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Reflection of the Jaynes-Cummings dynamics in the spectrum of a regularly pumped micromase
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We derive approximate analytical expressions for the spectrum of a regularly pumped micromaser. Our
procedure is based on ensemble averaging rather than time averaging, and the results are obtained from the
solution of a non-Markovian evolution problem. For certain values of the atom-field interaction time the
spectrum is split into several equidistant peaks. We show that this line splitting reflects the phase reversal of the
entire cavity field caused by the transit of a single atom. This phenomenon is due to the occurrence of quantum
Rabi oscillations and it is closely related to the Jaynes-Cummings revival.@S1050-2947~97!08601-0#

PACS number~s!: 42.55.2f, 42.50.2p
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I. INTRODUCTION

Recently, renewed attention has been paid to the exp
mental test of field quantization in a single-mode cav
which reveals itself in the occurrence of quantum Rabi
cillations at discrete frequencies when the cavity is prob
by two-level atoms. For Rydberg atoms interacting with t
vacuum or with a small coherent field in a microwave cavi
the Rabi nutation in the atomic population has been obse
for a wide range of interaction times, and the signal h
indeed been found to exhibit discrete Fourier component
frequencies proportional to the square root of successive
tegers@1#. Much earlier the oscillation of the atomic popul
tion in a conventional micromaser had been detected fo
limited range of interaction times@2#. The observed behavio
was reminiscent of the collapse and revival of the atom
population which are obtained for a coherent field with t
help of the Jaynes Cummings-model@3# describing the inter-
action of a single two-level atom with a single quantiz
mode of the radiation field. Whereas a collapse of the R
nutation could also be due to classical intensity fluctuati
giving rise to a spread of the Rabi frequencies, the reviva
a pure quantum effect which has its origin in the discreten
of the possible values of the field energy.

Another effect that arises from the granular structure
the field energy and that cannot be explained classicall
the approximate reversal of the phase of the cavity fi
strength that occurs for certain values of the interaction t
due to the transit of a single atom even at very large fi
amplitudes. For a coherent field this effect has been ca
lated numerically with the help of the Jaynes-Cummin
model @3#. It has been found that almost complete pha
reversal occurs when the interaction timet int is an odd mul-
tiple of the revival time@3#. More generally, theQ function
of the coherent field turned out to be shifted by the ph
anglep in the complex plane at these values oft int @4#.

A phenomenon closely related to the phase reversal of
field strength consists in the phase difference of the comp
field-field correlation functions relating the field strength b
fore and after the transit of a single atom to the original fi
strength. Witha anda† being the single-mode photon ann
hilation and creation operators, this can be expressed by
551050-2947/97/55~2!/1385~6!/$10.00
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relation^a†(t1t int)a(t)&'2^a†(t)a(t)&, which also cannot
be explained in classical terms. The field-field correlati
functions have to be considered when the phase of the fie
uncertain, i.e.,̂ a&50, as it is the case in lasers and micr
masers which are pumped by atoms being in a definite
ergy state. To avoid confusion we note the following. Wh
speaking of collapse and revivals in the Jaynes-Cummin
dynamics one is thinking of atoms that probe one and
same field with increasing interaction times. However, wh
the interaction timet int is changed, the field which is built up
by the atoms changes, too. Thus one cannot trace the dyn
ics of the Jaynes-Cummings model in the original sense
increasing the interaction time. Rather, for each value
t int one obtains one single point of the collapse-revival cu
for one specific field. For properly chosen values oft int the
above-mentioned nonclassical phase reversal will occur.

It is the aim of the present contribution to show by
analytical treatment that in the spectrum of a microma
with regular pumping@5# clear evidence can be found for th
nonclassical phase reversal of the field-field correlation fu
tion caused by the quantum Rabi oscillations. The phase
versal reveals itself through a splitting of the power spectr
into several equidistant peaks, alternatively, through an
cillatory decay of the correlation function,^a†(t)a(0)& with
growingt, for certain values of the interaction timet int . The
measurement of the spectrum of a regularly pumped mic
maser at these values oft int therefore could provide an inde
pendent experimental means for the observation of one of
most pronounced quantum features of the Jaynes-Cumm
model.

