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Polarization of high-order harmonics
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We report measurements and calculations of the polarization state of high-order harmonics generated by a
790-nm Ti:sapphire laser. The problem of completely characterizing the polarization state of a partially polar-
ized radiation in the XUV range is discussed in detail. The comparison between several gases, xenon, argon
and neon, and different orders, from the 17th to the 33rd, shows that the rotation angle and ellipticity strongly
depends on the position of the harmonic in the spectrum, and in particular, whether it is in the cutoff or in the
plateau. In the plateau, the rotation angle is quite large, and the ellipticity follows that of the fundamental,
remaining, however, smaller. The radiation is only partially polarized. In contrast, in the cutoff, both rotation
angle and ellipticity remain small, independently of the laser ellipticity. Our experimental results compare well
with theoretical predictions including the single-atom response and propagation effects.
@S1050-2947~97!07902-X#

PACS number~s!: 32.80.Rm, 42.65.Ky
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I. INTRODUCTION

High-order harmonic generation provides an efficie
source of radiation in the extreme ultraviolet~XUV ! region.
It is also a probe of the behavior of an atom in an inten
laser field. The recognizable features of harmonic spectra
particular the extended plateau followed by the sharp cut
are predicted by many theoretical models. More severe t
are required to differentiate among them and hence to
prove the understanding of the process. Polarization m
surements provide such a test.

The interpretation of high-order harmonic generation p
cesses is usually given by the two-step quasiclassical
scription @1,2#. In this model, the electron tunnels o
through the potential barrier lowered by the laser field.
subsequent motion can be treated classically and consis
free oscillations driven by the electric field. If the electro
returns close to the nucleus, it may recombine and em
harmonic photon. The limit of the plateau is therefore det
mined by the maximum kinetic energy gained by the el
tron. According to this model, in order to control harmon
generation process, one has to control the motion of the
electron. Shaping appropriately the electron trajectories
lows for various future interesting perspectives.

A simple way to alter the trajectory of the oscillating ele
tron is to use elliptical polarization instead of linear polariz
tion. With a linear polarization, in the semiclassical pictu
the electron passes periodically through the core where
monics are radiated. With elliptical polarization, such traje
tories do not exist. In fact, harmonic generation is only p
sible due to the extent of the wave packet and to quan
diffusion. Therefore, the harmonic generation efficiency
creases very rapidly when the ellipticity of the light is i
creased. This behavior has been experimentally observe
several groups@3–6#. The strong dependence of the ha
monic conversion efficiency with the laser degree of ellipt
ity has been used to control the angular emission of the
551050-2947/97/55~2!/1314~11!/$10.00
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monics, by modulating the laser ellipticity in the focal regio
@7#. Similarly, it has been suggested that by modulating
time the laser degree of ellipticity, extremely short~subfem-
tosecond! pulses of light could be produced@8#. Both ideas
are based on the fact that harmonics are produced alm
only where or when the polarization of the laser is linear

The harmonic radiation generated by an elliptically pol
ized driving field is also elliptically polarized. In the pertu
bative regime, its polarization follows the polarization of th
driving field. This is not true in general at high laser inte
sity, in a nonperturbative regime. Weiheet al. observed that
the polarization ellipse of low-order harmonics was rota
with respect to the ellipse of the driving field@9#. This effect
was theoretically demonstrated for higher-order harmon
@10,11#. We also predicted that the ellipticity of high-orde
harmonics was, in general, smaller than that of the driv
field. The polarization state of the harmonic radiation gen
ated by an elliptically polarized driving field is much mo
sensitive to the dynamics of the process than, for exam
the overall conversion efficiency, thus providing a critic
test for theoretical models.

In this paper, we address the problem of measuring
polarization of the harmonics. We extend the results
Weiheet al. @9# on the rotation of the polarization ellipse t
much higher harmonic orders. We also study how the deg
of ellipticity of the generated radiation depends on the la
ellipticity. A major point that we want to emphasize is th
our experimental analysis accounts for the fact that the
larization of the harmonic field isnot uniformin space, i.e.,
in the plane transverse to the propagation direction, and
time, over the duration of the pulse. As shown in our the
retical study@10#, this nonuniformity comes from the fac
that the Fourier components of the single-atom dipole m
ment, sources for the harmonic emission, rapidly vary, b
in phase and amplitude, with the laser intensity. The exp
mental measurements concern of course the total field,
integrated in time, over the pulse width and in space, in
1314 © 1997 The American Physical Society
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55 1315POLARIZATION OF HIGH-ORDER HARMONICS
transverse direction. Because of the nonuniformity, the in
grated field is onlypartially polarized. The rotation angle
and ellipticity describe the state of polarization of the pol
ized part of the radiation@15#. The complete determinatio
of the polarization state of a partially polarized electroma
netic field requires much more effort than for a complet
polarized field, in particular for radiation in the XUV rang
Our measurements allowed us to determine the rota
angle of the harmonic radiation and to give an upper valu
the degree of ellipticity. We performed extensive numeri
simulations reproducing the experimental procedure for
~partial! determination of the polarization of the harmon
field.

While electron rescattering by the atomic potential
originally not included in the model, the comparison wi
experiment is improved by taking account of rescattering
an effective way@13#. To that condition, the numerical re
sults reproduce the rotation angle very well. For the up
value of the ellipticity, its variations with the harmonic ord
are qualitatively reproduced, but in general, the calcula
value is found to be lower than the measured one. The o
all reasonable agreement allows one nevertheless to esti
the calculated ellipticity and the degree of polarization
the partially polarized light.

