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Quantum theory of optical pulse propagation through an absorbing and dispersive slab
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We apply a recently developed scheme for electromagnetic field quantization in dispersive and absorbing
dielectrics to calculate the effects of perpendicular propagation through a finite-temperature dielectric slab on
the properties of an incident pulse of light. The theory applies to incident pulses of nonclassical light and also
reproduces the results for classical pulses in the appropriate limit. The transmitted pulse is assumed to be
measured by a detector that receives radiation only from the direction normal to the slab surfaces. The
Poynting vector of the transmitted light includes contributions from the incident pulse, whose shift in peak
position and additional broadening or narrowing are determined, and from the thermal emission of the slab,
which tends to a black-body form in the appropriate limi§1050-294{®7)02601-2

PACS numbes): 42.50—-p

I. INTRODUCTION classical theories. However, for incident light of a nonclas-
sical nature, there are also modifications of the quantum co-
The electromagnetic field has recently been quantized foherence and correlation properties of the pulse that can only
several sample geometries of a dispersive and absorbing die described by a quantum theory, and these will be covered
electric materia[1,2] following earlier work that is exten- in a subsequent publication, using the basic formalism de-
sively reviewed in these references. The results cover théved here. .
formal quantization procedures and the forms of the electro- The quantum treatments of propagation through an ab-
magnetic field Operators for wave propagation perpendicu|a$0rbing and diSperSive dielectric slab and the deSCI’iption of
to the sample surfaces. The purpose of the present paper istfte quantum states of incideNtphoton and coherent pulses
app'y th|s forma“sm to the transmission of an Optica' pulseare summarized in Sec. Il. The properties of the transmitted
through a dielectric slab that is maintained at a finite temJPulse are calculated in Sec. lll, where it is shown that the
perature. It is assumed that the transmitted pulse is vieweBUIse suffers apparent delay or acceleration and broadening
by a photodetector whose field of view is restricted to theOr narrowing, depending on the values of the slab and pulse
direction perpendicular to the slab surfaces, so that the fiel@arameters. The nature of the thermal radiation emitted by
variations occur in one dimension only. the slab itself is determined in Sec. IV. The conclusions of
The various optical properties of the incident pulse arethe work are summarized in Sec. V.
modified by the dispersion and absorption in the dielectric
and by the reflections from the slab surfaces. Some of these Il. SLAB FIELDS AND POYNTING VECTOR
modifications result in distortions of the transmitted pulse in ) ) ) ]
comparison with the properties of the incident pulse. The [N this section we derive a general expression for the
effects of propagation through an infinite dispersive and abPoWer density of a quantized electromagnetic field after
sorbing medium on a Gaussian light pulse were treated b ropagatlo_n thrqugh a bounded (;helectnc that shows both
Garrett and McCumbdi8] and some of the predicted effects 0SS and dispersion. We also consider the forms of the quan-
were confirmed in experiments by Chu and Wdaj on  tum states foN-photon and coherent pulses. _
layers of GaP:N. In particular, these papers established the '_I'he form of the dielectric function for a slab of thickness
importance of the group velocity, calculated from the real?! 1S
part of the refractive index, in determining the propagation

N2 — ; 2
of the pulse envelope. The original theory for an unbounded (Xw)= e(w)=n*(w)=[n(0) +ik(w)]* for |x|<I
medium[3] has been extended by Halevi and co-workers ' 1 for |x|=I,

[5—9] and more recently by Japha and KuriZ&i0], to in- (2.1

clude the effects of multiple reflections at the sample sur-

faces: these effects are important in the interpretdtlonll  where the complex refractive indeX w) is assumed to be a
of the observed phenomenon of apparent superluminal puldaown function, which is related to the real refractive index
propagation through multilayer dielectric barri¢i,13]. n(w) and extinction coefficient(w), defined for positive fre-

In addition to these distortion effects, at elevated temperaguencies. The electromagnetic field is quantized on the basis
tures, the features of the transmitted pulse are obscured f a continuous set of modes propagating in the direction
the presence of thermal emission from the slab. Both thesperpendicular to the surface of the slab so that waves propa-
contributions to the emission are treated in the present papegate in the direction of the positive axis with their trans-
and the results extend previous theoretical work on pulsgerse electric and magnetic vector operat&,t) and
propagation into the quantum domain. We shall show thaB(x,t) parallel to they andz axes, respectively. The sche-
the same pulse distortions are predicted by the quantum andatic arrangement of the propagation geometry for the vari-
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V(w)=2[n(ow)+1lexgio[n(w)—1]1/c}D Y w),

, (29
W(w)=2[n(w)—1]expio[3n(w)—1]1/c}D Y w),

and thef(x,w) are spatially distributed Langevin noise cur-
rent operators with the commutation relation

[F(X,0), (X 0)]=6x-X)(w—0'). (2.9

FIG. 1. Spatlal Configuration of the dielectric slab and nOtatiOﬂThe Strength of the noise Operat%(w) is proportiona| to
for the destruction operators used in the definition of the relevanine square-root of the extinction coefficietw), and it van-

electric fields.

ous components of the field given in Fig. 1 shows the nota-

tion for the slab input and output field operators.

