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Quantum theory of optical pulse propagation through an absorbing and dispersive slab

M. Artoni1,2 and R. Loudon1
1Department of Physics, University of Essex, Colchester CO4 3SQ, England

2Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG, Scotland
~Received 14 August 1996!

We apply a recently developed scheme for electromagnetic field quantization in dispersive and absorbing
dielectrics to calculate the effects of perpendicular propagation through a finite-temperature dielectric slab on
the properties of an incident pulse of light. The theory applies to incident pulses of nonclassical light and also
reproduces the results for classical pulses in the appropriate limit. The transmitted pulse is assumed to be
measured by a detector that receives radiation only from the direction normal to the slab surfaces. The
Poynting vector of the transmitted light includes contributions from the incident pulse, whose shift in peak
position and additional broadening or narrowing are determined, and from the thermal emission of the slab,
which tends to a black-body form in the appropriate limits.@S1050-2947~97!02601-2#

PACS number~s!: 42.50.2p
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I. INTRODUCTION

The electromagnetic field has recently been quantized
several sample geometries of a dispersive and absorbin
electric material@1,2# following earlier work that is exten-
sively reviewed in these references. The results cover
formal quantization procedures and the forms of the elec
magnetic field operators for wave propagation perpendic
to the sample surfaces. The purpose of the present paper
apply this formalism to the transmission of an optical pu
through a dielectric slab that is maintained at a finite te
perature. It is assumed that the transmitted pulse is vie
by a photodetector whose field of view is restricted to
direction perpendicular to the slab surfaces, so that the fi
variations occur in one dimension only.

The various optical properties of the incident pulse
modified by the dispersion and absorption in the dielec
and by the reflections from the slab surfaces. Some of th
modifications result in distortions of the transmitted pulse
comparison with the properties of the incident pulse. T
effects of propagation through an infinite dispersive and
sorbing medium on a Gaussian light pulse were treated
Garrett and McCumber@3# and some of the predicted effec
were confirmed in experiments by Chu and Wong@4# on
layers of GaP:N. In particular, these papers established
importance of the group velocity, calculated from the re
part of the refractive index, in determining the propagat
of the pulse envelope. The original theory for an unbound
medium @3# has been extended by Halevi and co-work
@5–9# and more recently by Japha and Kurizki@10#, to in-
clude the effects of multiple reflections at the sample s
faces: these effects are important in the interpretation@10,11#
of the observed phenomenon of apparent superluminal p
propagation through multilayer dielectric barriers@12,13#.

In addition to these distortion effects, at elevated tempe
tures, the features of the transmitted pulse are obscure
the presence of thermal emission from the slab. Both th
contributions to the emission are treated in the present pa
and the results extend previous theoretical work on pu
propagation into the quantum domain. We shall show t
the same pulse distortions are predicted by the quantum
551050-2947/97/55~2!/1347~11!/$10.00
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classical theories. However, for incident light of a noncla
sical nature, there are also modifications of the quantum
herence and correlation properties of the pulse that can
be described by a quantum theory, and these will be cove
in a subsequent publication, using the basic formalism
rived here.

The quantum treatments of propagation through an
sorbing and dispersive dielectric slab and the description
the quantum states of incidentN-photon and coherent pulse
are summarized in Sec. II. The properties of the transmi
pulse are calculated in Sec. III, where it is shown that
pulse suffers apparent delay or acceleration and broade
or narrowing, depending on the values of the slab and pu
parameters. The nature of the thermal radiation emitted
the slab itself is determined in Sec. IV. The conclusions
the work are summarized in Sec. V.

II. SLAB FIELDS AND POYNTING VECTOR

In this section we derive a general expression for
power density of a quantized electromagnetic field af
propagation through a bounded dielectric that shows b
loss and dispersion. We also consider the forms of the qu
tum states forN-photon and coherent pulses.

The form of the dielectric function for a slab of thickne
2l is

e~x,v!5H e~v!5n2~v!5@h~v!1 ik~v!#2 for uxu< l

1 for uxu> l ,
~2.1!

where the complex refractive indexn(v) is assumed to be a
known function, which is related to the real refractive ind
h~v! and extinction coefficientk~v!, defined for positive fre-
quencies. The electromagnetic field is quantized on the b
of a continuous set of modes propagating in the direct
perpendicular to the surface of the slab so that waves pro
gate in the direction of the positivex axis with their trans-
verse electric and magnetic vector operatorsÊ(x,t) and
B̂(x,t) parallel to they andz axes, respectively. The sche
matic arrangement of the propagation geometry for the v
1347 © 1997 The American Physical Society
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1348 55M. ARTONI AND R. LOUDON
ous components of the field given in Fig. 1 shows the no
tion for the slab input and output field operators.

The vector potential operatorÂ(x,t) can be obtained by
using standard Green-function methods to solve the rele
Maxwell equations@2#. In the scattering regionx. l its posi-
tive frequency component is

Â~1 !~x,t !5E
0

`

dvA~\/4pe0cvS!

3@ b̂R~v!eivx/c1b̂L~v!e2 ivx/c#e2 ivt,

~2.2!

whereS is the area of quantization in theyz plane. The
operator for the rightward-propagating outgoing field
given in terms of the leftward and rightward input fields b

b̂R~v!5R~v!b̂L~v!1T~v!âR~v!1F̂~v!, ~2.3!

where

T~v!5
4n~v!

