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Photon correlation spectroscopy of the Jaynes-Cummings system

B. C. Sanders;? H. J. Carmichael, and B. F. Wieling&
IDepartment of Physics, University of Oregon, Eugene, Oregon 97403-1274
2School of Mathematics, Physics, Computing and Electronics and Centre for Lasers and Applications,
Macquarie University, North Ryde, New South Wales 2109, Australia
(Received 9 August 1996

The spectroscopic detection of the excited-state resonances of a strongly coupled atom and optical cavity
mode is complicated by inhomogeneous broadening, due to the variation of the dipole coupling constant with
location in the cavity. Photon correlation spectroscopy circumvents the difficulty for slowly moving atoms
using frequency-selective two-photon absorption and photon coincidence detection of the two-photon decay.
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I. INTRODUCTION thought is based on the fact that the semiclassical theory and
quantum electrodynamics predict different equations of mo-
The Jaynes-Cummings model provides a simple descripion for the molecule in the field, the difference arising just

tion of a two-level atom interacting with one mode of the from those correlated states which cause the above concep-
quantized electromagnetic fie[d,2]. It is a basic model of tual difficulties. Thus if one could find any experimental situ-
theoretical quantum optics and has been studied extensive#fion in which the difference betwedi'E) and(H')(E)
over a period of some thirty years. The large theoretical litleads to an observable difference in maser observations, this
erature which has grown on the Subject is focused on phys|dyould constitute an indirect, but ConVinCing, check on those
which has an explicit origin in the quantized nature of the@Spects of quantum theory which lead to the Einstein-
electromagnetic field3,4]. From it, one would hardly dis- Podolsky-Rosen paradox.”
cern that Jaynes and Cummings were themselves quite skep- 10day, discussions of entanglement focus on the nonlocal
tical about detecting differences between their quantumtOrrelations emphasized in the work of BEJ|10]. The dis-

mechanical model and the corresponding semiclassic%\nCtion Jaynes and Cummings draw, betweett)(E) and

’ H _
theory; in their evaluatiofl]: “ . .. the prospects of detect- H'E), does not concem nonlocal correlatiqner se Per

. . X ; haps, however, it comes even closer to the fundamental role
ing such a difference are extremely dubious, for we will see

. . of entanglement in quantum mechanics, the implications of
that the semiclassical theory actually reproduces many of thﬁ/hich are addressed through spectroscopy. According to
features which one commonly supposes can be found onl

ith field ation.” The d ; ¢ a diff éiuantum mechanics, a strongly coupled atom and cavity
with field quantization.” The detection of a difference was, 4 4e js not merelan atomexchanging energy with cavity

in fact, claimed within a decade of Jaynes and Cumming$,qge this is the conception in semiclassical theory. In quan-
work [S], and over the next few years the differences grewym mechanics the atom and cavity mode become entangled;
into what is now the familiar collection of nonclassical ef- they form a composite entity, with stationary states that are
fects in resonance fluorescenid@. We should note, how- entangled states, and characteristic transition frequencies be-
ever, that resonance fluorescence involves rather differemjveen these states. It would be difficult to overstate the im-
physics from that addressed in Jaynes and Cummings’ origportance of this idea—an idea which entered quantum me-
nal paper. The latter is concerned with coherent quanturghanics as the theoretical basis of the atomic spectroscopy
evolution, evolution in the absence of dissipation. Nonclaswhich established the subject and is central to so much of our
sical effects in resonance fluorescence involve irreversiblenderstanding in molecular, condensed matter, and particle
processes: radiation into free space and the detection of thphysics. In the case of the Jaynes-Cummings system, the
radiation by the photoelectric effect. In a more accurate comspectroscopy follows from a nonperturbative calculation in
mentary then, resonance fluorescence demonstrates dep®ED and is the foundation on which all work in nonpertur-
tures from the multimode extension of semiclassical theonbative cavity QED is built.

developed by Jaynes and his studdt$]. In this sense the This paper is concerned with the experimental possibili-
challenge of Jaynes and Cummings’ original paper remainses for measuring the Jaynes-Cummings spectrum. Measure-

to be met. ments have been pursued for nearly a decade. The first was
The issue on which the challenge turns is that of entangleperformed on a beam of Rydberg atoms traversing a super-
ment, as is made clear in the following passégk “ ... conducting microwave cavity11] in a close realization of

for in the semiclassical equations the “driving term” appearsthe maser configuration considered in Jaynes and Cum-
as(H'){E), while quantum electrodynamics yieldsl’E). = mings’ work [1]. The experiment is operated in the time
The difference between these terms arises from the possibilomain where the collapse and revival of Rabi oscillations

