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Semiclassical study of the laser transition
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A semiclassical, nonlinear theory of a single-mode laser is developed so that the transition around threshold
can be studied. The field is expressed in the frequency domain which allows us to emphasize the role of the
Fabry-Peot cavity. A generalized Airy function is obtained for the laser line shape: it contains the source line
shape and the empty cavity line shape. It describes the laser both above and below threshold, including the
transition region where there is an abrupt increase of intensity and decrease of the laser linewidth. The general
arguments are illustrated by detailed numerical calculations for the (8139ine of the He-Ne laser. The
intensity of the spontaneous emission source which plays a central role is computed from first principles.
[S1050-294{@7)07601-4

PACS numbg(s): 42.55.Ah, 42.55.Lt, 42.60.Da

I. INTRODUCTION ductor lasers equations. A huge amount of literature has been
devoted to the subje¢¥] but it seems that no semiclassical
The laser line is known to be very narrow as compared tastudy exists which allows the calculation of the transition
atomic emission lines; its shape can be described by &om the Airy to the laser line shape when the gain is in-
Lorentzian function whose width obeys a formula given bycreased from below to above threshold. The experiment that
Schawlow and Townefl] almost 40 years ago. This for- most directly relates to the study of this transition was per-
mula has been refined from different points of view, andformed by Gittner and co-worker§8,9], who measured the
basically applies to situations where the laser gain is eithelinewidth variation around threshold and verified the theories
above or below threshold, with a factor of 2 which distin- elaborated by Risken and co-workdi0—12 and Hamp-
guishes the two cases. Far below threshold, the usual Airgtead and Lax3], essentially based on a quantum formalism
function applies. It is the objective of this paper to give afor the field and describing its statistical properties. The state
description of the crossing of the laser from below to aboveof this art was expressed in Mandel and Wolf's textbook
threshold through a synthetic formulation of the line shapd13]. After all these extensive studies, one can ask what
and intensity, valid whatever the gain, in the framework ofurged us to attack the subject again. The basic reason is
the semiclassical theory of light-matter interaction. simply that in former formulas, it was not possible, in gen-
A laser is an optical device in which three fundamentaleral, to recover the Airy function from the laser equations by
physical effects play important simultaneous roles: the activeemoving the constants representing the active medium, nor
(pumped medium provides the spontaneous emissiono recover the active medium line-shape function by remov-
(source and the stimulated emissiofamplification. The ing the effect of the cavity. An exception can be found in
resonant cavity provides the feedback. A complete descripRef.[14], where it was shown that the intrinsic linewidth of
tion of the laser should thus include these three basic effecthe laser broadens to the free-atom natural linewidth when
together, i.e., one needs a formula or a set of equations whidihe transmittivity of the mirrors increases. The above draw-
are able to simultaneously describe the source, the amplifbacks probably occur because studies essentially focused on
cation and the resonant cavity. Up to now, laser line-shapehe description of the statistical properties of light in the time
theories have been essentially aimed at the description of ttdomain. Here we follow another path which leads to a syn-
field far above threshold: two methods are used to obtain thehetic formula, written in the frequency domain, based on
line shape. The first is described in Verdeyen'’s textbf@}k  semiclassical arguments and able to include simultaneously
for instance, and is based on an extension of the Airy functhe three basic effects which comprise a laser. Once we ob-
tion adapted to the laser. This is done in the frequency dotained this generalized Airy formula from simple arguments,
main. The second, which is most popular, is based om challenge was to see whether this formula was able to be
Fokker-PlancK 3] or Langevin[4,5] equations, and the use used quantitatively, and this is why considerable details are
of Wiener-Kintchine’s theorem which connects the time togiven in the following in an attempt to answer this question.
the frequency domain. This last method leads to a very smaffhe noise included in the laser light has different origis:
width of the laser lingin fact as-Dirac distribution and itis  (the so-called “technical noise” originating from acoustic,
generally admitted that its measurable limit stems fromthermal, or electromagnetic vibrations which affects the ele-
quantum effects due to the phase diffusion of randomly emitments of the cavity(ii) the noise brought by the pump; and
ted spontaneous photons. This view was also developed hjii) the quantum noise coming from the spontaneous emis-
Henry[6] under a different form, and the linewidth enhance-sion and from the leakage from the outside across the mir-
ment factora introduced by him is always used in semicon- rors. Note that quantum and collisional noise are already
phenomenologically partially included in the propertiise
shape of the emitting medium. In the following, we will be
*Electronic address: stephan@enssat.fr interested only in the way this line shape transforms
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when the medium is placed inside the cavity and when thehe mirrors, andS the amplitude of the electric field corre-
gain is increased. Related subjects, such as the transformgponding to the optical source. For the moment the system is
tions of the technical noise or the temporal statistics of lightconsidered to be transversally infinitee will take into ac-

are not considered. However, it should be noted that it igount the transverse distribution lateGenerally,S is re-
very difficult to experimentally separate different types of ated to an external fielé, which probegor which is probed
noise, and the difficulty of the interpretation is mcreasedby) the cavity across one mirro= /1_r125i_ This field is
when one becomes aware of their entanglement due to thensidered to be monochromatic, i.e., its spectrum is much
nonlinear character of the laser equations. The generaliz§ehrower than the cavity linewidth. The usual Airy function
Airy function which is developed here can thus be consid-yji6\ys the calculation of the spectral density of the field in-
ered as a tool which can also be used for other studies. Ajge the cavity, and the easiest way to obtain it is the so-

continuous description of the laser transition, i.e., the link.5)ieq round-trip method 15,16 which we recall in Appen-

between the properties of the empty or the passive cavity angiy A The slowly varying part of the field inside the cavity
the laser when the gain is progressively increased, can