D~v!
e2iv@n~v!21# l /c

54n~v!exp$2iv@n~v!21#~ l /c!2 ln D~v!%

~2.4!

and

R~v!5
@n2~v!21#

D~v!
e22iv l /c@e4ivn~v!l /c21#, ~2.5!

with

D~v!5@n~v!11#22@n~v!21#2exp@4ivn~v!l /c#,
~2.6!

are the complex amplitudes of the transmission and refl
tion coefficients, respectively. The second form of the tra
mission coefficient in Eq.~2.4! is useful for Sec. III.

The operatorF̂(v) in Eq. ~2.3! represents the noise ass
ciated with the dissipation in the slab, and its form is giv
by

F̂~v!5 iA2vh~v!k~v!/cE
2 l

l

dx@V~v!e2 ivn~v!x/c

1W~v!eivn~v!x/c# f̂ ~x,v!, ~2.7!

where

FIG. 1. Spatial configuration of the dielectric slab and notat
for the destruction operators used in the definition of the relev
electric fields.
-

nt

c-
-

V~v!52@n~v!11#exp$ iv@n~v!21# l /c%D21~v!,
~2.8!

W~v!52@n~v!21#exp$ iv@3n~v!21# l /c%D21~v!,

and thef̂ (x,v) are spatially distributed Langevin noise cu
rent operators with the commutation relation

@ f̂ ~x,v!, f̂ †~x8,v8!#5d~x2x8!d~v2v8!. ~2.9!

The strength of the noise operatorF̂(v) is proportional to
the square-root of the extinction coefficientk~v!, and it van-
ishes for a lossless dielectric. The input and output opera
in Eq. ~2.3! satisfy the boson commutation relations

@ b̂R~v!,b̂R
†~v8!#5@ b̂L~v!,b̂L

†~v8!#5@ âR~v!,âR
†~v8!#

5d~v2v8!,
~2.10!

@ âR~v!,b̂L
†~v8!#50,

and their consistency is ensured by the noise operator c
mutator

@ F̂~v!,F̂†~v8!#5@12uR~v!u22uT~v!u2#d~v2v8!,
~2.11!

which is readily verified with the use of Eqs.~2.7!–~2.9!.
The electric and magnetic fields are derived from t

quantized vector potential,

Ê~x,t !52]Â~x,t !/]t, B̂~x,t !5]Â~x,t !/]x,
~2.12!

and the average Poynting vector is calculated according

^Ŝ~x,t !&5m0
21^ f uŠL z^RuÊ~x,t !B̂~x,t !uR& zL‹u f &.

~2.13!

The expectation value is over a product state that compr
the states of the field impinging leftwardsuL& and rightwards
uR& on the slab. The state of the reservoir that accounts
dissipation within the slab is a statistical mixture, which w
represent symbolically byu f &. We specifically take the in-
coming stateuL& to be a conventional vacuum,u0&, and the
quantized fielduR& impinging from the left is taken as a
photon-number state, denoted byuN,j&. The normal-order
Poynting vector on the right of the slab obtained from E
~2.13! then simplifies to

^:Ŝ~x,t !:&5
\

2pS E
0

`

dvE
0

`

dv8Avv8e2 i ~v2v8!~ t2x/c!

3^ f u^0u^N,jub̂R
†~v!b̂R~v8!uN,j&u0&u f &.

~2.14!

The photon-number state can be generated with the us
a quantum operator acting on the vacuum, of the form@14#

uN,j&5
1

AN! F E
0

`

dvj* ~v!âR
†~v!GNu0&. ~2.15!

The normalized functionj~v! describes the frequency distr
bution of theN-photon wave packet, whose form is dete

nt
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55 1349QUANTUM THEORY OF OPTICAL PULSE PROPAGATION . . .
mined by the way in which the photon state is prepared.
consider here a wave packet with a Gaussian frequency
tribution centered onvc ~carrier! and a mean-square spati
lengthL2,

j~v!5S L22pc2D
1/4

exp@2L2~v2vc!
2/4c2#, ~2.16!

where the frequency spread of the wave packet isc/L. The
Fourier time transform of Eq.~2.16! represents a puls
whose peak would pass the origin of coordinates at timet50
in the absence of the dielectric slab. Single-photon sta
with Gaussian wave packets can be realized experimen
@15#. It is sometimes useful to compare these states with
incident pulse in the form of a coherent state defined by@14#

u$a~v!%&5D̂„$a~v!%…u0&

[expH E dv@a~v!âR
†~v!2a* ~v!âR~v!#J u0&,

~2.17!

where a Gaussian pulse with mean photon numberN̄ is ob-
tained by taking

a~v!5N̄1/2j~v!, ~2.18!

with j~v! defined in Eq.~2.16!. The quantum-mechanica
coherent state~2.17! shows similar behavior to a classic
pulse. The photon-number state~2.15! has no classical ana
logue; it shows classical-type behavior in terms of its fir
order coherence and the propagation of its power density
it displays characteristic nonclassical behavior in terms o
higher-order coherence and correlation properties.

The dielectric slab is assumed to be maintained at a fin
temperatureT, and the Langevin noise current operato
have the expectation values

^ f u f̂ ~x,v!u f &5^ f u f̂ ~x,v! f̂ ~x8,v8!u f &50,
~2.19!