ity of having correlated states, ... . provides the spectral information. A refined microwave ex-
This possibility forms the basis of one of Einstein’s periment has recently extracted distinct frequencies from the
objections to quantum mechanics. ... An interesting line ofRabi oscillation signa[12] and produced the first quantita-
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tive results on the excited states of the Jaynes-Cummingsroximation and various other details of an actual experi-
system. Experiments at optical frequencies have also beenent. They use a great deal of computer time, however. In
performed, and here one can observe absorption and emitis paper we therefore develop an alternate approach, valid
sion lines directly in the frequency domain. The experimentdn the exact quasistatic limj24]. We solve the master equa-
have not yet achieved equivalent success, however. THén for one atom coupled to a cavity mode with fixg(r)
ground to first excited-state absorption has been observe’Nd driven by a bichromatic field. Inhomogeneous broaden-
[13-185, and the spectrum is a doublet, the so-called vacuun’d is incorporated by averaging against the distribution,
Rabi spectrum. But the doublet is generic, not a distinguishP[9(r) ], of the dipole coupling constant for a uniform spa-
ing feature of the Jaynes-Cummings Hamiltonian; it arisedi@l distribution of the atom and a standing-wave Tk
from normal modes wherever the electric field and materia"ode function. Implementing this approach uses a small
polarization are strongly coupled in the linear optics regimefraction of the computer time, thereby making a search for
A similar linear response is observed in semiconductor miPPtimal experimental conditions feasible. S
crocavities where the normal modes are identified as cavity M Sec. Il the photon correlation spectroscopy technique is
polaritons[16]. Here the behavior is clearly semiclassical 2utlined in physical terms. Its theoretical implementation for
[17] and the nonlinear spectroscofly’—22 certainly differs the qu_aS|stat|c limit is developeq in Sec. lll Where th'e r"nasyer
from that which is derived from the Jaynes-Cummingseq‘_Ja“o” for the_ JaynesTCummlngs system with radiative lin-
Hamiltonian. ewidths and bichromatic excitation is solved. The photon
The advantage of microwave frequencies over optical fregoincidencg speqtra ob_tained from this solution are discussed
quencies comes from the larger wavelength and period dff S€c. IV, first without inhomogeneous broadening and then
microwave radiation. Experiments to date use atomic beam&fter averaging over the distribution of dipole coupling con-
The Jaynes-Cummings spectrum depends on the dipole Coat_ants; the two dlstrlbutlons used t_o take the_ average are de-
pling constant, which depends, in turn, on the location of thdived in an Appendix. Our conclusions are given in Sec. V.
atom in the cavity mode. In a standing-wave cavity, it is
necessary, therefore, to confine the transverse width of the Il PHOTON CORRELATION SPECTROSCOPY
atomic beam on the scale of the radiation wavelength. This is
a relatively easy task at microwave frequencies but very dif-
ficult for optical fields. The motion of the atoms through the ~ The Jaynes-Cummings model describes the resonant, or
cavity mode is also a problem. If the probability of photon hear-resonant interaction, via an atomic dipole transition, of
loss during the transit time is negligible, the accumulatecdPne atom and one quantized mode of an electromagnetic
Rabi phase is simply the integral of the time-varying cou-cavity. The resonance condition allows the atom to be treated
pling constant. Such is the case at microwave frequencie§s a two-level system with raising, lowering, and inversion
where the photon lifetime is many times longer than theoperatorso, , o_, andos, respectively. The electromag-
transit time through the Gaussian mddel,17. At optical netiq field mode has annihilation and creation operators
frequencies, however, although the cav@ymay be higher and aT, and the Jaynes-Cummings Hamiltonian for the loss-
[15], the absolute photon lifetime is generally shorter tharless system in the rotating-wave approximation is given by
the transit time of the atoms; the spontaneous emission life- - A .
time is even shorter still. Under these conditions, the Rabi H=%woN+ifigA, )
oscillation of a typical atom is interrupted by photon emis-
sion at many different locations across the Gaussian mode.
complicated co_mbination of homogeneous and inhomoge- N:(éfé+1/2)+a_3 %)
neous broadening of the spectrum results.
_We recently proposed a technique for overcoming thesg; the “excitation number” operator and
difficulties [23] without adopting the extreme idealization of
localizing an atom on the scale of the optical wavelength. A:éT(}f_a(h:_;U 3
Our proposal holds for cooled or slowed atomic beams for
which a quasistatic approximation may be made. For suffiis an anti-Hermitian “excitation exchange operatoy is
ciently slow atoms, radiative equilibrium is reached with anthe atomic transition frequency and cavity resonance fre-
essentially fixed dipole coupling constam(r), at every quency, andj is the dipole coupling constant.
point along an atom’s path. The broadening is then entirely The Hilbert space for the atom and cavity mode is
inhomogeneous and accounted for by a distribution over
g(r). The proposed techniquphoton correlation spectros- H="Haton® Hcay- 4
copy, selectively excites a subensemble of Jaynes-Cumming% )
systems, having(r) within a narrow band, by resonant two- 1he ground and excited states of the atom are denjgted
photon absorption in a coherent bichromatic field—a hole2nd|€), and the Fock number state$N)}, are the energy
burning approach. The excitation decays with the emissioi§igenstates for the quantized electromagnetic field. Together
of two photons, thus enabling a measurement of the absorﬁhese states form a basis which diagonalizes the excitation
tion resonances by the detection of two photons in coincinumber operator\. The spectroscopy of the Jaynes-
dence as one frequency of the bichromatic field is sweptCummings system follows from the eigenstates of the total
Simulations of an experiment using quantum trajectoryHamiltOI’]ianL the so-called dressed states which diagonalize
methods demonstrate the feasibility of this techni¢@8].  both A and.A. In the dressed-state basis there is the ground
The simulations include the corrections to the quasistatic apstate

A. The Jaynes-Cummings spectrum

Where
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|0)=10)|g) (5) mode. For a standing-wave TEjyimode,
with energyE,= 0, and excited-state couplets g(r)=gmapoqkz)e‘r2’wé, (8)

—o— 12N — i
IN)-=2""H(IN=D1)[+)*i[N)|g)). N>0 ® with k=2x/\, wherek is the wave number\ the wave-

which satisfy the eigenvalue equation length, andwy is the mode_waislgmax is the dipole_ coup_ling
constant when the atom is located on the cavity axis at an
H IN). =%(Nwo* VNg)|N). . (7)  antinode of the standing wave. Only rarely, however, will the

atom even come close to this location. More realistically, the
The dressed states entangle the degrees of freedom of tResemble of single atoms produced by an atomic beam will
atom and the electromagnetic field, formalizing the picture ofbe uniformly distributed in space. The corresponding prob-
the Jaynes-Cummings system as a single, composite entitgbility distribution of dipole coupling constants is derived in
The defining characteristic of the Jaynes-Cummings energihe Appendix:
spectrum is the splitting, 72/Ng, of the excited-state cou-

plets. Our interest is with the transitions between the first and c0S X9/ Grma)

second excited states. The goal is to observe the four absorp- P(g)=V;1—, FIna=9<0maxe (9
tion resonances at frequenciesog+(y2+1)g and 9

wo—(V2+1)g.

where Vg, 0<F<1, is a finite interaction volume intro-
duced for normalization. The distribution is monotonically
decreasing, and small values of the dipole coupling constant
Transitions between the first and second excited states cajje by far the most probable; indeed the probability distribu-
be accessed in tWO-phOton absorption. EXperimentS Witmon diverges ag (andF) approaches ZerQWith the restric-
atomic beams face two diffiCU|tieS, however. FiI’St, the en‘tion to one atom, the limiE—0 Corresponds to a zero beam
ergy spectrum to be measured is specifically the spectrum Qj‘ensity)
hand, the number of atoms produced in a given interactiomot a major source of difficultjl1,12,25. Even for an open
volume by an atomic-beam will fluctuate in time. Of course, standing-wave cavity12], the atoms can be confined to in-
the solution to this is in principle straightforward: For a suf- tersect the mode axis at an antinode, with very small disper-
ficiently low atomic-beam density the fluctuations are pre-sion relative to the Gaussian waist and the period of the
dominantly between zero atoms—most of the time—and ongtanding wave. Also, since there is no photon loss during the
atom—on occasions. A measurement which detects the ajtom's transit time, along its trajectory the changing dipole
oms, as in the recent microwave experimefs,12,28,  coupling constant may simply be integrated in time. At op-
then records only one-atom events. The same strategy cagal frequencies, the situation is quite different. Transverse
work for optical frequencies where photons are detected iRonfinement of the atomic beam on the scale of the wave-
place of the atoms; one may illuminate the interaction vol-iength might be achieved using atom-optics techniques but is
ume with a probe laser off the cavity axis so that on-axisgertainly very difficult. Even more important is the conse-
detection records no photons unless an atom is present. quence of photon loss during the transit time of the atom.
A question remains, however, as to what is a sufficientlyThjs changes the physics completely. At optical frequencies,
low atomic-beam density. This question is nontrivial for op- measurements are made in the frequency domain, by detect-
tical cavities, where the interaction volume is not bounded inpg photons scatteredhile the atom and cavity mode inter-
the plane transverse to the cavity axis. We discuss the queget[13—15. Under these conditionB(g) represents an en-
tion elsewher¢ 23] and simply summarize our answer here. semble of different Jaynes-Cummings systems, a source of
of collective (multiatom) coupling strengths calculated from pjaced as stationary objects in the cavity mode is this inter-
an ensemble of the spatial configurations of atoms realized igretation exact. It is a reasonable one, however, for suffi-