, . . t1§’oeys
obtained by keeping the three above-mentioned effects to-

gether. We will give the main ideas in Sec. Il of this paper: a %’:
purely monochromatic, stationary source term is first consid- dt
ered inside the cavity, and the Airy function is written. This
source corresponds to the ideal case of a noise-free sour
because its spectrum iséalike distribution in the frequency
domain. This is the hypothesis usually taken in the case of an ¢=—2ol/c. (2.2
empty Fabry-Pet cavity probed by an external incident . . . .
be;)myof Iigh): whose spgctr:um is mlilch narrower than that of? the stationary regime, the intensiti{w) =£.£* can be
the interferometer. Then the extension to the real case of th&Mten
spontaneous emission with a wide spectrum is made: the _ S
source term and the amplification are calculated in Secs. H(w)= (1—e b%+4e tsirfwl/c’
[lI-V. The specific case of the single-mode He-Ne gas laser
at 3.39um is developed in order to illustrate the argumentswith S=SS*, and this is the Airy function for the empty
quantitatively. Here we will take into account the ZeemanFabry-Perot cavity. When doing this type of calculation, one
substructure of the levels, but the paper is not devoted tbas to keep in mind the time frequency relation: for instance,
vectorial aspects of light whose polarization will be keptif we decompose the field in the frequency domain into slices
linear. The mean-field approximation is used, and, in order tdhaving a width of 1 Hz, one needs at ledss tomeasure it,
find the spontaneous emission rate, a balance is made band thus Eq(2.1) would be able to describe the evolution of
tween the number of spontaneously deexcited atoms and tiiee amplitude of this component on a time scale of several
number of spontaneous photons. No quantum representati®@@conds which in fact, is considerably greater than the round
of the field is used, but a close connection to quantum equdrip time 2I/c.
tions exists: for instance we arrive at some conclusions al- Now let us consider the same cavity filled with an ampli-
ready given by Goldberg, Milonni, and Sundarfid]. The fying medium able to emit light inside a frequency interval
difference from usual theories comes essentially from thew narrow as compared to the resonance line of the cavity,
calculation in the frequency domain, which permits a mord.e., ideally at asingle frequencyw (noise-free sourgeand
precise description of the properties of the FabryePeav-  which is characterized by, the complex saturated polariz-
ity (which usually, is only represented by a quality factorability. The simplest form fora can be written, for a low
Q, i.e., a Lorentzianand those of the spontaneous sourcesaturating intensity,
(which usually is only represented by a diffusion tel. o P
The intensity and the line-shape expressions are calcu- a="a—Bl=a'+id'="a"—+i[%' -], (2.4
lated in Sec. VI: we obtain a generalized Airy function which . . .
. . - where the superscripts andi stand, respectively, for the
relates the spectral density of the laser lighe., its line . . . . .

.. real and imaginary partS« is the linear part angs is the
shapg to that of the source and to the total saturating field aturation coefficienB can take the Gaussian transverse dis-
intensity. Numerical results show, in the example studied, ar?.b . f liaht int t by includi trical
evolution of the linewidth from 10 MHz below threshold to tribution of light into account by Including a geometrica

some tens of Hz above. Measurements of laser linewidths i;\actor [17-19 (see Appendix B The source is also satu-

connection with quantum effects, design of optimized laser atzc:], dzngrgarga?i5§£t§r?tint$g'?Z(fie:fgr_r:sl’ovxzzrteo the
for metrology or telecommunications or studies of more - u P

complex lasers can benefit from this understanding. photons spontaneously emitted during the rqund-trlp time
2l/c and proportional to the saturated population of the up-

per level. When considering only saturating intensity av-
Il. BASIC ARGUMENTS eraged along the laseithe round-trip method applies, and

) ) ) ) _ _leads to the equation of evolution.
One aim of this study is to obtain a laser field equation

valid below and above threshold, i.e., an equation from d& c Loolaifcennid

which one can recover the empty cavity properties by remov- dt ﬂ[l_ e e °e'?]E+ ES* (2.9
ing the active medium. Let us first consider an empty Fabry-

Peot cavity. Its length id. r, andr, are the reflectances of where, this time,

c igre, ©
—5[1—6 e ]54‘58, (2.1

g@ereL stands for the losses arérepresents the round-trip
cumulated phase; here,

2.3
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w2l The effect of the source and the properties of the resonant
¢=——[1+a'2€]. (2.6)  cavity are thus not included in this equation. The Airy func-

Here we have not included the Guoy phase shift due to thlOn can be obtained from E(2.5) in the stationary regime.
Gaussian transverse structure of the beam, as it is unessenti&t us note here that the source term corresponds to the sum
to our calculation. Note in passing that a Lamb’s-type equaOf the photons spontaneously emitted during the tirhe 2
tion for a single-mode laser can be recovered fromEd) and intervalsv. A random function should describe these

by expanding the exponential, choosia@l/c=N27 and events and should depend upon the laser size, a fact not

taking S=0, ] included in usual laser theories. When the source and the
f:_i L+'“’|a 2.7 polarizability are written with their developed forms, one
dt 2l Ceg ' obtains
|
So—al

= — — - . (2.8
[1_e—L+w|(0 —BI)/eOC]2+4e—L+wI(O _ﬁl)/€0c5|nz[(w|/C)(l+(O r_ﬁrl)/2€o] )

This formula is able to describe the intensity distributionHere the only stable solution is with thé sign, because
when the frequency is scanned. Here the denominator castherwise the medium is still amplifying, which means that
become very small but cannot canéelis situation is physi- the intensity can still be increased. One sees #héas posi-
cally impossible because it would imply that the intensity I tive, and thus the medium is not transparent, as in Lamb’s
would tend toward infinity. We have already given an ac- theory. It is slightly absorbing, the compensation being the
count of this study in a recent conferen@g]. Let us now  contribution from the source. This conclusion agrees with a
compare the result given by formul@.8) to the intensity result obtained if14].

given by Lamb's theory above threshold. Here we will also  The simplified approach discussed above has been done to
take the convention following which the threshold is definedmimic the usual situation where a Fabryrfte cavity is

for the linear gain which compensates exactly for losses. Leprobed by a monochromatic field. In fact, it hardly corre-
I, be the intensity at resonangee., when the frequency is sponds to reality in the sense that in general no emitting

such that$=N2. Equation(2.8) becomes medium exists with an emission linewidth narrower than that
of the laser. In order to compute a more realistic case, one

So—alg thus has to take two effects into account.
IOI[1_e—L+wI<°a'—B'Io>/eoc]2' (2.9 (i) The source is the spontaneous emission of the medium

itself: one should consider the entire emission band and not

The term in the exponential is smaih the usual theory the only_ a single freqqency slice as above. o
_(ii) The saturating power which appears inside the com-

saturated gain exactly compensates for the losses in the staI in h b d h ¢ d
tionary regime. Thus it can be developed at first order, andP'€X 9ain has to be connected to the spectrum of power den-

; ; Iy ; sity. In other words, the intensity which appears on the
lo Is @ solution of the third-order equation right hand side of Eq(2.8) is no longer the same as that on
0,i_ pif 12 _ the left-hand side.
lo[L—wl/eoc(Ca’ = Flg) I~ Sptalo=0. (210 In order to attain this goal, it is first necessary to decom-
pose the field in the frequency domain. This will allow us to
use the fundamental property of Fabryr@tecavities which
is the fact thathe cumulated round-trip phase is frequency
dependentThen, in order to make a quantitative calculation
from first principles, one should compute the density-matrix
(2.11)  elements of the system and deduce the source and amplifi-
cation terms for each frequency. This will allow a calculation
of the line shape. For this purpose, we have chosen to work
. X "here on the specific case of the single-mode He-Ne gas laser
from this soluyon. Let us taklyy=1, + 4l. If one neglects_the at 3.39 um, because this line is a secondary standard of
small termdl* andadl as compared t@l,, one obtains, geqiency whose properties have already been studied at
from Eq. (2.10), length[7].

