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Photon correlation spectroscopy of the Jaynes-Cummings system
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The spectroscopic detection of the excited-state resonances of a strongly coupled atom and optical cavity
mode is complicated by inhomogeneous broadening, due to the variation of the dipole coupling constant with
location in the cavity. Photon correlation spectroscopy circumvents the difficulty for slowly moving atoms
using frequency-selective two-photon absorption and photon coincidence detection of the two-photon decay.
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I. INTRODUCTION

The Jaynes-Cummings model provides a simple desc
tion of a two-level atom interacting with one mode of th
quantized electromagnetic field@1,2#. It is a basic model of
theoretical quantum optics and has been studied extens
over a period of some thirty years. The large theoretical
erature which has grown on the subject is focused on phy
which has an explicit origin in the quantized nature of t
electromagnetic field@3,4#. From it, one would hardly dis-
cern that Jaynes and Cummings were themselves quite s
tical about detecting differences between their quantu
mechanical model and the corresponding semiclass
theory; in their evaluation@1#: ‘‘ . . . the prospects of detect
ing such a difference are extremely dubious, for we will s
that the semiclassical theory actually reproduces many of
features which one commonly supposes can be found
with field quantization.’’ The detection of a difference wa
in fact, claimed within a decade of Jaynes and Cummi
work @5#, and over the next few years the differences gr
into what is now the familiar collection of nonclassical e
fects in resonance fluorescence@6#. We should note, how-
ever, that resonance fluorescence involves rather diffe
physics from that addressed in Jaynes and Cummings’ o
nal paper. The latter is concerned with coherent quan
evolution, evolution in the absence of dissipation. Noncl
sical effects in resonance fluorescence involve irrevers
processes: radiation into free space and the detection of
radiation by the photoelectric effect. In a more accurate co
mentary then, resonance fluorescence demonstrates d
tures from the multimode extension of semiclassical the
developed by Jaynes and his students@7,8#. In this sense the
challenge of Jaynes and Cummings’ original paper rema
to be met.

The issue on which the challenge turns is that of entan
ment, as is made clear in the following passage@1#: ‘‘ . . .
for in the semiclassical equations the ‘‘driving term’’ appea
as ^H8&^E&, while quantum electrodynamics yields^H8E&.
The difference between these terms arises from the poss
ity of having correlated states, . . . .
. . . This possibility forms the basis of one of Einstein
objections to quantum mechanics. . . . An interesting line
551050-2947/97/55~2!/1358~13!/$10.00
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thought is based on the fact that the semiclassical theory
quantum electrodynamics predict different equations of m
tion for the molecule in the field, the difference arising ju
from those correlated states which cause the above con
tual difficulties. Thus if one could find any experimental sit
ation in which the difference between^H8E& and ^H8&^E&
leads to an observable difference in maser observations,
would constitute an indirect, but convincing, check on tho
aspects of quantum theory which lead to the Einste
Podolsky-Rosen paradox.’’

Today, discussions of entanglement focus on the nonlo
correlations emphasized in the work of Bell@9,10#. The dis-
tinction Jaynes and Cummings draw, between^H8&^E& and
^H8E&, does not concern nonlocal correlationsper se. Per-
haps, however, it comes even closer to the fundamental
of entanglement in quantum mechanics, the implications
which are addressed through spectroscopy. According
quantum mechanics, a strongly coupled atom and ca
mode is not merelyan atomexchanging energy witha cavity
mode; this is the conception in semiclassical theory. In qua
tum mechanics the atom and cavity mode become entang
they form a composite entity, with stationary states that
entangled states, and characteristic transition frequencies
tween these states. It would be difficult to overstate the
portance of this idea—an idea which entered quantum
chanics as the theoretical basis of the atomic spectrosc
which established the subject and is central to so much of
understanding in molecular, condensed matter, and par
physics. In the case of the Jaynes-Cummings system,
spectroscopy follows from a nonperturbative calculation
QED and is the foundation on which all work in nonpertu
bative cavity QED is built.

This paper is concerned with the experimental possib
ties for measuring the Jaynes-Cummings spectrum. Meas
ments have been pursued for nearly a decade. The first
performed on a beam of Rydberg atoms traversing a su
conducting microwave cavity@11# in a close realization of
the maser configuration considered in Jaynes and C
mings’ work @1#. The experiment is operated in the tim
domain where the collapse and revival of Rabi oscillatio
provides the spectral information. A refined microwave e
periment has recently extracted distinct frequencies from
Rabi oscillation signal@12# and produced the first quantita
1358 © 1997 The American Physical Society
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55 1359PHOTON CORRELATION SPECTROSCOPY OF THE . . .
tive results on the excited states of the Jaynes-Cumm
system. Experiments at optical frequencies have also b
performed, and here one can observe absorption and e
sion lines directly in the frequency domain. The experime
have not yet achieved equivalent success, however.
ground to first excited-state absorption has been obse
@13–15#, and the spectrum is a doublet, the so-called vacu
Rabi spectrum. But the doublet is generic, not a distingu
ing feature of the Jaynes-Cummings Hamiltonian; it ari
from normal modes wherever the electric field and mate
polarization are strongly coupled in the linear optics regim
A similar linear response is observed in semiconductor
crocavities where the normal modes are identified as ca
polaritons @16#. Here the behavior is clearly semiclassic
@17# and the nonlinear spectroscopy@17–22# certainly differs
from that which is derived from the Jaynes-Cummin
Hamiltonian.

The advantage of microwave frequencies over optical
quencies comes from the larger wavelength and period
microwave radiation. Experiments to date use atomic bea
The Jaynes-Cummings spectrum depends on the dipole
pling constant, which depends, in turn, on the location of
atom in the cavity mode. In a standing-wave cavity, it
necessary, therefore, to confine the transverse width of
atomic beam on the scale of the radiation wavelength. Th
a relatively easy task at microwave frequencies but very
ficult for optical fields. The motion of the atoms through t
cavity mode is also a problem. If the probability of photo
loss during the transit time is negligible, the accumula
Rabi phase is simply the integral of the time-varying co
pling constant. Such is the case at microwave frequenc
where the photon lifetime is many times longer than
transit time through the Gaussian mode@11,12#. At optical
frequencies, however, although the cavityQ may be higher
@15#, the absolute photon lifetime is generally shorter th
the transit time of the atoms; the spontaneous emission
time is even shorter still. Under these conditions, the R
oscillation of a typical atom is interrupted by photon em
sion at many different locations across the Gaussian mod
complicated combination of homogeneous and inhomo
neous broadening of the spectrum results.