We mention that spectral splitting due to regular pump
has been already found previously by numerical calculati
@6# or by an approximate analytical treatment@7# using a
stroboscopic approach with subsequent time averaging
contrast to this, we make use of the recently proposed@8#
unified treatment of discrete~regular! and continuous@9,10#
non-Poissonian pumping which rests on ensemble averag
The strength of this method consists in the fact that it yie
an evolution equation for the field density matrix that can
easily interpreted in physical terms and that allows ex
solutions @8# under trapping-state conditions@11#. As we
1385 © 1997 The American Physical Society
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1386 55ULRIKE HERZOG AND JÁNOS A. BERGOU
shall show, for large mean photon numbers an approxim
analytical treatment is possible.

II. BASIC EQUATIONS

We consider the conventional one-atom micromaser@12#
pumped by a beam of resonant Rydberg atoms which
excited to the upper level of the maser transition. Through
the paper we suppose that only one atom at a time is pre
in the cavity and that the damping of the cavity field can
neglected over the transit timet int of a single atom. The
change of the reduced density operatorr of the field caused
by the interaction with a single atom then can be forma
described by the equationr(t1t int)5M (t int)r(t), where, in
the photon-number representation, the Jaynes-Cummi
superoperatorM is given by

@Mr#n,n1k5cos~An1k11gtint!cos~An11gtint!rn,n1k

1sin~An1kgtint!sin~Angtint!rn21,n1k21

~1!

with n,k50,1 . . . andg being the atom-field coupling con
stant. Due to cavity damping over a time intervalt the field
density operator is changed according tor(t)5exp(Lt)r(0),
where

@eLtr#n,n1k5e2gt~n1 k/2!(
j50

`

~12e2gt! j

3AS n1k1 j

j D S n1 j

j D rn1 j ,n1k1 j . ~2!

Hereg denotes the cavity damping constant and, for simp
ity, thermal photons have been neglected.

The evolution of the density operatorr in the interaction
representation, resulting from the combined action of cav
damping and atom-field interaction, obeys the general eq
tion r(t)5V(t,0)r(0). For all kinds of non-Poissonian mi
cromaser pumping the resulting dynamics, characterized
the evolution operatorV(t,0), can be shown to be non
Markovian@8#. In the following we specialize to a microma
ser where the Rydberg atoms in the incoming atomic be
are regularly spaced with the time intervalT between suc-
cessive atoms. We assume that the atoms are brought
resonance with the field with probabilityp before the inter-
action with the cavity field. The evolution operatorV(t,0)
then explicitly reads@8#

V~t,0!5
1

TE0
xT

dt8eL~xT2t8!@11p~M21!#

3$eLt@11p~M21!#% [ t/T]eLt8

1
1

TExT
T

dt8eL~xT2t8!$eLT@11p~M21!#% [ t/T]eLt8

~3!

wherex5t/T2@t/T# with @t/T# denoting the largest inte
ger that does not exceedt/T. The two parts of the sum in th
above equation arise from the fact that either@t/T#11 or
te
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@t/T# atoms may be present in an interval of lengtht that is
arbitrarily located with respect to the arrival times of th
atoms. When the micromaser has reached a stationary
which is independent of the initial conditions and describ
by the steady-state density operatorr̄ 5 limt→`r(t), all two-
time expectation values of field quantities can be obtain
with the help of the evolution operatorV @8#. In particular,
we get@8#

^a†k~t!ak~0!&ss5Tr@V~t,0!akra†k#. ~4!

As a straightforward generalization of the usual power sp
trum we introduce thek-photon spectrumSk(v) that could
be determined by Fourier transforming the output curren
a hypothetical photodetector which is based
k-photon-absorption, i.e., we define, in analogy to the
cently introduced two-photon-spectrum@13#,

Sk~v!5
1

p
ReE

0

`

dt
^a†k~t!ak~0!&ss

^a†kak&ss
e2 i ~v2kn!t, ~5!

wheren is the frequency of the cavity mode. In Ref.@13# it
has been shown that the two-photon spectrum can be d
mined by investigating the two-photon absorption in a we
beam of two-photon-resonant probe atoms. It yields ad
tional information about the dynamics of the density mat
of the cavity field, which cannot obtained from the on
photon spectrum.