Sections IlI-V are now devoted to a calculation of the
saturated source term and to the amplification. This is done
for each component of the fielthside the laser emission
band If the reader is not interested in these rather tedious
12 derivations, he can jump to Sec. VI where he will find a

(2.13 generalization of Eq(2.9), i.e., the spectral density for the
laser, in Eq.6.16).

The usual solution, which we will denote , is obtained
from the condition ‘Saturated gain= losses’ It is written
as

wl/exc®al — L

L= ollegcB

Taking the source term into account brings a small deviatio

I [wl/egcB?61?—Sy+al =0, (2.12

and thus

Slo €oC (So—alL

wl '

I
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lIl. DESCRIPTION OF THE FIELD culated. The amplification is then obtained from the optical
AND DENSITY-MATRIX ELEMENTS coherences. The source term and the amplification have to be

. éound in the intervaldv around each particular frequency
We want to know the expressions for the source term an : . . .
vy as defined in Appendix C. For this purpose, we use a

for the amplification when the field is decomposed into slice wo-energy-level model in which the upper stas and the

Sv in the frequency domain inside the emission band. Th :
linewidth of this band can vary very much: from 10 MHZ,}Jg\r’sjr s_talteilr?d?rf 2character|zed by angular quantum num-
u— | = &

for instance, at low gain down to 1 Hz, or even less abov The calculations of the density-matrix elements will be
threshold. Thusév has to be adapted to each case. As a : . v ;

. . worked out in a vector basis which represent eigenstates of
consequence, the measurement time associated toan

vary considerably as well. We recall in Appendix C the con-the syst.em. They are labelgal m) or ||’m>' wherem is the
nection between the frequency and time domains descri magnetic quantum number. Because dipole moments are not

tions of the field. The real field corresponding to expansio%ir:)enSiﬁgeagimﬁfn;sugevs*sérgnetr;]as to taktehth|f§ ?decqlrrgom-
(C4) in Appendix C will be used in the following; i.e., we . : S 9 y the case, the neld will be
will take a field such as taken as Imearly polarized. The densny—mgtnx elements for a
class of velocityy obey the general equation
E=D, &q(t)e?mat-kzp & (t)e? mattikzic e (3.1 dp(v -
% falt) ba(t) 33 ih%t)z[(Ho—,wE),p(v)]_+p.t. (3.2

where we have explicitly identified the forward- and
backward-traveling components with indicésand b. The  p(v) is the density operatoH, is the Hamiltonian for the
modulus of these components will be approximated belowtom alone and the perturbation, in the dipole approximation,
by a mean value,. Note that the field is decomposed into is —u-E . u is the dipole operator and is the field. p.t.
frequency slices which are narrow as compared to the laseatands for the phenomenological terms which allow for the
line. restriction of the complete system to a two-level model: this

Now let us consider the amplifying medium itself. Many means, for instance, that the nonradiative deexcitation of the
theoretical calculations have been made on the He-Ne lasg@opulation of a level will be included in this symbol. The
[5], and here we will give only the main steps of the theory.quantization axis is taken to be along the propagation axis,
The first is to compute the density-matrix elements to first.e., along the laser axis. The derivative operator
order in the field intensity and in the context of the mean-d/dt=(§/6t) +v(8/6z) is written in the laboratory frame of
field approximation. Then the source term whose intensity iseference in order to take the velocity of atoms alarigto
proportional to the population of the upper level can be cal-account. Equations for the populations are developed as

. dpum,um_ = - = > . .

f dt __E'Mum,lmilplmtl,um+Epum,lmtl'#Imil,um_lhyupum,um+|h/\u7 (3.3
. dle,lm_ > > > > . .

ih dt _E'Mlm,umilpumil,lm+EPIm,umtlﬂumil,lm_|h')’lplm,lm+|hAl- (3.9

Here y, and v, are the total rates of deexcitation of the populations of the subléh@iy or [u,m). A, and A, are the
pumping rates. For simplicity, we have removed the subseript the notations.
Equations for the optical and Zeeman coherences are

dplm,umtl > >
ih dt :_hwoplm,umtl_E'MIm,umtl[Pumtl,umil_plm,lm]
_E[Mlm,umilpumil,umtl_plm,lthMImiZ,umtl]_ih')’luplm,umilu (3.5
. dpumum=2 = - = - .
ih dt :_E'/U«um,lmtlplmil,umtz"'Epum,lmil:“«lmtl,umiz_|h')’2upum,umi21 (3.6
dpim,im=2 > - > - .
ih dt :_E'Mlm,umtlpumtl,lmt2+Eplm,umtlﬂumil,lmiZ_|ﬁ72IPIm,Imi2- (3.7

Yiu:Y2u, @ndy, are, respectively, the deexcitation rates of These equations will be used to obtain the populations of
the optical coherencéhomogeneous widjhand of the Zee- both levels to second order in field amplitude and the polar-
man coherences inside the two levelsy, is the energy ization to third order. The rotating-wave approximation is
difference between both levels. Other coherences are netsed, i.e., one writes the expansion for the forward and back-
glected. ward waves of optical coherences
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Pf(lm,umil)ZE pfq(lm,umil)ei(wqt7k2)1 (386) qAb:wO_(wq+ kv)_|'}’lu- (3.13b
q

The second-order populations are

)= Lpel@dtkd (3.8 No(v)
Pb(im,umz1) % Pog(im,um=1)€ 5 ( ) Pumum Zﬁz [|Mumlm+1| +|Mumlm 1| 1Z,

We will use the relation (3.143
- Hiu =~ 2pim.1 I—r(v)ﬂm P+ 1?17,
Kimume1=V(j +1Em)(j+2xm)—=(X=xiy), (3.9 m,Im~ 20y m.um m,um=

\/E (3.14h

which is valid for aj=j + 1 transition(herej=1). u,, isthe  with the abbreviation
reduced matrix element. The field, being linearly polarized,

has equal components along the two counterrotating circular

vectors. The population distribution for atoms having a ve- I:Z |
locity v can be approximated at zero ordét:

q=f qAb q

I is the intensity of the field at frequeney, . This expres-

0 Ay Ny dv 505 sion will become important in saturation terms, i.e., when the
Pumuntv) ==~ e m (3103 hewidth | is thus justified ke th
Yo Yu o inewidth is very narrow. It is thus justified to make the
following approximation(see Appendix D
Ay Ny du 2
! : e vl (3.10b

T=|—

0 1
Pimim(v) = = _
T v aog Af A, A ¥

We make the approximation that the pumping does not d
pend onm. We will write

> g, (3.15h

1 1 1 1 }

Swhere theA’s are evaluated at the central laser frequency
(which will be denoted byw,). This frequency is generally
different from the central resonance frequensgyof the ac-