We recently proposed a technique for overcoming th
difficulties @23# without adopting the extreme idealization
localizing an atom on the scale of the optical waveleng
Our proposal holds for cooled or slowed atomic beams
which a quasistatic approximation may be made. For su
ciently slow atoms, radiative equilibrium is reached with
essentially fixed dipole coupling constant,g(r), at every
point along an atom’s path. The broadening is then entir
inhomogeneous and accounted for by a distribution o
g(r). The proposed technique,photon correlation spectros
copy, selectively excites a subensemble of Jaynes-Cumm
systems, havingg(r) within a narrow band, by resonant two
photon absorption in a coherent bichromatic field—a ho
burning approach. The excitation decays with the emiss
of two photons, thus enabling a measurement of the abs
tion resonances by the detection of two photons in coin
dence as one frequency of the bichromatic field is swe
Simulations of an experiment using quantum traject
methods demonstrate the feasibility of this technique@23#.
The simulations include the corrections to the quasistatic
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proximation and various other details of an actual expe
ment. They use a great deal of computer time, however
this paper we therefore develop an alternate approach, v
in the exact quasistatic limit@24#. We solve the master equa
tion for one atom coupled to a cavity mode with fixedg(r)
and driven by a bichromatic field. Inhomogeneous broad
ing is incorporated by averaging against the distributio
P@g(r)#, of the dipole coupling constant for a uniform sp
tial distribution of the atom and a standing-wave TEM00
mode function. Implementing this approach uses a sm
fraction of the computer time, thereby making a search
optimal experimental conditions feasible.

In Sec. II the photon correlation spectroscopy techniqu
outlined in physical terms. Its theoretical implementation
the quasistatic limit is developed in Sec. III where the mas
equation for the Jaynes-Cummings system with radiative
ewidths and bichromatic excitation is solved. The phot
coincidence spectra obtained from this solution are discus
in Sec. IV, first without inhomogeneous broadening and th
after averaging over the distribution of dipole coupling co
stants; the two distributions used to take the average are
rived in an Appendix. Our conclusions are given in Sec.

II. PHOTON CORRELATION SPECTROSCOPY

A. The Jaynes-Cummings spectrum

The Jaynes-Cummings model describes the resonan
near-resonant interaction, via an atomic dipole transition
one atom and one quantized mode of an electromagn
cavity. The resonance condition allows the atom to be trea
as a two-level system with raising, lowering, and inversi
operatorsŝ1 , ŝ2 , and ŝ3, respectively. The electromag
netic field mode has annihilation and creation operatorâ
and â†, and the Jaynes-Cummings Hamiltonian for the lo
less system in the rotating-wave approximation is given

Ĥ5\v0N̂1 i\gÂ, ~1!

where

N̂5~ â†â11/2!1ŝ3 ~2!

is the ‘‘excitation number’’ operator and

Â5â†ŝ22âŝ152Â† ~3!

is an anti-Hermitian ‘‘excitation exchange operator’’;v0 is
the atomic transition frequency and cavity resonance
quency, andg is the dipole coupling constant.

The Hilbert space for the atom and cavity mode is

H5Hatom̂ Hcav. ~4!

The ground and excited states of the atom are denotedug&
and ue&, and the Fock number states,$uN&%, are the energy
eigenstates for the quantized electromagnetic field. Toge
these states form a basis which diagonalizes the excita
number operatorN̂. The spectroscopy of the Jayne
Cummings system follows from the eigenstates of the to
Hamiltonian, the so-called dressed states which diagona
both N̂ andÂ. In the dressed-state basis there is the grou
state
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1360 55B. C. SANDERS, H. J. CARMICHAEL, AND B. F. WIELINGA
u0)[u0&ug& ~5!

with energyE050, and excited-state couplets

uN)6[221/2~ uN21&u1&6 i uN&ug&), N.0 ~6!

which satisfy the eigenvalue equation

ĤuN)65\~Nv06ANg!uN)6 . ~7!

The dressed states entangle the degrees of freedom o
atom and the electromagnetic field, formalizing the picture
the Jaynes-Cummings system as a single, composite e
The defining characteristic of the Jaynes-Cummings ene
spectrum is the splitting, 2\ANg, of the excited-state cou
plets. Our interest is with the transitions between the first
second excited states. The goal is to observe the four abs
tion resonances at frequenciesv01(A261)g and
v02(A261)g.

B. Difficulties with atomic beams

Transitions between the first and second excited states
be accessed in two-photon absorption. Experiments w
atomic beams face two difficulties, however. First, the e
ergy spectrum to be measured is specifically the spectrum
oneatom coupled to the electromagnetic field. On the ot
hand, the number of atoms produced in a given interac
volume by an atomic-beam will fluctuate in time. Of cours
the solution to this is in principle straightforward: For a su
ficiently low atomic-beam density the fluctuations are p
dominantly between zero atoms—most of the time—and
atom—on occasions. A measurement which detects the
oms, as in the recent microwave experiments@11,12,25#,
then records only one-atom events. The same strategy
work for optical frequencies where photons are detected
place of the atoms; one may illuminate the interaction v
ume with a probe laser off the cavity axis so that on-a
detection records no photons unless an atom is present.

A question remains, however, as to what is a sufficien
low atomic-beam density. This question is nontrivial for o
tical cavities, where the interaction volume is not bounded
the plane transverse to the cavity axis. We discuss the q
tion elsewhere@23# and simply summarize our answer her
It is based on a consideration of the probability distributi
of collective ~multiatom! coupling strengths calculated from
an ensemble of the spatial configurations of atoms realize
an atomic beam. In the limit of low atomic-beam density, t
shape of this probability distribution, for coupling strengt
not too close to zero, approaches an asymptotic form—
form obtained for one atom uniformly distributed in spac
We therefore identify one-atom conditions with the requi
ment that the defined probability distribution closely a
proach this asymptotic form. The conditions are ensure
the average number of atoms within the Gaussian m
waist is much less than unity. In what follows we assu
this is so and derive all results for strictly one-atom inter
tions.

There is a second difficulty, which at optical frequenc
is not solved by using a low atomic-beam density but in f
becomes worse. The problem is the variation of the dip
coupling constant with the location of the atom in the cav
the
f
ity.
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mode. For a standing-wave TEM00 mode,

g~r!5gmaxcos~kz!e
2r2/w0

2
, ~8!

with k52p/l, wherek is the wave number,l the wave-
length, andw0 is the mode waist.gmax is the dipole coupling
constant when the atom is located on the cavity axis at
antinode of the standing wave. Only rarely, however, will t
atom even come close to this location. More realistically,
ensemble of single atoms produced by an atomic beam
be uniformly distributed in space. The corresponding pro
ability distribution of dipole coupling constants is derived
the Appendix:

P~g!5VF
21 cos

21~g/gmax!

g
, Fgmax<g<gmax, ~9!

where VF , 0,F,1, is a finite interaction volume intro
duced for normalization. The distribution is monotonica
decreasing, and small values of the dipole coupling cons
are by far the most probable; indeed the probability distrib
tion diverges asg ~andF) approaches zero.~With the restric-
tion to one atom, the limitF→0 corresponds to a zero bea
density.!

