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Regular and chaotic multiphoton dissociation
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The rate of multiphoton dissociation of the B&€Hmolecule in its ground and first two excited vibrational
levels has been computed via classical mechanics as a function of laser frequency. There is agreement with
earlier guantum-mechanical results as regards the existence and magnitude of an optimal freguefury,
which the dissociation rate is maximized. This fact has been analyzed and understood via the application of the
theory of chaotic scattering. Indeed, we find fractal singularities in the fundiigr) of the duration of
photodissociation, and we compute their dimension to be equal to 1, in agreement with the conjecture of Lau,
Finn, and Ott[Phys. Rev. Lett66, 978 (1991] that this must be a characteristic of systems exhibiting
nonhyberbolic scattering. Turning to the problem of interpreting the appearance of an apfine propose
the following two mechanisms for the reduction of the multiphoton dissociation rate. First is the increase of
fractal singularities when the frequeneyattains values larger than*. Second is the gradually increasing
overlap of the classical initial state with the region of Kolmogorov-Arnold-Moser tori whew* . Finally, as
the intensity is increased there is a transition from chaotic to regular photodissociation, where the singularities
in T4(x) are finite. It is conjectured that this reflects the emergence of the quantum-mechanical phenomenon of
above-threshold dissociatiof51050-294{®7)08302-9

PACS numbd(s): 32.80.Wr, 33.80.Wz

[. INTRODUCTION simple models as examples. As regards implementation to
systems with quantal counterparts, noteworthy are recent re-
Given the rapid growth of the field of nonlinear classical sults on one-dimensional atoms with model interactions,
dynamics(e.g., Ref[1]), and the strong interest in making such as the work of Hillermeier, Btoel, and Smilanskj24]
connections to results and features of quantum mechanics,dn ionization of H Rydberg atoms, of Gu and Yu5] on
is important and challenging to adopt as objects of investi€lectron scattering from He and of Handkg26] on auto-
gation real quantal systems and processes. One such caseadigization of doubly excited He-like atoms.
the multiphoton dissociatiofMPD) of diatomic molecules Given the above, it appeared appropriate and timely to us
induced by strong infrared lasers, which has been studied b attempt an understanding of a possible connection of the
applying advanced quantal and classical methods and intecurrent theory of chaotic scattering to the dynamics of MPD.
pretations to the parametrized Morse oscillai@—14]. Indeed, the object of this work was to study the MPD of
These classical methods have their basis in the progress tHaeH" into Be"+ H™ by the methods of chaotic scattering,
has been made in the nonlinear dynamicbofindsystems. having as a reference quantum-mechanical results that were
On the other hand, during the past decade, significanbbtained recentlj27]. The BeH" potential supports only a
progress has been made in the understanding of the chaofiew vibrational levels, and it was found to dissociate for
behavior ofunbound i.e., scattering, systems, where the in-intensities which are smaller by orders of magnitude than
teraction time is small15—24. Now, rather than emphasiz- those needed for molecules such as (tfEated as a Morse
ing and analyzing phase-space characteristics, the basiscillatop.
theme is to achieve mappings of properties of final scattering In the following sections we will show how chaotic scat-
states with details of initial conditions. One general result istering applies to this problem, and we will present results
that classical scattering is divided into regular and chaoticdemonstrating that MPD can be separated into regular and
The criteria for this division are the singularities that appearchaotic, and that the regular properties of the classical disso-
in the scattering functions. If their number is finite, then weciation rate(CDR) emerge as a function of the laser fre-
have regular scattering, while chaotic scattering is associategliency . (We note that in most publications on CDR, in-
with the appearance of fractal structure. By scattering functerest has focused on the dependence on the laser intgnsity.
tion is meant ‘a plot of an output variable characterizing For example, the quantum-mechanical re$@f] that the
the trajectory after scattering versus an input variable char-rate of MPD is optimized for a value @ which is about 0.9
acterizing the incident trajectory. In chaotic scattering the times the frequency for the=0—1 transition is verified
scattering function is singular on a Cantor set of values ofhere, and this agreement is used as input for a deeper analy-

the input variablg [23]. sis. (In Ref.[27] there were also interesting findings associ-
The theory of chaotic scattering has been developed usingted with tunneling. These do not concern us in the present
work.)