an atomic beam. In the limit of low atomic-beam density, thegijently slowly moving atoms, atoms whose velocity, sat-
shape of this probability distribution, for coupling strengthsisfies the inequality23]

not too close to zero, approaches an asymptotic form—the
form obtained for one atom uniformly distributed in space.
We therefore identify one-atom conditions with the require- vlwg e\ 123 (k+y/2)
ment that the defined probability distribution closely ap- m < o
proach this asymptotic form. The conditions are ensured if 2 N
the average number of atoms within the Gaussian mode
waist is much less than unity. In what follows we assumewhere3(x+ v,/2) is the half-width of the first excited state;
this is so and derive all results for strictly one-atom interac-« is the half-width of the cavity andy,/2 is the cavity-
tions. inhibited half-width of the atom. In this paper we take the
There is a second difficulty, which at optical frequenciesatom, at each point along its trajectory, to be at rest. We have
is not solved by using a low atomic-beam density but in factshown that calculations based on this assumption are in good
becomes worse. The problem is the variation of the dipoleagreement with quantum trajectory simulations for moving
coupling constant with the location of the atom in the cavityatoms[23].

B. Difficulties with atomic beams

> NG

gmax
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ws=wo+ (V2+1)g;; with w;=wo+gs the resonances are

M2w+VEg) T - =

inhomogeneous at wg=wot (12— 1)gs and ws= wo— (y2+1)g; .
A[200—v2(vV2-1)gf] ccccdocmcoogo-- width 2v/2:g max If &> &, as in a normal pump-probe configuration, these
W20 —V295) = 4 - = = - - would be the only two-photon resonances to consider for
fixed w;. This relation between amplitudes is found to be
&l e, & unsatisfactory, however, due to the nonresonant two-photon
@ (@) absorption background produced By. In order to reduce
Rlwo + (VZ = )gs] -4 - --- | inhomogeneous this background, it is actually preferable f§rto be equal to,
Mwo—g) —dd o _ 1. _ width 27gmax or even somewhat smaller thafi;. Then the two-photon

resonance shown on the right in Fig. 1 is also significant. In
this casew; selects the resonance frequency of the second
absorbed photon, and two-photon resonance is possible when

g(n=(2-1)g;. (13

0

As wg is scanned, the two-photon resonance occurs for

FIG. 1. Selection of two subpopulations within the dipole cou- ws= wq+ (V2—1)gs, as illustrated, whew;= wy—g;, and
pling constant distribution in two-photon absorption. The ground-for @ = wo_(\/i_ 1)gs when ws=wg+ g5 .
state energy and the inhomogeneously broadened energy bands as-|n summary, the bichromatic fieltl1) selects two sub-
sociated with the first and second c_ouplet of the Jaynes-Cumminq§0pu|ationS from the inhomogeneous distributRg), sub-
spectrum are shown. The absorption paths on the left select thg,,ations whose dipole coupling constants are close to the
coupling strengthg=g; and the path on the right selects values given by Eqs(12) and (13). One subpopulation un-
g=(v2-1)g;. The labels(i), (i), and(iii) identify corresponding dergoes two two-photon resonances in absorptiom ass
two-photon resonances in Figs. 1, 3, 4, and 8. scanned, and the other, one two-photon resonance. The rela-
tive sizes of the two subpopulations change with changes in
P(g). In the following we consider the distributid®), and,

The goal now is to detect homogeneously broadened ahin addition, a distribution for an atomic beam which confines
sorption resonances between the first and second Jayndhke atoms to the vicinity of the antinodes and the cavity axis.
Cummings couplets in the presence of the inhomogeneouEhe analytical expression for the second distribution is quite
broadeningP(g). Our strategy is a standard one taken fromcomplicated and therefore stated only in the Appendix.
sub-Doppler spectroscopy; a subensemble of Jaynes-
Cummings systems is selected within the inhomogeneous
line. The selection is done in two-photon absorption with

C. Two-photon excitation

D. Photon coincidence detection

excitation by a bichromatic field, Once the system reaches the second excited state it will
_ _ eventually relax to the ground state, emitting two photons,
Ety=¢&e it e, (11)  separated in time by something on the order of the first

excited-state lifetime. The couplet at the second excited state

coupled to the atomw; is a fixed frequency and the spec- comprises two entangled states,
trum is taken asv. is scanned. We may assurfigis real, _ .
without loss of gesherality, if a random ryelative piase is car- 12).=2"Y4|1)[e)*i|2)|g)), (14
ried by the complex amplitudé;. The phase accounts for
the random initiation time of the interaction with the atom. both of which can relax by one of two decay channels: either
Actually, nothing would be lost i€ were also taken to be two photons are emitted through the cavity mirrors,
real since the cycle-averagedover the beat period |[2).—a%2).==i V2|0), or one photon is emitted through
27| w;— wg|) two-photon excitation is independent of this the mirrors and one out the sides of the -cavity,
phase. The amplitudes of the two chromatic component§2).—ao_|2). = *i|0). We consider detection of the pho-
must be large enough to produce a population in the secoriens emitted through the cavity mirrors. This decay channel
excited states, but not so large that significant Stark shifts dis favored by both a higher collection efficiency and a larger
occupation of the higher-order excited states occurs. transition matrix element.