At microwave frequencies this spatial dependence ofg is
not a major source of difficulty@11,12,25#. Even for an open
standing-wave cavity@12#, the atoms can be confined to in
tersect the mode axis at an antinode, with very small disp
sion relative to the Gaussian waist and the period of
standing wave. Also, since there is no photon loss during
atom’s transit time, along its trajectory the changing dipo
coupling constant may simply be integrated in time. At o
tical frequencies, the situation is quite different. Transve
confinement of the atomic beam on the scale of the wa
length might be achieved using atom-optics techniques bu
certainly very difficult. Even more important is the cons
quence of photon loss during the transit time of the ato
This changes the physics completely. At optical frequenc
measurements are made in the frequency domain, by de
ing photons scatteredwhile the atom and cavity mode inter
act @13–15#. Under these conditionsP(g) represents an en
semble of different Jaynes-Cummings systems, a sourc
inhomogeneous broadening. More precisely, only for ato
placed as stationary objects in the cavity mode is this in
pretation exact. It is a reasonable one, however, for su
ciently slowly moving atoms, atoms whose velocity,v, sat-
isfies the inequality@23#

v/w0

1
2 ~k1g I /2!

,S e2D
1/2 1

2 ~k1g I /2!

gmax
, ~10!

where 1
2(k1g I /2) is the half-width of the first excited state

k is the half-width of the cavity andg I /2 is the cavity-
inhibited half-width of the atom. In this paper we take th
atom, at each point along its trajectory, to be at rest. We h
shown that calculations based on this assumption are in g
agreement with quantum trajectory simulations for movi
atoms@23#.
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C. Two-photon excitation

The goal now is to detect homogeneously broadened
sorption resonances between the first and second Jay
Cummings couplets in the presence of the inhomogene
broadeningP(g). Our strategy is a standard one taken fro
sub-Doppler spectroscopy; a subensemble of Jay
Cummings systems is selected within the inhomogene
line. The selection is done in two-photon absorption w
excitation by a bichromatic field,

E~ t !5Efe2 iv f t1Ese2 ivst, ~11!

coupled to the atom.v f is a fixed frequency and the spe
trum is taken asvs is scanned. We may assumeEf is real,
without loss of generality, if a random relative phase is c
ried by the complex amplitudeEs . The phase accounts fo
the random initiation time of the interaction with the atom
Actually, nothing would be lost ifEs were also taken to be
real since the cycle-averaged~over the beat period
2p/uv f2vsu) two-photon excitation is independent of th
phase. The amplitudes of the two chromatic compone
must be large enough to produce a population in the sec
excited states, but not so large that significant Stark shift
occupation of the higher-order excited states occurs.

The two-photon transitions shown on the left in Fig.
illustrate the basic selection process. If the atom is locate
r such that

g~r!5gf , gf[uv f2v0u, ~12!

one of the ground to first excited-state transitions of
Jaynes-Cummings system is resonant withv f . Then two
two-photon resonances occur asvs is scanned: with
v f5v02gf , as illustrated, the first to second excited-st
resonances are at vs5v02(A221)gf and

FIG. 1. Selection of two subpopulations within the dipole co
pling constant distribution in two-photon absorption. The groun
state energy and the inhomogeneously broadened energy ban
sociated with the first and second couplet of the Jaynes-Cumm
spectrum are shown. The absorption paths on the left selec
coupling strengthg5gf and the path on the right selec
g5(A221)gf . The labels~i!, ~ii !, and~iii ! identify corresponding
two-photon resonances in Figs. 1, 3, 4, and 8.
b-
es-
us

s-
us

-

.

ts
nd
or

at

e

e

vs5v01(A211)gf ; with v f5v01gf the resonances ar
at vs5v01(A221)gf andvs5v02(A211)gf .

If Ef@Es , as in a normal pump-probe configuration, the
would be the only two-photon resonances to consider
fixed v f . This relation between amplitudes is found to
unsatisfactory, however, due to the nonresonant two-pho
absorption background produced byEf . In order to reduce
this background, it is actually preferable forEf to be equal to,
or even somewhat smaller than,Es . Then the two-photon
resonance shown on the right in Fig. 1 is also significant
this casev f selects the resonance frequency of the sec
absorbed photon, and two-photon resonance is possible w

g~r!5~A221!gf . ~13!

As vs is scanned, the two-photon resonance occurs
vs5v01(A221)gf , as illustrated, whenv f5v02gf , and
for vs5v02(A221)gf whenv f5v01gf .

In summary, the bichromatic field~11! selects two sub-
populations from the inhomogeneous distributionP(g), sub-
populations whose dipole coupling constants are close to
values given by Eqs.~12! and ~13!. One subpopulation un
dergoes two two-photon resonances in absorption asvs is
scanned, and the other, one two-photon resonance. The
tive sizes of the two subpopulations change with change
P(g). In the following we consider the distribution~9!, and,
in addition, a distribution for an atomic beam which confin
the atoms to the vicinity of the antinodes and the cavity ax
The analytical expression for the second distribution is qu
complicated and therefore stated only in the Appendix.

D. Photon coincidence detection

Once the system reaches the second excited state it
eventually relax to the ground state, emitting two photo
separated in time by something on the order of the fi
excited-state lifetime. The couplet at the second excited s
comprises two entangled states,

u2)6[221/2~ u1&ue&6 i u2&ug&), ~14!

both of which can relax by one of two decay channels: eit
two photons are emitted through the cavity mirro
u2)6→â2u2)656 iA2u0), or one photon is emitted throug
the mirrors and one out the sides of the cavi
u2)6→âŝ2u2)656 i u0). We consider detection of the pho
tons emitted through the cavity mirrors. This decay chan
is favored by both a higher collection efficiency and a larg
transition matrix element.

As vs is scanned, the flux of photons emitted through t
cavity mirrors should increase at each two-photon absorp
resonance. There is a much larger contribution to the pho
flux from one-photon scattering, however—i.e., scattering
the subpopulations with

g~r!'uv f2v0u or g~r!'uvs2v0u, ~15!

the subpopulations in resonance withv f or vs . In general,
the two-photon scattering and one-photon scattering are
separated in frequency space, and it is necessary to sep
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1362 55B. C. SANDERS, H. J. CARMICHAEL, AND B. F. WIELINGA
them by some other means. We propose to use photon
tistics. It is from this that the namephoton correlation spec-
troscopyis derived.