The paper is organized as follows. In Sec. II, we rec
briefly the theoretical model used in the simulations@10#. We
describe in particular the different measurements~or calcu-
lations! required to determine the polarization of the ha
monic field. Section III gives a description of the experime
tal setup and procedure. Finally, in Sec. IV, we comp
experimental results with theoretical predictions.

II. THEORY

We first summarize our theoretical approach, then how
determine the polarization of the harmonics.

A. Theoretical approach

In the single-atom response, we consider an atom i
single-electron approximation under the influence of a la
field E(t) of arbitrary polarization. Our model is a version
the so-called strong-field approximation@12#. We describe
the time-dependent system in the basis reduced to the gr
state and the free continuum states, i.e., the free waves e
states of the momentumpW unperturbed by the atomic poten
tial ~in that respect, Coulomb scattering of the electron is
included in the model!.

Our approach is valid in a tunneling regime, i.e., a lo
frequency, high intensity regime. This model, which reco
ers the two-step interpretation, includes rigorously quant
tunneling, quantum diffusion, and interference. The tim
dependent dipole moment is expressed as@10#

xW~ t !5 i E
0

t

dt8E d3pWdW * „pW 2AW ~ t !…a* ~ t !

3exp@2 iS~pW ,t,t8!#

3EW~ t8!•dW „pW 2WA~ t8!…a~ t8!1c.c., ~1!

wheredW „ pW 2AW (t)… is the field-free dipole transition matri
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element between the ground state and the continuum s
characterized by the velocityvW 5pW 2AW (t), pW denoting the
canonical momentum, andAW (t), the vector potential.a(t) is
the ground-state amplitude. Finally,S(pW ,t,t8) is the quasi-
classical action, describing the motion of an electron movin
in the laser field with a constant momentumpW ,

S~pW ,t,t8!5E
t8

t

dt9S „pW 2 AW ~ t9!…2

2
1I pD . ~2!

The integral over momenta is estimated by means of
saddle-point method. The time dependent dipole moment
comes

xW~ t !5 i E
0

`

dtS p

n1 i t/2D
3/2

dW * „pW s2AW ~ t !…

3exp@2 iS~pW s ,t,t!#

3EW~ t8!•dW „pW s2AW ~ t2t!…ua~ t !u21c.c., ~3!

whereps(t) is the momentum for which the classical actio
S is stationary, andn is a positive regularization constan
The timet in Eq. ~3! corresponds in classical terms to th
time after which the electron returns to the nucleus. T
so-called ‘‘return times’’ which contribute the most a
shorter than one laser period. Contribution of longer tim
for multiple returns becomes negligible because of quan
diffusion of the wave packet. Actually, we have check
that, for high-order harmonics radiated from high-energy t
jectories, quantum diffusion plays the same role as elec
rescattering in the sense that they both discard the mult
returns. However, we have noticed that in the case of lo
order harmonics~radiated from ‘‘low energy’’ trajectories;
e.g, 17th and 23rd harmonics in neon!, rescattering can have
a stronger effect than quantum diffusion alone. Therefo
the dipole moment in Eq.~3! has been computed with eithe
an unrestricted integration overt ~in xenon!, or an integra-
tion restricted tot<2p/v ~in argon and neon!.

In the case of hydrogenlike atoms and transitions froms
states, the field-free dipole matrix elements can be appr
mated by@13,14#

dW ~pW !5 i
27/2a5/4

p

pW

~pW 21a!3
. ~4!

The Fourier series expansion of the time-dependent dip
provides the harmonic components ofq order which are the
source terms for harmonic generation.

The second step consists of solving numerically the eq
tion describing the propagation of an electromagnetic w
through an isotropic, dielectric medium. The source term
the macroscopic polarization induced by the driving field.
mentioned above, its nonlinear components ofq order are
directly related to those of the atomic dipole. The calculat
is done in the paraxial and slowly varying envelope appro
mations@10#. Furthermore, in the present work, depletion
the ground state, defocusing, and blueshifting of the fun
mental are taken into account. Their influence on the h
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1316 55ANTOINE, CARRÉ, L’HUILLIER, AND LEWENSTEIN
monic polarization state remain, however, marginal at
considered laser intensity (I<631014 W/cm2 for a neon
atom!.

B. Polarization of the harmonics

Any arbitrary elliptical field (Exe
2 ifx, Eye

2 ify, 0! can be
characterized by three parameters, e.g.,Ex , Ey, and the
phase differenced5fx2fy ; the signed measures of the m
nor and the major axes and the polar anglef of the latter,
referred to as the orientation of the polarization; or the int
sity, the ellipticitye, and the orientation. It is straightforwar
to calculate the polarization properties of the harmonic fi
radiated by a single atom. Introducing the anglesg, such that
tan(g)5Ex /Ey , andx, such thate5tan(x), the ellipticity
and orientation can be obtained from the simple express
@15#

sin~2x!5sin~2g!sin~d!,

tan~2f!5tan~2g!cos~d!. ~5!