The vector potential operatdk(x,t) can be obtained by
using standard Green-function methods to solve the relevant
Maxwell equationg2]. In the scattering regior>1 its posi-

tive frequency component is

A(+)(x,t)=f dw(fil4mecwS)
0

X [BR(w)ei‘”X/C—I- E)L(w)e’i‘”x’c]e’i“’t,

(2.2

where S is the area of quantization in thgz plane. The
operator for the rightward-propagating outgoing field is
given in terms of the leftward and rightward input fields by

br(w)=R(w)b (©)+T(w)ag(®)+F(w), (2.3

where
T(w)= ‘g‘((;")) g2io[n(w)-1]/c
— 4n(w)exp(2i w[n(w)—1](1/c)—In D(w)}
(2.4
and
2 _
R(w)= [n I(;()()U) 1] e Zulleglionwlic 1] (2.5
with

D(w)=[n(w)+ 11— [n(w)— 1]12exd 4i on(w)l/c],
(2.6)

are the complex amplitudes of the transmission and reflec-
tion coefficients, respectively. The second form of the trans-

mission coefficient in Eq(2.4) is useful for Sec. lIl.

The operatoF (w) in Eq. (2.3) represents the noise asso-
ciated with the dissipation in the slab, and its form is given

by
“ | .
F(w)=i 2(1)7]((1))K(a))/CJLldx[V(w)e*Iwn(w)x/c
+W(w)eiwn(w)X/C].’f\(X'w)' (27)
where

ishes for a lossless dielectric. The input and output operators
in Eqg. (2.3 satisfy the boson commutation relations

[br(@),bk(@)]=[b(®),b](©')]=[ar(®),ak ®")]
=w—o'),
o (2.10
[ar(®),b{(0")]=0,

and their consistency is ensured by the noise operator com-
mutator

[F(w),Fl(0)]=[1-|R(0)*~|T(0)|]8(0-w"),
(2.11

which is readily verified with the use of EqR.7)—(2.9).
The electric and magnetic fields are derived from the
quantized vector potential,

é(x,t)za,&(x,t)/ax,
(2.12

and the average Poynting vector is calculated according to

E(x,t)=— dA(x,1)/dt,

(S(x,1)) = o HEKLKRIE(X,HB(X,1)R)|LYI ). o1

The expectation value is over a product state that comprises
the states of the field impinging leftwarfls) and rightwards

|IR) on the slab. The state of the reservoir that accounts for
dissipation within the slab is a statistical mixture, which we
represent symbolically byf). We specifically take the in-
coming statgL) to be a conventional vacuurf@), and the
quantized field|R) impinging from the left is taken as a
photon-number state, denoted Ky, £). The normal-order
Poynting vector on the right of the slab obtained from Eq.
(2.13 then simplifies to

<'AS(Xt)'>:i Doda)J’ooda)’ wo' e (@me)(t=x0)
' v 27S 0 0

X(f|(O[(N,&|bk(w)br(w’)|N,£)|0)[f).
(2.19

The photon-number state can be generated with the use of
a quantum operator acting on the vacuum, of the foteH

® N
|dog il 0. @19

1
|N’§>:\/ﬁ

The normalized functiod(w) describes the frequency distri-

bution of theN-photon wave packet, whose form is deter-
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mined by the way in which the photon state is prepared. We o »
consider here a wave packet with a Gaussian frequency dis-  J1(d)= Vﬁ/4776003j0 dwe 10" T(w)£(w)

tribution centered om, (carriep and a mean-square spatial (2.22
length £2, '
£2 1/4 and
f(w)Z(m exd — L3~ wc)?/4c?], (2.16

f o . _
Jo(q)= FOCZS Jo dwe "Iv%p(w)k(w)n(w,T)

where the frequency spread of the wave packet/s The |

Fourier time transform of Eq(2.16) represents a pulse f “ion(w)xic i on(w)Xic|2
whose peak would pass the origin of coordinates at tim@ x 7|dx|V(w)e +W(w)e %

in the absence of the dielectric slab. Single-photon states

with Gaussian wave packets can be realized experimentally (2.23

[15]. It is sometimes useful to compare these states with afe ayerage Poynting vector thus separates into two contri-
incident pulse in the form of a coherent state definel®y | tions: the par(:S:),, depends on the position and time,

and on the parameters of the incident pulse and the slab,

{a(w)})=D{a(w)}]0) while the part(:S:), is independent of position, time, and
the pulse characteristics, and only depends on the slab pa-
Eexp{f dw[a(w)é&(w)—a*(w)éR(w)] |0), rameters. The pulse power density transmitted through the

slab and the noise power density radiated by the slab itself
(2.17  can thus be analyzed separately.

