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Regular and chaotic multiphoton dissociation

Vassilis Constantoudis and Cleanthes A. Nicolaides*

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue,
11635 Athens, Greece

~Received 26 February 1996!

The rate of multiphoton dissociation of the BeH21 molecule in its ground and first two excited vibrational
levels has been computed via classical mechanics as a function of laser frequency. There is agreement with
earlier quantum-mechanical results as regards the existence and magnitude of an optimal frequency,v* , for
which the dissociation rate is maximized. This fact has been analyzed and understood via the application of the
theory of chaotic scattering. Indeed, we find fractal singularities in the functionTd(x) of the duration of
photodissociation, and we compute their dimension to be equal to 1, in agreement with the conjecture of Lau,
Finn, and Ott@Phys. Rev. Lett.66, 978 ~1991!# that this must be a characteristic of systems exhibiting
nonhyberbolic scattering. Turning to the problem of interpreting the appearance of an optimalv* , we propose
the following two mechanisms for the reduction of the multiphoton dissociation rate. First is the increase of
fractal singularities when the frequencyv attains values larger thanv* . Second is the gradually increasing
overlap of the classical initial state with the region of Kolmogorov-Arnold-Moser tori whenv,v* . Finally, as
the intensity is increased there is a transition from chaotic to regular photodissociation, where the singularities
in Td(x) are finite. It is conjectured that this reflects the emergence of the quantum-mechanical phenomenon of
above-threshold dissociation.@S1050-2947~97!08302-9#

PACS number~s!: 32.80.Wr, 33.80.Wz
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I. INTRODUCTION

Given the rapid growth of the field of nonlinear classic
dynamics~e.g., Ref.@1#!, and the strong interest in makin
connections to results and features of quantum mechanic
is important and challenging to adopt as objects of inve
gation real quantal systems and processes. One such ca
the multiphoton dissociation~MPD! of diatomic molecules
induced by strong infrared lasers, which has been studie
applying advanced quantal and classical methods and in
pretations to the parametrized Morse oscillator@2–14#.
These classical methods have their basis in the progress
has been made in the nonlinear dynamics ofboundsystems.

On the other hand, during the past decade, signific
progress has been made in the understanding of the ch
behavior ofunbound, i.e., scattering, systems, where the
teraction time is small@15–24#. Now, rather than emphasiz
ing and analyzing phase-space characteristics, the b
theme is to achieve mappings of properties of final scatte
states with details of initial conditions. One general resul
that classical scattering is divided into regular and chao
The criteria for this division are the singularities that app
in the scattering functions. If their number is finite, then w
have regular scattering, while chaotic scattering is associ
with the appearance of fractal structure. By scattering fu
tion is meant ‘‘a plot of an output variable characterizin
the trajectory after scattering versus an input variable cha
acterizing the incident trajectory. In chaotic scattering th
scattering function is singular on a Cantor set of values
the input variable’’ @23#.

The theory of chaotic scattering has been developed u
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simple models as examples. As regards implementation
systems with quantal counterparts, noteworthy are recen
sults on one-dimensional atoms with model interactio
such as the work of Hillermeier, Blu¨mel, and Smilansky@24#
on ionization of H Rydberg atoms, of Gu and Yuan@25# on
electron scattering from He1, and of Handke@26# on auto-
ionization of doubly excited He-like atoms.

Given the above, it appeared appropriate and timely to
to attempt an understanding of a possible connection of
current theory of chaotic scattering to the dynamics of MP
Indeed, the object of this work was to study the MPD
BeH21 into Be11H1 by the methods of chaotic scatterin
having as a reference quantum-mechanical results that w
obtained recently@27#. The BeH21 potential supports only a
few vibrational levels, and it was found to dissociate f
intensities which are smaller by orders of magnitude th
those needed for molecules such as HF~treated as a Morse
oscillator!.

In the following sections we will show how chaotic sca
tering applies to this problem, and we will present resu
demonstrating that MPD can be separated into regular
chaotic, and that the regular properties of the classical dis
ciation rate~CDR! emerge as a function of the laser fr
quencyv. ~We note that in most publications on CDR, in
terest has focused on the dependence on the laser inten!
For example, the quantum-mechanical result@27# that the
rate of MPD is optimized for a value ofv which is about 0.9
times the frequency for thev50→1 transition is verified
here, and this agreement is used as input for a deeper a
sis. ~In Ref. @27# there were also interesting findings asso
ated with tunneling. These do not concern us in the pres
work.!