The basic idea is one common in particle physics—
identify an unstable state by correlating its decay produ
In the present case, the products are a photon pair; t
photon decay will produce an identifiable photon pair—
pair resolved in time from the one-photon background
when the on-resonance one-photon flux@Eq. ~15!# is much
less than the inverse lifetime of the intermediate states. T
leads to the requirement

uEf ,su2/~k1g I /2!2!1. ~16!

For such weak excitation we propose to measure the ph
coincidence rate as a function ofvs . At each two-photon
absorption resonance the rate will increase. Of course, c
cidence must be defined in practice by a time window,tw ,
on the order of the lifetime of the cavity decay chann
k21. The narrower the window, the better the select
against chance coincidences of two one-photon events.
spectrum measured in this way is given by the second-o
correlation function,gv f

(2)(vs ,t), integrated with respect to

t over the windowtw . In this paper we assumektw!1 and
simply calculategv f

(2)(vs,0), or more specifically the prob

ability to find two photons in the cavity,̂â†2â2&v f
(vs).

Good agreement is obtained with quantum trajectory sim
tions using a finite coincidence window@23#.

E. Subtracting background counts

The aim is to measure the unequal splittings of the fi
and second excited-state couplets. Just because the spli
are unequal, exact resonance on both theu0)→u1)6 and
u1)6→u2)6 transitions can only be achieved by absorbi
one photon of frequencyv f and one of frequencyvs . Two
types of nonresonant two-photon absorption can occur, h
ever, absorption in which both photons have frequencyv f or
both have frequencyvs . First, nonresonant two-photon ab
sorption will occur for the subpopulations satisfying E
~15!—i.e., when the transition u0)→u1)6 , but not
u1)6→u2)6 , is on resonance. This provides a two-phot
background driven by bothEf andEs . The second possibility
is for exact two-photon resonance, but without resonance
the u0)→u1)6 transition. If v f is set very close to
v06gmax, as illustrated in Fig. 1, exact resonance is n
possible for two photons of frequencyv f . It is possible on
the other hand for two photons of frequencyvs , and this
provides a second contribution to the two-photon ba
ground driven byEs .

The most damaging background is that driven byEs ,
since asvs is scanned, this maps outP(g), and hence ac-
quires the 2gmax inhomogeneous width. Given the dive
gence ofP(g) as g→0, there is a good possibility fo
swamping the selected two-photon resonances. Such is
case, at least, for two of the selected resonances. For
third—atvs5v01(A211)gf in Fig. 1—the resonance fre
quency lies outside the inhomogeneous line and the r
nance should be resolved even in the presence of the
photon background.
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Actually, in all cases the situation is less gloomy than
might appear, since one can subtract the two-photon ba
ground driven byEs . To do so a second measurement of t
photon coincidence rate is made withEf50 and subtracted
from the first. This difference is thephoton coincidence
spectrum, the final result of the proposed technique.
course, the two-photon background driven byEf remains. It
may be minimized, however, by decreasingEf relative to
Es while keeping their product constant.

We have calculated the photon coincidence spectrum,
difference

D~2!~vs![^â†2â2&v f
~vs!2^â†2â2&~vs!uEf50 , ~17!

using the assumptions and approximations described ab
The first step of the calculation is to solve the master eq
tion for the Jaynes-Cummings system with radiative dam
ing under the bichromatic excitation specified by Eq.~11!.

III. SOLVING THE MASTER EQUATION

Including cavity damping, at the rate 2k, radiation into
free space from the atom, at the rateg I , and driving of the
atom by the classical fieldE(t), the master equation for th
Jaynes-Cummings system density matrixr is given by

ṙ5@Ĥ,r#/ i\1@E~ t !ŝ12E* ~ t !ŝ2 ,r#

1~g I /2!~2ŝ2rŝ12ŝ1ŝ2r2rŝ1ŝ2!

1k~2ârâ†2â†âr2râ†â!, ~18!

whereĤ is the Jaynes-Cummings Hamiltonian, Eq.~1!. We
solve the master equation in the dressed-state basis, desi
ing the density-matrix elements as

~r!00[~0uru0!, ~r!0N
6 [~0uruN!6 ,

~19!

~r!N8N
e8e [e8~N8uruN!e , e8,eP$6%.

Provided that excitation to higher energies is negligible,
representation may be truncated beyond theJth couplet. The
truncation can be justified, for anyJ, by requiring the ampli-
tudesEf andEs to be sufficiently small. Since our interest
with transitions from the first to the second couplet, the lo
est useful truncation is atJ52. The formalism developed in
this section holds for anyJ, but when applying it in explicit
calculations we have takenJ53. In this case, Eq.~18! con-
stitutes a coupled set of linear equations for 49 matrix e
ments.

We wish to find the asymptotic solution to Eq.~18!,
limt→`r(t). Due to the bichromatic excitation, this is not
stationary state. The explicit time dependence at freque
v f can be removed by working in an interaction pictur
taking the free Hamiltonian asĤ05\v f N̂. We then write

E~ t !5Ef1Ese2 idt, d[vs2v f , ~20!

and the frequencyv0 in the Hamiltonian@Eq. ~1!# is replaced
by v02v f . An explicit time dependence at frequencyd
still, however, remains. As a consequence, the asympt
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solution executes a steady oscillation with period 2p/d. We
therefore solve Eq.~18! in the Bloch function approach. W
adopt the series expansion

r~ t !5 (
k52`

`

rk~ t !e
2 ikdt, ~21!

where the asymptotic solution satisfies

lim
t→`

ṙk~ t !50. ~22!

Then

ṙ~ t !5 (
k52`

`

@ṙk~ t !2 ikdrk~ t !#e
2 ikdt ~23!

and

lim
t→`

ṙ~ t !52 id (
k52`

`

krk~ t !e
2 ikdt. ~24!

Substituting the expansions~21! and ~24! into the master
equation replaces the differential equation~18! by a tridiago-
nal recurrence relation connecting the time-independent
eratorsrk .

The (2J11)3(2J11) independent complex compo
nents of the density operator in the dressed-state basis ca
replaced by a complex vector y of length
(2J11)3(2J11). Similarly, the operatorrk is replaced by
the vectoryk . The latter can be constructed such that

yk5~y2k!* , ~25!

which guarantees thaty0, the dc component of the asymp
totic solution, is real. Our ultimate concern is with this
component, since it is from this that the time-averaged

FIG. 2. Diagonal density-matrix elements plotted as a funct
of vs /gf for g I /2k51, gf /k5g/k59 andEf /k5Es /k50.25: ~a!
(r0)00, ~b! (r0)11

22 ~circles! and (r0)11
11 ~boxes!, and ~c! (r0)22

22

~circles! and (r0)22
11 ~boxes!.
p-

be

-

pectations which determine the photon coincidence spect
are to be calculated. We must, nevertheless, develop a
solution scheme for the tridiagonal recurrence relation, e
to obtain this one density operator component. In the n
notation, the asymptotic form of the master equation is

EsPyk211~ ikd1Q!yk1EsRyk1150, ~26!

where P and R are complex matrices of dimensio
(2J11)3(2J11), andQ is a real (2J11)3(2J11) ma-
trix. Setting k50 in this expression and using the identi
~25! with k51, we see that the matricesP andR are neces-
sarily related by

EsP5~EsR!* ~27!

and

Qy012Re~EsRy1!50. ~28!