III. ANALYTICAL RESULTS

First let us consider the Jaynes-Cummings dynam
separately. Describing the field att50 by the density opera
tor r, we calculate the field expectation value^a†k(t int)& af-
ter the interaction with a single atom, and the field corre
tion function^a†k(t int)a

k(0)&. Making use of Eq.~1! and of
the properties of the operatorsa anda† we find

^a†k~ t int!&5Tr@Mra†k#5 (
n50

` A~n1k!!

n!
rn,n1kf n

~k!~ t int!,

~6!

where we introduced the abbreviation

f n
~k!~ t int!5cos~An1k11gtint!cos~An11gtint!

1A11
k

n11
sin~An1k11gtint!

3sin~An11gtint!. ~7!

On the other hand, in analogy to Eq.~4! we arrive at

^a†k~ t int!a
k~0!&5Tr@Makra†k#

5 (
n50

`
~n1k!!

n!
rn1k,n1kf n

~k!~ t int!. ~8!

Obviously, for a field that is initially in a coherent sta
ua&, the interaction-time dependence is identical in the
pressions ~6! and ~8! since A(n1k)!/n!rn1k,n1k
5akrn,n1k . The same holds true when the photon-numb
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distribution is truncated at the maximum photon numb
nmax5k since then only the terms withn50 survive in the
sums. Now we assume that the photon-number distribu
of the field is strongly peaked at the mean photon num
n̄@k. By expanding the square root in front of the sine te
of Eq. ~7! we get the approximation

f n
~k!~ t int!5cos@~An111k2An11!gtint!]

1S k

2n̄
2

k2

8n̄2D sin2~An̄gtint! ~9!

that can be further simplified to yieldf n
(k)'bk with

bk~ t int!5cosS kgtint
2An̄ D 1

k

2n̄ S 12
k

4n̄D sin2~An̄gtint!,
~10!

which is independent ofn. Instead of Eqs.~6! and ~8! we
therefore may write

^a†k~ t int!&

^a†k~0!&
5

^a†k~ t int!a
k~0!&

^a†k~0!ak~0!&
5bk~ t int!>21. ~11!

From Eq.~9! it becomes obvious that the cosine term on
right-hand side of Eq.~10! stems from the discreteness of th
Rabi-oscillation frequencies due to field quantization. Wh
kgtint52pAn̄(2l11) (l50,1, . . . ), i.e., when bk is ap-
proximately equal to21, the phase of the complex fiel
quantity ^a†k& is reversed by the interaction with a sing
atom whereas the amplitude is kept constant. Fork51 this
corresponds to the reversal of the electric field strength
to the Jaynes-Cummings interaction which has been ca
lated for a coherent field to occur at odd multiples of t
revival time tR5g212pAn̄ @3#.

When describing mere cavity damping over a time int
val of lengthtd for a field with a photon-number distributio
which is strongly peaked at the mean valuen̄@1, we can use
the approximation

^a†k~ td!&

^a†k~0!&
5

^a†k~ td!a
k~0!&

^a†k~0!ak~0!&
5
Tr@eLtdakra†k#

Tr@akra†k#
5e2~k/2!gtd.

~12!

We remark that for a field being initially in a coherent sta
Eq. ~12! holds true for arbitrary values ofn̄ since in this case
for normally ordered expectation values the dynamics
identical to that of the corresponding classical quantities
the frame of our approximation, which is valid to the lowe
order of the small quantityn̄21, the deviation of the strongly
peaked photon-number distribution from the Poissonian
belonging to a coherent state is negligible.