0 0 022 tive medium.
No(v)dv ="pumunts) ™ Pimim(v) = \/—U —-— € ™ Second-order Zeeman coherences are
m
(3.11)
e (v)dv
where we have used the abreviationy=(N,/v,) 2pumyumi2 i ZOﬁZ Mum|m+1M|m+1um+zI
—(N,/v). To first order, the optical coherences are, for the
. (3.163
forward and backwardi components:
. No(v)dv
5ql“Im,umt1 (3.123 Zplm,lm12: -1 Tmﬂlm,umtlﬂumtl,lmtzz-

1 _
w1 =— ——=—Ng(v),
Praimume ==~ 2.7 o(v) (3.160

A sum of beating terms between frequency components ap-
pears in computing these expressions. However, in our case,
the frequency differences are much more smaller than the
deexcitation rates, and thus can be neglected in the Lorentz-
with ians. We are thus left with a sum over exponentials which is

a ¢ function. This is why a field with a narrow spectrum can

A== (0g—kv) =iy, (3.133  be modeled with a single-frequency function. Third-order

n components of the velocity-dependent optical forward co-

and herence are written

ngIm,umil

! y=——=—No(v), (3.12
pbq(lm,um_l) ﬁ\/EqAE O( ) ( b

1 No(v)dvT

2 2
|/‘Lumi1,lmig| +|Mumt1,lmtg|
-+ :_| -+ 5
Ptn(im,um=1) 2\/§ﬁ3 nA? Mim,um=1¢n

" |Mum,|m+1|2+ |:Uvum,lm71 2
Yu Y

— 2 -+ + 2
. |,U«um+1,lm| " |:Uvum,1,lm,2| ] (3.17

Y2u Y2l
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We have neglected the spatial hole burning effect, i.e., terma random phas@. Half of them are emitted with the linear
containinge™?'?, polarization of interest. Moreover, we are interested here
only in these photons which are emitted inside the solid
IV. CALCULATION OF THE SOURCE TERM angle Q=2w(l1-cos) of the Ilaser mode. Here
. 6= arctan/7W,, whereW, is the radius of the beam waist.
~ We want to know the source term which feeds the lasefrhe ratio /47 is often called the spontaneous-emission
field, i.e., the term which corresponds ®in Eq. (2.3 or  ¢oypling factorg in the literature. Now the probabilit?,,

Sy—al in Eq. (2.89). This source corresponds to photons . ) i
which are spontaneously emitted in the mode with the corlcor a photon to be emitted at frequenay kv in the labo

R . . ratory reference frame is
rect polarization, at angular frequenay, in the interval

Jv during the round-trip time lc. Another constraint is that 2y.,dv

the spontaneous field is emitted with a random phiaseith P o o P (4.6)
a probabilityd®/27: the projection of the source field onto [on*ko = @ol™+ 3y

the laser field thus contains ebswhen integrated ove® with

the intensity of the source will thus be multiplied By(the

mean value of cd®). In order to computs , we will make * 2yapdv

an energy balance between the number of spontaneously de- f_m[wnt ko — wol2+ 7&21b = (4.7

excited atoms and the numbgeg of spontaneous photons.
Amplification of these photons is neglected in this approachFina"y’ the number of photons emitted at frequenagy in

but can be included later. Let,,q be the rate at which the e 50jid angle) with the x polarization during timest and
upper state deexcites through the particular transitiongg me) and integrated oveb is

|[uy=I). This theory is limited to the cases wheyg.q is

not modified by the cavity propertie$21]. One has 11 0Q YVapdv
Yurad< Yu - N:§§4_7urad5tv e U +kv — 24 52
The nonsaturated population term of the upper state for i veloettes (on ko= 0o v
the velocityv is Yardv (4.9
(wn— kv — )2+ ¥4, |’ .
N, dv 2 w0

— / 2
e VM m=3Ny(v)dv

0 _ -
=(2j,t1
; Pumunfv) = (2Ju*1) Yu N0 The first factor; comes from integration oveb as explained
4.1 above, and the second from the polarization. After integra-

o . tion over velocitiegsee Appendix [ one obtains
(with j,=1), when pumping terms onto the lower level are

neglected. The saturation term can be written N 10 Nud 12 /i
) _gﬂ')’uradé\tvz v m X
. No(v)dv|ﬂlu|
2 _
> 2pumum=20 — 2z, L (4.2) 2
m Yu | 1l 1 i
_ZOWWZOVXE lqfs (4.9

Using the Wigner-Eckart theorenfEg. (3.9)] indicated u m q

above, one finds: whereV, is the pure(positive real function

SO:E |ﬂ|m,um+l|2:2 |Mlm,um—1|2:1qlulu|2- Vv :E_m _ZX_Zr+ Ixt 4y
m m 3 X Zy X=X, X+X,+2i)

. (4.10

HereZ is the plasma dispersion function defined at the cen-
tral laser resonance frequenay (Z,) or at the test fre-
quencyx (Z,). At line centerwg, one haZy=iZ;, andZj is

The saturated population term for a class of atoms having
velocity v can be written explicitly,

N, dv 2 pal? used as a normalization factor. The function is sometimes
puu(v)=— e’ ’”m{ 3+ 20i WE Iq denotedZ,, with {=x+i). x is the reduced frequency nor-
u NTU, Yua malized with respect tkv ,,, half the Doppler width) is the
1 1 1 1 ratio of the homogeneous to the inhomogeneous linewidths.
X T+ AT AT AT } (4.4  The functionV, is always positive.
g=f a%b q3f  a=b The intensityS of the source field which we are looking

for is related to the power carried by these spontaneous pho-

Now, the numbetV{v) of atoms which deexcite spontane- tons through Poynting’s thearem

ously during the timest and in the volume5SV, for this class
of velocity, is €oC , Nhw
— mWyS= 5 4.1)
Muv)= YuradOtpuu(v) 6V. (4.5 2

This number is also that of the spontaneous photons emittegthereW, is the beam radius. If we writét=2l/c and in-
by this category of atoms. They are randomly emitted introduce the emitting volum&=7IWS3, one obtains the fa-
space and in frequency, and the field associated to them hasiliar formula
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Nhv
= (4-12 E |/~leum+l|4:46|/vLIu|4v (5.4
fov m
The final formula for the source field for the normalized 5 ) 4
frequencyx is % |Mlm,um+l| |Mum+1,lm+2| = [l (5.9
o N [ 12 7
= 5 Yura Lo
6 2 kv
I 2 L s s *=28 . (5.6

|Mlu|
—20 72y, k22 ZOVXOAS% Iq]’ (4.13 which give S;=46S,=1, and S;=21. It remains to inte-
grate over the velocity which appearsNig(v)dv and in the
where we have introduced the geometrical factor 0.43 whiclienominators of. This is easily done and the result appears
reduces the saturation with respect to that given by a planas a combination of plasma dispersion functions as in the
wave (see Appendix B We will use this formula in a com- preceding paragraph. One has
pressed form

i © Ng(v)dv Ay
S=dxXCy[Z.— C,V,l+]. 4.14 f 0 _ x
| 11Zx— CoVily A (kvm)zz , (5.7
z, is the imaginary part of the plasma dispersion function
normalized byZ},. C, andC, are defined by f°° No(v)dv Ao
7= ZW D 1, (5.9
3hv O Ny _, e ndf T (ko) PTG
Ci=— Teq T — Yuraddt —Zp, (4.19 ) _
Yu where we have introduced the complex function
5 21
Co=2 |“2'“| ——0.43. (4.16 1(z8-2, Z¢+z, Z:-7* Z:+Z*
3 1%y kom X" ST T T T T
gx_gr §x+§r fx_gr §x+§r
The total intensity (5.9
=, Iq (4.17)  HereZ, is the plasma dispersion function taken at the central
q laser frequencyé, is also the value of, for this frequency.