In Sec. Il we compute the CDR as a functionsgfwhere
*Also at Physics Dept., National Technical University, Athens,the molecule is in the ground vibrational level as well as in
Greece. the first two excited ones. We conclude that the results offer
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FIG. 2. The CDR as a function of the field frequenoywhen

|eveFIIch.)fltHeThrf)upr?(;eer}telir;?gt;ct)ge():))f g;g(#znslgg EIZI?B;?“ISQ?I the molecule is initially in the ground vibrational lev@), the first
9 ) ’ excited level(b), and the second excited lev@). In all casesF

tmhzllneeds of our calculations, we fit it to a seventh-degree p0|yno-:2><10’3 A

- . , In previous calculations of CDR, e.[f], the approach is
a sufficient basis for testing the relevance of the theory ofqe gllowing: One considers a set of trajectories with initial
chaotic scattering to MPD. ) . _..__conditions of the coordinate, where all points are equally
_In Sec. 1ll, we show the existence of fractal singularities jigyip ted between the two turning points corresponding to
in the function of the duration of MPD, and we cOmpute \he energyE of the level under consideration. Equatidas
their dimension. The results are in harmony with the results, o jntegrated for these trajectories and, assuming a criterion
a}nd conjectures of Lau, F|nn,'and Pzs]. Furthermore, W€ of dissociation, one obtains the numbéy(t) of trajectories
find that the fractal structure is lost as we increase the fielg| 1i-n at timet have not escaped from the potential. The

strength. In Sec. IV we utilize the finding of the existence of ~pR is then equated with the slope of the straight line ex-
fractal singularities in order to propose two mechanisms for ressing the short-time behavior Nf(t). The disadvantage
the reduction of the MPD rate as the frequency is increaseaf this method, when one is interested in obtaining COR
or decrgased f“’”.‘ its optimal value. Fmally, in Sec. V WEis that in many situations the linear fit df,(t) is uncertain,
summarize and discuss the perspectives of the present rF'e'gardIess of whether the scales are lifi&a8] or semiloga-
sults. rithmic [14]. This fact has led us to the choice of a different
method for the calculation of the CDR: Following Goggin
Il. CLASSICAL DISSOCIATION RATE and Milonni [8], we start withN equally spaced in coordi-
VS LASER FREQUENCY nate x initial conditions, and we integrate Eq&2) while
i following the evolution of the trajectories for a fixéfl For
The calculation of the CDR for the purposes of the, given trajectory starting from a poirtatt=0, we define

present §tudy was +carried out as follows: _The classica{he duration of the photodissociatiofy(x), as the point in
Hamiltonian for BeH"' plus the monochromatic laser field time where its compensated enefg8] E
(o]

along the axis was taken to Hell quantities are in atomic

units) 2

[p— Esin(wt)
2 el 1y | s
H(p,X)=;7+V(x)+Fx cog wt). (1) c 2 +V(x) @)

becomes larger than the energy of the saddle point of

The reduced masg is 1651.8 a.u., andc is the field V(X). By calculatingT for the N initial conditions, we ob-
strength. Given the ionic character of the molecule, the ditain the CDR from the relation

pole moment was assumed to be linear in the distandde
potential functionV(x), which is presented in Fig. 1, was
taken from theab initio calculations of Ref[28]. The figure
also shows the eight vibrational levels supported\{x).
The classical dynamics is obtained from the solution ofThe form of R(w) is almost independent i, as long as its

N
R= El (T~ (4

Z| P~

Hamilton’s equations value is not very small. Our calculations were done for
N=500, while few selected ones which were done for

dp AV(X) N=1000 produced the same results. The integration of Eqgs.

