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Semiclassical study of the laser transition
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~Received 24 May 1996!

A semiclassical, nonlinear theory of a single-mode laser is developed so that the transition around threshold
can be studied. The field is expressed in the frequency domain which allows us to emphasize the role of the
Fabry-Pe´rot cavity. A generalized Airy function is obtained for the laser line shape: it contains the source line
shape and the empty cavity line shape. It describes the laser both above and below threshold, including the
transition region where there is an abrupt increase of intensity and decrease of the laser linewidth. The general
arguments are illustrated by detailed numerical calculations for the 3.39-mm line of the He-Ne laser. The
intensity of the spontaneous emission source which plays a central role is computed from first principles.
@S1050-2947~97!07601-4#

PACS number~s!: 42.55.Ah, 42.55.Lt, 42.60.Da
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I. INTRODUCTION

The laser line is known to be very narrow as compared
atomic emission lines; its shape can be described b
Lorentzian function whose width obeys a formula given
Schawlow and Townes@1# almost 40 years ago. This for
mula has been refined from different points of view, a
basically applies to situations where the laser gain is ei
above or below threshold, with a factor of 2 which disti
guishes the two cases. Far below threshold, the usual
function applies. It is the objective of this paper to give
description of the crossing of the laser from below to abo
threshold through a synthetic formulation of the line sha
and intensity, valid whatever the gain, in the framework
the semiclassical theory of light-matter interaction.

A laser is an optical device in which three fundamen
physical effects play important simultaneous roles: the ac
~pumped! medium provides the spontaneous emiss
~source! and the stimulated emission~amplification!. The
resonant cavity provides the feedback. A complete desc
tion of the laser should thus include these three basic eff
together, i.e., one needs a formula or a set of equations w
are able to simultaneously describe the source, the amp
cation and the resonant cavity. Up to now, laser line-sh
theories have been essentially aimed at the description o
field far above threshold: two methods are used to obtain
line shape. The first is described in Verdeyen’s textbook@2#,
for instance, and is based on an extension of the Airy fu
tion adapted to the laser. This is done in the frequency
main. The second, which is most popular, is based
Fokker-Planck@3# or Langevin@4,5# equations, and the us
of Wiener-Kintchine’s theorem which connects the time
the frequency domain. This last method leads to a very sm
width of the laser line~in fact ad-Dirac distribution! and it is
generally admitted that its measurable limit stems fr
quantum effects due to the phase diffusion of randomly em
ted spontaneous photons. This view was also develope
Henry @6# under a different form, and the linewidth enhanc
ment factora introduced by him is always used in semico
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ductor lasers equations. A huge amount of literature has b
devoted to the subject@7# but it seems that no semiclassic
study exists which allows the calculation of the transiti
from the Airy to the laser line shape when the gain is
creased from below to above threshold. The experiment
most directly relates to the study of this transition was p
formed by Gu¨ttner and co-workers@8,9#, who measured the
linewidth variation around threshold and verified the theor
elaborated by Risken and co-workers@10–12# and Hamp-
stead and Lax@3#, essentially based on a quantum formalis
for the field and describing its statistical properties. The st
of this art was expressed in Mandel and Wolf’s textbo
@13#. After all these extensive studies, one can ask w
urged us to attack the subject again. The basic reaso
simply that in former formulas, it was not possible, in ge
eral, to recover the Airy function from the laser equations
removing the constants representing the active medium,
to recover the active medium line-shape function by rem
ing the effect of the cavity. An exception can be found
Ref. @14#, where it was shown that the intrinsic linewidth o
the laser broadens to the free-atom natural linewidth w
the transmittivity of the mirrors increases. The above dra
backs probably occur because studies essentially focuse
the description of the statistical properties of light in the tim
domain. Here we follow another path which leads to a s
thetic formula, written in the frequency domain, based
semiclassical arguments and able to include simultaneo
the three basic effects which comprise a laser. Once we
tained this generalized Airy formula from simple argumen
a challenge was to see whether this formula was able to
used quantitatively, and this is why considerable details
given in the following in an attempt to answer this questio
The noise included in the laser light has different origins:~i!
~the so-called ‘‘technical noise’’ originating from acousti
thermal, or electromagnetic vibrations which affects the e
ments of the cavity;~ii ! the noise brought by the pump; an
~iii ! the quantum noise coming from the spontaneous em
sion and from the leakage from the outside across the m
rors. Note that quantum and collisional noise are alrea
phenomenologically partially included in the properties~line
shape! of the emitting medium. In the following, we will be
interested only in the way this line shape transfor
1371 © 1997 The American Physical Society
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1372 55G. M. STÉPHAN
when the medium is placed inside the cavity and when
gain is increased. Related subjects, such as the transfo
tions of the technical noise or the temporal statistics of lig
are not considered. However, it should be noted that i
very difficult to experimentally separate different types
noise, and the difficulty of the interpretation is increas
when one becomes aware of their entanglement due to
nonlinear character of the laser equations. The general
Airy function which is developed here can thus be cons
ered as a tool which can also be used for other studies
continuous description of the laser transition, i.e., the l
between the properties of the empty or the passive cavity
the laser when the gain is progressively increased, can
obtained by keeping the three above-mentioned effects
gether. We will give the main ideas in Sec. II of this paper
purely monochromatic, stationary source term is first cons
ered inside the cavity, and the Airy function is written. Th
source corresponds to the ideal case of a noise-free so
because its spectrum is ad-like distribution in the frequency
domain. This is the hypothesis usually taken in the case o
empty Fabry-Pe´rot cavity probed by an external inciden
beam of light whose spectrum is much narrower than tha
the interferometer. Then the extension to the real case o
spontaneous emission with a wide spectrum is made:
source term and the amplification are calculated in Se
III–V. The specific case of the single-mode He-Ne gas la
at 3.39mm is developed in order to illustrate the argume
quantitatively. Here we will take into account the Zeem
substructure of the levels, but the paper is not devoted
vectorial aspects of light whose polarization will be ke
linear. The mean-field approximation is used, and, in orde
find the spontaneous emission rate, a balance is made
tween the number of spontaneously deexcited atoms and
number of spontaneous photons. No quantum represent
of the field is used, but a close connection to quantum eq
tions exists: for instance we arrive at some conclusions
ready given by Goldberg, Milonni, and Sundaram@14#. The
difference from usual theories comes essentially from
calculation in the frequency domain, which permits a mo
precise description of the properties of the Fabry-Pe´rot cav-
ity ~which usually, is only represented by a quality fact
Q, i.e., a Lorentzian! and those of the spontaneous sou
~which usually is only represented by a diffusion termD).

The intensity and the line-shape expressions are ca
lated in Sec. VI: we obtain a generalized Airy function whi
relates the spectral density of the laser light~i.e., its line
shape! to that of the source and to the total saturating fi
intensity. Numerical results show, in the example studied
evolution of the linewidth from 10 MHz below threshold t
some tens of Hz above. Measurements of laser linewidth
connection with quantum effects, design of optimized las
for metrology or telecommunications or studies of mo
complex lasers can benefit from this understanding.