where a Gaussian pulse with mean photon nunhbés ob- IIl. PULSE TRANSMISSION
tained by taking
In order to characterize the propagation through the ab-

a(w) :m&g(w), (2.18 sorbing slab of the energy stored in a quantized electromag-
netic field, an explicit expression for the first contribution to
with &w) defined in Eq.(2.16. The quantum-mechanical the Poynting vector in Eq(2.2)) is needed. The relevant
coherent staté2.17) shows similar behavior to a classical integral J; is difficult to perform in general; however, an
pulse. The photon-number sta15 has no classical ana- analytic result can be derived with the help of realistic as-
logue; it shows classical-type behavior in terms of its first-sumptions.
order coherence and the propagation of its power density, but First, we take the frequency spread of the photon-number
it displays characteristic nonclassical behavior in terms of itgvave packet to be much smaller than the carrier frequency,
higher-order coherence and correlation properties.
The dielectric slab is assumed to be maintained at a finite- ¢/L<awe. 3.
temperatureT, and the Langevin noise current operators

: The lower bound in the integral can then be replaced-
have the expectation values p g P by

and(:S:), reduces to

(flT(x,0)| ) =(F[f(x,0)F(x",0")|f)=0, ) 7 Nhio,
(2.19 (:$)0= V372 278

r dOT(we+ Q)
<f|%T(X,w)?(x’,w’)|f>:n_(w,T)5(X—X')5(w_‘”,)’ .

2
; 2002/4-2
where Xe—lﬂ(t—x/c)e—ﬁ 0 “/4c , (3.2)

n(w,T)=[e"/T—1]"* (220 where the square-root frequency factor in the integrand} of
in Eq. (2.20) is replaced by/w.. We have also changed the
variable of integration td)=w—w.. WhenT(w.+Q) is

Qet equal to unity, Eq3.2) yields the normal-order Poynting
AR%ctor associated with the incident pulse, which can be
straightforwardly evaluated as

is the mean number of thermal photons at frequeacyhe
temperature determines the level of excitation of the nois
currents. The free-space regions surrounding the slab are
sumed to be at zero temperature.

With the help of Eqs(2.195, (2.16), and(2.19, the aver-

age normal-order Poynting vector E8.14) for anN-photon (: é‘)- _ Soe72(x7ct)2/£2 (3.3
Gaussian wave packet after transmission through the slab can e ’ '
be written as where
. N/ L& Nch o
(:S(X, 1)) =(S)p+(:S)sgl Sy=\(2im) i c (3.4
X 2
=2/ N J1<t_ c +J2(0)}’ 22D s the peak power density of the incident pulse.

Second, for a slab with a reasonably smooth dielectric
where function (no optical band-gap edge, no singularities, )etc.
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FIG. 3. Mean-square length of the transmitted Gaussian pulse

FIG. 2. Shift in the peak position of a Gaussian pulse transmitfor the same parameters as in Fig. 2, in units of the incident mean-
ted through a slab of thicknes$ lative to free-space propagation square lengthc? (a) complete variation andb) variation with 7,
in units of | as a function of the medium real refractive indgx for k.=0 (black curve and x,=0.02 (grey curve.
and extinction coefficienk.. Dispersion is neglected. The film
thickness and carrier frequency satigsyl/c=10 and the incident
pulse width isC=40. (a) complete variation an¢tb) variation with
7 for k.=0 (black curve and k.= 0.02(grey curve.

£5 2l gl (3.6

so that the transmitted light retains the form of a single pulse.

\r/]v(u(jut)h 07/](;)2;]‘ ?hn: Klg?;)e\/?_llr’]ye S(’)IO\t';gu ?l://:\r/etf:/eecr:grrrge\;\;] tt)r?LTsd-beThe form of the transmitted pulse is more complicated when
P ' b Eq. (3.6) is not satisfied, and it exhibits breakup into a series

expanded around the pulse carrier frequeagyn the usual of distinct pulses in the limit where the incident pulse is

way, much shorter than the slab thickndd$] (a similar pulse
breakup is observed in transmission through a Fabry-Perot

k(w)= M:k(wc)+M‘ (0—wg) cavity [17]). When Eq.(3.6) is satisfied, it is appropriate to
c Jw w, make an expansion of the logarithmic term Tifw.+ (})
5 correct to the second order falk/ . This leads with the use
14 k(w) w2 of Eq. (3.5 and the second form of the transmission coeffi-
2 do® | (0= ) cient in Eq.(2.4) to