Finally, for the saturated polarizability which relates the field
has been introduced, antk refers to a variation of the nor-  and the polarizationR, = «E,) at frequencyx, one writes

malized frequency,

d(w—w) a:_zom.,ulzﬁ i lml® u|“{9_4+134 42 2
dx= kv (4.18 ho kum TE Yo VI Y Y
Ag
V. CALCULATION OF THE AMPLIFICATION TERM (k )zzoW043T (5.10

The polarization of the medium is obtained from the re-pi .0 he related to the real and imaginary parts of the

lation R . polarizability, which will appear in the Airy function
P(real)fn:Tr{P:u'} (5.7 2
i Miu Ao
for a component at frequenay, . The complex component a=— m X1 (5.119
polarized along for the forward wave can be written
1 . /~LI u AO r
an:ﬁ% [pfn(lm,um+l)l/~um+1,lm a = % mz (5.11b
4
+pfn(|m,um—1):“um—1,lm]- (5.2 Bi |,LL| U| [94 134+ £+ 2 ZOWrO 43,
. . : , 4% [ya v v va (kv 2
When using the matrix elements which have been previously (5.123
calculated, one obtains
2l [+ No(w)do | f¥[2(S 80 o “'4[94+134+ 2 2} Yo ziwio.as.
@ v)dv =— _
Pin=—&n i f 0 — —1&, Ml’ug [ & 413 [y ¥ qu Y| (kv m)2 0
nAf ati Yu (5.12H
2(S;+ 2 2 v)dv
+ M—I— S + —SZ f %I. (5.3 VI. EXPRESSION OF THE LASER AIRY FUNCTION
N Yau  YarlJ-e nBi AND NORMALIZATION

The sumsS,,S;,S,, and S; are again obtained from Eq. Using the expressions for the source term and for the
(3.9 applied to the transitiop=j+ 1. One finds polarizability, one obtains the Airy function for the laser,
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[ dx=

where we have writter,dx instead ofl as in Eq.(2.8).
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dxCy[ 2~ CoV,l 1] 6.
[1_e*Lewl(Oa'f,B'lT)/eoC]Z_i_ 4e7L+w|(O '7,B'IT)/60CSinZ{w|[1+(O r_BrlT)/ZEO]/C} ! '
[
L egchikv
0 m?Yu (6.10

I (x) corresponds to the spectral density.can thus be un-
derstood as a sum ovéfx),

=f I(x)dx.

(6.2

Nuth=s—57 73"
" 2001Z ol

Ny represents the pumping term, i.e., the number of atoms
arriving in state|u) per unit volume and unit of time at
threshold.

We have now obtained everything needed to compute the Now the phasep at frequencyw in Eq. (6.1) can be writ-
line shape. However, we will write the formulas in a normal-ten
ized form, more suitable for this computation. The gain can

be written
ol (®a'=B'ly) Co e
T—G ZX—WXE y (63)
with
200lA6Zy,
—mml,d (6.9
and
1 Pk 04 134 42 2
——0 0215 5—|— — (6.5
In 41°kv '}’u E3 '}’2u Yai

G has no dimension, ang, is a normalization factor for the
intensity. We thus define

(6.9

and

Y=|—=£:cydx. (6.7)

Now the gain term appearing in the exponential in Egl)
can be written in the following form:

—L+G[Z -WLY]=L[r(Z,—~W\Y)-1], (6.8
where we have introduced the ratio
N, G ©9
r=—=—, )
Nuth Gt

where N, is the value ofN, at threshold. As usual, the

—W.Y).
(6.11)

The resonance is attained for the angular frequancguch
that 2¢(w,)=N27 . Thus one can write the phase

1) ol
b=— E|[1+(Ooz;)—ﬁ[ulT)/zeo]z - < Lz,

¢E—(w—wr)lgﬂL[Zr(w)—Zr(wr)

—(Wi(0) =W (w))Y]. (6.12
One sees thap includes the intensity in a natural way. The
phase amplitude coupling factor belongs thus to the theory:
this effect is very small in the case of gas lasers. Around and
above threshold, the line is very narrow, as we will see in
Sec. VII, andw is very close tow,, which allows us to
expandz(w) andW'(w) to first order aroundv, . We thus
obtain

I L .
b= (00| g~ o2 (@) - W) Y1},
(6.13

where the prime indicates the derivative with respect to
wl/kv,. One obtains

p=—(X=x,)A (6.19

wherex: = (w— wg)/kv , is the normalized frequency detun-
ing as defined above, corresponds t@, . A is such that

I _
A:=kva—rL[z”(wr)—W"(wr)Y]. (6.15

threshold is defined when the ga compensates exactly When the influence of the second term inside the brackets is
for losses at line center when there is no saturation. At thisieglected,A reduces to the constaht: =kuv,l/c which is

point G becomesG,;=
ally defined. One can thus computg,, from Eq. (6.4) for
G:Gt,

rD,[Z,—

L. r is the relative gain, as tradition- the ratio of the Doppler width to the cavity free spectral

range.
Equation(61) in normalized form thus becomes

D,V,Y]

- [1- el_[r(zix—w;\()—11]2+Arel_[r(ziX

r ) 6.1
"W LSirg((x—x,).A) (610



55 SEMICLASSICAL STUDY OF THE LASER TRANSITION 1379

with expression fol” which can be compared to standard expres-
sions for the linewidth, one can make the same approxima-
_Ca_ 0'00645(2y L 94 134 42 2 tions as those made to obtain Eg.13), i.e., one develops
1= - 2 urad
| 4
Yu Y Y2u 72'(6_17) Y=Y, +6Y 6.23
and aroundY| defined by Eq(2.11), or
5 400 1 y rz—1 6.2
2773 [94+ 134y, /v +42yy/ you+ 20l va] Lorwl e '
(6.18

This approximation can be introduced in E§.22), which
One sees that E@6.16 contains in a synthetic way the three gives

basic effects mentioned in Sec. I: when the lodsese very ,

large, the effect of the cavity disappears, which is expressed wrD4[z,—D,V, Y]

in Eq. (6.16 by the exponential which tends toward zero. oY= {U—rL(z"—W/Y)r2Y, LrW"’
There remains the numerator which represents the line shape ' rot - '
of the source. When the medium is not saturatéd 0), we  where we have replaced by Y, in the source term and in
recover the usual Airy function. Finally one can see that thehe dispersion term, and neglectéd as compared tor,
physics of optical stability is also included in E@.16). when necessary. One can now write an approximate expres-