Gt ax [ cotet), (28 (2) was done by the fourth-order Runga-Kutta technique, and

the accuracy was checked by reversing the velocity after suf-
ficient time and verifying that the initial conditions are re-
dx p produced up to the fourth decimal digit.

dt m (2b) The results are depicted in Fig. 2. When the molecule is in
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the ground state, the value affor which CDR is largest is
Ow¥=4.22x10"2 a.u. This value is very close to the one 40101 40x10° 1
obtained from the quantal calculatio®7], for which
%wg,=4.1x10"° a.u. We note that the intensity was chosen .
to be larger than the one used beff2&] by three orders of o 3.0x10°
magnitude, in order to produce faster rates and thus make the _
calculations more economical. If we take the classical fre- = |
guency which corresponds to the quantal frequency for the 20x10° 4
transitionv =0—v =1 to be the frequency of the trajec- ]
tory with energyE=(Ey+E;)/2 [29], then we find that 10x10° 4
Y0} ~0.870y, a relation which agrees with the quantal cal-
culation[27] of 0.88, and in fact with earlier observations of
frequency “redshift” for maximization of the dissociation 00 4 , —
rate[3,9]. The same conclusion can be drawn from the clas- ) ~ ** * ™ 3 3¢ 34042 ) IO TS 3
sical and quantal studi¢43] of the MPD of the Morse os-
cillator representing the HF molecule: From Figdjiof Ref. FIG. 3. () The duration of the photodissociatidry as a func-
[13], it follows that the redshift ratios are0.89 and=~0.90  tjon of the internuclear distanck when initial state is the first
for the quantal and the classical case, respectively. excited oneF=2x10"3 a.u. andw=3.9x10"2 a.u. (b) Magnifi-
For the first and second excited states, CDR is maximizedation of the interval3.1827, 3.182Bof T4(x) of (a).
when 10%=3.94x10"2 a.u. and?w’=3.62<10 %a.u.; in
other words, there is a shift to smaller frequencies as w
climb the energy spectrum. The same observation holds fqlg
the HF Morse oscillatofFig. 3(a) of Ref.[13]]. €

1.0x10° 4

@ted with the fact that the dynamics is nonhyperbolic.

In the theory of chaotic scattering, a distinction is made
tween hyperbolic and nonhyperbolic chaotic scattering
(Ref.[23] and references therginThe first appears when in

We therefore co_nclude the followmg: First, th"?‘t both the scattering region all the periodic trajectories are unstable
quantum and classical mechanics predict a redshift of the " 0 re o Kolmogorov-Armnold-MoséKAM ) tori

single frequency for the maximization of the photodissociay hile the second appears when stable periodic orbits do ex-
tion rate of diatomic molecules, regardless of the details o st, so that the phase space of the system is simultaneously
the vibrational spectrum. Second, given the first conclusiongccypied by chaos and by islands of stability. In the case of
the presence of two factors, anharmonicity and the participahyperbolic chaotic scattering, the number of trajectories that
tion of the unbound scattering states, play a dominant rolesemain in the scattering region is reduced exponentially with
and an additional understanding of the MPD process can bgme and the fractal dimensioa of the singularities in the
revealed by applying current methods of classical dynamicgelay function is 6<d;<1. Conversely, in the nonhyper-
which account for these two factors. It is with this objective bolic case, the number of bound orbits is reduced as a power
that we now turn to an application of the theory of chaoticlaw due to the sticking effect of the KAM tori. Furthermore,
scattering to molecular photodissociation. Lau, Finn, and Otf23] proposed that the fractal dimension
of the singularities is always 1, even though that the Leb-
esque measure remains zero.

In the problem of MPD which we study, the dynamics is
nonhyperbolic, a conclusion which follows directly from the

One of the results of the theory of chaotic scattering isPoincaresurfaces of section for our system. Therefore, ac-
that the time delay function giving the sojourn time of the cording to[23] the fractal dimension of the totality of the
system in the scattering region shows fractal singularities asingularities ofT 4(x) should be equal to 1. It is this property
a function of an input variablg21]. When the singularities which we decided to compute, and show whether the conjec-
are finite, the scattering is called regular. By analogy, hereéure of Lau, Finn, and Otf23] indeed holds for a physical
we consider the photodissociation duratiog(x)discussed process of a real system.
in Sec. Il, and ask whether there appear singularities, and The dimension which should be evaluated is the “uncer-
whether we can determine the nature of these singularitiestainty dimension”d [23]. This quantity is given byd=1