In Sec. II we compute the CDR as a function ofv, where
the molecule is in the ground vibrational level as well as
the first two excited ones. We conclude that the results o
,
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1326 55VASSILIS CONSTANTOUDIS AND CLEANTHES A. NICOLAIDES
a sufficient basis for testing the relevance of the theory
chaotic scattering to MPD.

In Sec. III, we show the existence of fractal singulariti
in the function of the duration of MPD, and we compu
their dimension. The results are in harmony with the res
and conjectures of Lau, Finn, and Ott@23#. Furthermore, we
find that the fractal structure is lost as we increase the fi
strength. In Sec. IV we utilize the finding of the existence
fractal singularities in order to propose two mechanisms
the reduction of the MPD rate as the frequency is increa
or decreased from its optimal value. Finally, in Sec. V w
summarize and discuss the perspectives of the presen
sults.

II. CLASSICAL DISSOCIATION RATE
VS LASER FREQUENCY

The calculation of the CDR for the purposes of t
present study was carried out as follows: The class
Hamiltonian for BeH21 plus the monochromatic laser fiel
along the axis was taken to be~all quantities are in atomic
units!

H~p,x!5
p2

2m
1V~x!1Fx cos~vt !. ~1!

The reduced massm is 1651.8 a.u., andF is the field
strength. Given the ionic character of the molecule, the
pole moment was assumed to be linear in the distancex. The
potential functionV(x), which is presented in Fig. 1, wa
taken from theab initio calculations of Ref.@28#. The figure
also shows the eight vibrational levels supported byV(x).
The classical dynamics is obtained from the solution
Hamilton’s equations

dp

dt
52

]V~x!

]x
2F cos~vt !, ~2a!

dx

dt
5

p

m
. ~2b!

FIG. 1. The potential functionV(x) and its eight vibrational
levels of the ground electronic state of BeH21 ~from Ref.@28#!. For
the needs of our calculations, we fit it to a seventh-degree poly
mial.
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In previous calculations of CDR, e.g.@8#, the approach is
the following: One considers a set of trajectories with init
conditions of the coordinatex, where all points are equally
distributed between the two turning points corresponding
the energyE of the level under consideration. Equations~2!
are integrated for these trajectories and, assuming a crite
of dissociation, one obtains the numberNb(t) of trajectories
which at time t have not escaped from the potential. T
CDR is then equated with the slope of the straight line
pressing the short-time behavior ofNb(t). The disadvantage
of this method, when one is interested in obtaining CDR~v!,
is that in many situations the linear fit ofNb(t) is uncertain,
regardless of whether the scales are linear@5,8# or semiloga-
rithmic @14#. This fact has led us to the choice of a differe
method for the calculation of the CDR: Following Gogg
and Milonni @8#, we start withN equally spaced in coordi
nate x initial conditions, and we integrate Eqs.~2! while
following the evolution of the trajectories for a fixedE. For
a given trajectory starting from a pointx at t50, we define
the duration of the photodissociation,Td(x), as the point in
time where its compensated energy@5,8# Ec ,

Ec5

Fp2
F

v
sin~vt !G2
2m

1V~x!, ~3!

becomes larger than the energyEd of the saddle point of
V(x). By calculatingTd for theN initial conditions, we ob-
tain the CDR from the relation

R5
1

N(
i51

N

~Td
i !21. ~4!

The form ofR~v! is almost independent ofN, as long as its
value is not very small. Our calculations were done
N5500, while few selected ones which were done
N51000 produced the same results. The integration of E
~2! was done by the fourth-order Runga-Kutta technique, a
the accuracy was checked by reversing the velocity after
ficient time and verifying that the initial conditions are r
produced up to the fourth decimal digit.