In order to solve the recurrence relation~26! we introduce
a set of transformation matrices$Sk% @26,27# such that

yk115Sk11yk . ~29!

The Sk are not necessarily invertible, but they allow us
rewrite the recurrence relation in the form

Es*R* yk2152~ ikd1Q1EsRSk11!yk , ~30!

producing the result

Skyk215yk52Es* ~ ikd1Q1EsRSk11!
21R* yk21 ,

~31!

where the first equality follows with a further application
the identity~29!. As yk ~henceyk21) is chosen arbitrarily, the
recurrence relation

Sk52Es* ~ ikd1Q1EsRSk11!
21R* ~32!

is thus established. Equation~28! now appears as

@Q12Re~EsRS1!#y050; ~33!

hence,y0, the dc component of the asymptotic density ope
tor, is the eigenvector with zero eigenvalue of the matrix

M[Q12Re~EsRS1!. ~34!

The program is to solve the recurrence relation~32! for
S1 and compute the zero eigenvector ofM. The first step is
accomplished using a continued fraction expansion, wh
for sufficiently smallEs may be terminated at first orde
Then

S1'2Es* @ id1Q2uEsu2R~2id1Q!21R* #21R* , ~35!

and, hence,

M'Q22uEsu2Re$R@ id1Q2uEsu2R~2id1Q!21R* #21R* %.
~36!

Note thatM, and thereforey0, is independent of the relative
phase~contained inEs) of Ef andEs .

n
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FIG. 3. Diagonal density-
matrix elements plotted as a func
tion of g/k and vs /gf for
g I /2k51, gf /k59, and
Ef /k5Es /k50.25: ~a! (r0)00,
~b! (r0)11

22 , ~c! (r0)11
11 , ~d!

(r0)22
22 , and ~e! (r0)22

11 . Only
the functional dependence i
shown; the scales of the plots ca
be read from Fig. 2. The labels~i!,
~ii !, and ~iii ! identify correspond-
ing two-photon resonances i
Figs. 1, 3, 4, and 8.
la
th

ul
r
er
e

f

o

en
-
ex
.
tie

i-
th
il

wo
ccu-
ion
ar
ote
ate

tion
e
amb

c-
d

is-
nt
uld

ely
en
IV. RESULTS AND DISCUSSION

We are now in a position to calculate the photon corre
tion spectrum. The calculation is done numerically. First,
asymptotic solution for the density matrix,r0, is found, as
the zero eigenvector of the matrix~36!, and from this
D (2)(vs) is calculated for fixedg @Eq. ~17!#. Finally, the
average is taken over the inhomogeneous broadeningP(g).
In this section we discuss the results. We begin with res
for the matrix elements ofr0 before taking the average ove
P(g). All calculations are based on the paramet
gmax/k52gmax/g I510, which should be compared with th
best experimental values,gmax/k512, 2gmax/g I52.9, re-
ported for the optical frequency domain@28#. Our choice of
parameters is optimistic but not an unreasonable goal
future experiments.

A. Homogeneous broadening

The ideal experiment would be conducted without inh
mogeneous broadening and withv f tuned to one of the
ground to first excited-state transitions. Th
P(g)5d(g2gf), and only two of the three two-photon ab
sorption resonances mentioned in Sec. II C exist; for
ample, withv f5v02gf , the pair shown on the left in Fig
1. For these conditions, we plot the occupation probabili
of the first five dressed states as a function ofvs in Fig. 2.
(r0)00 and (r0)11

22 exhibit background occupation probabil
ties determined by the fixed, resonant excitation of
u0)→u1)2 transition. The expected backgrounds are read
calculated from a two-state approximation@29#
-
e

ts

s

or

-

-

s

e
y

~r0!11
22'

Ef2
1
2 ~k1g I /2!212Ef2

5
1

34
,

~37!

~r0!00'12~r0!11
22 ,

in agreement with the values observed in the figure. T
dips appear against the background in the ground-state o
pation probability, evidence of the one-photon absorpt
resonances atvs5v06gf , and corresponding peaks appe
in the occupation probabilities of the first excited states. N
also the small reduction in the occupation probability of st
u1)2 when resonant absorption occurs to stateu1)1 . This is
a saturation effect due to competition between the absorp
on theu0)→u1)2 andu0)→u1)1 transitions. In the presenc
of inhomogeneous broadening the feature produces a L
dip, as shown in Sec. IV B.

Figure 2~c! shows the occupation probabilities for the se
ond couplet. (r0)22

22 exhibits the two-photon backgroun
driven by Ef . If the absorption resonance at frequencyv f
were harmonic, this background would follow from a Po
son distribution, the excitation distribution for a cohere
state. The two-photon and one-photon backgrounds wo
then be related, with (r0)22

225 1
2@(r0)11

22#2'4.531024. The
two-photon background is actually smaller by approximat
thirty times. The reduction is due to two differences betwe
the driven Jaynes-Cummings system~‘‘vacuum’’ Rabi reso-
nance! and a driven harmonic resonance@29#. The ratio of
transition matrix elements for theu0)→u1)2 and
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u1)2→u2)2 transitions is different, and whilev f is resonant
with the first transition it is not resonant with the second. T
second feature is, of course, what we aim to detect.

Against the two-photon background in (r0)22
22 , the an-

ticipated resonance atvs5v02(A221)gf appears. The
second two-photon resonance, atvs5v01(A211)gf , ap-
pears in (r0)22

11 , and there is no significant background
this case.

It was noted in Sec. II E that when inhomogeneous bro
ening is present, the more important two-photon backgro
is that driven byEs . One contribution to this background
from two-photon resonance in the absence of resonanc
the u0)→u1)6 transition. This background is discernible
Fig. 2~c! as the two smaller resonances atvs5v01gf /A2
andvs5v02gf /A2. In the latter case the background res
nance interferes with the much larger two-photon resona
at vs5v02(A221)gf .