II. BASIC ARGUMENTS

One aim of this study is to obtain a laser field equat
valid below and above threshold, i.e., an equation fr
which one can recover the empty cavity properties by rem
ing the active medium. Let us first consider an empty Fab
Pérot cavity. Its length isl . r 1 andr 2 are the reflectances o
e
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the mirrors, andS the amplitude of the electric field corre
sponding to the optical source. For the moment the syste
considered to be transversally infinite~we will take into ac-
count the transverse distribution later!. Generally,S is re-
lated to an external fieldEi which probes~or which is probed
by! the cavity across one mirror:S5A12r 1

2Ei . This field is
considered to be monochromatic, i.e., its spectrum is m
narrower than the cavity linewidth. The usual Airy functio
allows the calculation of the spectral density of the field
side the cavity, and the easiest way to obtain it is the
calledround-trip method@15,16# which we recall in Appen-
dix A. The slowly varying part of the fieldE inside the cavity
obeys

dE
dt

52
c

2l
@12e2Leif#E1

c

2l
S, ~2.1!

whereL stands for the losses andf represents the round-trip
cumulated phase; here,

f522v l /c. ~2.2!

In the stationary regime, the intensity:I (v)5E.E* can be
written

I ~v!5
S

~12e2L!214e2Lsin2v l /c
, ~2.3!

with S5SS* , and this is the Airy function for the empty
Fabry-Perot cavity. When doing this type of calculation, o
has to keep in mind the time frequency relation: for instan
if we decompose the field in the frequency domain into slic
having a width of 1 Hz, one needs at least 1 s tomeasure it,
and thus Eq.~2.1! would be able to describe the evolution
the amplitude of this component on a time scale of seve
seconds which in fact, is considerably greater than the ro
trip time 2l /c.

Now let us consider the same cavity filled with an amp
fying medium able to emit light inside a frequency interv
dv narrow as compared to the resonance line of the cav
i.e., ideally at asingle frequencyv ~noise-free source! and
which is characterized bya, the complex saturated polariz
ability. The simplest form fora can be written, for a low
saturating intensityI ,

a50a2bI5a r1 ia i50a r2b r I1 i @0a i2b i I #, ~2.4!

where the superscriptsr and i stand, respectively, for the
real and imaginary parts.0a is the linear part andb is the
saturation coefficient.b can take the Gaussian transverse d
tribution of light into account by including a geometric
factor @17–19# ~see Appendix B!. The source is also satu
rated, and can be represented byS5SS*5S02aI, where
S0 anda are real constants. This source corresponds to
photons spontaneously emitted during the round-trip ti
2l /c and proportional to the saturated population of the u
per level. When considering onlya saturating intensity av-
eraged along the laser, the round-trip method applies, an
leads to the equation of evolution.

dE
dt

52
c

2l
@12e2Lev la i /ce0eif#E1

c

2l
S, ~2.5!

where, this time,
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f52
v2l

c
@11a r /2e0#. ~2.6!

Here we have not included the Guoy phase shift due to
Gaussian transverse structure of the beam, as it is uness
to our calculation. Note in passing that a Lamb’s-type eq
tion for a single-mode laser can be recovered from Eq.~2.5!
by expanding the exponential, choosingv2l /c5N2p and
takingS50,

dE
dt

52
c

2l FL1
iv la

ce0
GE. ~2.7!
on
c

-

so
ed
L

s
nd

tio
e
tial
-

The effect of the source and the properties of the reson
cavity are thus not included in this equation. The Airy fun
tion can be obtained from Eq.~2.5! in the stationary regime
Let us note here that the source term corresponds to the
of the photons spontaneously emitted during the time 2l /c
and intervaldn. A random function should describe thes
events and should depend upon the laser size, a fact
included in usual laser theories. When the source and
polarizability are written with their developed forms, on
obtains
I5
S02aI

@12e2L1v l ~0a i2b i I !/e0c#214e2L1v l ~0a i2b i I !/e0csin2@~v l /c!~11~0a r2b r I !/2e0#
. ~2.8!
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This formula is able to describe the intensity distributi
when the frequency is scanned. Here the denominator
become very small but cannot cancel~this situation is physi-
cally impossible because it would imply that the intensity
would tend toward infinity!. We have already given an ac
count of this study in a recent conference@20#. Let us now
compare the result given by formula~2.8! to the intensity
given by Lamb’s theory above threshold. Here we will al
take the convention following which the threshold is defin
for the linear gain which compensates exactly for losses.
I 0 be the intensity at resonance~i.e., when the frequency is
such thatf5N2p. Equation~2.8! becomes

I 05
S02aI0

@12e2L1v l ~0a i2b i I0!/e0c#2
. ~2.9!

The term in the exponential is small~in the usual theory the
saturated gain exactly compensates for the losses in the
tionary regime!. Thus it can be developed at first order, a
I 0 is a solution of the third-order equation

I 0@L2v l /e0c~0a i2b i I 0!#
22S01aI050. ~2.10!

The usual solution, which we will denoteI L , is obtained
from the condition ‘‘saturated gain5 losses.’’ It is written
as

I L5
v l /e0c

0a i2L

v l /e0cb i . ~2.11!

Taking the source term into account brings a small devia
from this solution. Let us takeI 05I L1dI . If one neglects the
small termdI 3 and adI as compared toaIL , one obtains,
from Eq. ~2.10!,

I L@v l /e0cb i #2dI 22S01aIL50, ~2.12!

and thus

dI56
e0c

v lb i SS02aIL
I L

D 1/2. ~2.13!
an

I

et

ta-

n

Here the only stable solution is with the1 sign, because
otherwise the medium is still amplifying, which means th
the intensity can still be increased. One sees thatdI is posi-
tive, and thus the medium is not transparent, as in Lam
theory. It is slightly absorbing, the compensation being
contribution from the source. This conclusion agrees wit
result obtained in@14#.

The simplified approach discussed above has been don
mimic the usual situation where a Fabry-Pe´rot cavity is
probed by a monochromatic field. In fact, it hardly corr
sponds to reality in the sense that in general no emitt
medium exists with an emission linewidth narrower than t
of the laser. In order to compute a more realistic case,
thus has to take two effects into account.

~i! The source is the spontaneous emission of the med
itself: one should consider the entire emission band and
only a single frequency slice as above.

~ii ! The saturating power which appears inside the co
plex gain has to be connected to the spectrum of power d
sity. In other words, the intensityI which appears on the
right hand side of Eq.~2.8! is no longer the same as that o
the left-hand side.