The results are depicted in Fig. 2. When the molecule is

o-

FIG. 2. The CDR as a function of the field frequencyv when
the molecule is initially in the ground vibrational level~a!, the first
excited level~b!, and the second excited level~c!. In all casesF
5231023 a.u.
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55 1327REGULAR AND CHAOTIC MULTIPHOTON DISSOCIATION
the ground state, the value ofv for which CDR is largest is
0vcl*54.2231023 a.u. This value is very close to the on
obtained from the quantal calculations@27#, for which
0vqu* 54.131023 a.u. We note that the intensity was chos
to be larger than the one used before@27# by three orders of
magnitude, in order to produce faster rates and thus make
calculations more economical. If we take the classical f
quency which corresponds to the quantal frequency for
transitionv50→v51 to be the frequencyvcl of the trajec-
tory with energyE5(E01E1)/2 @29#, then we find that
0vcl*'0.87vcl , a relation which agrees with the quantal ca
culation@27# of 0.88, and in fact with earlier observations
frequency ‘‘redshift’’ for maximization of the dissociatio
rate@3,9#. The same conclusion can be drawn from the cl
sical and quantal studies@13# of the MPD of the Morse os-
cillator representing the HF molecule: From Fig. 1~d! of Ref.
@13#, it follows that the redshift ratios are'0.89 and'0.90
for the quantal and the classical case, respectively.

For the first and second excited states, CDR is maximi
when 1vcl*53.9431023 a.u. and2vcl*53.6231023a.u.; in
other words, there is a shift to smaller frequencies as
climb the energy spectrum. The same observation holds
the HF Morse oscillator@Fig. 3~a! of Ref. @13##.

We therefore conclude the following: First, that bo
quantum and classical mechanics predict a redshift of
single frequency for the maximization of the photodissoc
tion rate of diatomic molecules, regardless of the details
the vibrational spectrum. Second, given the first conclus
the presence of two factors, anharmonicity and the partic
tion of the unbound scattering states, play a dominant r
and an additional understanding of the MPD process can
revealed by applying current methods of classical dynam
which account for these two factors. It is with this objecti
that we now turn to an application of the theory of chao
scattering to molecular photodissociation.

III. FRACTAL SINGULARITIES
IN PHOTODISSOCIATION DYNAMICS

One of the results of the theory of chaotic scattering
that the time delay function giving the sojourn time of t
system in the scattering region shows fractal singularities
a function of an input variable@21#. When the singularities
are finite, the scattering is called regular. By analogy, h
we consider the photodissociation durationTd(x)discussed
in Sec. II, and ask whether there appear singularities,
whether we can determine the nature of these singulariti

To answer this question we calculatedTd(x) for various
values of the frequencyv and for the energies of the firs
three vibrational levels. A typical form of this function fo
the first excited level is shown in Fig. 3~a!. A similar struc-
ture holds forTd(x) of the ground and second excited leve
We chose to analyze the first excited level instead of
ground level in order to reduce the computational time.
course, the results and conclusions apply to the other
levels as well.

The existence of fractal singularities is obvious, wh
magnification of a region with widthdx>1024 @Fig. 3~b!#
shows that this situation persists in smaller scales. In f
when magnification is performed, there is an increase in
number of singularities. As we discuss below, this is ass
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ated with the fact that the dynamics is nonhyperbolic.
In the theory of chaotic scattering, a distinction is ma

betweenhyperbolic and nonhyperbolicchaotic scattering
~Ref. @23# and references therein!. The first appears when in
the scattering region all the periodic trajectories are unsta
and there are no Kolmogorov-Arnold-Moser~KAM ! tori,
while the second appears when stable periodic orbits do
ist, so that the phase space of the system is simultaneo
occupied by chaos and by islands of stability. In the case
hyperbolic chaotic scattering, the number of trajectories t
remain in the scattering region is reduced exponentially w
time and the fractal dimensiondf of the singularities in the
delay function is 0,df,1. Conversely, in the nonhyper
bolic case, the number of bound orbits is reduced as a po
law due to the sticking effect of the KAM tori. Furthermor
Lau, Finn, and Ott@23# proposed that the fractal dimensio
of the singularities is always 1, even though that the Le
esque measure remains zero.

In the problem of MPD which we study, the dynamics
nonhyperbolic, a conclusion which follows directly from th
Poincare´ surfaces of section for our system. Therefore,
cording to @23# the fractal dimension of the totality of th
singularities ofTd(x) should be equal to 1. It is this propert
which we decided to compute, and show whether the con
ture of Lau, Finn, and Ott@23# indeed holds for a physica
process of a real system.