The two-photon transitions shown on the left in Fig. 1 As wg is scanned, the flux of photons emitted through the
illustrate the basic selection process. If the atom is located atavity mirrors should increase at each two-photon absorption

r such that resonance. There is a much larger contribution to the photon
flux from one-photon scattering, however—i.e., scattering by
g(nN=9;, Oi=|wi—wy, (12)  the subpopulations with
one of the ground to first excited-state transitions of the g(n=lwi—wo| or g(nN=|ws—wl, (15

Jaynes-Cummings system is resonant with. Then two

two-photon resonances occur ass is scanned: with the subpopulations in resonance with or wg. In general,
wi=wo—0¢, as illustrated, the first to second excited-statethe two-photon scattering and one-photon scattering are not
resonances are at wg=wo—(v2—1)g; and separated in frequency space, and it is necessary to separate
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them by some other means. We propose to use photon sta- Actually, in all cases the situation is less gloomy than it
tistics. It is from this that the namghoton correlation spec- might appear, since one can subtract the two-photon back-
troscopyis derived. ground driven by¢. To do so a second measurement of the
The basic idea is one common in particle physics—tophoton coincidence rate is made wifp=0 and subtracted
identify an unstable state by correlating its decay productsirom the first. This difference is th@hoton coincidence
In the present case, the products are a photon pair; twaspectrum the final result of the proposed technique. Of
photon decay will produce an identifiable photon pair—acourse, the two-photon background driven&yremains. It
pair resolved in time from the one-photon background—may be minimized, however, by decreasifig relative to
when the on-resonance one-photon flEéq. (15)] is much & while keeping their product constant.
less than the inverse lifetime of the intermediate states. This We have calculated the photon coincidence spectrum, the
leads to the requirement difference

|02+ I2)<1. (16) AP (w9 =(a7%8%),, (09 ~(@"8%)(@))lg -0, (17)

sing the assumptions and approximations described above.

he first step of the calculation is to solve the master equa-
rJ}i_on for the Jaynes-Cummings system with radiative damp-
ing under the bichromatic excitation specified by Eff).

For such weak excitation we propose to measure the phot
coincidence rate as a function af;. At each two-photon
absorption resonance the rate will increase. Of course, coi
cidence must be defined in practice by a time windeyy,

on the order of the lifetime of the cavity decay channel

«x L. The narrower the window, the better the selection IIl. SOLVING THE MASTER EQUATION

against chance coincidences of two one-photon events. The Including cavity damping, at the ratex? radiation into

spectrum measured i(r;)this way is given by the second-0rdetee space from the atom, at the rate, and driving of the
correlation functiongy, (s, ), integrated with respect 10 a1om by the classical field(t), the master equation for the
7 over the windowr,, . In this paper we assumer,,<1 and  Jaynes-Cummings system density majriis given by
simply caIcuIategﬁ,zf)(wS,O), or more specifically the prob- L
ability to find two photons in the cavity(a"%a%), (ws). p=[H.,pllii+[Et)o, —E* (Yo ,p]
Good agreement is obtained with quantum trajectory simula- +(WI2)(26_poy—G.0_p—po.o_)
tions using a finite coincidence windo\@3]. R L
+ k(2apa’—a'ap—pa'a), (18)
E. Subtracting background counts whereH is the Jaynes-Cummings Hamiltonian, E#j). We

The aim is to measure the unequal splittings of the firsisolve the master equation in the dressed-state basis, designat-
and second excited-state couplets. Just because the splittinigg the density-matrix elements as
are unequal, exact resonance on both [Bg—|1). and

|1).—2). transitions can only be achieved by absorbing (P)o=(0lp|0), (p)on=(0lp|N),

one photon of frequency; and one of frequencyw. Two (19
types of nonresonant two-photon absorption can occur, how-

ever, absorption in which both photons have frequangpr (p),ﬁl’fNEG,(N' IpIN)., €' ,ec{*}.

both have frequencw,. First, nonresonant two-photon ab-
sorption will occur for the subpopulations satisfying Ed. Provided that excitation to higher energies is negligible, the
(15—i.e., when the transition|0)—|1)., but not representation may be truncated beyonddtecouplet. The
|1)—|2), is on resonance. This provides a two-photontruncation can be justified, for ary by requiring the ampli-
background driven by botf and&s. The second possibility  tudes&; and & to be sufficiently small. Since our interest is
is for exact two-photon resonance, but without resonance oith transitions from the first to the second couplet, the low-
the |0)—[1). transition. If w; is set very close to est useful truncation is @t=2. The formalism developed in
wo*Ogmax, as llustrated in Fig. 1, exact resonance is notthis section holds for any, but when applying it in explicit
possible for two photons of frequeney; . It is possible on  calculations we have takeh=3. In this case, Eq(18) con-
the other hand for two photons of frequeney, and this  stitutes a coupled set of linear equations for 49 matrix ele-
provides a second contribution to the two-photon backments.
ground driven by&;. We wish to find the asymptotic solution to E(18),
The most damaging background is that driven & lim,_..p(t). Due to the bichromatic excitation, this is not a
since aswg is scanned, this maps of(g), and hence ac- stationary state. The explicit time dependence at frequency
quires the Zpay inhomogeneous width. Given the diver- o can be removed by working in an interaction picture,

gence of P(g) as g—0, there is a good possibility for taking the free Hamiltonian ad,=%w¢N. We then write
swamping the selected two-photon resonances. Such is the

case, at least, for two of the selected resonances. For the g(t)=5f+gse—i5t, b= ws— ws, (20)
third—at ws= wy+ (y2+ 1)g; in Fig. 1—the resonance fre-

guency lies outside the inhomogeneous line and the res@nd the frequency, in the Hamiltoniar{Eq. (1)] is replaced
nance should be resolved even in the presence of the twdy wo— ws. An explicit time dependence at frequendy
photon background. still, however, remains. As a consequence, the asymptotic
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pectations which determine the photon coincidence spectrum
are to be calculated. We must, nevertheless, develop a full
solution scheme for the tridiagonal recurrence relation, even
to obtain this one density operator component. In the new
notation, the asymptotic form of the master equation is

++
11
_
-
=z

5 loz(pﬂ)

11

EsPYi— 11 (ikd+ Q)Y+ ERYi+1=0, (26)

10%(po)

where P and R are complex matrices of dimension
(2J+1)X(23+1), andQis a real (J+1)x(2J+1) ma-
trix. Settingk=0 in this expression and using the identity
(25) with k=1, we see that the matric€sandR are neces-
sarily related by

++

22

10*(po)

EP=(ER)* (27)

22

and

10%(po)

QYo+ 2R &ERy;) =0. (28)

In order to solve the recurrence relati(®6) we introduce
FIG. 2. Diagonal density-matrix elements plotted as a functiond S€t of transformation matricé¢§,} [26,27) such that
of wg/g; for y/2k=1, g;/k=0/xk=9 and&;/k=E;/k=0.25:(a) _
(Po)oo: (B) (po)ry (circles and (oo)7;" (boxes, and(c) (po)z,- Yier1= S 1
(circles and (pg)5, (boxes.