In order to understand the effect of inhomogeneous bro
ening, which averages all these features for systems
different coupling constants, it helps to study the homo
neously broadened results forg[g(r)Þgf . Figure 3 shows
how the occupation probabilities for the first five dress
states change as a function of bothvs andg. The curves of
Fig. 2 are recovered from these three-dimensional plots
taking a cut alongg/k5gf /k59. Figures 3~a!, 3~b!, and
3~c! show the splitting of theu0)→u1)2 andu0)→u1)1 one-
photon resonances with increasingg; the resonances ar
mapped out asvs is scanned. In Figs. 3~a! and 3~b! the
one-photon resonance withv f also appears, mapped out
this case as a function ofg. The peak of the resonance

FIG. 4. ~a! ^a†a&v f
(vs) and ~b! ^a†2a2&v f

(vs) plotted as a
function of g/k for g I /2k51, gf /k59, andEf /k5Es /k50.25.
Only the functional dependence is shown; the scales of the plots
be read from Figs. 2~b! and 2~c!. The labels~i!, ~ii !, and~iii ! iden-
tify corresponding two-photon resonances in Figs. 1, 3, 4, and
e

-
d

on

-
ce

d-
th
-

d

y

g5gf sets the one-photon background illustrated by F
2~b!. Note again the small saturation dip in this backgrou
which will be recalled shortly as the source of a Lamb di

Figures 3~d! and 3~e! exhibit a total of six two-photon
resonances. The three resonances selected by the trans
in Fig. 1 are indicated on the figures. Each of these is loc
ized with respect to bothvs and g. Two more resonance
appear, asvs is scanned, for every value ofg. These are the
two-photon resonances which produce the backgro
driven by Es . Finally, a small resonance appears
(r0)22

22 , as a function ofg, for fixed vs . This is the two-
photon background driven byEf .

The measured quantities are the flux and rate of coin
dences of photons emitted by the cavity, proportional,
spectively, tô â†â&v f

(vs) and^â†2â2&v f
(vs). To a first ap-

proximation these quantities are given by the su
@(r0)11

221(r0)11
11#/2 and (r0)22

221(r0)22
11 . The results

displayed in Fig. 4 include the corrections to these expr
sions resulting from dressed-state coherences and highe
cited states~in a seven-state basis!. In Fig. 4~a! the saturation
dip is now buried in the one-photon resonance. The tw
photon resonances also interfere with one another to s
extent, as can be seen in Fig. 4~b!. The next step is to take
the average, for eachvs , over the inhomogeneous broade
ing P(g); the obfuscation of detail will then be complete.

B. Inhomogeneous broadening

Two distributions of the dipole coupling constant are d
rived in the Appendix. The distribution given by Eq.~9!
assumes a uniform distribution of the atom in space an
standing-wave TEM00 cavity mode. We also deriveP(g)
under the assumption that a mask in the (y,z) plane~Fig. 9!,
transverse to the atomic beam, rejects atoms which do
pass close to the optic axis and an antinode of the stan
wave @Eqs. ~A4!, ~A21!, and ~A8! ~Range I!, ~A13! ~Range
II !, ~A17! ~Range III!, and~A20! ~Range IV!#. Equation~9!
describes the inhomogeneous broadening in a worst-

an

FIG. 5. Dipole coupling constant distributions forgmax/k510
andF50.01. The dashed curve is obtained without a (y,z)-plane
mask@Eqs.~A4!, ~A8!, and~A9!# and the solid curve with the mas
kzmax50.1p, ymax/w050.5, as illustrated in Fig. 9@Eqs. ~A4!,
~A21!, and ~A8! ~Range I!, ~A13! ~Range II!, ~A17! ~Range III!,
and ~A20! ~Range IV!#. The locations of the two subpopulation
selected byv f @Eqs.~12! and ~13!# are shown forgf50.9gmax.
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scenario. It is compared in Fig. 5 with the distribution pr
duced by a strongly confining (y,z)-plane mask. The mas
has little effect on the overall shape of the distribution;
there is no confinement along the atomic-beam axis, the
pole coupling constant is still distributed from 0 togmaxwith
a divergence atg(r)50. The principal effect of the mask i
to change the relative weights of the two subpopulations
lected byv f . This, as will be seen, changes the relati
heights of the peaks in the photon coincidence spectrum

Figures 6–8 compare results for the two distributio
plotted in Fig. 5. Clearly, the average againstP(g) obscures
the resonances which are evident in Figs. 3 and 4. Fig
6~a! and 8~a! are the averages of Figs. 4~a! and 4~b!, respec-
tively, while Figs. 7~a! and 7~b! are the averages, respe
tively, of Figs. 3~d! and 3~e!. Note first how the ‘‘vacuum’’
Rabi doublet of Fig. 4~a! is replaced in Fig. 6~a! by a single
peak with the inhomogeneous width. The peak sits on
one-photon background driven byEf . The background is
larger in the presence of the (y,z)-plane mask due to the
increased weight, in this case, of the subpopulation sele
with g(r)5gf . The small saturation feature atvs5v01gf
seen in Figs. 2~b! and 3~b! is certainly not present. The Lam
dip produced by this feature appears, nevertheless, after
tracting the response obtained withEf50. This is shown by
the plots of the difference

D~1!~vs![^â†â&v f
~vs!2^â†â&~vs!uEf50 ~38!

in Fig. 6~b!. There are, in fact, two Lamb dips, one
vs5v01gf and the other atvs5v02gf . These provide a
measurement of the ‘‘vacuum’’ Rabi doublet under ma
festly one-atom conditions. They appear both with and w
out the (y,z)-plane mask. The additional dip atvs5v0 in
the latter case is due to the subtraction, which is sensitiv
the heavy weighting byP(g) of the response nearg(r)50.

Figure 6~b! also shows small features rising above t
background. These are produced by two-photon absorp
and provide an initial indication of the excited-state res
nances identified in Fig. 1. Figures 7 and 8 show how th
resonances are brought to prominence using photon co
dence detection. Even without background subtraction@Figs.
7 and 8~a!#, the resonance atvs5v01(A211)gf is clearly
resolved while the resonances atvs5v06(A221)gf are
obscured by the two-photon background effects. After

FIG. 6. ^a†a&v f
(vs), averaged over the dipole coupling consta

distribution, for g I /2k51, gf /k59, gmax/k510, and
Ef /k5Es /k50.25:~a! before background subtraction, and~b! after
background subtraction. The curves marked by boxes are obta
without a (y,z)-plane mask, and by circles with the mas
kzmax50.1p, ymax/w050.5.
s
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subtraction@Eq. ~17!# all three resonances are resolved,
shown in Fig. 8~b!. They are well resolved both with an
without the (y,z)-plane mask. Without the mask, howeve
the size of the central resonance is increased relative to
other two because of the increased weight of the subpop
tion selected withg(r)5(A221)gf relative to that selected
with g(r)5gf .

Figure 8~b! is the central result of the paper. It is in goo
agreement with a quantum trajectory simulation of pho
correlation spectroscopy@23#. The method used in its com
putation is numerically efficient and therefore suited for t
optimization of future experiments.