In the macroscopic case, however, the polarization va
in space over the spatial profile and in time over the ti
profile, through the intensity dependence of theqth compo-
nent of the time-dependent dipole. As a result, the space-
time-averaged harmonic field, which can be measured in
experiment, is only partially polarized. The characterizat
of a partially polarized field is more demanding than for
completely polarized field, requiring knowledge of four p
rameters. This problem is described in several textbooks
example, in Born and Wolf@15#. We here recall only the
relevant ideas needed for our analysis. A partially polariz
field can be described by a 232 coherence matrix or
equivalently, by the four Stokes parameterss0, s1, s2, and
s3. The Stokes parameters are formally defined as avera
functions of the complex field components. Their inter
resides in their physical interpretation. They can also
viewed as the results of simple experiments where the in
sity of the light passing through the combination of a pol
izer and a compensator is measured@15#. The Stokes param
eters are defined by the four following relations~note that the
convention in the numbering can be different in other te
books, e.g., in@16#!:

s05^Ex
21Ey

2&5I ~0,0!1I ~p/2,0!,

s15^Ex
22Ey

2&5I ~0,0!2I ~p/2,0!,

s252^ExEycos~d!&5I ~p/4,0!2I ~3p/4,0!,

s352^ExEysin~d!&5I ~p/4,p/2!2I ~3p/4,p/2!, ~6!

where the functionI (u,h) is the intensity of the light mea
sured behind a polarizer making an angleu with respect to
the x axis when a retardationh is introduced between th
x and they components of the field. Thus,I (u,h) reads as

I ~u,h!5E E uEx~r ,t !cos~u!

1Ey~r ,t !sin~u!eihu22pr dr dt. ~7!
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We denote by a single symbolsW the four parameterss0,
s1, s2, s3. According to the above definition,s0 is the time-
and space-averaged intensity, so that normalized param
si /s0 are sometimes used@16#. Any partially polarized light,
or more precisely the associatedsW vector can be written as
the sum of a completely unpolarized wave, characterized
a vectorsWnp, and a completely polarized wave,sWp, which are
independent of each other. This decomposition is uniq
@15#:

sW5sWp1sWnp, ~8!

with

sWnp5~s02As121s2
21s3

2,0,0,0!, ~9!

sWp5~As121s2
21s3

2,s1 ,s2 ,s3!. ~10!

The degree of polarizationP is defined as

P5As1
21s2

21s3
2

s0
5
s02s0

np

s0
, ~11!

wheres0
np5s02As121s2

21s3
2. P is always lower or equal to

1. It is equal to 1 only for completely polarized radiatio
The unpolarized part is a fully isotropic, uncoherent, ‘‘nat
ral’’ light of averaged intensitys0

np. The polarized part has
the same Stokes parameters as the total field except fo
intensitys0

p which satisfies the characteristic relation

~s0
p!25s1

21s2
21s3

2 . ~12!

As shown in the Appendix, Eq.~12! is highly binding for the
field it defines: it implies that this field has a given elliptici
e and orientationf, independent of time and space, so th
only one parameter, the intensity, varies. The polarization
the polarized part of the harmonic radiation is characteri
everywhere in space~after the nonlinear medium!, at any
time, by a constante @5tan(x)# and a constantf, given by
the relations

sin~2x!5
s3

As121s2
21s3

2
5sgn~s3!

A~s02s0
np!22s1

22s2
2

~s02s0
np!

,

~13!

tan~2f!5
s2
s1
, ~14!

where sgn(s3)5s3 /us3u is the sign ofs3. By definition, the
orientation and ellipticity of the total partially polarized fiel
are the orientation and ellipticity of the polarized part of t
radiation. It is of interest to relate this mathematical defi
tion to the ~more physical! averages of the orientation an
ellipticity of the total field. Let us introduce the intensity
weighted, averaged orientation and ellipticity of the to
field defined by

^tan~2f t!&5
1

s0
^tan~2g!cos~d!~Ex

21Ey
2!&, ~15!
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55 1317POLARIZATION OF HIGH-ORDER HARMONICS
^sin~2x t!&5
1

s0
^sin~2g!sin~d!~Ex

21Ey
2!&, ~16!

wheref t andx t are local variables relative to the total fiel
The averaged values reflect the polarization in the hi
intensity regions of space or time: it gives a physical, ha
waving, interpretation to the ‘‘macroscopic’’ polarization o
the harmonic field. For the orientation, we checked num
cally, that in our experimental conditions whereP>0.7, the
orientation tan(2f) @Eq. ~14!# was very close to the aver
aged valuê tan(2f t)&. The averaged elliptcity can be writ
ten as

^sin~2x t!&5
s3
s0

5Psin~2x!, ~17!

which differs by the factorP from the definition of
e5tan(x) @see Eq.~13!#. e cannot be directly interpreted a
a ‘‘macroscopic’’ ellipticity. However, the parameters
Eqs. ~13,14! obviously coincide with either the weighted o
the standard mean values of tan(2f) and sin(2x) when the
intensitys0

np becomes negligible, i.e., for a degree of pola
ization P close to 1. At least in this limit, the paramete
defined in Eqs.~13,14! can be interpreted as averaged valu
characterizing an ‘‘average’’ polarization of the harmon
field.

Finally, the ellipticity can be expressed as

e5tan~x!5sgn~s3!As02s0
np2As121s2

2

s02s0
np1As121s2

2
. ~18!

This will be used for comparison with experimental data
is important to note that the determination of the elliptic
requires the knowledge of eithers3 or s0

np, in addition to the
s0, s1, ands2 parameters. In other words, the circularly p
larized part of the radiation has to be determined in orde
characterize completely the harmonic polarization state.

III. EXPERIMENTAL PROCEDURE

In our experiment, we did not determines3 or s0
np , which

means that we could not give a complete determination
the harmonic ellipticity. We now discuss in more detail ho
the other Stokes parameters were determined, before des
ing the experimental setup.