^ f u f̂ †~x,v! f̂ ~x8,v8!u f &5n̄~v,T!d~x2x8!d~v2v8!,

where

n̄~v,T!5@e\v/kT21#21 ~2.20!

is the mean number of thermal photons at frequencyv. The
temperature determines the level of excitation of the no
currents. The free-space regions surrounding the slab ar
sumed to be at zero temperature.

With the help of Eqs.~2.15!, ~2.16!, and~2.19!, the aver-
age normal-order Poynting vector Eq.~2.14! for anN-photon
Gaussian wave packet after transmission through the slab
be written as

^:Ŝ~x,t !:&[^:Ŝ:&pl1^:Ŝ:&sl

52e0cFNUJ1S t2 x

cD U
2

1J2~0!G , ~2.21!

where
e
is-

es
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n

-
ut
s

e-

e
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J1~q![A\/4pe0cSE
0

`

dve2 ivqv1/2T~v!j~v!

~2.22!

and

J2~q![
\

2pe0c
2S E

0

`

dve2 ivqv2h~v!k~v!n̄~v,T!

3E
2 l

l

dxuV~v!e2 ivn~v!x/c1W~v!eivn~v!x/cu2.

~2.23!

The average Poynting vector thus separates into two co
butions: the part̂ :Ŝ:&pl depends on the position and tim
and on the parameters of the incident pulse and the s
while the part^:Ŝ:&sl is independent of position, time, an
the pulse characteristics, and only depends on the slab
rameters. The pulse power density transmitted through
slab and the noise power density radiated by the slab it
can thus be analyzed separately.

III. PULSE TRANSMISSION

In order to characterize the propagation through the
sorbing slab of the energy stored in a quantized electrom
netic field, an explicit expression for the first contribution
the Poynting vector in Eq.~2.21! is needed. The relevan
integral J1 is difficult to perform in general; however, a
analytic result can be derived with the help of realistic a
sumptions.

First, we take the frequency spread of the photon-num
wave packet to be much smaller than the carrier frequen

c/L!vc . ~3.1!

The lower bound in the integral can then be replaced by2`
and ^:Ŝ:&pl reduces to

^:Ŝ:&pl5A L2

2pc2
N\vc

2pS U E
2`

`

dVT~vc1V!

3e2 iV~ t2x/c!e2L2V2/4c2U2, ~3.2!

where the square-root frequency factor in the integrand oJ1
in Eq. ~2.21! is replaced byAvc. We have also changed th
variable of integration toV5v2vc . When T(vc1V) is
set equal to unity, Eq.~3.2! yields the normal-order Poynting
vector associated with the incident pulse, which can
straightforwardly evaluated as

^:Ŝ:& inc5S0e
22~x2ct!2/L2, ~3.3!

where

S05A~2/p!
Nc\vc

LS ~3.4!

is the peak power density of the incident pulse.
Second, for a slab with a reasonably smooth dielec

function ~no optical band-gap edge, no singularities, et!
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1350 55M. ARTONI AND R. LOUDON
n(v), h~v!, and k~v! vary slowly over the narrow band
width c/L of the pulse. The optical wave vector can thus
expanded around the pulse carrier frequencyvc in the usual
way,

k~v![
vn~v!

c
5k~vc!1

]k~v!

]v U
vc

~v2vc!

1
1

2

]2k~v!

]v2 U
vc

~v2vc!
21•••

~3.5!
>kc1kc8V5kc1~kcr8 1 ikci8 !V,

where the second and higher-order terms in the expan
are neglected,kc5vcnc/c and nc5n(vc). The prime de-
notes the frequency derivative in the linear term and this
divided into its real and imaginary parts in the final ste
where the real part is related to the group velocityng accord-
ing to kcr8 51/ng .

Third, we take the incident pulse to be much longer th
the optical thickness of the slab,

FIG. 2. Shift in the peak position of a Gaussian pulse transm
ted through a slab of thickness 2l relative to free-space propagatio
in units of l as a function of the medium real refractive indexhc

and extinction coefficientkc . Dispersion is neglected. The film
thickness and carrier frequency satisfyvcl /c510 and the incident
pulse width isL540l . ~a! complete variation and~b! variation with
hc for kc50 ~black curve! andkc50.02 ~grey curve!.
e

on

is
,

n

L@2lhc /p, ~3.6!

so that the transmitted light retains the form of a single pul
The form of the transmitted pulse is more complicated wh
Eq. ~3.6! is not satisfied, and it exhibits breakup into a seri
of distinct pulses in the limit where the incident pulse
much shorter than the slab thickness@16# ~a similar pulse
breakup is observed in transmission through a Fabry-P
cavity @17#!. When Eq.~3.6! is satisfied, it is appropriate to
make an expansion of the logarithmic term inT(vc1V)
correct to the second order inV lkc8 . This leads with the use
of Eq. ~3.5! and the second form of the transmission coef
cient in Eq.~2.4! to

T~vc1V!5T~vc!expH 2i Fkc82
1

c

1
2kc8~nc21!2

D~vc!
expS 4ivcncl

c D GV l

2
8kc8

2~nc
221!2

D2~vc!
expS 4ivcncl

c DV2l 2J ,
~3.7!

t-
FIG. 3. Mean-square length of the transmitted Gaussian pu

for the same parameters as in Fig. 2, in units of the incident me
square lengthL2 ~a! complete variation and~b! variation withhc

for kc50 ~black curve! andkc50.02 ~grey curve!.
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55 1351QUANTUM THEORY OF OPTICAL PULSE PROPAGATION . . .
whereD(v) is defined in Eq.~2.6!. The coefficients ofV
andV2 are complex; one should notice particularly the d
caying and the oscillating components, respectively, inV
andV2.