(29

The S, are not necessarily invertible, but they allow us to

solution executes a steady oscillation with perice/3. we ~ "€Write the recurrence relation in the form

therefore solve Eq18) in the Bloch function approach. We " —
adopt the series expansion E R Y1~ (Iko+ Q+ ERS ¥, (30

producing the result

_ —iket
p=2 pdt)e ", @1 S 1= Y= — € (ik+Q+ ERSe 1) R¥ Vi1, -

where the asymptotic solution satisfies . . . o
where the first equality follows with a further application of

lim py(t)=0. (22)  the identity(29). Asy, (hencey,_) is chosen arbitrarily, the
t—o recurrence relation
Then S=— & (iIkS+Q+ERS 1) IR* (32
. S . i is thus established. Equatig@8) now appears as
pO= 3 ThO-ikopnle ™ (23 AUAGRS) now app
[Q+2ReERS) lyo=0; (33
and
hencey,, the dc component of the asymptotic density opera-
i * _ tor, is the eigenvector with zero eigenvalue of the matrix
limp(t)=—i8 2, kpe(t)e ko, (24)
t—o k=—e M=Q+2Rd&RS). (34
Substituting the expansion@1) and (24) into the master The program is to solve the recurrence relat{8) for

equation replaces the differential equatid8) by a tridiago- 5, and compute the zero eigenvectorMf The first step is
nal recurrence relation connecting the time-independent opsccomplished using a continued fraction expansion, which

eratorspy . _ for sufficiently small& may be terminated at first order.
The (2J+1)X(2J+1) independent complex compo- Then

nents of the density operator in the dressed-state basis can be

replaced by a complex vectory of length Si~—Ef[i6+Q—|&J?R(2i 6+ Q) IR*]IR*, (35
(2J+1)X(2J3+1). Similarly, the operatop, is replaced by
the vectory,. The latter can be constructed such that and, hence,
Y= (Y-1) ™, (25  M=~Q-2|&|°Re[R[i6+Q—|&J?R(2i 6+ Q) *R* ] 'R*}.
(36)

which guarantees thak, the dc component of the asymp-
totic solution, is real. Our ultimate concern is with this dc Note thatM, and thereforey,, is independent of the relative
component, since it is from this that the time-averaged exphase(contained inf) of & and&;.
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matrix elements plotted as a func-
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gf/K:gS/K:O.ZS: (a) (po)oo,
® (po)iz » © (po)1i", (d)
(Po)22 » @and (&) (po)z, - Only
the functional dependence is
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Figs. 1, 3, 4, and 8.
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IV. RESULTS AND DISCUSSION 5? 1

We are now in a position to calculate the photon correla- (Po)1s =~ L (k+y/2)%+ 25f2 34°

tion spectrum. The calculation is done numerically. First, the

asymptotic solution for the density matrigg, is found, as (37
the zero eigenvector of the matri§86), and from this 1 __

A@(wy) is calculated for fixedg [Eq. (17)]. Finally, the (Po)oo~1=(polu1 -

average is taken over the inhomogeneous broaddp(igy.

In this section we discuss the results. We begin with result
for the matrix elements gf, before taking the average over
P(g). All calculations are based on the parameter

Omax! K= 29max! v1= 10, which should be compared with the

'én agreement with the values observed in the figure. Two
dips appear against the background in the ground-state occu-
S‘pation probability, evidence of the one-photon absorption
resonances ab;= wg* gs, and corresponding peaks appear
in the occupation probabilities of the first excited states. Note

best experimental value®}./«=12, 20/ v1=2.9, re- . : "
) ; also the small reduction in the occupation probability of state
ported for the optical frequency domdig8]. Our choice of 11)_ when resonant absorption occurs to statg, . This is

Fﬂﬁ?gﬂ:riﬁeﬁgm'Stlc but not an unreasonable goal fozri saturation effect due to competition between the absorption

on the|0)—|1)_ and|0)—|1), transitions. In the presence
of inhomogeneous broadening the feature produces a Lamb
dip, as shown in Sec. IV B.

The ideal experiment would be conducted without inho-  Figure Zc) shows the occupation probabilities for the sec-
mogeneous broadening and withy tuned to one of the ond couplet. pg),, exhibits the two-photon background
ground to first excited-state transitions. Thendriven by &;. If the absorption resonance at frequency
P(g)=8(g—9g:), and only two of the three two-photon ab- were harmonic, this background would follow from a Pois-
sorption resonances mentioned in Sec. Il C exist; for exson distribution, the excitation distribution for a coherent
ample, withw;= wy—gs, the pair shown on the left in Fig. state. The two-photon and one-photon backgrounds would
1. For these conditions, we plot the occupation probabilitiegshen be related, withdp),, =3[ (po) 1y 12~4.5<10 4. The
of the first five dressed states as a functionwgfin Fig. 2.  two-photon background is actually smaller by approximately
(po)oo @nd (pg)1; exhibit background occupation probabili- thirty times. The reduction is due to two differences between
ties determined by the fixed, resonant excitation of thethe driven Jaynes-Cummings systéfiacuum” Rabi reso-
|0)—|1)_ transition. The expected backgrounds are readilynancg and a driven harmonic resonani@9]. The ratio of
calculated from a two-state approximatif2o] transiton matrix elements for the|0)—|1)_ and

A. Homogeneous broadening
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FIG. 5. Dipole coupling constant distributions fgf,a/«=10
andF=0.01. The dashed curve is obtained withoutyazf-plane
mask[Eqgs.(A4), (A8), and(A9)] and the solid curve with the mask
KZna= 0.1, Ymax/Wo=0.5, as illustrated in Fig. 9Egs. (A4),
(A21), and (A8) (Range }, (A13) (Range 1), (A17) (Range II),
and (A20) (Range IVJ]. The locations of the two subpopulations
selected byw; [Egs.(12) and(13)] are shown forg;=0.99,ax-

0 9/

g=g; sets the one-photon background illustrated by Fig.

