret@egulay and continuou$9,10]
field strength consists in the phase difference of the compleron-Poissonian pumping which rests on ensemble averaging.
field-field correlation functions relating the field strength be-The strength of this method consists in the fact that it yields
fore and after the transit of a single atom to the original fieldan evolution equation for the field density matrix that can be
strength. Witha anda' being the single-mode photon anni- easily interpreted in physical terms and that allows exact
hilation and creation operators, this can be expressed by treolutions [8] under trapping-state conditiof41]. As we
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shall show, for large mean photon numbers an approximater/T] atoms may be present in an interval of lengtthat is

analytical treatment is possible. arbitrarily located with respect to the arrival times of the
atoms. When the micromaser has reached a stationary state
Il. BASIC EQUATIONS which is independent of the initial conditions and described

. . ] . by the steady-state density operagor lim ., ..p(7), all two-

We consider the conventional one-atom mmroméskg] time expectation values of field quantities can be obtained
pumped by a beam of resonant Rydberg atoms which are. ; .

. o ith the help of the evolution operat®f [8]. In particular,
excited to the upper level of the maser transition. Throughou¥v

Co we get[8]

the paper we suppose that only one atom at a time is present
in the cavity and that the damping of the cavity field can be (a™(7)ak(0))s= T V(7,0/apa’™]. (4)
neglected over the transit timg, of a single atom. The
change of the reduced density opergioof the field caused As a straightforward generalization of the usual power spec-
by the interaction with a single atom then can be formallytrum we introduce thé-photon spectrung,(w) that could
described by the equatigs(t + ti,) = M (tj,) p(t), where, in  be determined by Fourier transforming the output current of

the photon-number representation, the Jaynes-Cumminga- hypothetical photodetector which is based on

superoperatoM is given by k-photon-absorption, i.e., we define, in analogy to the re-
cently introduced two-photon-spectrym3],
[Mp]n’n_,.k:COi yn+k+ 1gti,cogVn+ 1gtint)Pn,n+k
_ _ 1 (= (@™MDa0)ss (i
+Sin( VN +Kgtin) SINVNGtin) Pr— 10+ k-1 S(w)=—Re . dka)—e , (B
SS

(1)
_ _ ) _ wherev is the frequency of the cavity mode. In RgL3] it
with n,k=0,1... andg being the atom-field coupling con- has peen shown that the two-photon spectrum can be deter-
stant. Due to cavity damping over a time intervahe field  mined by investigating the two-photon absorption in a weak
density operator is changed accordingp(@) =exp(t)p(0).  peam of two-photon-resonant probe atoms. It yields addi-

where tional information about the dynamics of the density matrix
w of the cavity field, which cannot obtained from the one-
Lt — A pt(n+ ki2) PR photon spectrum.
e =e 1-e
[ P]n,n+k jZO ( )

Ill. ANALYTICAL RESULTS

n+k+j\/n+j
X j j Pn+jnik+j- (2 First let us consider the Jaynes-Cummings dynamics
separately. Describing the field &t 0 by the density opera-

Here y denotes the cavity damping constant and, for simplic10r p, We calculate the field expectation val("(tiy)) af-
ity, thermal photons have been neglected. ter the interaction with a single atom, and the field correla-

The evolution of the density operatprin the interaction tion function(a™(ti,)a“(0)). MaklngTuse of Eq(1) and of
representation, resulting from the combined action of cavityfn® properties of the operatossanda’ we find
damping and atom-field interaction, obeys the general equa- o GEl
tion p(7)=V(7,0)p(0). For allkinds of non-Poissonian mi- a™(t. )y =T Mpat 1= n ' 00 (¢
cromaser pumping the resulting dynamics, characterized by< (tin) =T Mpa ] 20 ar Pt (tind,
the evolution operatoi/(7,0), can be shown to be non- (6)
Markovian[8]. In the following we specialize to a microma- ) o
ser where the Rydberg atoms in the incoming atomic bearhere we introduced the abbreviation

are regularly spaced with the time intervalbetween suc- ®
cessive atoms. We assume that the atoms are brought into  fn (tin) =0 Vn+k+ 1gtip)cog yn+ 1gtin)

resonance with the field with probability before the inter- K
action with the cavity field. The evolution operatd( 7,0) +/1+ ——sin(Vn+k+ 19t
then explicitly read$8] n+1

1 (xT ) X sin(yn+1gti,). (7
V(T,O)z—f dt’et T~ [1+p(M—1)]
TJo On the other hand, in analogy to Ed) we arrive at
x{e"[1+p(M—1)]}L7Tett (a'*(t;,)ak(0)) =T Makpa’ ]
1(T w
- 1 aL(XT=t/) g aL T _ [7/T] Lt (n+k)!
- TJdet © {e [l+ p(M 1)]} € :n§=:O n! Pn+k,n+kf(nk)(tim)- (8)