The form of the transmitted pulse power density is n
obtained by substitution of Eq.~3.7! into the integrand in Eq.
~3.2!. The integral can be performed analytically, but t
result is complicated and the full details are given in t
Appendix. The transmitted pulse retains a Gaussian sh
given by the analytic expression of Eq.~A2!, but the natures
of the variations in the pulse peak position and pulse len
are not very transparent. Figure 2 thus illustrates how
shift Dx in the position of the peak of the transmitted pul
varies as a function ofhc andkc after propagating through
slab whose thickness is much smaller than the incident p
length. We specifically plot the third and fourth term in th
square bracket of the numerator of Eq.~A2!. The shift oscil-
lates as a function ofhc around a mean value that decreas
monotonically with increasinghc , and the amplitude of the
oscillations increases withuhc21u. For the parameters use
in this figure the maximum shift is of the order of a sla
thickness. The oscillations damp out with increasing exti
tion coefficientkc . Likewise in Fig. 3 we illustrate the varia
tions in the transmitted pulse length for the same situation
Fig. 2; here we plot the expression in the curly bracket in
denominator of Eq.~A2! that represents the deviation of th
mean-square lengthL T

2 from its incident valueL2. The trans-
mission through an absorbing slab may shorten or lengt
the pulse depending on the value of the real refractive in
hc , particularly for largehc’s. The relative change in the
en
e
e
k
f
q.
d

at
uls
s

-

e,

th
e

se

s

-

s
e

n
x

pulse length is of the order of a fraction of a percent. Incre
ing absorption again damps the oscillations out and the p
length is unchanged from its incident value for sufficien
largekc . Dispersion in the refractive indexh~v! around its
value hc and in the extinction coefficientk~v! around its
valuekc at the carrier frequency, which are included in t
general results of the Appendix, are neglected in both Fig
and 3, i.e., we set the usual group velocityng evaluated at the
carrier frequency equal to the corresponding phase veloc

kcr8 [
1

ng
5

hc

c
1

vc

c

]h~v!

]v U
vc

→
hc

c
~3.8!

and

kci8 5
kc

c
1

vc

c

]k~v!

]v U
vc

→
kc

c
~3.9!

to avoid the introduction of a further arbitrary parameter.
Relatively simple expressions for the transmitted Po

ting vector are obtained in limiting special cases, and
simplest of these is that of zero absorption,kc50. The inte-
gration in Eq.~2.22! can be performed without too muc
difficulty in this case, and the transmitted Poynting vector
the pulse has the Gaussian form

^:Ŝkc50 :&pl5STe
22~x2ct2Dx!2/LT

2
, ~3.10!

where the spatial shift in the position of the peak of the pu
from its valuect in the absence of the slab is given by
Dx52l2
2lc

ng

8hc~hc
211!

~hc11!41~hc21!422~hc
221!2cos~4vchcl /c!

~3.11!

and its mean-square spatial length is given by

LT25L21
32l 2c2

ng
2

~hc
221!2$@~hc11!41~hc21!4#cos~4vchcl /c!22~hc

221!2%

@~hc11!41~hc21!422~hc
221!2cos~4vchcl /c!#2

. ~3.12!
ean

of
the

e

These expressions are correct to the second order inl /L, and
Eq. ~3.11! is consistent with an expression for the appar
velocity of propagation of a pulse through a slab deriv
previously@6#. We do not give the explicit expression for th
peak power densityST of the transmitted pulse. The blac
curves in Figs. 2~b! and 3~b!, respectively, show the forms o
the peak shift Eq.~3.11! and the transmitted pulse length E
~3.12! for zero absorption. The peak shift oscillates aroun
mean value that is found by taking an average of Eq.~3.11!
over a period of the cosine to be

Dx52l S 12
c

ng
D ; ~3.13!

this is the value expected for the change in effective p
length caused by the propagation of the peak of the p
with velocity ng , in agreement with previous calculation
t
d

a

h
e

@3,6,7#. The mean-square length oscillates around a m
value that is obtained from Eq.~3.12! as unchanged from the
incident value,

LT25L2. ~3.14!

The oscillations can be understood by consideration
further specializations of the system parameters. Thus if
carrier frequency and slab thickness satisfy

2vchcl /c5pn ~n5 integer!, ~3.15!

the shift Eq.~3.11! in the spatial position of the peak of th
pulse can be decomposed as

Dx52l2 l
c

ng

hc
211

hc
52l S 12

c

ng
D2 l

c

ng

~hc21!2

hc
.

~3.16!
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1352 55M. ARTONI AND R. LOUDON
The first term on the right results from pulse propagat
through the slab with the group velocity and forng.0 the
second term results from an enhancement of the rear of
pulse by the constructive interference of in-phase contri
tions from multiple reflections inside the slab. The leng
expression~3.12! reduces to

LT25L21
2l 2c2

ng
2

~hc
221!2

hc
2 , ~3.17!

where the increase in pulse length is caused by the s
interference effects. The integrated area of the transmi
pulse is unchanged from that of the incident pulse as 10
transmission occurs when the condition~3.15! is satisfied.
The results for this special case agree with earlier work@16#
if dispersion is neglected.