Depending on the value of Eq.(6.16) can or cannot be sjon for the linewidth from Eq(6.20),
simplified. Below threshold wher¥ is negligible, Eq(6.16

gives the usual Airy function. Above threshold, the variation _ i . 1 1

of y is essentially given by the denominator. Around and F_le[Zr—DZVTYLJ4[U_rL(Zr'f_Wr"YL)]2 Y,

above threshold, the variation gf= A(x—X,) is very small (6.26
inside the laser line profile. Thus the expansion

sing=(x,—X).A is allowed, which shows that the Airy func- The first factor contains the effect of the amplitude and the

(6.29

tion becomes a Lorentzian-like function saturated line shape of the source, while the second describes
. a mixed effect of the medium and cavity fidlilcluding the
rD4[z,—D,V,Y] 1 phase-amplitude couplingand the third is the well-known
y 4e @ -Wo)-1] 42 T2+ (x—x,)2" (6.19 reducing factor inversely proportional to the intensity.

Note that this expression has been obtained with the simpli-
fying assumption that the pumping of the lower level is neg-
ligible as compared to that of the upper level

W', andW' can be safely removed because of the narrownesg\luly_u>N'/7')' I this is not the case, one obtains more
of the laser line. These quantities are thus evaluated at thceomphcatedfexpressllons for thk? sy_mbbl§al?dD2|, and ohne
central laser frequendyhis is labeled by the index). I' can rec0\;ers a acto'r closef tq[ w z;:tl_th!s !JSléla y Ica '%Q.’ tAe
thus be understood as the normalized half-width at halﬁpon aneous-emission factpf]. This is developed in Ap-

The first fraction does not depend sensibly uporthe nor-
malized frequency: the spectral dependencez'ofz', V,

. endix E.
maximum, . . .
Let us now compare Ed6.26) with the expression given
1_eL[f<ZirWIY>*1] by Schawlow and Townedl] for the laser linewidth,
= 2et/2r(z W) ~1] 4 ©29 A hw r2t 6.2
Y= I Oy ©27

Integrating Eq. (6.1 over x [always with
sing=A(x, —x)] gives an equation for the total normalized where I'g=(c/2d)In(r4r,) is the empty cavity loss rate at
intensity Y: resonance, ani,, the total output power through both mir-
) rors. One sees that both E¢6.26) and(6.27) have a similar
7rD4[z,—D,V,Y] structure, with the difference that the source and the phase
Y= 2eL/2[r(z'rfW;Y)fl]A[1_eL[r(z'rfin)—l]]' (6.2 terms are expressed more precisely in E&g26). o
The laser line shape obeys formula E§.1), which is
Since the gain does not exceed losses apreciably, ev§'y close to the Lorentzian expressed by Eg|16 even
around threshold, the exponential can be expanded to firlow threshold. We have numerically computed the inten-

order and one obtains the third order equation sity and the linewidth using these formulas, and the data are
given in Table | for the case of the Ne line at 3.38m. The
2Y{—L[r(Z.-W'Y)—1]H{U—rL(z’'—W’'iY)} laser central frequency, is taken at line centew,. The

dipole moment is obtained from Fermi’'s golden rule,

—arD4[Z —D,V,Y]=0. (6.22 ,
. .. . My = l_l()EOﬁ}\gyuraclswz- (6.28
This equation is different from E@2.10 in two respects: the
dispersion does not appear in E§.10, and the net gain is Figure 1 displays the variation of intensity as computed from

not squared in Eq(6.22. In order to obtain an approximate Eq.(6.21), when the gain is increased from belfkig. 1(a)],
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TABLE |. Data used in the numerical calculations.

Mirror reflectances: r{=r,=0.8
Cavity length: 0.3 m
Wavelength: 3.3913m
Kvm: 2715%x 10" rad/s
Homogeneous linewidth: Yu=T75X10° Hz
Radiative deexcitation rate of the upper level for the 3.38-radiation: Yurad=2.87X 10° Hz
Deexcitation rate of the upper level: yu=18.04x10° Hz
Deexcitation rate of the lower level: =10 Hz
Deexcitation rate of Zeeman coherences: You= Y21=3%X10" Hz
Solid angle of the laser mode: Q/7=10"°

to around[Fig. 1(b)] and abovdFig. 1(c)] threshold. Figure

r{=r,=0.9, givesI'’'s=3.8 MHz, 11.2 KHz, and 44 Hz

2 shows the variation of the linewidth as a function of theinstead for the same three values oft is interesting to note
gain as calculated from Ed6.20. The laser transition is that simple equations like Ed6.20 or (6.21) are able to
clearly seen on both figures: the linewidth, which is 9.7 MHzdescribe variations of intensity or linewidth on several orders

for r=0.5, decreases toward 34 kHzrat1 and down to

of magnitude, which corresponds effectively to what hap-

192 Hz for r=1.2. The same calculation, made with pens in a laser.

2.0x10°®

normalized intensity

1.5x10®

1.0x10°®

5.0x10°7

0.0

0.80

3.5x10*}
3.0x10™}
2.5x1074
2.0x10}
1.5x10*
1.0x10*
5.0x10°°

normalized intensity

0.85 0.90 0.95
normalized gain

(b)
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0.996 0.997 0.998 0.999 1.000 1.001 1.002

0.025

normalized intensity

FIG. 1. Laser characteristic curve as computed from(B®1)
and data in Table (a) below, (b) around, andc) above threshold.

0.020 [
0.015 I
0.010 I
0.005 I

0.000

normalized gain

0.8

0.9 1.0 1.1 12
normalized gain

Up to this point, and while the obtained numbers are of
the correct order of magnitud¢’,22,23, we have not yet
tried to make any precise quantitative comparison with ex-
perimental results, because we have focused on a description
of the laser transition while measurements have mainly been
directed toward finding the ultimate width limit at high in-
tensity. It is clear that such a comparison would need another
calculation in which the saturation term is not of perturbative
nature; i.e., we need an extension to the high-intensity limit.
However, as the present theory does not contain any non-
measurable fitting parameter, we hope to be able to experi-
mentally verify Eq.(6.20 quantitatively.