In order to calculate thek-photon spectrum with the hel
of Eqs.~3!–~5!, we make use of the fact that on the assum
tion of a strongly peaked photon-number distribution w
n̄@1 the superoperatorsL andM approximately commute
@14#. After performing the integration with respect tot8 we
then obtain from Eq.~3!
r

n
r

e

n

e
u-

-

,

s
n
t

e

-

V~t,0!5eLt@11p~M21!# [ t/T] H 11p~M21!S t

T
2F t

TG D J .
~13!

Taking into account Eqs.~11!, ~12!, and~4! it seems justified
to make the approximation

^a†k~t!ak~0!&ss5vk~t,0!^a†kak&ss, ~14!

where

vk~t,0!5e2~k/2!gt@11p~bk21!# [ t/T]

3H 11p~bk21!S t

T
2F t

TG D J , ~15!

with bk5bk(t int) being given by Eq.~10!. It is interesting to
note that Eqs.~14! and~15! provide an exact solution of the
non-Markovian evolution problem when the photon-numb
distribution is truncated atnmax5k @8#. This can be achieved
by operating the micromaser under thek-photon trapping
condition gtint5qp/Ak11 (q51,2, . . . ) @11#. Instead of
Eq. ~10! one then has to use the quantity@8#

bk5bk~q!5cos~qp!cosS qp

Ak11
D , ~16!

which follows from Eq.~7! with n50. From Eqs.~5! and
~14! we obtain thek-photon spectrum

Sk~v!5
1

p
ReF 1

k

2
g1 i ~v2kn! H 11

p~bk21!

F k2 g1 i ~v2kn!GT
3

12e@~k/2!g1 i ~v2kn!]T

12@11p~bk21!#e2[ ~k/2!g1 i ~v2kn!]T J G .
~17!

When bk<0, the quantity 11p(bk21) may take on
negative values. In this case the functionvk(t,0) exhibits
oscillatory decay in a sawtooth like manner, cf.@6–8#. This
leads to a splitting of the spectrum into several peaks se
rated by the distanceDv52pT21; see Figs. 1 and 2 for the
usual one-photon spectrum. Sincebk cannot be smaller than
21 @cf. Eqs.~10! and~16!#, spectral splitting can only occu
when p. 1

2 in accordance with the results obtained nume
cally @6# for k51. The physical origin of this spectral split
ting is the reversal of the sign of the field strength~when
taken to be real initially!, due to the transit of a single atom
or, more precisely, the reversal of the sign of the correspo
ing field-field correlation function, which is expressed by
negative value ofbk . To estimate the average effect of on
injected atom on the field in our model, we have to consi
both the possibilities that the atom does not interact with
field since it is out of resonance, which occurs with probab
ity (12p), and that an interaction takes place~probability
p), which causes a change due to the quantum features o
Jaynes-Cummings interaction@see Eq.~11!#. Thus the factor
12p1pbk in Eq. ~15! becomes plausible. With decreasin
atom distanceT, i.e., with increasing injection rate or in
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1388 55ULRIKE HERZOG AND JÁNOS A. BERGOU
creasing mean photon number of the field, respectively,
distance between the spectral peaks is enlarged and the
vidual peaks are broadened~see Fig. 1!.

Phase reversal of the field due to the Jaynes-Cumm
interaction with a single resonant atom, of course, also
curs for Poissonian pumping. However, this effect cannot
observed in the spectrum since the spectral splitting
smeared out due to the statistical distribution of the arri
times of the atoms, whereas the overall linewidth rema
approximately constant~see Fig. 2!. To see this more explic
itly, we investigate Eq.~17! in the double limitp→0,T→0
but r5p/T finite, which corresponds to Poissonian pumpi
with pump rater @5#. By expanding the exponential func
tions for smallT we find after minor algebra

Sk~v!5
1

p

k

2
g1r ~12bk!

F k2 g1r ~12bk!G21~v2kn!2
~18!

describing a Lorentzian spectrum with linewidth~full width
at half maximum!

Dv~k!5kg12r ~12bk!. ~19!