Simple results also occur for

2vchcl /c5pn/2 ~n5odd integer!. ~3.18!

The shift in the spatial position Eq.~3.11! of the peak of the
pulse is now decomposed as

Dx52l2
2lc

ng

2hc

hc
211

52l S 12
c

ng
D1

2lc

ng

~hc21!2

hc
211

,

~3.19!

where the first and second terms on the right again repre
the effects of the change in the velocity of transmiss
through the slab and the multiple reflections inside the s
respectively. The multiple reflections now produce apositive
contribution to the shift forng.0, corresponding to an ap
parent speeding up of the pulse. This effect is caused by
opposite phases of the multiply reflected waves when
condition~3.18! is satisfied, so that the rear part of the tran
mitted pulse is diminished by destructive interference. T
length expression~3.12! reduces to

LT25L22
8l 2c2

ng
2

~hc
221!2

~hc
211!2

, ~3.20!

where the reduction in the mean-square length of the puls
another consequence of the same interference. The integ
ug
n

he
-

e
d
%

nt
n
b,

he
e
-
e

is
ted

area of the transmitted pulse is now reduced from that of
incident pulse by the transmission factor appropriate to
condition ~3.18!.

The analytical results in the previous two paragraphs p
vide simple examples of the ways in which apparent ‘‘sup
luminal’’ behavior withDx.0 can occur in pulse transmis
sion through a dielectric slab. The first terms on the right
Eqs.~3.16! and ~3.19! represent the bulk effect of transmis
sion across the slab at the group velocity, and these term
positive if ng.c or ng,0 @3,4#. The second terms on th
right of Eqs. ~3.16! and ~3.19! represent surface effect
caused by multiple reflections inside the slab, and th
terms can be positive or negative, depending on the s
thickness and the sign of the group velocity. The multip
reflections may make an important contribution to the sup
luminal behavior, although such effects occur in more str
ing form for multilayer dielectric films@10–13# rather than
the single dielectric slab considered here. Forng,0, both
Eqs. ~3.16! and ~3.19! give Dx.0, while for ng.0, the
transmission is superluminal withDx.0 for the condition
expressed by Eq.~3.18! only when

ng
c

.
2hc

hc
211

. ~3.21!

In the absence of dispersion, when the group velocity equ
the phase velocity as in Eq.~3.8!, superluminal transmission
with Dx.0 is predicted both by Eqs.~3.16! and~3.19! when
hc,1, and this behavior is evident in Fig. 2; sublumin
transmission occurs forhc.1. The Gaussian pulse adopte
here maintains its functional form on transmission throu
the slab, and the position of its peak provides a simple m
sure of any apparent delay or speeding up, without the n
for any justification of a choice from the range of definitio
of traversal times@10#. It should be emphasized that in a
cases, the value of the transmitted Poynting vector at
leading edge of the pulse is smaller than its value in
absence of the slab and Einstein causality is never viola

Another special case occurs in the presence of absorp
kcÞ0, but with the assumption that the condition~3.15! for
near transparency of the slab is satisfied. With the help of
condition ~3.6! and the result~3.7!, the integral in Eq.~3.2!
can now be performed~§3.923 of @18#! and one gets afte
some effort
^:Ŝ:&pl5S0IexpH 2
2$ct2x2 lb22@ la2b1kc

2/a11~L/2l !2#%2

L214l 2$a11@b1
2kc

2/a11~L/2l !2#% J , ~3.22!
d
where

I5
16uncu2$~b1kc!

21@a11~L/2l !2#2%21/2

~2l /L!2Dc2
2

3expH kc
2a2

2/2

a11~L/2l !2 J ~3.23!

determines how the peak incident intensity scales thro
 h

the slab, anda1, a2, b1, andb2 are dimensionless pulse an
material-dependent parameters defined as

a158c2kcr8
2

~hc
221!2

Dc2
2 , ~3.24!

b1516c2kcr8 ~hc
221!

2kcr8 ~Dc1 /Dc2!1~hc
221!~kci8 /kc!

Dc2
2 ,

~3.25!



of
a
nd

o

ta

din

of

th
v
in

s t
e

n

th
s
g

f t
o
o
e

n-

.
on

ent
a
to
the

s-
this
ali-
he
r-
the

ses
any

in
b
of

t

-
. An

f

nu-
-
t

d

r

at
fi-

us-

55 1353QUANTUM THEORY OF OPTICAL PULSE PROPAGATION . . .
a252c
8kcr8 ~hc

221!1~kci8 /kc!Dc1Dc2

Dc2
2 , ~3.26!

and

b252212ckcr8 ~Dc1 /Dc2! ~3.27!

with

Dc65~hc11!2e2vckcl /c6~hc21!2e22vckcl /c.
~3.28!

The transmitted light again maintains the appearance
Gaussian pulse, but its strength, position, and length
modified by quite complicated functions of the pulse a
material parameters.