VIlI. CONCLUSION

In this study we have essentially adapted the Airy func-
tion of the passive Fabry-R& cavity to the laser with an
explicit numerical calculation performed on the single-mode
He-Ne laser at 3.39um in the context of the weak, mean-
field approximation. This function is usually obtained using a
monochromatic external source, and performing a calcula-
tion with the concept of multiple path interferometry. The
latter method is not mandatory: one has to abandon it some-
times, for instance in the study of multiple thin films. In the

-

—_ - - -
o o o (=]
ES L] o

-
o
[N

half width at half maximum (Hz)

-
[=)
N
T

0.9 1.0 1.1 1.2
normalized gain

o
™

FIG. 2. Evolution of linewidth in Hz as a function of gain nor-
malized at threshold. The scale is logarithmic.
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case of a laser, the hypothesis of a monochromatic sourd&/hen the cavity is emptyk(z) obeys the usual dispersion
has to be relaxed as well. However, as soon as we have thelation of vacuum, i.ek=w/c. In the case of a saturated
concept of a spontaneous source whose intensity is small amdedium,k(z) is a complicated nonlinear function which de-
spectrum wide, one is naturally led to adopt the generalizegends upon the local intensities of both counterpropagating
Airy function in the frequency domain. Then it is important fields. We have simplified this problem by taking the mean
to make a precise energy balance between the number @&lue of the integral in EqA1). This is the essence of the
atoms which deexcite spontaneously and the number ahean-field approximation. Then the two counterpropagating
spontaneous photons. The projection of the associated spoiields are related to each other from the boundary conditions
taneous field onto the laser mode gives the source of the lasen the mirrors. For instance, the backward and the forward
field. Thus, in our theory, the spontaneous emission is ndfields are related by
simply a secondary phenomenon which is only responsible
for the laser linewidth; it is a fundamental effect without £:1(0)=r1E,1(0) (A2)
which the laser would not exist.

The generalized Airy function gives a simple and power-on mirror number 1 having a reflectivity, . This can be
ful description of the laser. It shows in a continuous wayused to obtain an equation of evolution for the field.
how a wide, weak spectrum transforms itself into a narrow, Let us call&x(t) the slowly varying, complex amplitude
intense line. This transformation begins well below thresh-of the field centered at the angular frequengyat pointA
old. The synthetic formulation of the laser static behaviorinside the cavity, and at time Let At be the duration of a
through this function includes the spontaneous source, theound trip: At=2l/c. The field E5(t+At) at point A and
stimulated emission, and the resonant cavity. The same fotime t+ At results from the superposition @) Ex(t) after a
mula [i.e., Eq. (6.16] simultaneously describes the line round trip and(ii) the source fields:
shape of the sourcevith or without inversion, which is a .
Voigt function here, its amplificatiofor absorptioh proper- EA(t+ A =Ep(Dr 16"+, (A3)
ties and the effect of the resonant cavity. The methods given ) )
here can be extended to describe the transformations of st@ith ¢=—w/c2l. The difference equation follows:
tistical properties of the source into those of the laser light.

Many quantitative_ res_:ults can still be_ ob_taine_d from the —[EAt+ AL — Ep(D)]=— E[l_rlrzei¢]gA(t)+ ES.
present theory, which is the first of a series in which the laser At 2l |
is considered as an active Fabryrftecavity. For instance, (A4)

we have given a methd®4] to study coupled lasers which ) ) ) )
is based on this interpretation. The link between this studyNoW: if one considers only phenomena which varytone
and quantum treatments can be made through an equation féf@/€s much largethan 2/c, this equation can be trans-
the field operators which includes the properties of the resol0rmed into the differential equation
nant cavity as described here and a detailed c.alculation of the de c c
Langevin forces(in the frequency domajnwhich usually —=— _[1-e te¥E+ =S, (A5)
represent the spontaneous emission phenomenologically. Fi- dt 2l 2|
nally, we stress again that, together with the description of ) . )
the laser transition, the formula given here offers a complewhere we have introduced the |°|S_995”'_‘ an exponential
mentary(and more precigeinterpretation of the laser line- form for later conveniencer;r,=e"~. This equation gives
width, based on a characteristic transfer function of thehe stationary regime
Fabry-Peot cavity in the frequency domain. P

E=

—_—. (AB)
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erties of the Gaussian beam in an amplifying medium
APPENDIX A: ROUND-TRIP METHOD [17,18. The complex field is represented by the expression:
In this method, Maxwell equations for the field are solved . . -
at a given point of the laser. This allows us to write the Ef(t,r,2) =&/~ ke Pre ik (Bla
forward-propagating field;, on one mirror as a function of
the field&;; on the other mirror. For instance, Ey(t,r,2) = Eyei (@t kD g iPogikr?/2a, (B1b)

_ (A1) respectively, for the forward and the backward beams. Here:

d
Eir(d)=¢&;1(0 —f k(z)dz -
r2(d) =& )exr{ 0 @ k=w/c(1+ al2¢y) . The complex functiond;, P,, q,
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andq, are those of the cavitj19] modified by the inhomo- |aser line-shape theorigit) is the central quantity which is

geneities of the medium. They can be written studied. In our case, we are interested in applying the prop-
erties of the Fabry-Ret cavity in the same way they are

i=oi+f 0 (B2) usually applied in the case of an empty cavity, i.e., in a

ds qr ¢ mixed time-frequency domain where a frequency component

0 of the field is well identified. Thus we will divide the spectral
Pi="P¢+ €pt, (B3) line into intervals, the width of which arév and centered
around frequenciesg;

1 1
_:0_+Eqb1 (B4) . vyt ov/2 .
b b Ec(t)zz ez|7TVth q E(V)ezl’)T(V—Vq)th
q vy— OvI2
Po=C"Py+ €pp- (B5) ‘
€qt, €qb, €pt, ande,y, are perturbations with respect to the :% Eq(He? ™, (C4)

quantities°P¢, °P,, °g¢, and °q, which characterize the
cavity with a linear medium. These perturbations are proporyith the amplitude for each component,
tional to the intensities ofnt?he fields, and bring a relative B
correction of the order of I0r to the beam parameters of a vgtov (b
gas laser, i.e., to its radius of curvature and its diameter. Sq(t)=JV a2 E(v)e? ™ d'dy. (CH
They explain asymmetrig4.8] in the gas laser line shape vs !
frequency. However, these small transverse effects will beéAgain, we insist on this aspect of the physics: such an am-
neglected in the following. For our purpose here, the mairplitude £,(t) varies very slowly in time. Let us take as an
result of this theory concerns the saturation term: when thexample the case of a line whose width is 1 Hz. When it is
transverse Gaussian distribution of the beam is approximatedivided into 100 intervals, the difference is- vq<5.10" 3
by a parabola, the saturating intenslty: £,&5 which ap-  Hz, which, to be measured, will need at least 200 s. The
pears in the polarizability, is reduced by a factor of 0.43 withmathematical limit to Eq(C4) is Eq. (C1), in which E(v)
respect to the plane-wave case., | is replaced by 0.43. does not depend on time.
We will later include this factor 0.43 in the saturation term.