In order to attain this goal, it is first necessary to deco
pose the field in the frequency domain. This will allow us
use the fundamental property of Fabry-Pe´rot cavities which
is the fact thatthe cumulated round-trip phase is frequen
dependent. Then, in order to make a quantitative calculati
from first principles, one should compute the density-mat
elements of the system and deduce the source and am
cation terms for each frequency. This will allow a calculati
of the line shape. For this purpose, we have chosen to w
here on the specific case of the single-mode He-Ne gas l
at 3.39mm, because this line is a secondary standard
frequency whose properties have already been studie
length @7#.

Sections III–V are now devoted to a calculation of t
saturated source term and to the amplification. This is d
for each component of the fieldinside the laser emission
band. If the reader is not interested in these rather tedio
derivations, he can jump to Sec. VI where he will find
generalization of Eq.~2.8!, i.e., the spectral density for th
laser, in Eq.~6.16!.
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1374 55G. M. STÉPHAN
III. DESCRIPTION OF THE FIELD
AND DENSITY-MATRIX ELEMENTS

We want to know the expressions for the source term
for the amplification when the field is decomposed into slic
dn in the frequency domain inside the emission band. T
linewidth of this band can vary very much: from 10 MH
for instance, at low gain down to 1 Hz, or even less abo
threshold. Thusdn has to be adapted to each case. As
consequence, the measurement time associated todn can
vary considerably as well. We recall in Appendix C the co
nection between the frequency and time domains desc
tions of the field. The real field corresponding to expans
~C4! in Appendix C will be used in the following; i.e., we
will take a field such as

EW 5(
q
EW f q~ t !e2ipnqt2 ikz1EWbq~ t !e2ipnqt1 ikz1c.c., ~3.1!

where we have explicitly identified the forward- an
backward-traveling components with indicesf and b. The
modulus of these components will be approximated be
by a mean valueEq . Note that the field is decomposed in
frequency slices which are narrow as compared to the l
line.

Now let us consider the amplifying medium itself. Man
theoretical calculations have been made on the He-Ne l
@5#, and here we will give only the main steps of the theo
The first is to compute the density-matrix elements to fi
order in the field intensity and in the context of the mea
field approximation. Then the source term whose intensit
proportional to the population of the upper level can be c
o
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culated. The amplification is then obtained from the opti
coherences. The source term and the amplification have t
found in the intervaldn around each particular frequenc
nq as defined in Appendix C. For this purpose, we use
two-energy-level model in which the upper stateuu& and the
lower stateu l & are characterized by angular quantum nu
bers j u51 and j l52.

The calculations of the density-matrix elements will
worked out in a vector basis which represent eigenstate
the system. They are labeleduu,m& or u l ,m&, wherem is the
magnetic quantum number. Because dipole moments are
the same between sublevels, one has to take this decom
tion into account. As is generally the case, the field will
taken as linearly polarized. The density-matrix elements fo
class of velocityv obey the general equation

i\
dr~v !

dt
5@~H02mW •EW !,r~v !#21p.t. ~3.2!

r(v) is the density operator,H0 is the Hamiltonian for the
atom alone and the perturbation, in the dipole approximat
is 2mW •EW . mW is the dipole operator andEW is the field. p.t.
stands for the phenomenological terms which allow for
restriction of the complete system to a two-level model: t
means, for instance, that the nonradiative deexcitation of
population of a level will be included in this symbol. Th
quantization axis is taken to be along the propagation a
i.e., along the laser axis. The derivative opera
d/dt5(d/dt)1v(d/dz) is written in the laboratory frame o
reference in order to take the velocity of atoms alongz into
account. Equations for the populations are developed as
i\
drum,um

dt
52EW •mW um,lm61r lm61,um1EW rum,lm61•mW lm61,um2 i\gurum,um1 i\Lu , ~3.3!

i\
dr lm,lm
dt

52EW •mW lm,um61rum61,lm1EW r lm,um61mW um61,lm2 i\g lr lm,lm1 i\L l . ~3.4!

Here g l and gu are the total rates of deexcitation of the populations of the sublevelsu l ,m& or uu,m&. L l andLu are the
pumping rates. For simplicity, we have removed the subscriptv in the notations.

Equations for the optical and Zeeman coherences are

i\
dr lm,um61

dt
52\v0r lm,um612EW •mW lm,um61@rum61,um612r lm,lm#

2EW @mW lm,um71rum71,um612r lm,lm62mW lm62,um61#2 i\g lur lm,um61 , ~3.5!

i\
drum,um62

dt
52EW •mW um,lm61r lm61,um621EW rum,lm61mW lm61,um622 i\g2urum,um62 , ~3.6!

i\
dr lm,lm62

dt
52EW •mW lm,um61rum61,lm621EW r lm,um61mW um61,lm622 i\g2lr lm,lm62 . ~3.7!
of
lar-
is
ck-
g lu ,g2u , andg2l are, respectively, the deexcitation rates
the optical coherence~homogeneous width! and of the Zee-
man coherences inside the two levels.\v0 is the energy
difference between both levels. Other coherences are
glected.
f

e-

These equations will be used to obtain the populations
both levels to second order in field amplitude and the po
ization to third order. The rotating-wave approximation
used, i.e., one writes the expansion for the forward and ba
ward waves of optical coherences
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r f ~ lm,um61!5(
q

pfq~ lm,um61!e
i ~vqt2kz!, ~3.8a!

rb~ lm,um61!5(
q

pbq~ lm,um61!e
i ~vqt1kz!. ~3.8b!

We will use the relation

mW lm,um615A~ j116m!~ j126m!
m lu

A2
~xŴ6 iyŴ !, ~3.9!

which is valid for aj⇒ j11 transition~herej51).m lu is the
reduced matrix element. The field, being linearly polariz
has equal components along the two counterrotating circ
vectors. The population distribution for atoms having a v
locity v can be approximated at zero order@5#:

0rumum~v !5
Lu

gu
5
Nu

gu

dv

Apvm
e2v2/vm

2
, ~3.10a!

0r lmlm~v !5
L l

g l
5
Nl

g l

dv

Apvm
e2v2/vm

2
. ~3.10b!

We make the approximation that the pumping does not
pend onm. We will write

N0~v !dv50rumum~v !2
0r lmlm~v !5L0

dv

Apvm
e2v2/vm

2
,

~3.11!

where we have used the abreviationL05(Nu /gu)
2(Nl /g l). To first order, the optical coherences are, for t
forward and backwardq components:

1pfq~ lm,um61!52
Eqm lm,um61

\A2qD f*
N0~v !, ~3.12a!

1pbq~ lm,um61!52
Eqm lm,um61

\A2qDb*
N0~v !, ~3.12b!

with

qD f5v02~vq2kv !2 ig lu ~3.13a!

and
,
ar
-

e-

e

qDb5v02~vq1kv !2 ig lu . ~3.13b!

The second-order populations are

2rum,um5 i
N0~v !

2\2gu
@ umum,lm11u21umum,lm21u2#I,

~3.14a!