A. Experimental determination of the Stokes parameters

We follow the classical scheme adapted from@15# except
that, for practical reasons, we rotate the electric-field vec

^EW q& in front of a fixed polarizer~simply by rotating the
polarization of the fundamental field!, instead of rotating a
polarizer in front of a field with a fixed polarization. In ou
analysis, (x,y) represent the axes of our polarizer, wh
(x8,y8) is the reference frame bound to the fundamental
larization (x8 parallel to the major axis!. The angle between
the x and x8 axes is calledf f ~see Fig. 1!. We note

Ex85Ex8e
2 ifx8 and Ey85Ey8e

2 ify8 the complex components o
the harmonic light vector in the (x8,y8) frame, and we se
-
-

i-

-

s

t

to

f

rib-

r

-

d85fx82fy8 . The polarizer is a reflecting element of refle
tivity Rp along thex axis, andRs along they axis. Its action
is only partial since neitherRp nor Rs is equal to zero. For
the sake of completeness, let us assume that, by using
equivalent of a retardation plate, we could introduce
phaseshifth between the two componentsEy8 and Ex8 . The
reflected intensityI q measured after the polarizer is equal

I q~e f ,f f ,h!5Rp^ExEx* &1Rs^EyEy* &, ~19!

wheree f is the ellipticity of the fundamental. In terms of th
field components in the (x8,y8) frame,I q takes the form

I q~e f ,f f ,h!5
~Rs1Rp!

2
s02

~Rs2Rp!

2
s1cos~2f f !

1
~Rs2Rp!

2
^2Ex8Ey8cos~d82h!&sin~2f f !,

~20!

where s0 and s1 are defined according to Eq.~6! in the
(x8, y8) frame. Whenh50, the second line of Eq.~20! is
proportional tos2, whereas, whenh5p/2, it is proportional
to s3. Since, unfortunately, any phase shifting of one co
ponent of the XUV light relative to the perpendicular com
ponent is hardly feasible, only thes1 ands2 parameters were
accessible in our experiment. We seth50 in the following.
Equation~20! can be written as

I q~e f ,f f ,0!5
Rs1Rp

2
s02

Rs2Rp

2
As121s2

2cos2~f f1f!,

~21!

where we have introduced the anglef defined by
tan(2f)5s2 /s1. The transmitted intensity oscillates with th
anglef f . The position of the maxima or minima can be us
to determine the orientation of the harmonic field, while t
amplitude of the modulations gives information on its deg
of ellipticity. According to Eq.~14!, f can be directly inter-
preted as the polar angle of the major axis of^EW q& in the

FIG. 1. Reference frame for the measurement of the harmo
polarization state. The (x8,y8) frame is bound to the major axis o
the fundamental polarization. The anglef is the offset angle be-
tween the major axes of the fundamental and harmonic ellipse
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FIG. 2. Experimental setup for the measur
ments of the rotation angle and ellipticity of th
harmonics. The polarization of the harmonic r
diation is rotated in front of a fixed polarizing
mirror.
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(x8,y8) frame, or, in other words, the angle between t
major axes of the fundamental and the harmonic polariza
~see Fig. 1!, i.e., the offset angle.f f1f is the polar angle
for the major axis of̂EW q& in the (x, y) frame. From Eq.~21!,
we easily see that the maximum is obtained wh
f f1f5p/2, i.e., when the major axis of the harmonic p
larization is vertical, in the direction of the maximum refle
tivity of the polarizer. The amplitude of the modulation
the transmitted intensityI q does not provide a complete e
lipticity determination unless the light is completely pola
ized. Let us introduce the parameteremax:

emax5ARsImin2RpImax

RsImax2RpImin
, ~22!

where

I
max/min

5
Rs1Rp

2
s06

Rs2Rp

2
As121s2

2. ~23!

I max (I min) are, respectively, the maximum and the minimu
of the transmitted intensityI q . The parameteremax can be
expressed in terms of Stokes parameters as

emax5As02As121s2
2

s01As121s2
2
. ~24!

The comparison with Eq.~18! clearly shows thatemax is
equal to the absolute value of the exact ellipiticitye only if
s0
np50 ~i.e., for a completely polarized laser field!. It can be
interpreted as anupper boundof the ellipticity, since Eq.
~18! is a slowly decreasing function ofs0

np. Note that the sign
of the ellipticity ~the sign ofs3) cannot be measured in ou
experiment.

B. Experimental setup

We now describe the experimental conditions in wh
harmonic generation was studied. The experimental setu
schematically displayed in Fig. 2. The experiment was p
formed in the femtosecond laser facility of the CEA
DRECAM in Saclay. The laser used is a titanium-sapph
system consisting of an oscillator, a regenerative amplifi
and a second amplifier~multipass!, operating at a 20 Hz
repetition rate. High-energy output of typically 50 mJ
achieved at 790 nm with a pulse duration of 150 fs. T
beam has a 40 mm diameter before it is apertured and
cused in a gas jet using a fused-silica lens of focal len
e
n

n

is
r-

e
r,

e
o-
h

f5 1 m. The characteristics of the pulsed gas jet used in
experiment have been thoroughly described in@17#. The jet
of gas is quite collimated, and the density profile is a qua
Lorentzian distribution. In the present experiment, we e
mate the peak pressure to about 10 mbar and the lengt
the medium~i.e., full width at half maximum of the density
profile! to 1 mm. The laser beam focus was positioned at
center of the gas jet~with an uncertainty of 0.3 mm!.