& Obviously, for a field that is initially in a coherent state
wherex= 7/T—[7/T] with [ 7/T] denoting the largest inte- |a), the interaction-time dependence is identical in the ex-
ger that does not exceedT. The two parts of the sum in the pressions (6) and (8) since V(n+Kk)!/n!pp.ynik
above equation arise from the fact that eithefT]+1 or =akpn,n+k. The same holds true when the photon-number
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distribution is truncated at the maximum photon number . T
Nma=K since then only the terms with=0 survive in the ~ V(7,00=€"T1+p(M—1)]l"™
sums. Now we assume that the photon-number distribution

S

of the field is strongly peaked at the mean photon number (13
n>k. By expanding the square root in front of the sine termTaking into account Eqg11), (12), and(4) it seems justified
of Eq. (7) we get the approximation to make the approximation
Tk k — Tk ok
9 () = cog (Y + 1+ K— VT D)gtin)] (@Hna(0)s=vd(rOfaalss, (14
2 where
+2n e/ STONGtw) ® vi(r,00=e"¥2T1+p(b—1)]7T
. e . k) . T T
that can be further simplified to yieltf~b, with X1 1+p(b—1) 7511 (15

kgt k k| | with b,=b,(t;,;) being given by Eq(10). It is interesting to
bk(tim):cos( Wﬂl + Z_W( 1- 4_%5'”2( Vngtiny), note that Eqs(14) and(15) provide an exact solution of the
(10) non-Markovian evolution problem when the photon-number
distribution is truncated at,,,,= k [8]. This can be achieved
by operating the micromaser under tkephoton trapping
condition gtj,=q@/Vk+1 (g=1,2,...) [11]. Instead of
Eg. (10 one then has to use the quantig}

which is independent of. Instead of Eqs(6) and (8) we
therefore may write

<aTk(tint)> _<aTk(tint)ak(o)> _ - qm
@) ~ @Xojakoy °rtw="1. (1D bk=bk(q)=cos(qw>cos( M) (16

From Eq.(9) it becomes obvious that the cosine term on thewhich follows from Eq.(7) with n=0. From Egs.(5) and
right-hand side of Eq.10) stems from the discreteness of the (14) we obtain thek-photon spectrum
Rabi-oscillation frequencies due to field quantization. When

kgty=2mVn(2l+1) (1=0,1,...), i.e., whenb, is ap- _ER 1 1+ p(b,—1)
proximately equal to—1, the phase of the complex field Sdw)= T k ]

quantity (a') is reversed by the interaction with a single §7+'(“’_ky) §7+'(w_ky) T
atom whereas the amplitude is kept constant. l=edl this

corresponds to the reversal of the electric field strength due 1—elW2)y+ilo=kn]T

to the Jaynes-Cummings interaction which has been calcu- X1_[1+p(bk_1)]8—[<k/2>v+i(w—kv>]T

lated for a coherent field to occur at odd multiples of the
revival timetg=g~27/n [3].

When describing mere cavity damping over a time inter- 17
val of lengtht for a field with a photon-number distribution
which is strongly peaked at the mean vahte 1, we can use
the approximation

When b,<0, the quantity % p(b,—1) may take on
negative values. In this case the functiog(7,0) exhibits
oscillatory decay in a sawtooth like manner, [§-8]. This
leads to a splitting of the spectrum into several peaks sepa-

1k k(g yak Ltgak ootk
(a k(td)> _(a k(td)ak(0)> _ Trle”a’pa™] _ o (02 rated by the distancAw= 27T 1; see Figs. 1 and 2 for the
(a™0)) ~(a™(0)a*0))  Trla*pa’™] usual one-photon spectrum. Sirlsgcannot be smaller than

(12 —1[cf. Egs.(10) and(16)], spectral splitting can only occur

when p>3 in accordance with the results obtained numeri-

We remark that for a field being initially in a coherent state,cally [6] for k= 1. The physical origin of this spectral split-
Eq. (12) holds true for arbitrary values of since in this case ting is the reversal of the sign of the field strengtihen
for normally ordered expectation values the dynamics idaken to be real initially due to the transit of a single atom,
identical to that of the corresponding classical quantities. Iror, more precisely, the reversal of the sign of the correspond-
the frame of our approximation, which is valid to the lowesting field-field correlation function, which is expressed by a
order of the small quantity — %, the deviation of the strongly negative value ob,. To estimate the average effect of one
peaked photon-number distribution from the Poissonian on&jected atom on the field in our model, we have to consider
belonging to a coherent state is negligible. both the possibilities that the atom does not interact with the

In order to calculate th&-photon spectrum with the help field since it is out of resonance, which occurs with probabil-
of Egs.(3)—(5), we make use of the fact that on the assump-ty (1—p), and that an interaction takes plag@obability
tion of a strongly peaked photon-number distribution withp), which causes a change due to the quantum features of the
n>1 the superoperatoiis and M approximately commute Jaynes-Cummings interacti¢see Eq(11)]. Thus the factor
[14]. After performing the integration with respecttbowe  1—p+pb, in Eqg. (15 becomes plausible. With decreasing
then obtain from Eq(3) atom distanceT, i.e., with increasing injection rate or in-
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5 regime of the micromaser this production rate equals the
photon loss raten. When we insert the expressiéh0) into
— =25 Eq. (19), replacing siA(vngt;,) by yn/r, we obtain the line-
width of thek-photon spectrum with Poissonian pumping