2(b). Note again the small saturation dip in this background,
FIG. 4. (8 (a'a), (w5 and (b) (a'%a?), (ws) plotted as a  which will be recalled shortly as the source of a Lamb dip.

function of g/« for y,/2k=1, g;/k=9, and & /k=Es/ k=0.25. Figures 3d) and 3e) exhibit a total of six two-photon
Only the functional dependence is shown; the scales of the plots caitesonances. The three resonances selected by the transitions
be read from Figs. ®) and Zc). The labels(i), (i), and(iii) iden-  in Fig. 1 are indicated on the figures. Each of these is local-
tify corresponding two-photon resonances in Figs. 1, 3, 4, and 8. ized with respect to botlws andg. Two more resonances
appear, as, is scanned, for every value gf These are the
|1)_—|2)_ transitions is different, and while; is resonant two-photon resonances which produce the background
with the first transition it is not resonant with the second. Thedriven by &. Finally, a small resonance appears in
second feature is, of course, what we aim to detect. (po),» . as a function ofg, for fixed ws. This is the two-

Against the two-photon background ipd),, , the an-  photon background driven b$; .
ticipated resonance abg= wo—(\/i— 1)g; appears. The The measured quantities are the flux and rate of coinci-
second two-photon resonance, = w,+ (V2+1)g¢, ap- dences of photons emitted by the cavity, proportional, re-

pears in pg)s," , and there is no significant background in spectively, to(a'a),, (ws) and(a'?a?), (ws). To a first ap-
this case.

proximation these quantties are given by the sums
It was noted in Sec. Il E that when inhomogeneous broadf (p.) 1, +(po)ii 12 and o)z +(po)s, . The results

ening is present, the more important two-photon backgroungisplayed in Fig. 4 include the corrections to these expres-

is that driven by&s. One contribution to this background is sjons resulting from dressed-state coherences and higher ex-
from two-photon resonance in the absence of resonance Qiited statesin a seven-state bagisn Fig. 4(a) the saturation

the [0)—|1).. transition. This background is discernible in dip is now buried in the one-photon resonance. The two-
Fig. 2() as the two smaller resonancesaai=wo+9g¢/V2  photon resonances also interfere with one another to some
andws=wy—g;//2. In the latter case the background reso-extent, as can be seen in Figb® The next step is to take
nance interferes with the much larger two-photon resonancthe average, for eachg, over the inhomogeneous broaden-

at wg= wo—(\/i— 1)g;. ing P(g); the obfuscation of detail will then be complete.
In order to understand the effect of inhomogeneous broad-

ening, which averages all these features for systems with )

different coupling constants, it helps to study the homoge- B. Inhomogeneous broadening

neously broadened results fge=g(r) #9;. Figure 3 shows Two distributions of the dipole coupling constant are de-
how the occupation probabilities for the first five dressedrived in the Appendix. The distribution given by E(P)
states change as a function of beth andg. The curves of assumes a uniform distribution of the atom in space and a
Fig. 2 are recovered from these three-dimensional plots bgtanding-wave TEN, cavity mode. We also deriv®(g)
taking a cut alongg/«k=g;/k=9. Figures 8a), 3(b), and  under the assumption that a mask in tigezj plane(Fig. 9),

3(c) show the splitting of thé0)—|1)_ and|0)—|1), one- transverse to the atomic beam, rejects atoms which do not
photon resonances with increasiigg the resonances are pass close to the optic axis and an antinode of the standing
mapped out asvg is scanned. In Figs.(8 and 3b) the wave[Egs.(A4), (A21), and(A8) (Range ], (A13) (Range
one-photon resonance with; also appears, mapped out in Il), (A17) (Range Il), and(A20) (Range 1\j]. Equation(9)

this case as a function @. The peak of the resonance at describes the inhomogeneous broadening in a worst-case
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FIG. 6. (aTa>wf(wS), averaged over the dipole coupling constant
distribution, for
& k= Es/k=0.25:(a) before background subtraction, afiml after
background subtraction. The curves marked by boxes are obtaine®l/x=Es/k=0.25: () (pg)z, . and (b) (po)z; -

y2k=1,

gf/Kzg,

and

FIG. 7. Diagonal density-matrix elements for the second cou-
plet, averaged over the dipole coupling constant distribution, plotted
as a function ofwg/g; for y/2k=1, g/ «=9, Omax/ k=10, and
The curves

without a (y,z)-plane mask, and by circles with the mask marked by boxes are obtained withoutya)-plane mask, and by
circles with the maskz,,,,=0.17, Ymax/Wo=0.5.

KZpax=0.177, Yinax/Wo=0.5.

scenario. It is compared in Fig. 5 with the distribution pro- subtraction[Eq. (17)] all three resonances are resolved, as
duced by a strongly confiningy(z)-plane mask. The mask shown in Fig. 8b). They are well resolved both with and
has little effect on the overall shape of the distribution; aswithout the {/,z)-plane mask. Without the mask, however,
there is no confinement along the atomic-beam axis, the dthe size of the central resonance is increased relative to the
pole coupling constant is still distributed from Odg,with ~ Other two because of the increased weight of the subpopula-
a divergence ag(r)=0. The principal effect of the mask is tion selected witrg(r)=(\/§—1)gf relative to that selected
to change the relative weights of the two subpopulations sewith g(r)=g;.
lected by w;. This, as will be seen, changes the relative Figure 8b) is the central result of the paper. It is in good
heights of the peaks in the photon coincidence spectrum. agreement with a quantum trajectory simulation of photon
Figures 6—8 compare results for the two distributionscorrelation spectroscop23]. The method used in its com-
plotted in Fig. 5. Clearly, the average agaiR$y) obscures putation is numerically efficient and therefore suited for the
the resonances which are evident in Figs. 3 and 4. Figuregptimization of future experiments.
6(a) and 8a) are the averages of Figsia# and 4b), respec-
tively, while Figs. 7a) and 7b) are the averages, respec-
tively, of Figs. 3d) and 3e). Note first how the “vacuum” ) )
Rabi doublet of Fig. @) is replaced in Fig. @ by a single The excited-state resonances of the Jaynes-Cummings
peak with the inhomogeneous width. The peak sits on théystem are notoriously difficult to observe. The difficulties
one-photon background driven k§. The background is are particularly acute at optical frequencies due to the small
larger in the presence of they,¢)-plane mask due to the distance over which changes in the dipole coupling constant
increased weight, in this case, of the subpopulation selecte@fcur. Such changes inhomogeneously broaden the Jaynes-
with g(r)=g;. The small saturation feature at=wy+g;  CUMMings spectrum.Photon correlation spectroscopy
seen in Figs. @) and 3b) is certainly not present. The Lamb makes the measurement of the first to second excited-state

dip produced by this feature appears, nevertheless, after suBbsorption resonances feasible for atoms prepared in a

tracting the response obtained wih=0. This is shown by ~Slowed, dilute atomic beaf3]. _ _ o
the plots of the difference Here, a thorough analysis of the considerations motivating

the idea of photon correlation spectroscopy has been given,
AD(wg)=(a"8),, (ws) —(8Ta)(ws)| g -0