2r lm,lm52 i
N0~v !

2\2g l
@ um lm,um11u21um lm,um21u2#I,

~3.14b!

with the abbreviation

I5(
q

I qF 1

qD f
1

1

qDb
2

1

qD f*
2

1

qDb*
G . ~3.15a!

I q is the intensity of the field at frequencyvq . This expres-
sion will become important in saturation terms, i.e., when
linewidth is very narrow. It is thus justified to make th
following approximation~see Appendix D!:

I5F 1D f
1

1

Db
2

1

D f*
2

1

Db*
G(

q
I q , ~3.15b!

where theD ’s are evaluated at the central laser frequen
~which will be denoted byv r). This frequency is generally
different from the central resonance frequencyv0 of the ac-
tive medium.

Second-order Zeeman coherences are

2rum,um625 i
N0~v !dv
2\2g2u

mum,lm61m lm61,um62I,
~3.16a!

2r lm,lm6252 i
N0~v !dv
2\2g2l

m lm,um61mum61,lm62I.
~3.16b!

A sum of beating terms between frequency components
pears in computing these expressions. However, in our c
the frequency differences are much more smaller than
deexcitation rates, and thus can be neglected in the Lore
ians. We are thus left with a sum over exponentials which
a d function. This is why a field with a narrow spectrum ca
be modeled with a single-frequency function. Third-ord
n components of the velocity-dependent optical forward
herence are written
pfn~ lm,um61!52 i
1

2A2\3

N0~v !dvI
nD f*

m lm,um61EnH umum61,lm6
0
2u21umum61,lm6

2
0u2

gu
1

umum,lm11u21umum,lm21u2

g l

1
umum71,lmu2

g2u
1

umum61,lm62u2

g2l
J . ~3.17!
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1376 55G. M. STÉPHAN
We have neglected the spatial hole burning effect, i.e., te
containinge62ikz.

IV. CALCULATION OF THE SOURCE TERM

We want to know the source term which feeds the la
field, i.e., the term which corresponds toS in Eq. ~2.3! or
S02aI in Eq. ~2.8!. This source corresponds to photo
which are spontaneously emitted in the mode with the c
rect polarization, at angular frequencyvq in the interval
dn during the round-trip time 2l /c. Another constraint is tha
the spontaneous field is emitted with a random phaseF with
a probabilitydF/2p: the projection of the source field ont
the laser field thus contains cosF; when integrated overF
the intensity of the source will thus be multiplied by12 ~the
mean value of cos2F). In order to computeS , we will make
an energy balance between the number of spontaneousl
excited atoms and the numberns of spontaneous photons
Amplification of these photons is neglected in this approa
but can be included later. Letgurad be the rate at which the
upper state deexcites through the particular transiti
uu&⇒u l &. This theory is limited to the cases wheregurad is
not modified by the cavity properties@21#. One has
gurad,gu .

The nonsaturated population term of the upper state
the velocityv is

(
m

0rumum~v !5~2 j u11!
Nu

gu

dv

Apvm
e2v2/vm

2
.3N0~v !dv

~4.1!

~with j u51), when pumping terms onto the lower level a
neglected. The saturation term can be written

(
m

2rum,um520i
N0~v !dvum luu2

2\2gu
I. ~4.2!

Using the Wigner-Eckart theorem@Eq. ~3.9!# indicated
above, one finds:

S05(
m

um lm,um11u25(
m

um lm,um21u2510um luu2.

~4.3!

The saturated population term for a class of atoms havin
velocity v can be written explicitly,

ruu~v !5
Nu

gu

dv

Apvm
e2v2/vm

2 H 3120i
um luu2

2\2gu
(
q

I q

3F 1

qD f
1

1

qDb
2

1

qD f*
2

1

qDb*
G J . ~4.4!

Now, the numberN(v) of atoms which deexcite spontan
ously during the timedt and in the volumedV, for this class
of velocity, is

N~v !5guraddtruu~v !dV. ~4.5!

This number is also that of the spontaneous photons em
by this category of atoms. They are randomly emitted
space and in frequency, and the field associated to them
s

r

r-

de-

,

s

r

a

ed
n
as

a random phaseF. Half of them are emitted with the linea
polarization of interest. Moreover, we are interested h
only in these photons which are emitted inside the so
angle V52p(12cosu) of the laser mode. Here
u5arctanl/pW0, whereW0 is the radius of the beam wais
The ratio V/4p is often called the spontaneous-emissi
coupling factorb in the literature. Now the probabilityPvn

for a photon to be emitted at frequencyvn6kv in the labo-
ratory reference frame is

Pvn
5

2gabdn

@vn6kv2v0#
21gab

2 , ~4.6!

with

E
2`

` 2gabdn

@vn6kv2v0#
21gab

2 51. ~4.7!

Finally, the number of photons emitted at frequencyvn in
the solid angleV with thex polarization during timedt and
volumeV and integrated overF is

N5
1

2

1

2

V

4p
guraddtVE

velocities
ruu~v !F gabdn

~vn1kv2v0!
21gab

2

1
gabdn

~vn2kv2v0!
21gab

2 G . ~4.8!

The first factor12 comes from integration overF as explained
above, and the second from the polarization. After integ
tion over velocities~see Appendix D!, one obtains

N5
1

8

V

4p
guraddtV

Nu

gu
dnH 12

kvm
Zx
i

220
um luu2

\2gu

1

k2vm
2 Z0

i Vx(
q

I qJ , ~4.9!

whereVx is the pure~positive! real function

Vx5
2

Z0
i RH 2

Zx2Zr
x2Xr

1
Zx1Zr

x1Xr12iY J . ~4.10!

HereZ is the plasma dispersion function defined at the c
tral laser resonance frequencyv r (Zr) or at the test fre-
quencyx (Zx). At line centerv0, one hasZ05 iZ0

i , andZ0
i is

used as a normalization factor. The function is sometim
denotedZj , with j5x1 iY. x is the reduced frequency nor
malized with respect tokvm , half the Doppler width.Y is the
ratio of the homogeneous to the inhomogeneous linewid
The functionVx is always positive.

The intensityS of the source field which we are lookin
for is related to the power carried by these spontaneous p
tons through Poynting’s theorem

e0c

2
pW0

2S5
Nhn

dt
, ~4.11!

whereW0 is the beam radius. If we writedt52l /c and in-
troduce the emitting volumeV.p lW0

2, one obtains the fa-
miliar formula
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S5
Nhn

e0V
~4.12!

The final formula for the source field for the normalize
frequencyx is

S5
hn

e0

V

2p
guraddt

Nu

gu
dnH 12

kvm
Zx
i

220
um luu2

\2gu

1

k2vm
2 Z0

i Vx0.43(
q

I qJ , ~4.13!

where we have introduced the geometrical factor 0.43 wh
reduces the saturation with respect to that given by a p
wave~see Appendix B!. We will use this formula in a com-
pressed form

S5dxC1@zx
i 2C2VxI T#. ~4.14!

zx
i is the imaginary part of the plasma dispersion funct
normalized byZ0

i . C1 andC2 are defined by

C15
3hn

pe0

V

p
guraddt

Nu

gu
Z0
i , ~4.15!