(3.9
=k, + ki Q=k.+ (ki +ik()Q, 1
T(wC+Q)=T(wC)exp[ Zi[ké——
where the second and higher-order terms in the expansion ¢
are neglectedk.=w.n./c and n;=n(w;). The prime de- 2k.(ng—1)2 di wenyl
notes the frequency derivative in the linear term and this is D e p( )
divided into its real and imaginary parts in the final step, (@)

where the real part is related to the group veloeifyaccord- 8k.%(n2—1)2 F<4i ol )
- e QZIZ] :

ing to ke, =1/vg. DZ(wy)
Third, we take the incident pulse to be much longer than ¢
the optical thickness of the slab, (3.7
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where D(w) is defined in Eq.(2.6). The coefficients of)  pulse length is of the order of a fraction of a percent. Increas-
and Q2 are complex; one should notice particularly the de-ing absorption again damps the oscillations out and the pulse
caying and the oscillating components, respectivelyQin length is unchanged from its incident value for sufficiently
and Q2. large .. Dispersion in the refractive index(w) around its
The form of the transmitted pulse power density is nowvalue 7. and in the extinction coefficienk(w) around its
obtained by substitution of E¢3.7) into the integrand in Eq. value k. at the carrier frequency, which are included in the
(3.2. The integral can be performed analytically, but thegeneral results of the Appendix, are neglected in both Figs. 2
result is complicated and the full details are given in theand 3, i.e., we set the usual group veloaityevaluated at the
Appendix. The transmitted pulse retains a Gaussian shapearrier frequency equal to the corresponding phase velocity,
given by the analytic expression of E¢\2), but the natures
of the variations in the pulse peak position and pulse length ,_ 1 e o In(w)

are not very transparent. Figure 2 thus illustrates how the cr v_g_ C Cc Jdw

shift Ax in the position of the peak of the transmitted pulse

varies as a function ofy, and . after propagating through a and

slab whose thickness is much smaller than the incident pulse

length. We specifically plot the third and fourth term in the e, O Ik(w)
square bracket of the numerator of E42). The shift oscil- T ¢ ¢ dw
lates as a function ofy, around a mean value that decreases ¢

monotonically with increasing., and the amplitude of the to avoid the introduction of a further arbitrary parameter.
oscillations increases withy.—1|. For the parameters used  Relatively simple expressions for the transmitted Poyn-
in this figure the maximum shift is of the order of a slab ting vector are obtained in limiting special cases, and the
thickness. The oscillations damp out with increasing extincsimp|est of these is that of zero absorptiap=0. The inte-
tion Coeﬁicienth. Likewise in Flg 3 we illustrate the varia- gration in EQ(222 can be performed without too much
tions in the transmitted pulse length for the same situation agifficulty in this case, and the transmitted Poynting vector of
Fig. 2; here we plot the expression in the curly bracket in thehe pulse has the Gaussian form

denominator of Eq(A2) that represents the deviation of the

mean-square lengthZ from its incident valueC2 The trans- (: éK I sTe*2<X*°t*AX>2/ﬁ$, (3.10
mission through an absorbing slab may shorten or lengthen ¢

the pulse depending on the value of the real refractive indewhere the spatial shift in the position of the peak of the pulse
nc, particularly for largen.'s. The relative change in the from its valuect in the absence of the slab is given by

U/
_,’c
C

(3.8

C

Ko 3.9
- (39

2lc 87c(7e+1)
Ax=2l— — 3.1
v (1t D+ (70— D~ 2( 72— 1)2c08 dwgngl o) (31D
and its mean-square spatial length is given by
322c2 (92—1) +1)*+ (5.~ 1)*]cog 4w .l Ic) — 2( 92— 1)?
22y 32 (7e=DH[(nc+1)"+ (9. —1)"]cog 4w, ncl/c) —2(7c—1)% (312

v [(7e+ 1)+ (9~ 1)*—2(ni—1)%cod 4w, ncl/c)]?

g

These expressions are correct to the second ordé€jrand  [3,6,7]. The mean-square length oscillates around a mean
Eqg. (3.11) is consistent with an expression for the apparentvalue that is obtained from E¢B.12 as unchanged from the
velocity of propagation of a pulse through a slab derivedincident value,

previously[6]. We do not give the explicit expression for the _

peak power density; of the transmitted pulse. The black L%z/lz. (3.19
curves in Figs. @) and 3b), respectively, show the forms of

the peak shift Eq(3.11) and the transmitted pulse length Eq.  The oscillations can be understood by consideration of
(3.12 for zero absorption. The peak shift oscillates around durther specializations of the system parameters. Thus if the
mean value that is found by taking an average of Bql)  carrier frequency and slab thickness satisfy

over a period of the cosine to be

2wcyllc=mn (n=integey, (3.15
Ax=2| ( 1— i); (3.13 the shift Eq.(3.11) in the spatial position of the peak of the
Vg pulse can be decomposed as

2
this is the value expected for the change in effective path _o 1 © netl _ _
length caused by th jon of the peak of the pulse “X=21 715 S
ength caused by the propagation of the peak of the pulse vy 7 vg vg 7
with velocity v4, in agreement with previous calculations (3.1

—1)2
ol C) ¢ (= 1*
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The first term on the right results from pulse propagationarea of the transmitted pulse is now reduced from that of the
through the slab with the group velocity and fgy>0 the incident pulse by the transmission factor appropriate to the
second term results from an enhancement of the rear of theondition (3.18).