Adjusting the diaphragm before focusing is a conveni
way to control the light intensity at focus in order to avo
significant ionization of the emitting medium. The peak i
tensity was estimated by measuring the number of harmo
photons as a function of the pulse energy; the curves
tained were then compared to the ones reported in@18#,
which were measured in very similar conditions and th
oughly calibrated. In the present work, the polarization m
surements were performed at 1014 W/cm2 in xenon,
231014 W/cm2 in argon, and at 4 or 631014 W/cm2 ~de-
pending on the harmonic order! in neon within a factor of 1.5
uncertainty. These intensities are significantly below the
called saturation intensities for the three gases. Above s
ration, ionization is significant so that depletion of th
ground state and the effect of the free electrons~defocusing
of the fundamental beam and additional phase misma!
become important. These effects are nevertheless not n
gible in our experimental conditions and are accounted fo
the simulations. The confocal parameterb depends on the
diaphragm aperture and therefore on the gas used to gen
the harmonics. It varies between approximately 5 mm
neon to 20 mm for xenon. In the numerical simulations,
assumed the beam to be Gaussian.

After the interaction, the fundamental and harmonic ligh
were focused by a toroidal mirror of 1 m focal length and
diffracted at grazing incidence on a plane grating~157° de-
viation, variable density of grooves around 700 groov
mm!. The exit slit of the spectrometer was set to 200mm,
corresponding to a 1 Å spectral resolution. This was suffi
cient to properly resolve two successive harmonics, but
to measure the spectral profile of each harmonic.~We
checked that a 400mm slit did not change the profiles.!

A silver-coated mirror at 45° incidence angle was i
stalled between the output slit and the photomultiplier det
tor ~see Fig. 1!. It acts as a polarizer since its reflectivity
strongly polarization dependent (Rs!Rp). The incidence
angle of 45° was chosen so that theRs/Rp ratio or ‘‘con-
trast’’ is maximum. The higher the contrast~infinite for a
perfect polarizer!, the more accurate is the ellipticity mea
surement. In similar experiments carried out by Bucksba
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55 1319POLARIZATION OF HIGH-ORDER HARMONICS
@9#, the grating used for selecting the harmonics played
role of the polarizer, introducing a contrastRs/Rp of about 2.
The same contrast was measured with our spectrometer~mir-
ror and grating at grazing incidence!. With the addition of
the mirror at 45 degrees incidence, however, a total cont
of 12 to 20 was achieved for radiation typically between
and 50 eV@19#. In the same range, the absolute reflectivit
decrease from about 0.2 fors-polarized light (Rs) and 0.03
for p-polarized light (Rp) by at least one order of magnitud
in each polarization. This is illustrated in the harmonic sp
tum measured in neon in Fig. 3. The intensity of the differ
harmonics, shown by the dashed line, regularly decrease
a function of harmonic order, while in the same conditio
without the reflecting mirror, the plateau extends till the o
der 67~solid line!. The 29th harmonic in neon is the last fo
which ellipticity measurements could be performed with s
ficient accuracy. Measurements of the orientation, not as
manding, were performed up to the 33rd harmonic.

The polarization of the fundamental beam was initia
linear along thex horizontal axis. It was first made elliptica
using a quarter-wave plate of zero-order. An anglea be-
tween a neutral axis of the plate and thex axis ~see Fig. 2!
introduces an ellipticitye f5tan(a). Changing the sign of
a inverts the sense of rotation on the ellipse. The ellipti
polarization was then rotated using a half-wave plate mak
an angleb with respect to thex axis. The anglef f is equal
to 2b2a and the measured intensityI q(a,b) can easily be
expressed as a function of the orientationf f(b,a) of the
fundamental field. A typical example corresponding to t
17th harmonic in neon is reported in Fig. 4 for line
(e f50! and elliptical@e f56tan~10°!# polarization. The ob-
served period ofp agrees with the prediction of Eq.~21!.

FIG. 3. Harmonic spectra measured with~a! the spectrometer
only ~—–!, in xenon, argon, and neon;~b! the spectrometer and th
polarizing mirror in neon~- - -!. The latter shows the decrease of t
reflected intensity with energy, which limits reliable measureme
to the 33rd order.
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The parametersI max and I min leading tos1, s2 are derived
from a fit of the form of Eq.~21!. In the linear case,e f50,
f(e f50)50 and the I max/I min ratio gives the contras
Rs /Rp .

To determine the orientation angle, we use the symme
relationf(e f)52f(2e f). It allows us to determinef(e f)
as

f~e f !5
1

2
@f f~2e f !2f f~e f !# ~25!

which is directly obtained by reading the difference betwe
the angles corresponding to the maxima ofI q(e f ,f f) and
I q(2e f ,f f) in Fig. 4.

In the elliptical case, the measurements ofI max and I min
allow us to determineemax, upper limit to the absolute value
of the true ellipticity e @see Eq.~22!#. As for the rotation
angle, we have the symmetry relatione(2e f)52e(e f) and
emax(2e f)5emax(e f). We measure independentlyemax(e f)
andemax(2e f), and take the average value. These meas
ments do not provide the sign of the harmonic ellipticity: t
parameteremax is defined as a positive quantity, which do
not include the sign information. In the following~see Figs.
5–7!, in order to plot and compareemax to the calculatede in
the full range of measurements, we attribute a sign
emax, which is the same as that of the calculatede ~and as
that of the fundamentale f). In fact, we showed in@10# that,
in conditions close to our experiment, the calculated ellipt
ity of the harmonic far field, after propagation and integr
tion in time and space, kept the same sign ase f throughout
the studied range. Note that it is not necessarily the case
the harmonic field generated locally, by a single atom~see,
e.g., the single atom response for the 23rd harmonic in@10#!.