V. CONCLUSIONS

(38)

217G

in Fig. 6b). There are, in fact, two Lamb dips, one at - (53(111) (f.,j) (b)
ws=wo+gs and the other ab,=wy—gs. These provide a 3 % 1 ft
measurement of the “vacuum” Rabi doublet under mani- s j‘lh “Jll
festly one-atom conditions. They appear both with and with- g § i o1
out the {/,z)-plane mask. The additional dip at,= wq in IR P AN LV
the latter case is due to the subtraction, which is sensitive to F s M?\-m
the heavy weighting by(g) of the response neay(r)=0. 0= o 52 4

Figure @b) also shows small features rising above the (s — wo)/ g5

background. These are produced by two-photon absorption

and provide an initial indication of the excited-state reso- g g (a'?a?),, (ws), averaged over the dipole coupling con-
nances identified in Fig. 1. Figures 7 and 8 show how thesgtant distribution, ffor y2=1, g/Kk=9, Gnulx=10, and
resonances are brought to prominence using photon coinck /,— ¢ /= 0.25: (a) before background subtraction, afi) after
dence detection. Even without background subtrad#9s.  hackground subtraction. The curves marked by boxes are obtained
7 and 8a)], the resonance ais= wo+ (vV2+1)gy is clearly  without a (/,2)-plane mask, and by circles with the mask
resolved while the resonances @t=wo* (V2—1)g; are  kzym=0.17, YmadWo=0.5. The labels(i), (i), and i) identify
obscured by the two-photon background effects. After thecorresponding two-photon resonances in Figs. 1, 3, 4, and 8.
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and an analytic theory for calculating the photon coincidencdor which g(x,y,z)=Fg.. Outside this volume we set
spectrum has been developed in the one-atom, quasistatgx,y,z)=0.

approximation. The master equation for the Jaynes- For a sufficiently low atomic-beam density, only one
Cummings system driven by a bichromatic field was solvedatom interactions need be considered in calculating photon
for a fixed dipole coupling constant in a lowest-ordercoincidence spectrf23]. Then, given the presence of one
continued-fraction expansion. Inhomogeneous broadeningtom uniformly distributed ir'Vg, the dipole coupling con-
was taken into account by an average over the distributiorstant distribution is given by

P(g), of the dipole coupling constant. An explicit expression
for this distribution was derived for an atomic beam travers-
ing a standing-wave TEN} cavity mode.

Results for the one-photon and two-photon system re-
sponse both before and after taking the average over thaheredV=V(g—dg)—V(g). In the following we evaluate
inhomogeneous broadening have been presented. These tee explicit form of this distribution, first without further
sults clearly show the selection of excited-state resonancegonfining the atomic beam in theyz) plane, then in the
with definite g, in spite of strong two-photon background presence of ay(,z)-plane mask.
effects. In addition, the one-photon “vacuum” Rabi spec-
trum is present under manifestly one-atom conditions as a 1. Without a (y,z)-plane mask
Lamb dip doublet. The prospects for future measurements of

. : . We must find an explicit expression fodV/dg|. Using
the Jaynes-Cummings spectrum at optical frequencies appegr. periadicity along the cavity axis, we write

1 1|dV
P(g)dg:\/_FdVZV_Fd_gdg’ 9=F0nax, (A4)

to be good.
V(g)=MV(g) (A5)
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APPENDIX: DIPOLE COUPLING CONSTANT |z]<k™*cos™(g/gmad}- (A6)
DISTRIBUTIONS Then

In this appendix we derive the two dipole coupling con- L
stant distributions used to account for inhomogeneous broad- /¢ M417Jk cos (gfgmax)dzjWOV'”[ngOS‘kZ)/g]r dr
ening in Sec. IV B. We consider an atomic beam which trav- 0 0
els in the positivex direction and whose center intersects the i
optic axis  axis) of a standing-wave TEM, cavity mode at —M )\WZJCOS (9/9max
the coordinate originx=y=z=0. An atom located at 0
(x,Y,2) couples to the cavity mode with dipole coupling con- i
Jcos (9/9max)

stant = MAW?
0

d6 In(gmacos/g)

do gtand,

= —0E+y?)f
9(x.y.2)=gmacosk2)e K A1) where §=kz, and the final line follows after integrating by

k=2m/\; K is the wave numben, the wavelength, ands, parts. With the change of variable @ssé, we obtain

the mode waistg,,ax iS the maximum possible value of the 1 cos ¢
dipole coupling constant, realized for an atom located on the V(g)= M)\ng dé ,
cavity axis at an antinode of the standing wave. For 9/9max ¢
g< . 9(x,y,2)=g defines a string of disconnected : L . .
closgen:jaxsur?a(tce); on which the dipole coupling strength is coné-lnd differentiation with respect ® gives
stant; each surface encloses one antinode of the standing dv cos 1(9/Gma)

wave. For simplicity, we assume the atomic beam intersects ‘— =MAw2 —— (A8)
exactlyM (an odd integerof these surfaces—i.e., the trans- dg

verse profile of the atomic beam is confined to the range, g
—MMN/4<z=<MM\/4. We defineV(g) to be the interaction
volume enclosed bg(x,y,z)=g:

(A7)

cos ¢

3

1
Ve=M xwgf dé (A9)
F

V(9)={(x,y,2):9(x,y,2)=0,[zZ|<MMN/4}.  (A2)
. . The coupling constant distribution follows from Eq#4),
Since very weakly coupled atoms have a negligible effect ONA8), and(A9).
the cavity field, it is convenient to introduce a cutoff in the '
dipole coupling constant. To this end we confine our atten- )
tion to atoms located within the volume 2. With a (y,2)-plane mask
We now consider an atomic beam whose transverse pro-

Ve=V(Fgma, F<1, (A3) file is confined by ay,z)-plane mask. Figure 9 illustrates the
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An explicit expression foNVg appears below as EgA21).
The explicit calculation ofvV(g), and hencgddV/dg|, pro-

\ ceeds in a slightly different way in each of the four distinct
— Ymax/wo ranges ofg.

a. Range I: =9/gma=c0(kznay)

Here the contoug(0,y,z) =g lies entirely within the rect-
angular mask boundary. The volume enclosed by the surface
i ~Ymax/Wo g(x,y,z) =g is given by Eqs(A5) and(A6), and|dV/dg| is
/ calculated exactly as before. In Range | the dipole coupling
\J g constant distribution is given by Eg&\4), (A8), and(A21).

b. Range 1l COSKZyan) >3/ Gmax= e Ymadd

FIG. 9. (yv,2)-plane mask with four overlayed coptours In this range the contoug(0y,z)=g crosses the mask
9(0y,z)=g. Each contour is labeled by the rangegofas defined 1,4 nqary afz| = z,,,,. The interaction volume includes only
![n the tct)axt, Wltgln WhICTtht lies. l;rhe dafhed Il_nt(aj_ls Itlhe ctutoffr::on- that part of the volume enclosed lyfx,y,z)=g which is
.ourg( y.2)= max- 1€ Mask repeats, periodically, at €ach an-yiqip)e through the mask; in place of EGA6) we have
tinode of the standing wave.