V. CONCLUSIONS

The excited-state resonances of the Jaynes-Cumm
system are notoriously difficult to observe. The difficulti
are particularly acute at optical frequencies due to the sm
distance over which changes in the dipole coupling cons
occur. Such changes inhomogeneously broaden the Jay
Cummings spectrum.Photon correlation spectroscop
makes the measurement of the first to second excited-s
absorption resonances feasible for atoms prepared i
slowed, dilute atomic beam@23#.

Here, a thorough analysis of the considerations motivat
the idea of photon correlation spectroscopy has been gi

t

ed

FIG. 7. Diagonal density-matrix elements for the second c
plet, averaged over the dipole coupling constant distribution, plo
as a function ofvs /gf for g I /2k51, gf /k59, gmax/k510, and
Ef /k5Es /k50.25: ~a! (r0)22

22 , and ~b! (r0)22
11 . The curves

marked by boxes are obtained without a (y,z)-plane mask, and by
circles with the maskkzmax50.1p, ymax/w050.5.

FIG. 8. ^a†2a2&v f
(vs), averaged over the dipole coupling con

stant distribution, for g I /2k51, gf /k59, gmax/k510, and
Ef /k5Es /k50.25:~a! before background subtraction, and~b! after
background subtraction. The curves marked by boxes are obta
without a (y,z)-plane mask, and by circles with the mas
kzmax50.1p, ymax/w050.5. The labels~i!, ~ii !, and ~iii ! identify
corresponding two-photon resonances in Figs. 1, 3, 4, and 8.
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and an analytic theory for calculating the photon coincide
spectrum has been developed in the one-atom, quasis
approximation. The master equation for the Jayn
Cummings system driven by a bichromatic field was solv
for a fixed dipole coupling constant in a lowest-ord
continued-fraction expansion. Inhomogeneous broaden
was taken into account by an average over the distribut
P(g), of the dipole coupling constant. An explicit expressi
for this distribution was derived for an atomic beam trave
ing a standing-wave TEM00 cavity mode.

Results for the one-photon and two-photon system
sponse both before and after taking the average over
inhomogeneous broadening have been presented. Thes
sults clearly show the selection of excited-state resonan
with definite g, in spite of strong two-photon backgroun
effects. In addition, the one-photon ‘‘vacuum’’ Rabi spe
trum is present under manifestly one-atom conditions a
Lamb dip doublet. The prospects for future measurement
the Jaynes-Cummings spectrum at optical frequencies ap
to be good.
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APPENDIX: DIPOLE COUPLING CONSTANT
DISTRIBUTIONS

In this appendix we derive the two dipole coupling co
stant distributions used to account for inhomogeneous bro
ening in Sec. IV B. We consider an atomic beam which tr
els in the positivex direction and whose center intersects t
optic axis (z axis! of a standing-wave TEM00 cavity mode at
the coordinate originx5y5z50. An atom located at
(x,y,z) couples to the cavity mode with dipole coupling co
stant

g~x,y,z!5gmaxcos~kz!e
2~x21y2!/w0

2
, ~A1!

k52p/l; k is the wave number,l the wavelength, andw0
the mode waist.gmax is the maximum possible value of th
dipole coupling constant, realized for an atom located on
cavity axis at an antinode of the standing wave. F
g,gmax, g(x,y,z)5g defines a string of disconnecte
closed surfaces on which the dipole coupling strength is c
stant; each surface encloses one antinode of the stan
wave. For simplicity, we assume the atomic beam inters
exactlyM ~an odd integer! of these surfaces—i.e., the tran
verse profile of the atomic beam is confined to the ran
2Ml/4<z<Ml/4. We defineV(g) to be the interaction
volume enclosed byg(x,y,z)5g:

V~g![$~x,y,z!:g~x,y,z!>g,uzu<Ml/4%. ~A2!

Since very weakly coupled atoms have a negligible effect
the cavity field, it is convenient to introduce a cutoff in th
dipole coupling constant. To this end we confine our att
tion to atoms located within the volume

VF5V~Fgmax!, F,1, ~A3!
e
tic
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for which g(x,y,z)>Fgmax. Outside this volume we se
g(x,y,z)50.

For a sufficiently low atomic-beam density, only on
atom interactions need be considered in calculating pho
coincidence spectra@23#. Then, given the presence of on
atom uniformly distributed inVF , the dipole coupling con-
stant distribution is given by

P~g!dg5
1

VF
dV5

1

VF
U dVdg Udg, g>Fgmax, ~A4!

wheredV5V(g2dg)2V(g). In the following we evaluate
the explicit form of this distribution, first without furthe
confining the atomic beam in the (y,z) plane, then in the
presence of a (y,z)-plane mask.

1. Without a „y,z…-plane mask

We must find an explicit expression forudV/dgu. Using
the periodicity along the cavity axis, we write

V~g!5MV0~g! ~A5!

with

V0~g!5$~x,y,z!:x21y2<w0
2ln@gmaxcos~kz!/g#,

uzu<k21cos21~g/gmax!%. ~A6!

Then,

V~g!5M4pE
0

k21cos21~g/gmax!
dzE

0

w0Aln[gmaxcos~kz!/g]
r dr

5Mlw0
2E

0

cos21~g/gmax!
du ln~gmaxcosu/g!

5Mlw0
2E

0

cos21~g/gmax!
du utanu,

whereu5kz, and the final line follows after integrating b
parts. With the change of variable cosu5j, we obtain

V~g!5Mlw0
2E

g/gmax

1

dj
cos21j

j
, ~A7!

and differentiation with respect tog gives

U dVdg U5Mlw0
2 cos

21~g/gmax!

g
~A8!

and

VF5Mlw0
2E

F

1

dj
cos21j

j
. ~A9!

The coupling constant distribution follows from Eqs.~A4!,
~A8!, and~A9!.

2. With a „y,z…-plane mask

We now consider an atomic beam whose transverse
file is confined by a (y,z)-plane mask. Figure 9 illustrates th
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rectangular mask, overlayed by four contours,g(0,y,z)5g,
of constant dipole coupling strength. The mask is defined
the choice of two numbers,ymax/w0 and kzmax. The four
contours define four distinct ranges ofg, differentiated by
the way in which each contour either crosses, or does
cross, the rectangular boundary of the mask. Crossings o
according to the sequence shown in Fig. 9 if

cos~kzmax!.max@e2ymax
2 /w0

2
,Feymax

2 /w0
2
#. ~A10!

This condition imposes stronger confinement of the ato
beam in thez direction than they direction ~asg decreases
contours intersectz56zmax before y56ymax). It also re-
quires the complete mask boundary to fall within the cut
contourg(0,y,z)5Fgmax. Choices ofymax and zmax which
do not satisfy inequality~A10! call for a different partition-
ing into distinct ranges ofg. While our derivation of
udV/dgu assumes the partition defined by Fig. 9, it is read
generalized to treat other cases.