1_00{ kgtint)
2yn’

. I(gtint Y
k =4rsm2( 4Jn=> +k24—F (20)

L For the one-photon spectrum this result is identical with the
(@ 2w - 1)/ linewidth calculated previously[15] for a Poissonian
pumped micromaser having a strongly peaked photon-
5 number distribution with a sufficiently large mean photon
57 =% numbern. The latter can be only achieved when the pump
rater is considerably larger than the cavity decay constant
v. Therefore it becomes obvious from E@Q0) with k=1
that for most values df,,; the micromaser linewidth is much
larger than the Schawlow-Townes linewidi#2n of a con-
ventional laser operated well above threshold. An exception

only occurs wherifor k=1) cos@t,/2y/n) is close to unity,
J\ i.e., when the interaction time is an even multiple of the
revival time. In these cases the phase change of the field due

2 Y
4n

Aw®=2r

200 -10 0 100 20 to the transition of a single atom is caused by spontaneous
(b) 2w =)/ emission only and not by the superposition of Rabi oscilla-
FIG. 1. One-photon spectrum of a regularly pumped micromaseHons with different frequencies.
for different values of §T) "% The quantity & p(b;—1) has the In Fig. 2 the dependence of the one-photon spectrum on
value —0.9, whereb; is given by Eq.(10) with k=1. the value ofb, is illustrated for Poissonian pumping and for

regular pumping §=1) with the same rate=T 1. The

creasing mean photon number of the field, respectively, thbroadening of the overall spectral width with decreasing
distance between the spectral peaks is enlarged and the in#ialue ofb, is clearly visible. On the other hand, when split-
vidual peaks are broadenésee Fig. 1 ting occurs for regular pumping, the width of the individual

Phase reversal of the field due to the Jaynes-Cumminggeaks is diminished with decreasity, the splitting thus
interaction with a single resonant atom, of course, also ocbecoming more and more pronounced. For complete splitting
curs for Poissonian pumping. However, this effect cannot béb,=—1) the overall linewidth takes its maximum value
observed in the spectrum since the spectral splitting igtr =4/T. Because the peak distance is/Z, only two very
smeared out due to the statistical distribution of the arrivalstrong peaks will be practically resolvable.
times of the atoms, whereas the overall linewidth remains For a micromaser operated under thghoton-trapping
approximately constarisee Fig. 2. To see this more explic- condition, thek-photon spectrum for Poissonian pumping is
itly, we investigate Eq(17) in the double limitp—0,T—0  exactly of Lorentzian shape with linewidth

butr=p/T finite, which corresponds to Poissonian pumping qm
with pump rater [5]. By expanding the exponential func- AoM=ky+ cog(qw)cos( ) (21)
tions for smallT we find after minor algebra vk+1
Kk g=(1,2,...), following from Egs.(16) and(18) and being
1 5 yr(1-by in accordance with the result derived previously for 1
Sdw)=—r 2 (19  [16]
2 YHr(1-by +(w—kv)? IV. CONCLUSIONS
describing a Lorentzian spectrum with linewidflull width ~ Finally, we stress once again that our analytical results for
at half maximum n>1 hold true only for those values gf; where the photon-
number distribution indeed is single-peaked. In all other
AoM=Kky+2r(1-b,). (19 cases one has to resort to numerical calculations. We men-

tion that in these other cases also for Poissonian pumping
The Lorentzian spectrum corresponds to an exponential de&pectral splitting can occur, however, not into regularly
cay of the correlation function@'™(7)ak(0)) in accordance spaced peakEL7]. The reason then is that the approach to
with the Markovian character of the field dynamics for Pois-equilibrium is dominated by several exponentially decaying
sonian pumping. On the assumption of a strongly peakedontributions. Some of them enter with negative weight, and
photon-number distribution with large mean photon numbesince they decay at different rates, in various time intervals
n the average rate of photon production in the cavity due tosarious terms may dominate the dynamics, thus giving rise
atomic deexcitation ig sir?(yngt;,), and in the stationary to an oscillatory approach to equilibrium. In contrast to this
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FIG. 2. One-photon spectrum of a regularly pumped micromaser pvith and (yT) =20 (full line) and of a Poissonian pumped
micromaser withr/ y=20 (dashed ling The values of the parametby are(a) 0.9, (b) 0.5, (c) 0.1, (d) —0.1,(e) —0.5, and(f) —0.9.

Note addedSince submitting this paper, we received a

for a micromaser with regular pumping the sawtoothlike de-
cay of the field-field correlation functions at certain values ofmanuscript by Briegedt al.[18], which also deals with spec-

the interaction time and the corresponding spectral splittingral micromaser properties.
into several equidistant peaks is caused by the fact that a

single atom can truly reverse the phase of the entire cavity

field due to the occurrence of Rabi oscillations with discrete ACKNOWLEDGMENTS
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Jaynes-Cummings dynamics.
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