C25
5

3

um luu2

\2gu

1

kvm
0.43. ~4.16!

The total intensity

I T5(
q

I q ~4.17!

has been introduced, anddx refers to a variation of the nor
malized frequency,

dx5
d~v2v0!

kvm
. ~4.18!

V. CALCULATION OF THE AMPLIFICATION TERM

The polarization of the medium is obtained from the
lation

PW ~real! f n5Tr$rmW % ~5.1!

for a component at frequencyvn . The complex componen
polarized alongx for the forward wave can be written

Pfn5
1

A2(m @pfn~ lm,um11!mum11,lm

1pfn~ lm,um21!mum21,lm#. ~5.2!

When using the matrix elements which have been previou
calculated, one obtains

Pfn52En
2S0um l ,uu2

\ E
2`

` N0~v !dv

nD f*
2 iEn

um l ,uu4

4\3 F2~S21S1!

gu

1
2~S11S3!

g l
1
2S3
g2u

1
2S2
g2l

G E
2`

` N0~v !dv

nD f*
I. ~5.3!

The sumsS0 ,S1 ,S2, and S3 are again obtained from Eq
~3.9! applied to the transitionj⇒ j11. One finds
h
e

-

ly

(
m

um lmum11u4546um luu4, ~5.4!

(
m

um lm,um11u2umum11,lm12u25um luu4, ~5.5!

(
m

um lmum21u2um lmum11u2521um luu4, ~5.6!

which give S1546,S251, andS3521. It remains to inte-
grate over the velocity which appears inN0(v)dv and in the
denominators ofI. This is easily done and the result appea
as a combination of plasma dispersion functions as in
preceding paragraph. One has

E
2`

` N0~v !dv

nD f*
5

L0

~kvm!2
Zx* , ~5.7!

E
2`

` N0~v !dv

nD f*
I5

L0

~kvm!2
Z0
i Wx(

q
I q , ~5.8!

where we have introduced the complex function

Wx5
1

Z0
i H Zx*2Zr

jx*2j r
2
Zx*1Zr
jx*1j r

2
Zx*2Zr*

jx*2j r*
1
Zx*1Zr*

jx*1j r*
J .
~5.9!

HereZr is the plasma dispersion function taken at the cen
laser frequency;j r is also the value ofjx for this frequency.
Finally, for the saturated polarizability which relates the fie
and the polarization (Px5aEx) at frequencyx, one writes

a52
20um l ,uu2

\

L0

kvm
Zx*2 i

um l ,uu4

4\3 F94gu
1
134

g l
1

42

g2u
1

2

g2l
G

3
L0

~kvm!2
Z0
i Wx0.43I T . ~5.10!

This can be related to the real and imaginary parts of
polarizability, which will appear in the Airy function

a i5
m l ,u
2

\

L0

kvm
Zx
i , ~5.11a!

a r52
m l ,u
2

\

L0

kvm
Zx
r , ~5.11b!

b i5
um l ,uu4

4\3 F94gu
1
134

g l
1

42

g2u
1

2

g2l
G L0

~kvm!2
Z0
i Wx

r0.43,

~5.12a!

b r52
um l ,uu4

4\3 F94gu
1
134

g l
1

42

g2u
1

2

g2l
G L0

~kvm!2
Z0
i Wx

i 0.43.

~5.12b!

VI. EXPRESSION OF THE LASER AIRY FUNCTION
AND NORMALIZATION

Using the expressions for the source term and for
polarizability, one obtains the Airy function for the laser,



1378 55G. M. STÉPHAN
I xdx5
dxC1@zx

i 2C2VxI T#

@12e2Lev l ~0a i2b i I T!/e0c#214e2L1v l ~0a i2b i I T!/e0csin2$v l @11~0a r2b r I T!/2e0#/c%
, ~6.1!
th
al-
a

e
y
th
-

ms
t

e
ory:
and
in

to

-

ts is

al
where we have writtenI xdx instead ofI as in Eq. ~2.8!.
I (x) corresponds to the spectral density.I T can thus be un-
derstood as a sum overI (x),

I T5E I ~x!dx. ~6.2!

We have now obtained everything needed to compute
line shape. However, we will write the formulas in a norm
ized form, more suitable for this computation. The gain c
be written

v l ~0a i2b i I T!

e0c
5GFzxi 2Wx

r I T
I n

G , ~6.3!

with

G5
20v lL0Z0

i

e0c\kvm
um l ,uu2 ~6.4!

and

1

I n
50.0215

um l ,uu2

4\2kvm
F94gu

1
134

g l
1

42

g2u
1

2

g2l
G . ~6.5!

G has no dimension, andI n is a normalization factor for the
intensity. We thus define

y5
I x
I n

~6.6!

and

Y5
I T
I n

5E
2`

`

y dx. ~6.7!

Now the gain term appearing in the exponential in Eq.~6.1!
can be written in the following form:

2L1G@zn
i 2Wn

r Y#5L@r ~zn
i 2Wn

r Y!21#, ~6.8!

where we have introduced the ratio

r5
Nu

Nuth
5

G

Gt
, ~6.9!

whereNuth is the value ofNu at threshold. As usual, th
threshold is defined when the gainG compensates exactl
for losses at line center when there is no saturation. At
point G becomesGt5L. r is the relative gain, as tradition
ally defined. One can thus computeNuth from Eq. ~6.4! for
G5Gt ,
e

n

is

Nuth5
Le0c\kvmgu

20v lZ0
i um l ,uu2

. ~6.10!

Nuth represents the pumping term, i.e., the number of ato
arriving in stateuu& per unit volume and unit of time a
threshold.

Now the phasef at frequencyv in Eq. ~6.1! can be writ-
ten

f52
v

c
l @11~0av

r 2bv
r I T!/2e0#52

v l

c
1rL ~zv

r 2Wv
i Y!.

~6.11!

The resonance is attained for the angular frequencyv r such
that 2f(v r)5N2p . Thus one can write the phase

f[2~v2v r !
l

c
1rL @zr~v!2zr~v r !

2„Wi~v!2Wi~v r !…Y#. ~6.12!

One sees thatf includes the intensity in a natural way. Th
phase amplitude coupling factor belongs thus to the the
this effect is very small in the case of gas lasers. Around
above threshold, the line is very narrow, as we will see
Sec. VII, andv is very close tov r , which allows us to
expandzr(v) andWi(v) to first order aroundv r . We thus
obtain

f.2~v2v r !H lc2
rL

kvm
@z8r~v r !2W8 i~v r !Y#J ,

~6.13!

where the prime indicates the derivative with respect
v/kvm . One obtains

f.2~x2xr !A, ~6.14!

wherex:5(v2v0)/kvm is the normalized frequency detun
ing as defined above.xr corresponds tov r . A is such that

A:5kvm
l

c
2rL @z8r~v r !2W8 i~v r !Y#. ~6.15!