The dimension which should be evaluated is the ‘‘unc
tainty dimension’’d @23#. This quantity is given byd51
2b, whereb appears asf («)'«b. f ~«! is the percentage o
uncertain points, for a given value of uncertainty,«, and for
randomly chosen pointsx0. Eachx0 is considered to be un
certain if we find that the differenceuTd(x0)2Td(x01«)u is
larger than a number of order 1. In our calculation we
cluded as many random points as necessary to obtain
uncertain points per run. According to@23#, the uncertainty
dimension, whose computation is more economical than
of the ‘‘box-counting’’ dimension @23#, will have the value
of one only when it is computed for very smallE, that is
d→1, as«→0. In practice, this implies that we must com
puted for regions where« becomes smaller and smaller, an
check thatd tends to 1 from below. Indeed, this is what
observed in our problem. In Fig. 4~a!, the dependence off ~«!

FIG. 3. ~a! The duration of the photodissociationTd as a func-
tion of the internuclear distanceX when initial state is the first
excited oneF5231023 a.u. andv53.931023 a.u. ~b! Magnifi-
cation of the interval~3.1827, 3.1828! of Td(x) of ~a!.
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1328 55VASSILIS CONSTANTOUDIS AND CLEANTHES A. NICOLAIDES
on « is plotted for 1028<«<10214and 3.1827<x<3.1828
a.u. From the slope we obtaind>0.87. If, however, we re-
strict ourselves to the region 1011.5<«<1014.25 for the same
region ofx, d becomes 0.97@Fig. 4~b!#. Therefore, we can
safely argue that the fractal dimension of the MPD proces
consistent with its nonhyperbolic dynamics since, in the lim
«→0, d becomes equal to 1.

We now turn to another aspect of the results of Lau, Fi
and Ott@23#, and see how they carry over to the problem
MPD. Lau, Finn, and Ott@23# gave a simple example of
Cantor set with zero Lebesque measure and fractal dim
sion d51. In the general case, this set is constructed
successive subtractions from the interval@0,1# of parts
which, at thenth stage of the process, have length

hn5
1

n1c
, ~5!

wherea andc are constants. The number of the remaini
intervalsNr as a function of the length« ~of each one!, is
given by @23#, Eq. ~1!, in the limits«→0 ~andn→`),

Nr'
1

« F ln1«G2a

. ~6!

Therefore, the dimension that is given by the slope of
curve lnNr vs ln~1/«!,

d~ lnNr !

dS ln1« D 512
a

ln
1

«

, ~7!

is, for finite«, always smaller than 1. The rate of approach
d to unity as«→0 is proportional to the constanta. It is this
dependence that we wish to verify for our problem.

Equation~5! shows that the constanta expresses the rat
with which the interval@0,1# is emptied, and therefore, th
corresponding quantity in the physics of dissociation is
CDR. Hence we expect that, as the CDR becomes sma
the convergence ofd toward 1 will appear faster. Indeed, th
is verified if we compute the percentage of uncertain poin
f ~«!, as a function of«, for v54.0431023 and 4.23

FIG. 4. ~a! Evaluation of the uncertainty dimension ofTd(x) of
Fig. 3~b! for 1028<«<10214. ~b! The same as~a! but for 10211.5

<«<10214.25.
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31023 a.u. @Figs. 5~a! and 5~b!#, that is for frequencies
larger than the optimal1v* (53.9431023 a.u.!. This calcu-
lation was done for the same interval of values ofx and of«
as in Fig. 4~a!. Forv54.0431023 a.u., the resulting dimen
sion is d>0.94, while forv54.2331023 a.u.,d>0.98. In
other words, as the CDR is reduced, the uncertainty dim
sion converges to 1 faster. Nevertheless, this occurs only
frequencies larger than1v* . For frequencies smaller tha
1v* , there appears to be some other mechanism of reduc
of CDR which is not related to the structure of the fractal s
The explanation of this asymmetry in the mechanisms
reduction of CDR, as frequencies become smaller or lar
thanv* , is the object of Sec. IV.