APPENDIX D: VELOCITY INTEGRALS

APPENDIX C: MIXED TIME-FREQUENCY DOMAIN -, .
Integrals over velocities are related to the plasma disper-

In a complex form, the fieldE(t) is connected to his sion functions
frequency components by

+ o 2 1
o . Z(6)= f due V' —, (D1
Ec(t)=j E(v)e? ™dy. (Cy VKU ) == u—¢

0

_ . with the notations
In the usual case of a single-mode laser, one writes the ex-
pansion in the useful intervahv around the central fre- v
quencyw, u= v (D2

Ec(t):eZiﬂ'Votf E( V)eZiﬂ(V* Vo)tdvzg(t)eZiﬂ'vot, and
Av
1
€ &= —lo—wotiyu]=x+i, (D3)
m

where the slowly varying amplitud&(t) is introduced:
wherex is the detuning expressed in units of half the Dop-
pler width, and) the ratio of the homogeneous to the inho-
mogeneous linewidths.

The integrals appear in the expression of the population as
Here we do not care about supplementary resonances suchwsll as in those of the polarization. Let us consider first the
population resonances observable in clBdasers. In usual following expression in Eq(4.9):

&)= JA E(v)e?d 7=y, (C3)

=_i_&dyfw dv e*vzlvzm
2y *w\/;Um

J' () Yab " Yandv
velocitiespuu (wntkv— w0)2+ ng (wp—kv— w0)2+ ng

(D4)
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The first part gives

4i
— | =—— 7
nA¢ nAb nA’f’< nA;} kUmZ (£)- (BS)

foc dv o 2[ 11 1
e SO + — — —
—®NTUm

The second part is a little bit more complicated:

(D6)

* * * *
Zr1—Zq+Zn—Zq - Zy+Z, B Zy+ 273
Xn=Xq  Xn=Xq XptXqt2iY XptXq—2iY]
This term becomes important especially above threshold, where the linewidth becomes very smad}. ddegsnot vary very

much, and a good approximation is to takeinvariant and equal to the laser central frequency; i.e., we xgkex, . In this
case,

Yapdv Yapdv i Ny 12 i |/LI u| 2
J’velocitieSPUU(U) (wptko— w0)2+ Vezlb " (wp—kv— w0)2+ '}’gb T 2 zdv| mZX—ZO 2%y, V E Iq ,
(D7)
|
with the abbreviation for the real functiow,, hy Q N, 12 . 20 ek
S=— o 271_')’urad5t '}’ud (azx_n_spm
Z,—Z, Zy-Zf Z,+Z, Zy+Zf 1
V= X—X; * X=X, XFX 420V X+X,—2i) X2 ZoV 0432 | } (E4)
(D8)
Formula(4.16) is replaced by
APPENDIX E: SPONTANEOUS-EMISSION FACTOR 5 |M|u|
C,= —O 43. (E5)

The spontaneous-emission facfail Ny, is traditionally 3N, h2y, kum
defined as the ratio
Instead of Eq(6.9), one hag = Ay/A g, WhereAyy, is the
value of Ay at threshold, which is now defined by
Nz

Nor= =N,

(ED) A LeoChikvmyy
O 2001 Z 1 ol

where N, and N; are, respectively, the populations of the Equatlon(6 16 thus becomes

upper and lower levels. In the context of this work, one can

(E®)

also define a closely related factor B ruDl[Zx_ Vo Y/ng]
y [1_eL[r(z'X—W;Y)—l]]er4eL[r<z'x—w;Y>—1]sinz((X_Xr)A)
N, 1
nsp:_u N (E2) €9
Yu Ao with the normalized pumping term for the upper level:
with Ny, 1
ry:=——. ES8
! Yu Aotn 8
A Ny N, €3 From Eq.(6.26), the expression for the linewidth is
o’ D, 1 1
F=7TI‘UD1 Zr__VI’YL T i 2_.
. - n AU—-rL(z,"-W'Y Y
When (N))/y; is negligible as compared toN()/v,, sP [ (z arl (LEg)

nsp=1, which corresponds to the formulas given above. If
this is not the case, one finds, instead of Egl3, another asr<r,, this value leads to a larger linewidth than Eg.
expression for the source term: (6.26).



1384 G. M. STEPHAN 55

[1] A. L. Schawlow and C. H. Townes, Phys. Rel12 1940 [12] R. Seybold and H. Risken, Z. Phy&67, 323(1974.

(1958. [13] L. Mandel and E. WolfOptical Coherence and Quantum Op-
[2] J. T. Verdeyen, inLaser Electronics3rd ed.(Prentice Hall, tics (Cambridge University Press, New York, 1995
Englewood, Cliffs, NJ, 1995 Secs. 8.8 and 9.3. [14] P. Goldberg, P. W. Milonni, and B. Sundaram, Phys. Re.
[3] R. D. Hempstead and M. Lax, Phys. Re61, 350(1967). 1969(1991); 44, 4556(1991).
[4] M. 1. Kolobov, L. Davidovitch, E. Giacobino, and C. Fabre, [15] K. Ujihara, IEEE J. Quantum Electro@E20, 814 (1984).
Phys. Rev. A47, 1431(1993. [16] S. Prasad, Phys. Ret6, 1540(1992.

[5] M. Sargent, M. O. Scully, and W. Lamb, Jr., imser Physics  [17] G, Sfghan and H. Taleb, J. Phyarig 42, 1623(1981.
(Addison-Wesley, Reading, MA, 19¥4vol. 17-3. [18] G. Sfehan and M. Timper, Phys. Rev. /28, 2344 (1983;
[6] C.H. Henry, IEEE J. Quantum Electron.QE18, 259 28, 3450(1983: 30, 1925(1984

(1982; QE19, 1391(1983. .
19] H. Kogelnik, Appl. Opt.5, 1562(1965.
[7] For a comprehensive recent study of the linewidth in gas Ia-[ I g bRt P (1965

sers, see S. Kuppens, Ph.D. thesis, Leiden University, Huygerg% S g(t)@h\?nllvlj.R’\;?r:tr:]:arl\/lo%rczzyse;n,\c/ilast&ﬁzs;(:(ﬁ:ggﬁ <. Rev
Lab., The Netherlands, 1995. - 20y, 2 W T ' ' RLAS '

[8] H. Gerhardt, H. Welling, and A. Guttner, Z. Phy253 113 Lett. 50, 1903(1983.

(1972 [22] S. J. M. Kuppens, M. P. Van Exter, and J. P. Woerdman, Phys.
[9] A. Gittner, H. Welling, K. H. Gericke, and W. Seifert, Phys. Rev. Lett.72, 3815(1994. )
Rev.18, 1157(1978. [23] S. J. M. Kuppens, M. P. Van Exter, M. Van Duin, and J. P.
[10] H. Risken and H. D. Volmer, Z. Phyg01, 323(1967); 204 Woerdman, IEEE J. Quantum Electri, 1237(1993.
240 (1967. [24] P. Even, K. At-Ameur, and G. Sghan, Phys. Rev. Ato be

[11] H. Risken and R. Seybold, Phys. Le38A, 63 (1972. published.