To answer this question we calculat®g(x) for various — 3, whereB appears a$(e)~¢P. f(g) is the percentage of
values of the frequencw and for the energies of the first uncertain points, for a given value of uncertainty,and for
three vibrational levels. A typical form of this function for randomly chosen points,. Eachx, is considered to be un-
the first excited level is shown in Fig(&. A similar struc-  certain if we find that the differendd 4(xo) — Tq(Xo+€)] is
ture holds forT 4(x) of the ground and second excited levels. larger than a number of order 1. In our calculation we in-
We chose to analyze the first excited level instead of theluded as many random points as necessary to obtain 100
ground level in order to reduce the computational time. Ofuncertain points per run. According [83], the uncertainty
course, the results and conclusions apply to the other twdimension, whose computation is more economical than that
levels as well. of the “box-counting dimension [23], will have the value

The existence of fractal singularities is obvious, whileof one only when it is computed for very smdll that is
magnification of a region with widtdx=10"* [Fig. 3b)] d—1, ase—0. In practice, this implies that we must com-
shows that this situation persists in smaller scales. In factuted for regions where becomes smaller and smaller, and
when magnification is performed, there is an increase in theheck thatd tends to 1 from below. Indeed, this is what is
number of singularities. As we discuss below, this is associebserved in our problem. In Fig(@, the dependence d@fs)

lll. FRACTAL SINGULARITIES
IN PHOTODISSOCIATION DYNAMICS
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<e<10 % (a) but for o= 4.23x10° 3 a.u.

on ¢ is plotted for 108<e<10"'%and 3.182%x<3.1828 %103 a.. [Figs. 5a) and §b)], that is for frequencies
a.u. From the slope we obtad=0.87. If, however, we re- |arger than the optimatew* (=3.94x 1073 a.u). This calcu-
strict ourselves to the region ¥f<e<10"***for the same |ation was done for the same interval of valuescaind ofe
region ofx, d becomes 0.97Fig. 4(b)]. Therefore, we can a5 in Fig. 4a). For w=4.04x 102 a.u., the resulting dimen-
safely argue that the fractal dimension of the MPD process igjon is d=0.94, while for w=4.23<10 3 a.u.,d=0.98. In
consistent with its nonhyperbolic dynamics since, in the limitgiher words, as the CDR is reduced, the uncertainty dimen-
e—0, d becomes equal to 1. _sion converges to 1 faster. Nevertheless, this occurs only for
We now turn to another aspect of the results of Lau, F'n”frequencies larger thadw* . For frequencies smaller than
and Ott[23], and see how they carry over to the problem of 1, there appears to be some other mechanism of reduction
MPD. Lau, Finn, and Otf23] gave a simple example of a of CDR which is not related to the structure of the fractal set.
Cantor set with zero Lebesque measure and fractal dimenrrye explanation of this asymmetry in the mechanisms of

sion d=1. In the general case, this set is constructed byeqyction of CDR, as frequencies become smaller or larger
successive subtractions from the interv@,1] of parts  han »*, is the object of Sec. IV.

which, at thenth stage of the process, have length Finally, we carried out calculations for various field
1 strengths in the range>210 3-4.5< 10" 3a.u. As the high-
Pp=——, (5) est value is approached, the fractal structure of the singulari-
n+c ties is quickly replaced by only a small number of théfig.

6). Thus, by associating the appearance of fractal singulari-
ties in T4(x) with chaotic photodissociatioand the singu-
larities of finite number withregular, we observe that a
change in the field strength causes a transition from regular
-a to chaotic MPD. For smaller intensities, for which the decay
(6) rate is slower and the system can afford to spend more time
in the inner part of the scattering region, chaotic behavior

Therefore, the dimension that is given by the slope of the
curve ImN; vs In(1/g),

wherea andc are constants. The number of the remaining
intervalsN, as a function of the length (of each ong is
given by[23], Eqg. (1), in the limits e—0 (andn— ),

1
Nr%g

1
In—
&

5500 |

w =1—- i (7) 5000—-
1
d( In—
€

= 4000 -

1 1
In—

is, for finite &, always smaller than 1. The rate of approach of =

d to unity ase—0 is proportional to the constaat It is this

e 4500
dependence that we wish to verify for our problem.