Finally, we carried out calculations for various fie
strengths in the range 231023–4.531023a.u. As the high-
est value is approached, the fractal structure of the singu
ties is quickly replaced by only a small number of them~Fig.
6!. Thus, by associating the appearance of fractal singu
ties in Td(x) with chaotic photodissociationand the singu-
larities of finite number withregular, we observe that a
change in the field strength causes a transition from reg
to chaotic MPD. For smaller intensities, for which the dec
rate is slower and the system can afford to spend more t
in the inner part of the scattering region, chaotic behav

FIG. 5. ~a! Evaluation of the uncertainty dimension ofTd(x)
when 3.1817<x<3.1828 andv54.0431023 a.u. ~b! The same as
~a! but for v5 4.2331023 a.u.

FIG. 6. The same as Fig. 3~a! but with larger field strength:F
54.531023 a.u.
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55 1329REGULAR AND CHAOTIC MULTIPHOTON DISSOCIATION
appears. For larger intensities, the kinetic energy of the fr
ments is increased rapidly, while theTd(x) of the trajectories
decrease analogously, thereby destroying the fractal st
ture. It is our conjecture that this transition to regular pho
dissociation reflects the emergence of above threshold d
ciation ~e.g., Ref. @27#!, where, however, the increase
kinetic energy of the fragments is quantized.

IV. FRACTAL SINGULARITIES AND CDR

Among the results of the theory of chaotic scattering
that the fractal set of singularities that appear in the sca
ing and time-delay functions is caused by the intersection
the one-dimensional set of initial conditions with the sta
manifolds of the uncountable unstable periodic orbits wh
are found in the scattering region@16#. The uncertain points
which we counted in Sec. III for the determination of th
fractal dimension are on this intersection, that is they
very near to the stable manifold of a periodic orbit. This
why they lead to orbits that are trapped for a long time in
scattering region. Therefore, in a scattering problem the
jectories can be divided into those that scatter without de
and into those that scatter with delay, because of the fact
they start from points very close to the stable manifold o
periodic orbit.

The photodissociation of a molecule, or the ionizatio
occurs from the chaotic regions of phase space, since a r
lar orbit always moves on the surface of a torus and can
lead to fragmentation. It is therefore useful to look at t
chaotic scattering characteristics of MPD in terms of
three categories of theN initial conditions that simulate clas
sically an eigenstate. Category~i! contains the orbits tha
belong to KAM tori, and lead to quasiperiodic orbits that
not move away from the region of the potential~KAM or-
bits!. Category~ii ! contains the orbits that quickly mov
away through the chaotic region of phase space~short-lived
orbits!. Category~iii ! contains the orbits that are long live
due to the reasons given in the first paragraph.

Given these three categories, we would like to s
whether the decrease of the CDR away fromv* is associated
with the existence of orbits of categories~i! and~iii !. Indeed,
we will show that for values ofv smaller thanv* the num-
ber of KAM orbits increases, while, forv larger thanv* , the
number of long-lived orbits increases.

Let NKAM(v) andNLL(v) represent the number of KAM
and long-lived orbits, respectively, for frequencyv. Figure 7
shows the case whereN55000 andE5E1, whereE1 is the
energy of the first excited level. We consider as long-liv
orbits those corresponding to initial conditions for whi
«510210 makes them uncertain points. Calculations w
different « andN do not change the qualitative behavior
long lived~v!. Similar curves result forE5E0 andE5E2 as
well. From Fig. 7 we conclude that the frequencyv* which
leads to maximum CDR, (1vcl*53.9431023 a.u.!, is at the
edge of two different mechanisms of reduction of CDR. O
the one hand, as the frequency is decreased to values sm
than v* , the CDR decreases due to the increase of KA
orbits ~ NLL is negligible!. This means that, asv is reduced,
an increasing part of the set of initial conditions simulati
the quantum state enters the KAM region, where it
trapped. On the other hand, whenv.v* the reduction of the
g-
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CDR is caused by the increase ofNLL . That is, in this case
the region of phase space containing unstable periodic o
is increased, so that the number of intersections of th
stable manifolds with the initial classical state is also
creased. In fact, this increase in the identity of intersecti
is accompanied by an increase of the duration for disso
tion of the short-lived orbits, which also contributes to t
decrease of CDR. The aforementioned two causes of re
tion of the CDR influence the functionNb(t) that gives the
number of orbits that have not dissociated at timet. For v
,v* , Nb(t) decreases rather rapidly until a certain val
which subsequently remains constant. This value is the n
ber of KAM orbits. Forv.v* , Nb(t) decreases continu
ously at a slow rate.