In the experimental signal~Fig. 4!, the positions of the
maxima are more accurately determined from the fit than
the amplitude of the oscillations. Therefore, it is clear fro
Eqs. ~21! and ~22! that the uncertainty on the upper valu
emax of the ellipticity is larger than the one on the rotatio
angle @we have mentioned that in neon and for the high
harmonics 29, 33, theI min signal was relatively low and

s

FIG. 4. Intensity of the 17th harmonic (I 17) measured after the
polarizer, as a function of the polar anglef f of the major axis, for
several ellipticitiese f50,60.18 of the fundamental polarization
The offset anglef is directly obtained from the phase shift betwe
the curves corresponding toe f and 2e f . The ellipticity upper
boundemax is derived from theI max and I min measurements.
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subsequently the uncertainty large:DI min /I min51 in the
worse cases. An overestimate ofI min would lead to an over-
estimate ofemax in Eq. ~22!#.

Let us mention a source of error in theI q measurements
caused by the small but unavoidable birefringence of
entrance window to the vacuum chamber. This alters
ellipticity e f and orientationf f of the fundamental field, in a
way which depends on the half-wave plate orientation. E
a very small birefringence, not observable in the visib

FIG. 5. Measured and calculated ellipticity upper boundemax

~- - - -! for the 17th harmonic in xenon, as a function ofe f ; calcu-
lated ‘‘true’’ ellipticity e ~•••!; degree of polarizationP ~•–•–•!. In
Figs. 5–7, the sign ofemax is chosen to be that of the calculate
e. The same confocal parameterb as for the offset angle is used i
the calculations.

FIG. 6. Measured and calculated ellipticity upper boundemax

~- - - -! for the ~a! 23rd, ~b! 17th harmonic in argon; calculate
‘‘true’’ ellipticity e ~•••!; degree of plarizationP ~•–•–•!. Note that
uemax2eu increases asP deviates from 1. The ‘‘true’’ ellipticitye
remains lower thane f .
e
e

n

range, prevents a reliable measurement of the intensityI q ,
which is a very sensitive function ofe f and f f . Several
fused silica windows, of thickness 5 to 8 mm mounted w
minimum constraints and accurately set perpendicular to
light propagation were tested. Although the birefringence
neither of them could be observed in the usual way, i.e.,
detecting a variation of the transmitted light when rotati
the window between crossed polarizers, it was clearly
servable in the harmonic signal. The birefringence of
window leads to a modulation ofI q , which is only 2p pe-
riodic and notp periodic, as it should be, and to differenc
in the maxima obtained fore f and 2e f . The results pre-
sented in Fig. 4 and below were obtained with the ‘‘bes
available window. The effect of the small birefringence i
duced by the window on the harmonic signal is still obse

FIG. 7. Measured and calculated ellipticity upper boundemax

~- - - -! for the ~a! 17th, ~b! 23rd, ~c! 29th harmonic in neon;
calculated ‘‘true’’ ellipticity e ~•••!; degree of plarizationP
~•–•–•!. Note that bothemax ande increase as the harmonic move
far from the cutoff.
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55 1321POLARIZATION OF HIGH-ORDER HARMONICS
able as a 30% variation between the first two maxima in F
4, corresponding to the two ellipticitiese f and2e f . This
variation is, however, averaged in the fit.

The error bars shown in the figures for ellipticity pr
sented below account for the two sources of error we h
mentioned, i.e., the one onI min and the one induced by bi
refringence effects.

IV. RESULTS

We performed systematic measurements in xenon, ar
and neon, for the 17th, 23rd, 29th, and 33rd harmon
~Note that, in our experimental conditions, the last two h
monics were observable only in neon, and the 23rd only
argon and neon.! In this way, we span, not only the gas an
intensity, but also the position of the harmonic in the sp
trum at the considered intensity. According to theoretical c
culations @10#, the variation of the rotation angle and th
ellipticity with the laser ellipticity strongly depends o
whether the harmonic is in the plateau or in the cutoff. T
harmonic spectra obtained in the three rare gases at the
sidered laser intensities using linearly polarized light and
polarizing mirror are shown in Fig. 3. As an example, t
23rd harmonic is in the cutoff in argon, but in the plateau
neon. The 17th harmonic lies in the cutoff in xenon, while
the plateau in neon and argon, etc.

We present in parallel to the experimental results for
rotation angle and upper value of the ellipticity, the results
numerical simulations, using the method described in Sec
For argon and neon, the best comparison between meas
and calculated values is obtained when taking account of
rescattering in an effective way, i.e., when restricting
integration over the return timet to t<2p/v in the expres-
sion ~3! of the dipole moment. The curves displayed in Fig
8, 9, 6, and 7 are calculated with a restricted integration

For xenon, the two calculations, either with or without t
above restriction of the integration, give essentially the sa
results. The curves displayed in Figs. 10 and 5 are calcul
with a full integration.

The simulations were found to be robust against va
tions as large as a factor of 2 of the intensity, the laser c
focal parameter, and in general, the macroscopic param
of the interaction. This makes the comparison between
experimental and theoretical results meaningful. It is wo
stressing that the calculations areab initio, without any pa-
rameter adjustment. We now describe in turn the results
the rotation angle and the ellipticity.

A. Rotation angle

In xenon, we restrict the analysis to the 17th harmon
which is already in the cutoff at an intensity of 1014

W/cm2. The result is shown in Fig. 10. The offset ang
relative to the fundamental increases approximately line
with the laser ellipticity, but remains very small, lower tha
5° in the studied range. This is in good agreement with
theoretical prediction, shown by the dashed line. Note th
in Figs. 8–10, the experimental points and the calcula
curve have been antisymmetrized with respect toe f50, in
order to match the range for the ellipticity measurements
the next section. The odd character of experimental of
anglef is explicitly introduced in Eq.~25!. In Figs. 8–10,
.
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the error bars are the ones computed from the standard
viations in the fit to the experimental data.