In the presence of the (y,z)-plane mask the interactio
volumeVF is given be Eqs.~A3! and ~A5! with

V0~Fgmax!5$~x,y,z!:x2<w0
2ln@cos~kz!/F#2y2,

uyu<ymax,uzu<zmax%. ~A11!

FIG. 9. (y,z)-plane mask with four overlayed contou
g(0,y,z)5g. Each contour is labeled by the range ofg, as defined
in the text, within which it lies. The dashed line is the cutoff co
tour g(0,y,z)5Fgmax. The mask repeats, periodically, at each a
tinode of the standing wave.
y

ot
ur

ic

f

An explicit expression forVF appears below as Eq.~A21!.
The explicit calculation ofV(g), and henceudV/dgu, pro-
ceeds in a slightly different way in each of the four distin
ranges ofg.

a. Range I: 1>g/gmax>cos„kzmax…

Here the contourg(0,y,z)5g lies entirely within the rect-
angular mask boundary. The volume enclosed by the sur
g(x,y,z)5g is given by Eqs.~A5! and~A6!, andudV/dgu is
calculated exactly as before. In Range I the dipole coupl
constant distribution is given by Eqs.~A4!, ~A8!, and~A21!.

b. Range II: cos„kzmax…>g/gmax>e2ymax
2 /w0

2

In this range the contourg(0,y,z)5g crosses the mask
boundary atuzu5zmax. The interaction volume includes onl
that part of the volume enclosed byg(x,y,z)5g which is
visible through the mask; in place of Eq.~A6! we have

V0~g!5$~x,y,z!:x21y2<w0
2ln@gmaxcos~kz!/g#, uzu<zmax%,

~A12!

where the only change is the restricted range ofz. The cal-
culation of udV/dgu follows as before to give

U dVdg U5Mlw0
2 kzmax

g
. ~A13!

In Range II the dipole coupling constant distribution is giv
by Eqs.~A4!, ~A13!, and~A21!.

c. Range III: e2ymax
2 /w0

2
>g/gmax>cos„kzmax…e

2ymax
2 /w0

2

In this small range ofg the contourg(0,y,z)5g crosses
all four sides of the mask boundary. The volumeV(g) is
given by Eq.~A5! and

V0~g!5$~x,y,z!:x2<w0
2ln@gmaxcos~kz!/g#2y2,

uyu<min~ymax,w0Aln@gmaxcos~kz!/g# !,uzu<zmax%.

~A14!

This volume is no longer cylindrically symmetric and i
explicit expression becomes more complex. In particular,
integral overz must be separated into two parts. We have

-

V~g!5M8E
0

k21cos21~geymax
2 /w0

2
/gmax!dzE

0

ymax
dyE

0

Aw0
2ln[gmaxcos~kz!/g]2y2

dx

1M8E
k21cos21~geymax

2 /w0
2
/gmax!

zmax
dzE

0

w0A ln[gmaxcos~kz!/g]
dyE

0

Aw0
2ln[gmaxcos~kz!/g]2y2

dx

5Ml
4

pE0cos21~geymax
2 /w0

2
/gmax!duE

0

ymax
dyAw0

2ln~gmaxcosu/g!2y2

1Mlw0
2 4

pEcos21~gey max
2 /w0

2
/gmax!

kzmax
du ln~gmaxcosu/g!E

0

p/2

dh cos2h, ~A15!



55 1369PHOTON CORRELATION SPECTROSCOPY OF THE . . .
where we have made the change of variable sinh5y/w0Aln@gmaxcos(kz)/g# and, as before,u5kz. Performing the second
integral in the manner used to reach Eq.~A7!, we obtain

V~g!5Ml
4

pE0cos21~geymax
2 /w0

2
/gmax!duE

0

ymax
dyAw0

2ln~gmaxcosu/g!2y21Mlw0
2H kzmaxlnFgmaxcos~kzmax!g G

2
ymax
2

w0
2 cos

21S geymax2 /w0
2

gmax
D 1E

cos~kzmax!

geymax
2 /w0

2
/gmaxdj

cos21j

j J . ~A16!

Then

U dV
dg

U5Mlw0
2H 4

p

1

w0
2

eymax
2 /w0

2
/gmax

A12~geymax
2 /w0

2
/g max!

2
E
0

ymax
dyAymax2 2y2

1
2

p

1

g
E
0

cos21~gey max
2 /w0

2
/gmax!duE

0

ymax
dy

1

Aw0
2ln~gmaxcosu/g!2y2

1
1

g F kzmax2cos21S geymax2 /w0
2

gmax D G2
ymax
2

w0
2

eymax
2 /w0

2
/gmax

A12~geymax
2 /w0

2
/gmax!

2 J
5Mlw0

2
1

g H kzmax2cos21S geymax2 /w0
2

gmax D 1
2

p
E
0

cos21~geymax
2 /w0

2
/gmax!du sin21F y max

w0Aln~gmaxcosu/g!
G J . ~A17!

In Range III the dipole coupling constant distribution is given by Eqs.~A4!, ~A17!, and~A21!.

d. Range IV: cos„kzmax…e
2ymax

2 /w0
2
>g/gmax>F

The contourg(0,y,z)5g lies entirely outside the rectangular mask boundary;V(g) is given by Eq.~A5! and

V0~g!5$~x,y,z!:x2<w0
2ln@gmaxcos~kz!/g#2y2,uyu<ymax,uzu<zmax%. ~A18!

The first term of Eq.~A15! now covers the complete integration range inz

V~g!5Ml
4

pE0
kzmax

duE
0

ymax
dyAw0

2ln~g maxcosu/g!2y2. ~A19!

Thus,

U dVdg U5Mlw0
2 2

p

1

gE0
kzmax

duE
0

ymax
dy

1

Aw0
2ln~gmaxcosu/g!2y2

5Mlw0
2 2

p

1

gE0
kzmax

du sin21F ymax

w0Aln~gmaxcosu/g!
G . ~A20!

In Range IV the dipole coupling constant distribution is given by Eqs.~A4!, ~A20!, and the interaction volumeVF which now
follows from Eqs.~A3! and ~A5!

VF5Ml
4

pE0
kzmax

duE
0

ymax
dyAw0

2ln~cosu/F !2y2

5Mlw0
2 4

pE0
kzmax

du ln~cosu/F !E
0

sin21[ymax/w0Aln~cosu/F !]
dh cos2h

5Mlw0
2 2

pE0
kzmax

duH ln~cosu/F !sin21F ymax

w0Aln ~cosu/F !
G1

ymax
w0
Aln~cosu/F !2

ymax
2

w0
2 J . ~A21!
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