When the influence of the second term inside the bracke
neglected,A reduces to the constantU:5kvml /c which is
the ratio of the Doppler width to the cavity free spectr
range.

Equation~61! in normalized form thus becomes
y5
rD 1@zx

i 2D2VxY#

@12eL[ r ~zx
i
2Wx

rY!21]#214eL[ r ~zx
i
2Wx

rY!21]sin2„„x2xr)A…
, ~6.16!
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with

D15
C1

I n
5
0.00645

4p2 VguradLF94gu
1
134

g l
1

42

g2u
1

2

g2l
G
~6.17!

and

D25
400

3

1

@941134gu /g l142gu /g2u12gu /g2l #
.

~6.18!

One sees that Eq.~6.16! contains in a synthetic way the thre
basic effects mentioned in Sec. I: when the lossesL are very
large, the effect of the cavity disappears, which is expres
in Eq. ~6.16! by the exponential which tends toward zer
There remains the numerator which represents the line s
of the source. When the medium is not saturated (Y;0), we
recover the usual Airy function. Finally one can see that
physics of optical stability is also included in Eq.~6.16!.

Depending on the value ofr , Eq. ~6.16! can or cannot be
simplified. Below threshold whereY is negligible, Eq.~6.16!
gives the usual Airy function. Above threshold, the variati
of y is essentially given by the denominator. Around a
above threshold, the variation off5A(x2xr) is very small
inside the laser line profile. Thus the expansi
sinf.(xr2x)A is allowed, which shows that the Airy func
tion becomes a Lorentzian-like function

y5
rD 1@zx

i 2D2VxY#

4eL[ r ~zx
i
2Wx

rY!21]A2

1

G21~x2xr !
2 . ~6.19!

The first fraction does not depend sensibly uponx, the nor-
malized frequency: the spectral dependence ofzr , zi , V,
Wr , andWi can be safely removed because of the narrown
of the laser line. These quantities are thus evaluated at
central laser frequency~this is labeled by the indexr ). G can
thus be understood as the normalized half-width at h
maximum,

G5
12eL[ r ~zr

i
2Wr

rY!21]

2eL/2[r ~zr
i
2Wr

rY!21]A
. ~6.20!

Integrating Eq. ~6.16! over x @always with
sinf.A(xr2x)] gives an equation for the total normalize
intensityY:

Y5
prD 1@zr

i 2D2VrY#

2eL/2[r ~zr
i
2Wr

rY!21]A@12eL[ r ~zr
i
2Wr

rY!21]#
. ~6.21!

Since the gain does not exceed losses apreciably, e
around threshold, the exponential can be expanded to
order and one obtains the third order equation

2Y$2L@r ~zr
i 2Wr

rY!21#%$U2rL ~z8r
r2W8r

i Y!%

2prD 1@zr
i 2D2VrY#50. ~6.22!

This equation is different from Eq.~2.10! in two respects: the
dispersion does not appear in Eq.~2.10!, and the net gain is
not squared in Eq.~6.22!. In order to obtain an approximat
d
.
pe

e

ss
he

lf

en
rst

expression forG which can be compared to standard expr
sions for the linewidth, one can make the same approxim
tions as those made to obtain Eq.~2.13!, i.e., one develops

Y5YL1dY ~6.23!

aroundYL defined by Eq.~2.11!, or

YL5
rzr

i 21

rWr
r . ~6.24!

This approximation can be introduced in Eq.~6.22!, which
gives

dY5
prD 1@zr

i 2D2VrYL#

$U2rL ~zr8
r2Wr8

iYL!%2YLLrWr
r , ~6.25!

where we have replacedY by YL in the source term and in
the dispersion term, and neglecteddY as compared toYL
when necessary. One can now write an approximate exp
sion for the linewidth from Eq.~6.20!,

G5prD 1@zr
i 2D2VrYL#

1

4@U2rL ~zr8
r2Wr8

iYL!#2
1

YL
.

~6.26!

The first factor contains the effect of the amplitude and
saturated line shape of the source, while the second desc
a mixed effect of the medium and cavity field~including the
phase-amplitude coupling!, and the third is the well-known
reducing factor inversely proportional to the intensityYL .
Note that this expression has been obtained with the sim
fying assumption that the pumping of the lower level is ne
ligible as compared to that of the upper lev
(Nu /gu@Nl /g l). If this is not the case, one obtains mo
complicated expressions for the symbolsD1 andD2, and one
recovers a factor close to what is usually callednsp, the
spontaneous-emission factor@7#. This is developed in Ap-
pendix E.

Let us now compare Eq.~6.26! with the expression given
by Schawlow and Townes@1# for the laser linewidth,

Dn5
hn

4p
G0
2 1

Pout
, ~6.27!

where G05(c/2d)ln(r1r2) is the empty cavity loss rate a
resonance, andPout the total output power through both mir
rors. One sees that both Eqs.~6.26! and~6.27! have a similar
structure, with the difference that the source and the ph
terms are expressed more precisely in Eq.~6.26!.

The laser line shape obeys formula Eq.~6.1!, which is
very close to the Lorentzian expressed by Eq.~6.16! even
below threshold. We have numerically computed the int
sity and the linewidth using these formulas, and the data
given in Table I for the case of the Ne line at 3.39mm. The
laser central frequencyv r is taken at line centerv0. The
dipole moment is obtained from Fermi’s golden rule,

mul
2 5 1

10e0\l3gurad/8p2. ~6.28!

Figure 1 displays the variation of intensity as computed fr
Eq. ~6.21!, when the gain is increased from below@Fig. 1~a!#,



1380 55G. M. STÉPHAN
TABLE I. Data used in the numerical calculations.

Mirror reflectances: r 15r 250.8
Cavity length: 0.3 m
Wavelength: 3.3913mm
kvm : 2p153107 rad/s
Homogeneous linewidth: gul5753106 Hz
Radiative deexcitation rate of the upper level for the 3.39-mm radiation: gurad52.873106 Hz
Deexcitation rate of the upper level: gu518.043106 Hz
Deexcitation rate of the lower level: g l5108 Hz
Deexcitation rate of Zeeman coherences: g2u5g2l533107 Hz
Solid angle of the laser mode: V/p51026
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to around@Fig. 1~b!# and above@Fig. 1~c!# threshold. Figure
2 shows the variation of the linewidth as a function of t
gain as calculated from Eq.~6.20!. The laser transition is
clearly seen on both figures: the linewidth, which is 9.7 M
for r50.5, decreases toward 34 kHz atr51 and down to
192 Hz for r51.2. The same calculation, made wi

FIG. 1. Laser characteristic curve as computed from Eq.~6.21!
and data in Table I~a! below, ~b! around, and~c! above threshold.
r 15r 250.9, givesG8s53.8 MHz, 11.2 KHz, and 44 Hz
instead for the same three values ofr . It is interesting to note
that simple equations like Eq.~6.20! or ~6.21! are able to
describe variations of intensity or linewidth on several ord
of magnitude, which corresponds effectively to what ha
pens in a laser.