3500

Equation(5) shows that the constamt expresses the rate 3000 -
with which the interval[0,1] is emptied, and therefore, the .
corresponding quantity in the physics of dissociation is the 2500 A
CDR. Hence we expect that, as the CDR becomes smaller, ' B R ' '

the convergence af toward 1 will appear faster. Indeed, this
is verified if we compute the percentage of uncertain points, FIG. 6. The same as Fig(&@ but with larger field strengthE
f(¢), as a function ofe, for w=4.04x10"% and 4.23 =45x103a.u.
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appears. For larger intensities, the kinetic energy of the frag-

ments is increased rapidly, while thg(x) of the trajectories 2500
decrease analogously, thereby destroying the fractal struc- A o
ture. It is our conjecture that this transition to regular photo- 2000+ Nican(@ N )
dissociation reflects the emergence of above threshold disso- LL(w).,:'
ciation (e.g., Ref.[27]), where, however, the increase in & "1 *®
kinetic energy of the fragments is quantized. E \ s
3 1000 " PO
IV. FRACTAL SINGULARITIES AND CDR g 3004 N oC
| \. /0”

Among the results of the theory of chaotic scattering is O i
that the fractal set of singularities that appear in the scatter- , ; . . . . ,
ing and time-delay functions is caused by the intersection of 038 03 040 041 042x10%

the one-dimensional set of initial conditions with the stable @

manifolds of the uncountable unstable periodic orbits which FIG. 7. Number of trajectories as a function of frequengy

are found in the scattering regi¢f6]. The uncertain points . Ap () (solid line) and MLL(w) (dash-dotted ling for the first
which we counted in Sec. Il for the determination of the o, iteq state and field strengtii=2x10"3 a.u. The optimal

fractal dimension are on this intersection, that is they arg (3.94x 103 a.u) is a direct consequence of the behavior of the
very near to the stable manifold of a periodic orbit. This isqyg curves(see text
why they lead to orbits that are trapped for a long time in the

scattering region. Therefore, in a scattering problem the fracpR s caused by the increaseNf, . That is, in this case
jectories can be divided into those that scatter without delayne region of phase space containing unstable periodic orbits
and into those that scatter with delay, because of the fact tha increased. so that the number of intersections of their

they start from points very close to the stable manifold of astaple manifolds with the initial classical state is also in-
periodic orbit. . .. creased. In fact, this increase in the identity of intersections
The photodissociation of a molecule, or the ionization,is accompanied by an increase of the duration for dissocia-
occurs from the chaotic regions of phase space, since a regiisn of the short-lived orbits, which also contributes to the
lar orbit always moves on the surface of a torus and canngjecrease of CDR. The aforementioned two causes of reduc-
lead to fragmentation. It is therefore useful to look at thetjqy of the CDR influence the functioN,(t) that gives the

chaotic scattering characteristics of MPD in terms of the,,mber of orbits that have not dissociated at tim&or o
three categories of the initial conditions that simulate clas- -« N,(t) decreases rather rapidly until a certain value

sically an eigenstate. Categofy) contains the orbits that \hich subsequently remains constant. This value is the num-
belong to KAM tori, and lead to quasiperiodic orbits that do .. ot KAM orbits. For w>w*. N (t) decreases continu-
not move away from the region of the potent{&lAM or- e

bits). Category(ii) contains the orbits that quickly move
away through the chaotic region of phase sp@atwrt-lived
orbits). Category(iii) contains the orbits that are long lived
due to the reasons given in the first paragraph.

Given these three categories, we would like to se
whether the decrease of the CDR away fretis associated
with the existence of orbits of categori@sand(iii ). Indeed,

ously at a slow rate.

The behavior ofNgapm(w) and N (w) is similar for the
ground and the second excited states. Thus, in all cases the
value of w* is found when the number of KAM orbits be-
comes very small, and the number of LL orbits starts increas-

€ng.

we will show that for values of» smaller thanw* the num- V. SYNOPSIS
ber of KAM orbits increases, while, fas larger thanw*, the In this work we implemented techniques and results of
number of long-lived orbits increases. classical nonlinear dynamics, and in particular of the theory