pulse by the constructive interference of in-phase contribu- The analytical results in the previous two paragraphs pro-
tions from multiple reflections inside the slab. The lengthvide simple examples of the ways in which apparent “super-

expressior(3.12 reduces to luminal” behavior withAx>0 can occur in pulse transmis-
sion through a dielectric slab. The first terms on the right in
212¢2 (%—1)2 Egs.(3.16 and(3.19 represent the bulk effect of transmis-
Li=LP — ———, (3.17  sion across the slab at the group velocity, and these terms are
Vg e positive if vg>c or v,<0 [3,4]. The second terms on the

nfight of Egs. (3.16 and (3.19 represent surface effects
aused by multiple reflections inside the slab, and these
erms can be positive or negative, depending on the slab
thickness and the sign of the group velocity. The multiple
) ) . ; reflections may make an important contribution to the super-
,Th? resul'ts fgr this special case agree with earlier o luminal behavior, although such effects occur in more strik-
i dls_persmn is neglected. ing form for multilayer dielectric filmg10-13 rather than
Simple results also occur for the single dielectric slab considered here. Bgr0, both
_ _ . Egs. (3.16 and (3.19 give Ax>0, while for v,>0, the
2wemel/c=mn/2 - (n=odd intege). (3.18 transmission is superluminal withx>0 for the condition

The shift in the spatial position E€3.11) of the peak of the €XPressed by Eq3.18 only when

where the increase in pulse length is caused by the sa
interference effects. The integrated area of the transmitte
pulse is unchanged from that of the incident pulse as 1009
transmission occurs when the conditi¢®15 is satisfied.

pulse is now decomposed as vg 27
Axe2l 2lc 27, o1 1 c) 2Ic (5.~ 1)2 c metl
X: - = - T 2 A . . .
Vg net+1 Vg Vg net1l In the absence of dispersion, when the group velocity equals

(3.19  the phase velocity as in E(.8), superluminal transmission

) _ ) with Ax>0 is predicted both by Eq$3.16 and(3.19 when
where the first and second terms on the right again represegltc<1, and this behavior is evident in Fig. 2; subluminal

the effects of the change in the velocity of transmissionransmission occurs fop,>1. The Gaussian pulse adopted
through the slab and the multiple reflections inside the slabhere maintains its functional form on transmission through
respectively. The multiple reflections now produceasitive  the slab, and the position of its peak provides a simple mea-
contribution to the shift for/g>0, corresponding to an ap- sure of any apparent delay or speeding up, without the need
parent speeding up of the pulse. This effect is caused by thigr any justification of a choice from the range of definitions
opposite phases of the multiply reflected waves when thef traversal timeq10]. It should be emphasized that in all
condition(3.18 is satisfied, so that the rear part of the trans-cases, the value of the transmitted Poynting vector at the
mitted pulse is diminished by destructive interference. Thdeading edge of the pulse is smaller than its value in the
length expressiofi3.12 reduces to absence of the slab and Einstein causality is never violated.
Another special case occurs in the presence of absorption,
k.# 0, but with the assumption that the conditi15 for
near transparency of the slab is satisfied. With the help of the
condition (3.6) and the result3.7), the integral in Eq(3.2
where the reduction in the mean-square length of the pulse isan now be performe3.923 of[18]) and one gets after
another consequence of the same interference. The integratedme effort

812c? (n5—1)?
Li=[2- — 5, (3.20
! vy (me+1)?

. 2{ct—x—1B,—[lapBik2l ar+ (LI21)?]}?
<'S'>P'_S°Ie"p[ T At Bl ag (L)) | (322
|
where the slab, andy;, «,, B;, and B, are dimensionless pulse and
material-dependent parameters defined as
7 18nc*{(Bixo)*+ [ar+ (£121)%]7) 12 (2 1)?
(21/L£)?A%_ a,=8c%k.? WZT’ (3.29

2 2/2
Ko ] (3.23

XEXP o (LI20)2

2K (Apy A, )+ (72— 1) (K. k
Bi= 1607 (- 1) e Ser [Re) T LKl e)

determines how the peak incident intensity scales through (3.25
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8k(,:r(7](2:_1)+(k(,:i/Kc)Ac+Ac— sity 7 is extremely small in this limit, but the form of Eq.
C I , (3.26 (3.3)) illustrates the physical effects of the high absorption
- on the pulse shape.
The results of this section provide an extension of recent
work [16] on the propagation of a quantized field through a
- / slab with constant and real refractive index. It is important to
Bo= =2+ 20K (A [Ac-) (3.29 point out that the effects discussed above also occur in the
with propagation of the coherent pulfe(w)}) described by Egs.
(2.17 and (2.18 through a dielectric slab. Identical expres-
Ags = (7t 1)2e2ckcl/Cx (5, —1)2e2wcxdl/C, sions are obtained for the transmitted Poynting vector in this
(3.28 case, within approximations that are valid when the inequali-
ties(3.1) and(3.6) apply, and the same results survive in the
The transmitted light again maintains the appearance of alassical limit[6]. However, the gquantum-mechanical for-
Gaussian pulse, but its strength, position, and length armalism presented here can also be used to determine the
modified by quite complicated functions of the pulse andhigher-order propagation characteristics of optical pulses
material parameters. with nonclassical features, which are not accessible by any
For values of the extinction coefficient corresponding to aclassical theory.
weak absorbing regime the parameigi l/c is generally
small and it is much less than unity for many experimental
conditions. Thena;, a,, B;, and B, can be expanded in
terms of this perturbation parameter and the corresponding e now proceed to examine the second contribution in
Poynting vector expectation value in E.22) leads to the Eq, (2.21) coming from the intensity radiated by the slab
following expressions for the shift in the spatial position of 5ione. This contribution is determined by the properties of