For values of the extinction coefficient corresponding t
weak absorbing regime the parameterkcvcl /c is generally
small and it is much less than unity for many experimen
conditions. Thena1, a2, b1, and b2 can be expanded in
terms of this perturbation parameter and the correspon
Poynting vector expectation value in Eq.~3.22! leads to the
following expressions for the shift in the spatial position
the peak of the pulse,

Dx52l2 l
c

ng

~hc
211!

hc
1 l

c

ng

~hc
221!2

hc
2 kc

vcl

c
~3.29!

and the mean-square pulse length,

LT25L212l 2
c2

ng
2

~hc
221!2

hc
2

24l 2
c2

ng
2

~hc
221!2~hc

211!

hc
3 kc

vcl

c
, ~3.30!

to first order inkcvcl /c with kcr8 51/ng . It is seen that for
ng.0 the shift in the peak of the pulse is increased and
mean-square pulse length is reduced with respect to the
ues associated with the nonabsorbing regime exam
above, respectively, Eqs.~3.16! and ~3.17!. These changes
occur because the contributions of the multiple reflection
the peak shift and pulse width are progressively diminish
by the effects of the attenuation.

On the other hand, for values of the extinction coefficie
corresponding to strong absorptionkcvcl /c is larger than or
at least equal to unity for typical experimental conditions;
coefficientsa1, a2, b1, andb2 can be expanded within thi
limit when onlyb2 remains non-negligible and the Poyntin
vector ~3.22! reduces to

^:Ŝ:&pl5S0I exp„22$ct2x22l @~c/ng!21#%2/L2….
~3.31!

The strong absorption completely quenches the effects o
multiple reflections in the slab, so that the shift in peak p
sition is merely the contribution from the optical thickness
the slab and the pulse length is unchanged from the incid
pulse. These behaviors are seen in the highkc regimes of
Figs. 2~a! and 3~a!, respectively. Of course, the peak inte
a
re

a

l

g

e
al-
ed
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d

t
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-
f
nt

sity I is extremely small in this limit, but the form of Eq
~3.31! illustrates the physical effects of the high absorpti
on the pulse shape.

The results of this section provide an extension of rec
work @16# on the propagation of a quantized field through
slab with constant and real refractive index. It is important
point out that the effects discussed above also occur in
propagation of the coherent pulseu$a~v!%& described by Eqs.
~2.17! and ~2.18! through a dielectric slab. Identical expre
sions are obtained for the transmitted Poynting vector in
case, within approximations that are valid when the inequ
ties ~3.1! and~3.6! apply, and the same results survive in t
classical limit @6#. However, the quantum-mechanical fo
malism presented here can also be used to determine
higher-order propagation characteristics of optical pul
with nonclassical features, which are not accessible by
classical theory.

IV. SLAB RADIATION

We now proceed to examine the second contribution
Eq. ~2.21! coming from the intensity radiated by the sla
alone. This contribution is determined by the properties
the noise operatorF̂(v) defined in Eq.~2.7!. Using the
forms ~2.8! of the coefficientsV(v) andW(v), the spatial
integral inJ2 defined by Eq.~2.23! can readily be carried ou
to obtain

^:Ŝ:&sl5E
0

`

dv
\v

pS
n̄~v,T!H h~v!@ uV~v!u21uW~v!u2#

3sinhS 2vk~v!l

c D1k~v!@V~v!W* ~v!

1V* ~v!W~v!#sinS 2vh~v!l

c D J
[E

0

`

dv^:Ŝ~v!:&sl . ~4.1!

This clearly vanishes in the limitsl→0, when the slab is
essentially removed, in the limitk~v!→0, when the strength
of the noise operatorF̂(v) tends to zero, and at zero tem
perature, when the slab radiation disappears altogether
analytic expression for the integral in Eq.~4.1! is, in general,
very difficult owing to the intricate oscillating behavior o
D(v) in the denominators ofV(v) andW(v). Magnitudes
of the slab Poynting vector, however, can be obtained
merically and from Eq.~4.1! we find, e.g., that for the char
acteristic values ofh52.85, an extinction coefficien
k5331024 and l51023 m, ^:Ŝ:&sl/(\c

2/2pSl2) varies in
the range 831023↔63103 for temperatures between 3 an
300 K, respectively.

Equation~4.1! usefully provides a direct expression fo
the Poynting vector spectrum̂:Ŝ(v):&sl of the electromag-
netic field emitted by a lossy and dispersive dielectric
finite temperature. Typical values of the extinction coef
cient are very much less than unity and we shall regardk~v!
as an expansion parameter throughout the following disc
sion. Because the second contribution in Eq.~4.1! is much
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smaller than the first for most reasonable ranges of par
eters, we can rewrite the spectrum simply as

^:Ŝ~v!:&sl5
\v

pS
n̄~v,T!h~v!@ uV~v!u21uW~v!u2#

3sinhS 2vk~v!l

c D @k~v!!h~v!#. ~4.2!

In the limit of an infinitely thick slab, Eq.~4.2! reduces
with the use of Eqs.~2.8! and ~2.20! to

^:Ŝ~v!:&sl>
\v

2pS

1

e\v/kT21

4h~v!