Let Ngaw (@) andN, () represent the number of KAM  of chaotic scattering, to the analysis of MPD, using as the
and long-lived orbits, respectively, for frequeneyFigure 7 testing ground the molecule B&H for which quantum-
shows the case wheié=5000 andE=E;, whereE, is the = mechanical calculations were recently published. The calcu-
energy of the first excited level. We consider as long-livediations and analysis were done not only for the ground vibra-
orbits those corresponding to initial conditions for which tional level but also for the first two excited ones. Comparing
e=101° makes them uncertain points. Calculations withthe classical results with the quantal ones—which concerned
differente andN do not change the qualitative behavior of the ground level—the findings were the same for two things:
long lived (w). Similar curves result foE=Ey, andE=E, as  First, for infrared frequencies tuned around the resonance
well. From Fig. 7 we conclude that the frequensy which  frequency of they=0—v =1 transition, there is an optimal
leads to maximum CDR,'(¥=3.94x10"2 a.u), is at the  frequencyw* for which the dissociation rate is maximized.
edge of two different mechanisms of reduction of CDR. OnSecond, the value of thie* is about 90% of the resonance
the one hand, as the frequency is decreased to values smalfezquency. An interesting question for future research is
than o*, the CDR decreases due to the increase of KAMwhether quantum-mechanical calculations confirm the clas-
orbits ( N, is negligible. This means that, as is reduced, sical predictions herein for the excited level as well and, in
an increasing part of the set of initial conditions simulatinggeneral, how the issue of optimizing the MPD rate with
the quantum state enters the KAM region, where it issingle-frequency infrared laser is revealed for each level and
trapped. On the other hand, wheb-w* the reduction of the for different anharmonicities in the molecular potential. We



1330 VASSILIS CONSTANTOUDIS AND CLEANTHES A. NICOLAIDES 55

note that, given the results of R¢8] and[13] (Fig. 1), we  observed optimal frequencies': When w is increased, the
adopted a uniform distribution as our initial conditions, acollection of orbits simulating the quantum state leaves the
condition which is more suitable for the analysis of fractalregion of KAM tori, and the CDR increases. However, as
structure. Since the basic conclusions are the same for th&yon as the orbits exit completely, they start to intersect the
ground as well as the first and second excited states, it foktable manifolds of the unstable periodic orbits, and so the
lows that the results in the present context are essentiallgpr stops increasing and starts decreasing. The frequency
independent of the initial energy and of the detailed structure, yielding the maximum CDR is the one for which the
of the initial-state distribution function. classical state has just excited the KAM region and has not

‘Given that the frequency redshift phenomenon for maximanaged yet to enter the region where the stable manifolds
mizing the MPD rate has been found in the results of CalCUOf the periodic orbits are Sufﬁcienﬂy many.

lations on the grOUnd vibrational level of other diatomic mol- Fina"y, there is the interesting f|nd|ng of the transition as
ecules as well, a fact implying some type of universalitya function of the field intensity from conditions of chaotic
based on the existence of anharmonicity and on the continygpp—for low intensities—to conditions of regular MPD, as
ous spectrum, we considered the p_ossible c_onnection of th@vealed by the nature of the singularities Tg(x). This
CDR to the current theory of chaotic scattering: By analyz-finding might be worth analyzing to determine whether it can
ing the function of the duration of dissociatiofy(x), COM-  he connected to an abrupt bifurcatif21] or to a saddle-
puted for a large collection of trajectories, we determinedcenter bifurcation[22). In addition, further analysis might
that as a function of field strength there is what we termedshed light on our conjecture that the appearance of regular
chaotic as well as regular MPD. In chaotic MPD there areypp as the laser intensity is increased could be connected to
singularities inTy(x) of fractal structure. This finding was the observed phenomenon of above threshold dissociation,

made more basic and quantitative by showing that the fractaihich emerges naturally from quantum-mechanical calcula-
dimension for the MPD process is 1, thereby verifying thetions (e.g..[27)).

conjecture of Lau, Finn, and Of23] that this must be a
characteristic of systems exhibiting nonhyperbolic scattering.

In this context we pointed out that t_he CDR is (elated to the ACKNOWLEDGMENT
rate of convergence of the uncertainty dimension toward 1,
as the uncertainty goes to zero. This work was partly supported by the European network

Furthermore, the discovery of such fractal singularitiesContract No. CT94-0561 on “nonlinear laser-matter interac-
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