ay=

and

IV. SLAB RADIATION

the peak of the pulse, the noise operatoF(w) defined in Eq.(2.7). Using the
forms (2.8) of the coefficientsV(w) and W(w), the spatial
c (2+1) ¢ (5°-1)? @l : . . \ _
Ax=2|—| = e = e &2 integral inJ, defined by Eq(2.23 can readily be carried out
vg 7 vg M ¢ c to obtain
(3.29
A o ho __
and the mean-square pulse length, <1Si)s|=f do W_“S’ n(w,T): (@) [[V(@)]2+ [W(w)|2]
0
¢ (ne—-1)?
L2=L24212 5 2 I
T A wsin] 225N} o V(o)W (0)
(- DA+l o
—a12 2. _< 207n(w)l
41 VS 773 Ke 7o (3.30 +V* (0)W(w)]sin #)]

to first order ink.wcl/c with ki, =1/v4. It is seen that for N PN

vy>0 the shift in the peak of the pulse is increased and the = fo do(:S(®):)si- 4.1

mean-square pulse length is reduced with respect to the val-

ues associated with the nonabsorbing regime examined

above, respective|y’ Eq$316) and (3.17). These Changes This clearly vanishes in the limits—~0, when the slab is

occur because the contributions of the multiple reflections t@ssentially removed, in the limi(w)—0, when the strength

the peak shift and pulse width are progressively diminishe®f the noise operatof (w) tends to zero, and at zero tem-

by the effects of the attenuation. perature, when the slab radiation disappears altogether. An
On the other hand, for values of the extinction coefficientanalytic expression for the integral in E¢-1) is, in general,

Corresponding to strong absorpti@@wcuc is |arger than or Vvery difficult owing to the intricate oscillating behavior of

at least equal to unity for typical experimental conditions; theD(w) in the denominators 0¥(w) and W(w). Magnitudes

coefficientsay, ay, B;, and 3, can be expanded within this Of the slab Poynting vector, however, can be obtained nu-

limit when only 8, remains non-negligible and the Poynting merically and from Eq(4.1) we find, e.g., that for the char-

vector(3.22 reduces to acteristic values of =2.85, an extinction coefficient
k=3X10"% and | =103 m, (:S:)¢/(Ac?/2wSIP) varies in
(:S:)p1=SoT exp(— 2{ct—x—21[(c/vg) — 1]} L), the range &10 3—6x10° for temperatures between 3 and

(3.30) 300 K, respectively.

Equation(4.1) usefully provides a direct expression for
The strong absorption completely quenches the effects of thilne Poynting vector spectrufaS(w): ) of the electromag-
multiple reflections in the slab, so that the shift in peak po-netic field emitted by a lossy and dispersive dielectric at
sition is merely the contribution from the optical thickness offinite temperature. Typical values of the extinction coeffi-
the slab and the pulse length is unchanged from the incidemient are very much less than unity and we shall regéug
pulse. These behaviors are seen in the highregimes of as an expansion parameter throughout the following discus-
Figs. 2a) and 3a), respectively. Of course, the peak inten- sion. Because the second contribution in E§1) is much
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) . . FIG. 5. Poynting vector spectrum E@.2) in units of kT/27S
FIG. 4. Poynting vector spectrum E(.2) in units ofkKT/27S as a function ofhw/kT for a thin lossy slab with»=2.85 and

as a function ofi w/KkT for a thick lossy slab of width P at finite «=3%10"% The temperature and the slab width satisfyc/kT
temperatureT such thatl=10°%c/kT. The imaginary part of the |=#c/2kT, andl =Ac/7kT, respectively, from the top dow(rblacl‘<

. . . _ _4 . _
refractive index isk=3X10"" and the real part is;=2.85 (black curves. The grey curve refers to the parametersh c/0.7%T, 7=1,
curve and »=1 (grey curve. and k=3x10~%

smaller than the first for most reasonable ranges of param-

eters, we can rewrite the spectrum simply as ) o
nential decay for larges’s and the nonvanishing value at