@h~v!11#21@k~v!#2

@vk~v!l /c@1#, ~4.3!

whose behavior is shown in Fig. 4 as a function of the n
malized energy\v/kT. One should note the uniform expo

FIG. 4. Poynting vector spectrum Eq.~4.2! in units of kT/2pS
as a function of\v/kT for a thick lossy slab of width 2l at finite
temperatureT such thatl>108\c/kT. The imaginary part of the
refractive index isk5331024 and the real part ish52.85 ~black
curve! andh51 ~grey curve!.
ex

of
i

-

-

nential decay for largev’s and the nonvanishing value a
v50. This latter feature contradicts a property of the spec
expression~4.2!, which clearly vanishes atv50, and it is a
consequence of taking the limit shown on the right of E
~4.3! before evaluating the spectrum atv50. In addition, the
extinction coefficient must strictly vanish for zero frequen
@19#, but the constant value assumed here is sufficien
small that this requirement is violated to an insignificant e
tent.

In the case of a finite slab, the argumentvk(v) l /c in the
exponents that occur in Eq.~4.2! is less than unity for the
parameter values assumed here and for the infrared
lower frequencies that are thermally excited at reasona
temperatures. The averaged Poynting vector spectrum
then be rewritten with the help of a Taylor series expansi
and including terms up to the leading order ink~v! and
vk(v) l /c one obtains

FIG. 5. Poynting vector spectrum Eq.~4.2! in units of kT/2pS
as a function of\v/kT for a thin lossy slab withh52.85 and
k5331024. The temperature and the slab width satisfyl5\c/kT,
l5\c/2kT, andl5\c/7kT, respectively, from the top down~black
curves!. The grey curve refers to the parametersl5\c/0.7kT, h51,
andk5331024.
^:Ŝ~v!:&sl5
\v

2pS

1

e\v/kT21

2h~v!@3h2~v!22h~v!13#vk~v!l /c

@h2~v!11#214@vk~v!l /c#@h~v!21#2„2h~v!2$@h~v!11# sin@2vh~v!l /c#%2…

@vk~v!l /c!1# . ~4.4!
e
he
,
rom
ec-
the
ick

e
m

In the special case of a unit real part of the refractive ind
this cumbersome result reduces to

^:Ŝ~v!:&sl5
\v

2pS

1

e\v/kT21

2vk~v!l

c
@h~v!51#.

~4.5!

The spectrum from Eq.~4.4! is shown in Fig. 5 for the same
parameter values as Fig. 4 and for three different valuesl .
When compared to the previous result for an infinite slab
Eq. ~4.3!, two major differences appear.First, the linear in-
,

n

crease fromv50, followed by a maximum at intermediat
v’s, contrasts with the uniform decaying behavior of t
spectrum Eq.~4.3! for an infinite slab. The wider the slab
the steeper the slope with which the spectrum increases f
v50. A steeper slope, in turn, shifts higher and higher sp
tral peaks toward the static region, so that the shape of
finite-slab spectrum tends towards that of the infinitely th
slab. Note however that the spectrum Eq.~4.3! for the infi-
nitely thick slab is obtained by taking the limit shown by th
inequality on the right of this equation, and the spectru
cannot be rederived from the finite-slab expression~4.4!.
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Also note the different decaying behaviors for largev’s,
;v exp(2\v/kT) and;v2 exp(2\v/kT) when compar-
ing, e.g., Eq.~4.3! for h~v!51 with Eq. ~4.5!. All these fea-
tures are well illustrated in Figs. 4 and 5.Second, note the
presence of oscillations whose frequency and amplitude
crease with the slab width. These oscillations arise from
trigonometric term in the denominator of Eq.~4.4! and only
disappear when the real part of the refractive index beco
unity ~cf. grey curve in Fig. 5!. They physically originate
from the interference between reflections of the radiation
side the bounded medium while the lack of oscillations
the finite slab described by Eq.~4.5! is physically due to the
fact that forh~v!→1 andk~v!!1 the boundary reflection
disappear and so do the oscillations. The absence of osc
tions for the case of an infinite slab can likewise be explain
by the absence of boundaries.

It is instructive to draw a comparison between our resu
and the spectrum of the mean Poynting vector obtained f
first principles. Consider a one-dimensional~1D! electro-
magnetic field: the one-dimensional character of the field
necessary since in our case the wave vector varies only in
direction perpendicular to the slab surface. The numbe
modes per unit frequency and length is given by 1/pc when
only a single polarization is detected. With an energy\v
associated with each mode and a mean thermal excita
given by Eq.~2.20!, the mean energy per unit frequency a
length is given by the 1D Planck’s law

^u~v!&5
\v

pc

1

e\v/kT21
. ~4.6!

The mean Poynting vector spectral component in each di
tion across a surfaceS then follows as,

^:Ŝ~v!:&5
c

2S
^u~v!&5

\v

2pS

1

e\v/kT21
. ~4.7!

The Planck spectrum is valid for a black body, which can
modeled by the slab treated in this paper by choosing par
eters for which all radiation falling on the slab from outsi
is absorbed and none is reflected or transmitted. It is s
from Eqs.~2.4! and ~2.5! that these conditions are achieve
by taking the limits

vk~v!l /c→` ~no transmission!,

k~v!→0 and h~v!→1 ~no reflection!
~4.8!

in succession, and the infinitely thick slab spectrum Eq.~4.3!
does indeed reduce to Eq.~4.7! when the second and thir
limits in Eq. ~4.8! are taken. Equation~4.7! is also consisten
with the photon flux derived for the thermal emission fro
an opaque section of waveguide@20#. The spectrum derived
in Eq. ~4.4!, or in Eq.~4.3!, has the additional merit of illus
trating how the frequency dependence of the complex ref
tive index and the finite-slab thickness affect the Poynt
vector spectrum of the radiation emitted by a bounded lo
and dispersive medium at finite temperature.
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V. CONCLUSIONS