In the case of argon, at an intensity of 231014 W/cm2,
the 17th and 23rd harmonics are, respectively, at the en
the plateau and in the cutoff. The offset angle for the 1
harmonic is significantly greater than the one for the 23
~Fig. 8!. This effect is well reproduced by the calculations

In neon, the laser intensity is increased up to respectiv
431014 W/cm2 for the 17th and 23rd orders and 631014

W/cm2 for the 29th and 33rd orders without excessive io
ization of the emitting medium. All of these harmonics a
well in the plateau region. In all our measurements, the
tation angle varies approximately linearly with the laser
lipticity. The results presented in Fig. 9 show a regular d
crease of the offset angle as a function of the harmonic or
The comparison between the rotation angles obtained for
same harmonic order~the 17th and the 23rd! in the different
rare gases leads to the conclusion that for a given laser e
ticity, the rotation angle strongly decreases from neon to
non, i.e., as one becomes closer to the cutoff. In conclus
the present set of data shows that it is the relative positio
a given harmonic, either close to or far from the cuto
which determines the slope of the offset angle as a func
of the laser ellipticity, rather than the harmonic order itself
the emitting medium.

B. Harmonic ellipticity

As explained in Sec. III, due to the partial polarization
the harmonic light, the measurement of the contr
I max/I min leads to an upper boundemax @Eq. ~24!# rather than
to the harmonic ellipticitye itself @Eq. ~18!#. A misleading

FIG. 8. Measured and calculated offset angle for the~a! 17th
and ~b! 23rd harmonic in argon,b51 cm.
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FIG. 9. Measured and calculated offset angle for the~a! 17th; ~b! 23rd in neon,b50.5 cm; ~c! 29th; and~d! 33rd harmonic in neon,
b50.5 cm.
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interpretation of the measured quantity, erroneously regar
as the ellipticity, may result in overestimatinge by up to a
factor of 2 in our experimental conditions. In Figs. 5–7, w
plot in the same graph, the signedemax from the experiment,
and the calculatede and signedemax ~dotted and dashed
lines, respectively! as functions of the laser intensity. W
recall that the sign of signedemax is chosen as the one o
calculatede, so that both quantities appear to be odd fun
tions ofe f . In Figs. 5–7, for the sake of simplicity, the sam
label emax is used for signedemax. We also show, on a
different scale indicated at the right in the figure, the cal

FIG. 10. Measured and calculated offset angle for the 17th
monic in xenon, as a function of the fundamental ellipticitye f ~here
and in Fig. 5, full integration overt in the dipole moment!. Both
experimental points and theoretical curve are symmetrized with
spect toe f50. We use a confocal parameterb52 cm in the calcu-
lation.
ed

-

-

lated degree of polarization. In these measurements, we
not include the 33rd harmonic in neon, which was too we
to allow us to determine unambiguouslyI min . As mentioned
above, the error bars are computed from both the experim
tal uncertainty onI min and the standard deviation in the fi
from the data points.

In xenon, the ellipticity upper bound for the 17th ha
monic remains very small~Fig. 5!. The same observation i
made for the 23rd harmonic in argon@Fig. 6~a!#. These two
harmonics are in the cutoff. An harmonic in the plateau b
close to the cutoff~17th in argon! presents an ellipticity up-
per bound which is larger than the first two, but neverthel
smaller than the ellipticity of the driving field@Fig. 6~b!#. In
each figure, we note that the smaller the degreeP of polar-
ization, the larger the difference betweene andemax.

Turning to neon, we observe an upper bound that is v
large, even within the error bars. It is of the same order
even larger than the fundamental ellipticity. The calcula
emax is in general lower than the experimental value. W
tentatively attribute this discrepancy to the effect of resc
tering, especially important for the low harmonics radiat
from ‘‘low energy’’ trajectories. For the 17th~H17! and 23rd
~H23!, harmonic the contributing trajectories correspond t
kinetic energy of the electron of, respectively, 4.8 eV a
14.1 eV above the ionization threshold. At such a low ene
in the atomic continuum, long-range Coulomb interacti
may drastically affect the electron trajectory, and theref
the polarization of the harmonic light. Actually, the effectiv
account for Coulomb scattering, as included in the mod
may be not accurate enough. Note that for H17 in arg
energy of 10.6 eV is associated with the contributing traj

r-

e-
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55 1323POLARIZATION OF HIGH-ORDER HARMONICS
tories, and that the experimental value is already sligh
larger than the computed one.

As in the rotation angle measurements, a general tr
can be infered from the results. The variation of the ellipt
ity upper bound with the laser ellipticity is rather small f
the harmonic in the cutoff, but increases significantly as
harmonic moves away from the cutoff.

A large ellipticity upper bound corresponds, in general,
a degree of polarization significantly smaller than 1, i.
such thate is substantially different fromemax. In these
conditions, any conclusion on the harmonic ellipticity bas
from contrast measurements is obviously hazardous. T
should be the case for H17 in argon and H29 in neon~see the
curves in Figs. 6 and 7!, where the upper valueemax and
ellipticity e differ at maximum by a factor of 2. However, i
the case of xenon but also of argon, the good agreem
obtained between the experimental results and the sim
tions foremax gives us enough confidence to conclude on
harmonic ellipticity, using the results of the numerical sim
lations shown in the dotted line. The ellipticity of the ha
monic field appears to be always smaller than that of
driving field. It is about half of the laser degree of elliptici
when the harmonic is well in the plateau region. It is close
zero, i.e., the radiation is almost linearly polarized, when
harmonic is in the cutoff region of the spectrum. Althou
the comparison is much less convincing in neon, we ten
tively assume that the conclusion stands for the differ
gases.