Up to this point, and while the obtained numbers are
the correct order of magnitude@7,22,23#, we have not yet
tried to make any precise quantitative comparison with
perimental results, because we have focused on a descri
of the laser transition while measurements have mainly b
directed toward finding the ultimate width limit at high in
tensity. It is clear that such a comparison would need ano
calculation in which the saturation term is not of perturbat
nature; i.e., we need an extension to the high-intensity lim
However, as the present theory does not contain any n
measurable fitting parameter, we hope to be able to exp
mentally verify Eq.~6.20! quantitatively.

VII. CONCLUSION

In this study we have essentially adapted the Airy fun
tion of the passive Fabry-Pe´rot cavity to the laser with an
explicit numerical calculation performed on the single-mo
He-Ne laser at 3.39mm in the context of the weak, mean
field approximation. This function is usually obtained using
monochromatic external source, and performing a calcu
tion with the concept of multiple path interferometry. Th
latter method is not mandatory: one has to abandon it so
times, for instance in the study of multiple thin films. In th

FIG. 2. Evolution of linewidth in Hz as a function of gain no
malized at threshold. The scale is logarithmic.
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case of a laser, the hypothesis of a monochromatic so
has to be relaxed as well. However, as soon as we have
concept of a spontaneous source whose intensity is smal
spectrum wide, one is naturally led to adopt the generali
Airy function in the frequency domain. Then it is importa
to make a precise energy balance between the numbe
atoms which deexcite spontaneously and the numbe
spontaneous photons. The projection of the associated s
taneous field onto the laser mode gives the source of the
field. Thus, in our theory, the spontaneous emission is
simply a secondary phenomenon which is only respons
for the laser linewidth; it is a fundamental effect witho
which the laser would not exist.

The generalized Airy function gives a simple and pow
ful description of the laser. It shows in a continuous w
how a wide, weak spectrum transforms itself into a narro
intense line. This transformation begins well below thre
old. The synthetic formulation of the laser static behav
through this function includes the spontaneous source,
stimulated emission, and the resonant cavity. The same
mula @i.e., Eq. ~6.16!# simultaneously describes the lin
shape of the source~with or without inversion!, which is a
Voigt function here, its amplification~or absorption! proper-
ties and the effect of the resonant cavity. The methods gi
here can be extended to describe the transformations of
tistical properties of the source into those of the laser lig
Many quantitative results can still be obtained from t
present theory, which is the first of a series in which the la
is considered as an active Fabry-Pe´rot cavity. For instance
we have given a method@24# to study coupled lasers whic
is based on this interpretation. The link between this stu
and quantum treatments can be made through an equatio
the field operators which includes the properties of the re
nant cavity as described here and a detailed calculation o
Langevin forces~in the frequency domain! which usually
represent the spontaneous emission phenomenologically
nally, we stress again that, together with the description
the laser transition, the formula given here offers a comp
mentary~and more precise! interpretation of the laser line
width, based on a characteristic transfer function of
Fabry-Pe´rot cavity in the frequency domain.
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APPENDIX A: ROUND-TRIP METHOD

In this method, Maxwell equations for the field are solv
at a given point of the laser. This allows us to write t
forward-propagating fieldEf2 on one mirror as a function o
the fieldEf1 on the other mirror. For instance,

Ef2~d!5Ef1~0!expF2E
0

d

k~z!dzG . ~A1!
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When the cavity is empty,k(z) obeys the usual dispersio
relation of vacuum, i.e.,k5v/c. In the case of a saturate
medium,k(z) is a complicated nonlinear function which de
pends upon the local intensities of both counterpropaga
fields. We have simplified this problem by taking the me
value of the integral in Eq.~A1!. This is the essence of th
mean-field approximation. Then the two counterpropagat
fields are related to each other from the boundary conditi
on the mirrors. For instance, the backward and the forw
fields are related by

Ef1~0!5r 1Eb1~0! ~A2!

on mirror number 1 having a reflectivityr 1 . This can be
used to obtain an equation of evolution for the field.

Let us callEA(t) the slowly varying, complex amplitude
of the field centered at the angular frequencyv, at pointA
inside the cavity, and at timet. Let Dt be the duration of a
round trip: Dt52l /c. The field EA(t1Dt) at point A and
time t1Dt results from the superposition of~i! EA(t) after a
round trip and~ii ! the source fieldS:

EA~ t1Dt !5EA~ t !r 1r 2e
if1S, ~A3!

with f52v/c2l . The difference equation follows:

1

Dt
@EA~ t1Dt !2EA~ t !#52

c

2l
@12r 1r 2e

if#EA~ t !1
c

2l
S.
~A4!

Now, if one considers only phenomena which vary ontime
scales much largerthan 2l /c, this equation can be trans
formed into the differential equation

dE
dt

52
c

2l
@12e2Leif#E1

c

2l
S, ~A5!

where we have introduced the lossesL in an exponential
form for later convenience:r 1r 25e2L. This equation gives
the stationary regime

E5
S

12r 1r 2e
if . ~A6!

APPENDIX B: GEOMETRICAL SATURATION FACTOR
FOR A GAUSSIAN BEAM

The laser field is never a plane wave. Its intensity is
general better represented by a bell-shaped function cent
along the laser axisz at r50, r being the transverse coord
nate. The saturation is thus lower than that of the plane w
having the same intensity atr50. Let us recall some prop
erties of the Gaussian beam in an amplifying mediu
@17,18#. The complex field is represented by the expressi

Ef~ t,r ,z!5E0ei ~vt2kz!e2 iP fe2 ikr2/2qf , ~B1a!

Eb~ t,r ,z!5E0ei ~vt1kz!e2 iPbeikr
2/2qb, ~B1b!

respectively, for the forward and the backward beams. H
k5v/c(11a/2e0) . The complex functionsPf , Pb , qf ,
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andqb are those of the cavity@19# modified by the inhomo-
geneities of the medium. They can be written

1

qf
5

1
0qf

1eq f , ~B2!

Pf5
0Pf1ep f , ~B3!

1

qb
5

1
0qb

1eqb , ~B4!