) ) =0. This latter feature contradicts a property of the spectral
(:S(w): >sl_ n(w T) n(0)[|V(0)]*+[W(w)|*] expression4.2), which clearly vanishes ab=0, and it is a
consequence of taking the limit shown on the right of Eq.
(4.3) before evaluating the spectruma#0. In addition, the
extinction coefficient must strictly vanish for zero frequency
[19], but the constant value assumed here is sufficiently
In the limit of an infinitely thick slab, Eq(4.2) reduces small that this requirement is violated to an insignificant ex-

o [2wk(w)]
><S|nr<T) [k(w)<7(w)]. 4.2

with the use of Eqs(2.8) and(2.20 to tent.
In the case of a finite slab, the argument(w)l/c in the
fiw 1 4n(w) exponents that occur in E¢4.2) is less than unity for the
()} 2mS e T-1 [(w)+ 11+ [x(w)]? parameter values assumed here and for the infrared and

lower frequencies that are thermally excited at reasonable
[wk(w)l/c>1], (4.3  temperatures. The averaged Poynting vector spectrum can
then be rewritten with the help of a Taylor series expansion,
whose behavior is shown in Fig. 4 as a function of the norand including terms up to the leading order ifw) and
malized energyi w/kT. One should note the uniform expo- wk(w)l/c one obtains

hw 1 27(w)[37%(w)—27(w)+3]ok(w)l/c
<S(w) )si= 27S "MT—1 [72(0) + 117+ 4[wk(w)l/c][ 7(0) — 1122 7(w) —{[ 7(w)+ 1] sif 20 p(w)l/c]}?)

[wk(w)l/c<l]. (4.9

In the special case of a unit real part of the refractive indexcrease fromw=0, followed by a maximum at intermediate

this cumbersome result reduces to w's, contrasts with the uniform decaying behavior of the
spectrum Eq(4.3) for an infinite slab. The wider the slab,
- hw 1 2wk(w)l the steeper the slope with which the spectrum increases from
<:S(“’):>SI:27TS ghwlkT_1 Cc [7(w)=1]. »=0. A steeper slope, in turn, shifts higher and higher spec-

(4.5  tral peaks toward the static region, so that the shape of the
finite-slab spectrum tends towards that of the infinitely thick
The spectrum from Eq4.4) is shown in Fig. 5 for the same slab. Note however that the spectrum E4.3) for the infi-
parameter values as Fig. 4 and for three different valués of nitely thick slab is obtained by taking the limit shown by the
When compared to the previous result for an infinite slab innequality on the right of this equation, and the spectrum
Eq. (4.3, two major differences appedFirst, the linear in- cannot be rederived from the finite-slab expressidm).
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Also note the different decaying behaviors for largés, V. CONCLUSIONS
~wexp(—Ahw/kT) and ~w? exp(—w/kT) when compar-
ing, e.g., Eq(4.3) for n(w)=1 with Eq.(4.5). All these fea- We have applied the quantized electromagnetic field

tures are well illustrated in Figs. 4 and Secondnote the theory developed for an absorbing and dispersive dielectric
presence of oscillations whose frequency and amplitude insjab[2] to determine the effects of transmission on the prop-
crease with the slab width. These oscillations arise from therties of an incident Gaussian pulse. The pulse is taken as an
trigonometric term in the denominator of E@.4) and only  N-photon state, for future use in calculations of the effects of
disappear when the real part of the refractive index becomeg,nsmission on the nonclassical properties of light, but for

unity (cf. grey curve in Fig. 5 They physically originate he |inear properties derived here the same results are ob-
from the interference between reflections of the radiation 'tained for coherent pulses, including the classical limit of the

side the bounded medium while the lack of oscillations forquantum formalism. In agreement with previous calcula-

the finite slab described by E¢1.5) is physically due to the .

fact that for n(w)—1 and K}(/w)zlathepbgundar};/ reflections t|ons,_ the pulse_propagates_through the slab with the group
disappear and so do the oscillations. The absence of Osci”g_eloc!ty appropriate to the dielectric mater[aﬂ. The group

. (yelocny may be larger thaq, or even negative, but Einstein

by the absence of boundaries. causality is never viollated.as the value of the Poynting vector
It is instructive to draw a comparison between our resultsf”‘t the detector at a given tlme_ls always smaller than its value

and the spectrum of the mean Poynting vector obtained frorf? the absence of the dielectric slgt?]. .

first principles. Consider a one-dimensiorfdD) electro- The transmitted light contains two contributions. The first

magnetic field: the one-dimensional character of the field i®f these is a modified version of the incident Gaussian pulse,
necessary since in our case the wave vector varies only in thhose peak position is generally advanced or retarded in
direction perpendicular to the slab surface. The number ofomparison with that expected from the simple shift
modes per unit frequency and length is given bydivhen  2I[1—(c/v,)] associated with the change in velocity of
only a single polarization is detected. With an enefgy  propagation in the interior of the sldf]. The length of the
associated with each mode and a mean thermal excitatiamansmitted pulse is correspondingly reduced or increased in
given by Eq.(2.20, the mean energy per unit frequency andcomparison with that of the incident pulse. These modifica-
length is given by the 1D Planck’s law tions of the pulse shape are interpreted in terms of interfer-
ence between the contributions to the transmitted pulse from
light that travels through the slab with no reflections and
light that suffers multiple reflections from the slab surfaces.