We have applied the quantized electromagnetic fi
theory developed for an absorbing and dispersive dielec
slab@2# to determine the effects of transmission on the pro
erties of an incident Gaussian pulse. The pulse is taken a
N-photon state, for future use in calculations of the effects
transmission on the nonclassical properties of light, but
the linear properties derived here the same results are
tained for coherent pulses, including the classical limit of t
quantum formalism. In agreement with previous calcu
tions, the pulse propagates through the slab with the gr
velocity appropriate to the dielectric material@3#. The group
velocity may be larger thanc, or even negative, but Einstei
causality is never violated as the value of the Poynting vec
at the detector at a given time is always smaller than its va
in the absence of the dielectric slab@12#.

The transmitted light contains two contributions. The fi
of these is a modified version of the incident Gaussian pu
whose peak position is generally advanced or retarded
comparison with that expected from the simple sh
2l [12(c/ng)] associated with the change in velocity o
propagation in the interior of the slab@7#. The length of the
transmitted pulse is correspondingly reduced or increase
comparison with that of the incident pulse. These modifi
tions of the pulse shape are interpreted in terms of inter
ence between the contributions to the transmitted pulse f
light that travels through the slab with no reflections a
light that suffers multiple reflections from the slab surfac
Multiple reflections have been suggested@10# as an impor-
tant mechanism in the explanation of the apparent supe
minal propagation that occurs for multilayered structur
Apparent superluminal propagation is predicted for t
single slab considered here when the group velocity is ne
tive or when it is positive and greater than the lower lim
specified in Eq.~3.21!, but these requirements are relaxed f
the more complicated structures.

The second contribution to the transmitted light is t
thermal radiation from the slab, which is, of course, alwa
present on both sides of the slab at nonzero temperatu
The spectrum of the thermal radiation generally shows os
lations related to the structure of the standing waves in
slab, but the oscillations are removed as the slab thickne
taken to infinity. The one-dimensional black-body spectru
is retrieved when the slab parameters are adjusted to en
that all radiation falling on the slab is absorbed.

The formalism summarized in Sec. II, which embraces
same pulse propagation and reshaping phenomena as c
cal theory, is also capable of describing the effects of pro
gation through a dispersive and lossy slab on the nonclas
properties of an incident pulse, such as photon antibunch
and squeezing. The topics will be pursued in a subsequ
publication.
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APPENDIX

In this appendix we evaluate the pulse contribution to
Poynting vector in Eq.~2.21! for the general case of an ab
sorbing medium withkcÞ0 and 2vchcl /cÞpn. With the
insertion ofT(vc1V) from Eq. ~3.7! into Eq. ~3.2! the rel-
evant part of the integrand can be expressed as an expo
tial of the form
q

ys
e

en-

expH iVF2l S kc82
1

c
12kc8

~nc21!2

D~vc!
e4ivcncl /cD 2t1

x

cG J
3expH 2V2F L24c2

18kc8
2l 2

~nc
221!2

D2~vc!
e4ivcncl /cG J ~A1!

with linear and quadratic terms inV having complex coeffi-
cients. The integration with respect toV is lengthy but it can
be performed to obtain@18#
^:Ŝ:&pl5S0I expH 2

2Fct2x12l ~11F2E!264l
l 2

L2 ~G1H !~AD1BC!/@1132~ l /L!2~AC2BD!#G2
L2H 1132

l 2

L2 ~AC2BD!1
l 4

L4 @32~AD1BC!#2/@1132~ l /L!2~AC2BD!#J J , ~A2!
where all the various constant prefactors omitted in Eq.~A1!
are now gathered back together,

I5
hc
21kc

2

~DR!21~DI !2
L2

l 2

3
e~G1H !2/2@2~AC2BD!1~L/4l !2]

$4~AD1BC!21@2~AC2BD!1~L/4l !2#2%1/2

~A3!

while S0 is the incident peak power density defined in E
~3.5!. The various parameters appearing in Eq.~A2! are

A5
R1R22I1I2

~DR!21~DI !2
; B5

R1I21I1R2

~DR!21~DI !2
, ~A4!

C5c2
@kcr8 DR1kci8 DI #22@kci8 DR2kcr8 DI #2

~DR!21~DI !2
, ~A5!

D52c2
@kci8 DR2kcr8 DI #@kcr8 DR1kci8 DI #2

~DR!21~DI !2
, ~A6!
.

Ekci8 5Hkcr8 5ckcr8 kci8
~R1

2 2R2
2 !1~ I1

2 2I2
2 !

~DR!21~DI !2
~A7!

and

Fkcr8 5Gkci8 5ckcr8 kci8
DR~ I11I2!2DI ~R11R2!

~DR!21~DI !2
,

~A8!

where kcr8 and kci8 are defined in Eq.~3.5!. We set
DR5R12R2 andDI5I12I2 with

R15~12k1
2 !~hc11!2; I152k1~hc11!2,

R25~hc21!2e24vckcl /c$~12k2
2 !cos~4vchcl /c!

22k2sin~4vckcl /c!%, ~A9!

I25~hc21!2e24vckcl /c$2k2cos~4vchcl /c!

1~12k2
2 !sin~4vckcl /c!%

andk65kc/(hc61).
v.

v.
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