The behavior ofNKAM ~v! andNLL~v! is similar for the
ground and the second excited states. Thus, in all cases
value ofv* is found when the number of KAM orbits be
comes very small, and the number of LL orbits starts incre
ing.

V. SYNOPSIS

In this work we implemented techniques and results
classical nonlinear dynamics, and in particular of the the
of chaotic scattering, to the analysis of MPD, using as
testing ground the molecule BeH21 for which quantum-
mechanical calculations were recently published. The ca
lations and analysis were done not only for the ground vib
tional level but also for the first two excited ones. Compari
the classical results with the quantal ones—which concer
the ground level—the findings were the same for two thin
First, for infrared frequencies tuned around the resona
frequency of thev50→v51 transition, there is an optima
frequencyv* for which the dissociation rate is maximized
Second, the value of thisv* is about 90% of the resonanc
frequency. An interesting question for future research
whether quantum-mechanical calculations confirm the c
sical predictions herein for the excited level as well and,
general, how the issue of optimizing the MPD rate w
single-frequency infrared laser is revealed for each level
for different anharmonicities in the molecular potential. W

FIG. 7. Number of trajectories as a function of frequencyv,
MKAM ~v! ~solid line! and MLL~v! ~dash-dotted line!, for the first
excited state and field strengthF5231023 a.u. The optimal
v* ~3.9431023 a.u.! is a direct consequence of the behavior of t
two curves~see text!.
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1330 55VASSILIS CONSTANTOUDIS AND CLEANTHES A. NICOLAIDES
note that, given the results of Ref.@8# and @13# ~Fig. 1!, we
adopted a uniform distribution as our initial conditions,
condition which is more suitable for the analysis of frac
structure. Since the basic conclusions are the same for
ground as well as the first and second excited states, it
lows that the results in the present context are essent
independent of the initial energy and of the detailed struct
of the initial-state distribution function.

Given that the frequency redshift phenomenon for ma
mizing the MPD rate has been found in the results of cal
lations on the ground vibrational level of other diatomic m
ecules as well, a fact implying some type of universal
based on the existence of anharmonicity and on the cont
ous spectrum, we considered the possible connection o
CDR to the current theory of chaotic scattering: By anal
ing the function of the duration of dissociation,Td(x), com-
puted for a large collection of trajectories, we determin
that as a function of field strength there is what we term
chaotic as well as regular MPD. In chaotic MPD there a
singularities inTd(x) of fractal structure. This finding wa
made more basic and quantitative by showing that the fra
dimension for the MPD process is 1, thereby verifying t
conjecture of Lau, Finn, and Ott@23# that this must be a
characteristic of systems exhibiting nonhyperbolic scatter
In this context we pointed out that the CDR is related to
rate of convergence of the uncertainty dimension toward
as the uncertainty« goes to zero.

Furthermore, the discovery of such fractal singularit
was utilized for the implementation of the computationa
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observed optimal frequenciesv* : Whenv is increased, the
collection of orbits simulating the quantum state leaves
region of KAM tori, and the CDR increases. However,
soon as the orbits exit completely, they start to intersect
stable manifolds of the unstable periodic orbits, and so
CDR stops increasing and starts decreasing. The freque
v* yielding the maximum CDR is the one for which th
classical state has just excited the KAM region and has
managed yet to enter the region where the stable manif
of the periodic orbits are sufficiently many.

Finally, there is the interesting finding of the transition
a function of the field intensity from conditions of chaot
MPD—for low intensities—to conditions of regular MPD, a
revealed by the nature of the singularities inTd(x). This
finding might be worth analyzing to determine whether it c
be connected to an abrupt bifurcation@21# or to a saddle-
center bifurcation@22#. In addition, further analysis migh
shed light on our conjecture that the appearance of reg
MPD as the laser intensity is increased could be connecte
the observed phenomenon of above threshold dissocia
which emerges naturally from quantum-mechanical calcu
tions ~e.g.,@27#!.
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