Multiple reflections have been suggestdd] as an impor-

tant mechanism in the explanation of the apparent superlu-

The mean Poynting vector spectral component in each diregninal propagation that occurs for multilayered structures.

tion across a surfacs then follows as, Apparent superluminal propagation is predicted for the

single slab considered here when the group velocity is nega-
tive or when it is positive and greater than the lower limit
- C how 1 I, .
(:S(w):)= 52 (U())= 53— ZFramT— - 4.7 specified in Eq($.2]), but these requirements are relaxed for
25 2mS e 1 the more complicated structures.
The second contribution to the transmitted light is the

The Planck spectrum is valid for a black body, which can behermal radiation from the slab, which is, of course, always

modeled by the slab treated in this paper by choosing paramyresent on both sides of the slab at nonzero temperatures.

_eters for which all radlafuon falling on the slab_ from Ol_JtS|de The spectrum of the thermal radiation generally shows oscil-

is absorbed and none is reflected or transmitted. It is S€€ions related to the structure of the standing waves in the

from Egs.(2.4) and (2.5 that these conditions are achieved g5, byt the oscillations are removed as the slab thickness is
by taking the limits taken to infinity. The one-dimensional black-body spectrum
is retrieved when the slab parameters are adjusted to ensure
wk(w)l/c—% (no transmission that all radiation falling on the slab is absorbed.

(4.8 The formalism summarized in Sec. Il, which embraces the
same pulse propagation and reshaping phenomena as classi-
cal theory, is also capable of describing the effects of propa-

in succession, and the infinitely thick slab spectrum @) gation t.hrough a _dis_persive and lossy slab on the no_nclassﬁcal

does indeed reduce to E@#.7) when the second and third properties o_f an mmdent_pulse, such as photlon antibunching
limits in Eq. (4.8 are taken. Equatiofd.7) is also consistent and squeezing. The topics will be pursued in a subsequent
with the photon flux derived for the thermal emission from Publication.

an opaque section of waveguif20]. The spectrum derived

in Eq. (4.4), or in Eq.(4.3), has the additional merit of illus-

trating how the frequency dependence of the complex refrac- ACKNOWLEDGMENT

tive index and the finite-slab thickness affect the Poynting

vector spectrum of the radiation emitted by a bounded lossy This work was supported by the European Community

and dispersive medium at finite temperature. Human Capital and Mobility Programme through its network

hw 1
(U(w)=— Jramr—7- (4.6)

k(w)—0 and p(w)—1 (no reflection
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on “Nonclassical Light,” with Contract No. CHRX-CT93- —1)2
) L1 , (Ne=1)° . ¥ X
0114. exp i Q| 2l ki— = +2k, ———— e*'"C| —t+ —
c D(wc) C
APPENDIX 2 n%—1)2
, _ o ex;{—ﬂz[—cﬁa}kgzlz—( > ) e4iwcncI/cH (A1)
In this appendix we evaluate the pulse contribution to the 4c D(wc)

Poynting vector in Eq(2.21) for the general case of an ab-

sorbing medium withk #0 and 2w 7 l/c+# mn. With the

insertion of T(w¢+ Q) from Eq.(3.7) into Eq.(3.2) the rel-  with linear and quadratic terms & having complex coeffi-
evant part of the integrand can be expressed as an exponegients. The integration with respectébis lengthy but it can
tial of the form be performed to obtaifil8]

2

2
2| ct—x+2l(1+F—E)—64 % (G+H)(AD+BC)/[1+32(1/L£)%(AC— BD)]}

<:§:>p,=SOIexp - 2 B , (A2)
‘CZ[”SZF (AC=BD)+ 7z [32(AD+ BC)]2/[1+32(I/£)2(AC—BD)]]
|
where all the various constant prefactors omitted in &d.) (Ri —R%)+(l i —12)
are now gathered back together, Ek;=Hk;, =ck}k; (ARZ+ (A2 (A7)
T= ﬂ E_z and
(AR)?+(A1)? 12
AR(l1.+1_)—AlI(R;+R_
y e(G+H)2/2[2(AC—BD)+(£/4I)2] Fkér:Gkéi:th,:rkéi : +(AR))2+(A(I)2+ )’
{4(AD+BC)?+[2(AC—BD)+(L/4)?]?}? (A8)

(A3)  where k., and k.; are defined in Eq.(3.5. We set
while S, is the incident peak power density defined in Eq.AR=R+~R- andAl=1,—1_ with
(3.5). The various parameters appearing in &) are R+=(1—K2+)(77c+1)2: |, =2k, (ne+1)2
R.R_—I,1_ R,l_+1,R_

A:m; B:m’ (A4) R_=(7]C—1)2874%K°”C{(1—K2_)C014wc7]C|/C)

—2k_sin(4dwckcl/c)}, (A9)

. , [KGAR+KGAIT? = [k AR— kg Al]? A5
—¢ (AR)Z+ (Al)2 . (A |- =(n.—1)% *ee’{2x_cog4wcrcl/c)

_ 2\ qi
gz LBAR KA AR+ (AL +(1-wZ)sin(4ockcl/c)}

- (AR)?+(Al)? ’

(A6) and k. = kJ(n.=1).
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