It has been demonstrated that the coherence propertie
the harmonic light were optimized when the fundamen
beam was focused far before the gas jet@20#. In that case, the
considered harmonic is close to the cutoff region. On
basis of the present results, we can expect the harmoni
diation to be almost linearly polarized even if the drivin
field polarization is elliptically polarized.

V. CONCLUSION

We have presented measurements of the polarization
of high-order harmonics in xenon, argon, and neon. La
deviations from the polarization of the driving field we
observed for the three gases and all considered harm
orders. It seems that it is not the nature of the gas but ra
the harmonic position in the spectrum that determines
harmonic polarization state. In the cutoff region, the h
monic ellipticity is much smaller than the fundamental elli
ticity. A very small rotation angle of the harmonic polariz
tion ellipse with respect to the fundamental one is observ
However, when the harmonic is far from the cutoff, its p
larization has a significant degree of ellipticity, which neve
theless remains smaller than the fundamental ellipticity. F
thermore, the major axis of the harmonic polarization rota
by a large offset angle from the driving field polarizatio
This general trend is valid for all the harmonic orders and
three gases studied in this work.

The harmonic offset angle is very well reproduced in o
theoretical model for the three gases. The computed up
bound of the harmonic ellipticity compares well with expe
ment for xenon and argon. It is found smaller for neon. F
this gas with a high ionization potential, we assume that
exact account of Coulomb scattering should be necessar
y
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improving the results on ellipticity. It is worth stressing th
polarization measurements are a severe test for theore
predictions. Except for the ellipticity in neon, the goo
agreement between theory and experiment indicates tha
model describes well the dynamics of high-order harmo
generation and provides a good understanding of the me
nism.
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APPENDIX

A completely polarized field is characterized by the re
tion @15#

s0
25s1

21s2
21s3

2 , ~A1!

where the Stokes parameters are formally defined as a
aged quantities in Eqs.~6!. In this appendix, we show tha
Eq. ~A1! is highly binding for the field in the sense that th
ratio Ey /Ex and the phase differenced5fx2fy ~hence the
orientation and ellipticity! should be constant throughout th
whole time and space region of the average. From Eq.~A1!,
we easily show that

u^ExEye
id&u25^Ex

2&^Ey
2&. ~A2!

This equality is a limit case of a general Schwarz inequ
ity. Let us consider the following averaged expression:

^~Ex1lEye
id!~Ex1l*Eye

2 id!&>0, ~A3!

which is always positive or zero for any complex numb
l5m1 in. According to Eq.~A2!, the inequality~A3! re-
duces to the simple form

S m1
^ExEycosd&

^Ey
2& D 21S n2

^ExEysind&

^Ey
2& D 2>0. ~A4!

It is clear that there exists two valuesm and n, or
l52(s22 is3)/(s02s1), for which the expression is zero
As a result, the quantity averaged in Eq.~A3!, which is al-
ways positive or zero, should be zero everywhere for
givenl. We can write at each point in time and space:

Ey

Ex
eid52l215

s21 is3
s01s1

. ~A5!

It follows that tan(g)5Ey /Ex andd are constant in the re
gion of averaging. The same is true for the variablesx and
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f defining locally the ellipticity and the orientation, sinc
they are functions ofg andd given by Eqs.~5!. It is easy to
obtain from Eq.~A5! their expressions in terms of the Stok
parameters:

sin~2x!5sin~2g!sin~d!5
s3
s0
, ~A6!
,

,

d

.

,

tan~2f!5tan~2g!cos~d!5
s2
s1
,

in agreement with Eqs.~14!–~13!. The parameters tan(x)
andf, initially defined as local variables, get therefore t
meaning of a macroscopic ellipticity and orientation of t
polarized field.
e
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L’Huillier, and K. Rza̧żewski ~Plenum Press, New York
1993!, p. 95.

@2# P. B. Corkum, Phys. Rev. Lett.71, 1994~1993!.
@3# K. S. Budil, P. Salie`res, A. L’Huillier, T. Ditmire, and M. D.

Perry, Phys. Rev. A48, R3437~1993!.
@4# P. Dietrich, N. H. Burnett, M. Yu. Ivanov, and P. B. Corkum

Phys. Rev. A50, R3585~1995!.
@5# Y. Liang, M. V. Ammosov, and S. L. Chin, J. Phys. B27,

1296 ~1994!.
@6# N. H. Burnett, C. Kan, and P. B. Corkum, Phys. Rev. A51,

R3418~1995!.
@7# I. Mercer, E. Mevel, R. Zerne, A. L’Huillier, Ph. Antoine, an

C.-G. Wahlstro¨m Phys. Rev. Lett.77, 1731~1996!.
@8# P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, Opt. Lett.19,

1870 ~1994!; M. Yu. Ivanov, P. B. Corkum, T. Zuo, and A
Bandrauk, Phys. Rev. Lett.74, 2933~1995!.

@9# F. A. Weihe, S. K. Dutta, G. Korn, D. Du, P. H. Bucksbaum
and P. L. Shkolnikov, Phys. Rev. A51, R3433~1995!.

@10# Ph. Antoine, A. L’Huillier, M. Lewenstein, P. Salie`res, and B.
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