Pb5
0Pb1epb . ~B5!

eq f , eqb , ep f , andepb are perturbations with respect to th
quantities 0Pf ,

0Pb ,
0qf , and

0qb which characterize the
cavity with a linear medium. These perturbations are prop
tional to the intensities of the fields, and bring a relati
correction of the order of 1022 to the beam parameters of
gas laser, i.e., to its radius of curvature and its diame
They explain asymmetries@18# in the gas laser line shape v
frequency. However, these small transverse effects will
neglected in the following. For our purpose here, the m
result of this theory concerns the saturation term: when
transverse Gaussian distribution of the beam is approxim
by a parabola, the saturating intensityI5E0E0* which ap-
pears in the polarizability, is reduced by a factor of 0.43 w
respect to the plane-wave case~i.e., I is replaced by 0.43I ).
We will later include this factor 0.43 in the saturation term

APPENDIX C: MIXED TIME-FREQUENCY DOMAIN

In a complex form, the fieldE(t) is connected to his
frequency components by

Ec~ t !5E
0

`

E~n!e2ipntdn. ~C1!

In the usual case of a single-mode laser, one writes the
pansion in the useful intervalDn around the central fre
quencyn0,

Ec~ t !5e2ipn0tE
Dn
E~n!e2ip~n2n0!tdn5E~ t !e2ipn0t,

~C2!

where the slowly varying amplitudeE(t) is introduced:

E~ t !5E
Dn
E~n!e2ip~n2n0!tdn. ~C3!

Here we do not care about supplementary resonances su
population resonances observable in class-B lasers. In usual
r-

r.

e
n
e
ed

x-

as

laser line-shape theoriesE(t) is the central quantity which is
studied. In our case, we are interested in applying the pr
erties of the Fabry-Pe´rot cavity in the same way they ar
usually applied in the case of an empty cavity, i.e., in
mixed time-frequency domain where a frequency compon
of the field is well identified. Thus we will divide the spectr
line into intervals, the width of which aredn and centered
around frequenciesnq:

Ec~ t !5(
q

e2ipnqtE
nq2dn/2

nq1dn/2

E~n!e2ip~n2nq!tdn

5(
q
Eq~ t !e2ipnqt, ~C4!

with the amplitude for each component,

Eq~ t !5E
nq2dn/2

nq1dn/2

E~n!e2ip~n2nq!tdn. ~C5!

Again, we insist on this aspect of the physics: such an a
plitude Eq(t) varies very slowly in time. Let us take as a
example the case of a line whose width is 1 Hz. When i
divided into 100 intervals, the difference isn2nq<5.1023

Hz, which, to be measured, will need at least 200 s. T
mathematical limit to Eq.~C4! is Eq. ~C1!, in which E(n)
does not depend on time.

APPENDIX D: VELOCITY INTEGRALS

Integrals over velocities are related to the plasma disp
sion functions

Z~j!5
1

Apkvm
E

2`

1`

due2u2
1

u2j
, ~D1!

with the notations

u5
v
vm

, ~D2!

and

j:5
1

kvm
@v2v01 igul#5x1 iY, ~D3!

wherex is the detuning expressed in units of half the Do
pler width, andY the ratio of the homogeneous to the inh
mogeneous linewidths.

The integrals appear in the expression of the population
well as in those of the polarization. Let us consider first t
following expression in Eq.~4.8!:
E
velocities

ruu~v !F gabdn

~vn1kv2v0!
21gab

2 1
gabdn

~vn2kv2v0!
21gab

2 G52
i

2

Nu

gu
dnE

2`

` dv

Apvm
e2v2/vm

2

3F 1

nD f
1

1

nDb
2

1

nD f*
2

1

nDb*
G H 3120i

um luu2

2\2gu
IJ .

~D4!
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The first part gives

E
2`

` dv

Apvm
e2v2/vm

2 F 1

nD f
1

1

nDb
2

1

nD f*
2

1

nDb*
G5

4i

kvm
Zi~j!. ~D5!

The second part is a little bit more complicated:

E
2`

` dv

Apvm
e2v2/vm

2 F 1

nD f
1

1

nDb
2

1

nD f*
2

1

nDb*
G(

q
I qF 1

qD f
1

1

qDb
2

1

qD f*
2

1

qDb*
G

5
2

k2vm
2(

q
I qFZn2Zq

xn2xq
1
Zn*2Zq*

xn2xq
2

Zn1Zq
xn1xq12iY2

Zn*1Zq*

xn1xq22iYG . ~D6!

This term becomes important especially above threshold, where the linewidth becomes very small. Thusxq does not vary very
much, and a good approximation is to takexq invariant and equal to the laser central frequency; i.e., we takexq5xr . In this
case,

E
velocities

ruu~v !F gabdn

~vn1kv2v0!
21gab

2 1
gabdn

~vn2kv2v0!
21gab

2 G52
i

2

Nu

gu
dnH 12i

kvm
Zx
i 220i

um l ,uu2

2\2gu

2

k2vm
2 Vx(

q
I qJ ,

~D7!
e
a

. I
q.
with the abbreviation for the real functionVx,

Vx5
Zx2Zr
x2xr

1
Zx*2Zr*

x2xr
2

Zx1Zr
x1xr12iY2

Zx*1Zr*

x1xr22iY .
~D8!

APPENDIX E: SPONTANEOUS-EMISSION FACTOR

The spontaneous-emission factor@7# Nsp is traditionally
defined as the ratio

Nsp5
N2

N22N1
, ~E1!

whereN2 andN1 are, respectively, the populations of th
upper and lower levels. In the context of this work, one c
also define a closely related factor

nsp5
Nu

gu

1

L0
, ~E2!

with

L05
Nu

gu
2
Nl

g l
. ~E3!

When (Nl)/g1 is negligible as compared to (Nu)/gu ,
nsp51, which corresponds to the formulas given above
this is not the case, one finds, instead of Eq.~4.13!, another
expression for the source term:
n

f

S5
hn

e0

V

2p
guraddt

Nu

gu
dnH 12

kvm
Zx
i 2

20

nsp

um luu2

\2gu

3
1

k2vm
2 Z0

i Vx0.43(
q

I qJ . ~E4!

Formula~4.16! is replaced by

C25
5

3nsp

um luu2

\2gu

1

kvm
0.43. ~E5!

Instead of Eq.~6.9!, one hasr5L0 /L0th whereL0th is the
value ofL0 at threshold, which is now defined by

L0th5
Le0c\kvmgu

20v lZ0
i um l ,uu2

. ~E6!

Equation~6.16! thus becomes

y5
r uD1@zx

i 2D2VxY/nsp#

@12eL[ r ~zx
i
2Wx

rY!21]#214eL[ r ~zx
i
2Wx

rY!21]sin2~~x2xr !A!

~E7!

with the normalized pumping term for the upper level:

r u :5
Nu

gu

1

L0th
. ~E8!

From Eq.~6.26!, the expression for the linewidth is

G5pr uD1Fzri 2 D2

nsp
VrYLG 1

4@U2rL ~zr8
r2Wr8

iYL!#2
1

YL
.

~E9!

as r,r u , this value leads to a larger linewidth than E
~6.26!.
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