The Lorentzian spectrum corresponds to an exponential
cay of the correlation functionŝa†k(t)ak(0)& in accordance
with the Markovian character of the field dynamics for Po
sonian pumping. On the assumption of a strongly pea
photon-number distribution with large mean photon num
n̄ the average rate of photon production in the cavity due
atomic deexcitation isrsin2(An̄gtint), and in the stationary

FIG. 1. One-photon spectrum of a regularly pumped microma
for different values of (gT)21. The quantity 11p(b121) has the
value20.9, whereb1 is given by Eq.~10! with k51.
e
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regime of the micromaser this production rate equals
photon loss rategn̄. When we insert the expression~10! into
Eq. ~19!, replacing sin2(An̄gtint) by gn̄/r , we obtain the line-
width of thek-photon spectrum with Poissonian pumping

Dv~k!52r F12cosS kgtint
2An̄ D G1k2

g

4n̄

54rsin2S kgtint
4An̄ D 1k2

g

4n̄
. ~20!

For the one-photon spectrum this result is identical with
linewidth calculated previously@15# for a Poissonian
pumped micromaser having a strongly peaked phot
number distribution with a sufficiently large mean phot
numbern̄. The latter can be only achieved when the pum
rate r is considerably larger than the cavity decay const
g. Therefore it becomes obvious from Eq.~20! with k51
that for most values oft int the micromaser linewidth is much
larger than the Schawlow-Townes linewidthg/2n̄ of a con-
ventional laser operated well above threshold. An excep
only occurs when~for k51) cos(gtint/2An̄) is close to unity,
i.e., when the interaction time is an even multiple of t
revival time. In these cases the phase change of the field
to the transition of a single atom is caused by spontane
emission only and not by the superposition of Rabi osci
tions with different frequencies.

In Fig. 2 the dependence of the one-photon spectrum
the value ofb1 is illustrated for Poissonian pumping and fo
regular pumping (p51) with the same rater5T21. The
broadening of the overall spectral width with decreas
value ofb1 is clearly visible. On the other hand, when spl
ting occurs for regular pumping, the width of the individu
peaks is diminished with decreasingb1, the splitting thus
becoming more and more pronounced. For complete split
(b1521) the overall linewidth takes its maximum valu
4r54/T. Because the peak distance is 2p/T, only two very
strong peaks will be practically resolvable.

For a micromaser operated under thek-photon-trapping
condition, thek-photon spectrum for Poissonian pumping
exactly of Lorentzian shape with linewidth

Dv~k!5kg1cos~qp!cosS qp

Ak11
D , ~21!

q5(1,2, . . . ), following from Eqs.~16! and ~18! and being
in accordance with the result derived previously fork51
@16#.

IV. CONCLUSIONS

Finally, we stress once again that our analytical results
n̄@1 hold true only for those values oft int where the photon-
number distribution indeed is single-peaked. In all oth
cases one has to resort to numerical calculations. We m
tion that in these other cases also for Poissonian pump
spectral splitting can occur, however, not into regula
spaced peaks@17#. The reason then is that the approach
equilibrium is dominated by several exponentially decay
contributions. Some of them enter with negative weight, a
since they decay at different rates, in various time interv
various terms may dominate the dynamics, thus giving r
to an oscillatory approach to equilibrium. In contrast to th

er
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FIG. 2. One-photon spectrum of a regularly pumped micromaser withp51 and (gT)21520 ~full line! and of a Poissonian pumpe
micromaser withr /g520 ~dashed line!. The values of the parameterb1 are ~a! 0.9, ~b! 0.5, ~c! 0.1, ~d! –0.1, ~e! –0.5, and~f! –0.9.
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for a micromaser with regular pumping the sawtoothlike d
cay of the field-field correlation functions at certain values
the interaction time and the corresponding spectral split
into several equidistant peaks is caused by the fact th
single atom can truly reverse the phase of the entire ca
field due to the occurrence of Rabi oscillations with discr
frequencies, an effect which is closely related to the Jayn
Cummings revival. Thus the detection of these equidist
spectral peaks could provide an independent means for
observation of one of the most pronounced features of
Jaynes-Cummings dynamics.
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Note added.Since submitting this paper, we received
manuscript by Briegelet al. @18#, which also deals with spec
tral micromaser properties.
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