Vo(9) ={(x,y,2): X+ y*<W5IN[ gma0 k2)/g], |2|<Zmay,

rectangular mask, overlayed by four contowé0.,y,z) =g, (A12)

of constant dipole coupling strength. The mask is defined by
the choice of two numbers/na/Wo and kz,,,,. The four _ )
contours define four distinct ranges of differentiated by ~Where the only change is the restricted range.ofhe cal-
the way in which each contour either crosses, or does ndtulation of|dV/dg| follows as before to give

cross, the rectangular boundary of the mask. Crossings occur dv Kz

according to the sequence shown in Fig. 9 if a9 = M)\WST”‘E‘X_ (A13)

In Range Il the dipole coupling constant distribution is given

This condition imposes stronger confinement of the atomid®Y Eds.(A4), (A13), and (A21).

beam in thez direction than they direction(asg decreases s 2 s 2
contours intersect= =z, beforey=*y.J. It also re- c. Range Il @ Ymax"o> g/ g ay= COS(KZmay) € Ymax' "o
quires the complete mask boundary to fall within the cutoff | this small range ofy the contourg(0yy,z)=g crosses

contourg(0.y,z) =Fgmax. Choices ofymax and zma, Which  gj| four sides of the mask boundary. The voluiiég) is
do not satisfy inequalityA10) call for a different partition-  given by Eq.(A5) and

ing into distinct ranges ofg. While our derivation of
|dV/dg| assumes the partition defined by Fig. 9, it is readilyVo(g) ={(X,y,2):x><wW2In[ gmacog k2)/g]—y?,
generalized to treat other cases.

COFKZy) >Ma e Ymal"0, Fe¥mal™6].  (AL0)

In the presence of they(z)-plane mask the interaction Y| < Min(Y max, Wo VIN[ 9maxc04k2)/91),| 2| < Zmax -
volume V¢ is given be Egs(A3) and(A5) with (A14)
Vo(FOmad ={(X,¥,2):x><wjIn[ cog kz)/F]—y?, This volume is no longer cylindrically symmetric and its
explicit expression becomes more complex. In particular, the
IV <VYmax:|Z < Zmas - (All) integral overz must be separated into two parts. We have

V(g)= M8fkflCOSﬁl(Qeyialwglgmannymaxdyf VWiinlgmaoskalal -y 4
0 0 0

4 Wg/ IN[gmax0sk2)/a] 2, _y2
+M8] max o dzf 0V TN[Oma dyf YW2In[gmacoska)/gl -y dx
k‘lcos_l(geymaJWo/gmaQ 0 0

4 —1 2 w2 Ymax
=Mx— f cos”Hg&m=l" a4 g fo dyVW3IN(gmaCOs/g) —y?

m™Jo

4 (Kzmax 72
+M )\WZ—J déIn osy/ f dn co€n, A15
(S cos’l(geyzmalwglgma)g (gmakc g) o n n ( )
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where we have made the change of variablepsigwy\In[ gmac0Sk2)/g] and, as beforep=kz. Performing the second
integral in the manner used to reach E47), we obtain

ImaCog kzmax)]

kzmaxln{ 3

4 cos_l(geyﬁwau/wg/g 9 Ymax 2 > 2
V(g)=Mx— . max g . dyVW3IN(gmaxcos9/g) — Y2+ MAWA

2 2 2 _
&malWo 2 2 cos !
. ymaxnosl( g ) + fg&mav[ O/gmaxdg—g} . (A16)

2 \¥3
0 max CogKZmay €

Then

2 2
av 4 1 eymaJWO/g Ymax |
‘ _’ :M)\Wz[ - = j dy yﬁqax_yz

a9 ™ W0 \1- (ge/nal*ilg e 2 0

+ E EJcosl(ge‘/zma)[wg/gmax)dafymaxdy 1
m™gJo 0 \/Wg|n(gma>@039/g)—y2

2 2
] yﬁ"lax eymalwo/gmax
T2
W5 1 (ge¥mal¥e/g, )2

1 g eyrznaiwg

+ —
g

KZmax— COS 1

gmax

g eyzmalw(z)

Omax ™

2 J'cos’l(geygwalwglgmax)da sinl[ Y max

— . Al7
0 wOvln(gmaﬁosﬁlg)} AL

1
=M )\Wéa[ KZyay— COS *

In Range Il the dipole coupling constant distribution is given by Eg4l), (A17), and(A21).

d. Range IV: cogkz,,,) e Yna!"o>glgma,cF

The contourg(0,y,z) =g lies entirely outside the rectangular mask bound&ffg) is given by Eq.(A5) and

Vo(9) ={(X,Y,2): X°<W3IN[ §aC0S K2/ 91— Y2, |V < Yimax | 2] < Zmax - (A18)

The first term of Eq(A15) now covers the complete integration rangezin

4 (Kzmax Ymax
V(g)=M)\;j def dyVW3IN(g macost/g) — y2. (A19)
0 0

Thus,

dv M 2 2 1szmaxd0f3’maxd
_ | = W5 — —
dg “malo o P ulin(gmacosie)—y2

(A20)

Yimax ]

WoV In(gma)poa9/g)

In Range 1V the dipole coupling constant distribution is given by E44), (A20), and the interaction volumég which now
follows from Eqgs.(A3) and (A5)

22 1 (KZmax 1
ZM)\W();a dé sin
0

4 (Kzmax Ymax >
V,:=M)x;f def dyywjln(cosd/F)—y?
0 0

4 (KZmax i LY max/WonT F
:wag—f 46 In(cosp/F) | 5 Dmex/Worne Il o2y
mJOo 0
2 KZmax . ymax ymax ylgnax
=M)\W2—J d 6 In(cosd/F)sin™ | ———————| + In(cosH/F) ——5 1. (A21)
07 Jo { wovIn (cosg/F)|  Wo Wo
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