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Laser-enhanced tunneling through resonant intermediate levels

Stéphane Gue´rin and Hans-Rudolf Jauslin
Laboratoire de Physique, Universite´ de Bourgogne, CNRS, B.P. 400, F-21001 Dijon, France

~Received 11 July 1996!

We apply the tools of adiabatic Floquet theory to study the control of population transfer and tunneling
processes by strong laser pulses. We show how tunneling can be enhanced by intermediate resonant levels by
choosing appropriate pulse parameters. We obtain complete tunneling in times that are much shorter than the
bare tunneling time or the times obtained without intermediate levels.@S1050-2947~97!02002-7#

PACS number~s!: 42.50.Hz, 73.40.Gk, 03.65.2w
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I. INTRODUCTION

The availability of intense pulsed laser sources h
opened new possibilities in the control of molecular p
cesses. This includes a variety of phenomena such as ph
dissociation and recombination of molecules, fast selec
excitation of molecular vibrational states, and tunneling
fects. All these tasks cannot be generally treated by per
bative methods because the high intensity of the fi
strongly modifies the level structure of the unperturbed s
tem.

In the present paper, we use Floquet methods@1–5#,
which provide a generalization for periodic or quasiperio
time-dependent systems of the notion of energy eigenva
and eigenstates and leads to a generalization of the repre
tation of the time evolution in an eigenfunction expansio
This formalism can also be extended to treat pulse-sha
laser fields by means of the addition of adiabatic princip
@6,7#. One important role of these short laser pulses~in sub-
picosecond time domain! is to excite selectively one molecu
lar vibrational state@8–14#. The main difficulty is the com-
petition with the redistribution of energy over other degre
of freedom. More generally, short pulses avoid damage
the molecule caused by the high intensity. With the Floq
formalism, very interesting results of coherent effects ha
been obtained concerning~i! the prediction and control o
population transfer in a Morse oscillator@12–14# and~ii ! the
prediction and control~enhancement or suppression! of the
tunneling processes in a double-well potential@15–21#.

In the present article we combine these two mechanis
i.e., we enhance the tunneling using a controlled transit
The result is that the tunneling enhancement can be achi
with less intense laser pulses than those used in the prev
mechanism. We point out that this lower intensity can
crucial to prevent damaging the molecule or activating p
cesses not included in the model.

We treat the problem by solving numerically the tim
dependent Schro¨dinger equation in a quartic double-well po
tential driven by a monochromatic laser pulse, using an
curate and fast pseudospectral numerical method@22–26#
~with a Lanczos algorithm@27,28#!. We choose the param
eters to model the inversion of the NH3 molecule@29#.

In Sec. II we recall the method of control of the tunnelin
effect as proposed by Holthaus@18# and present the result
corresponding to the NH3 parameters. We describe the ad
batic Floquet formalism to interpret the results. We compl
551050-2947/97/55~2!/1262~14!/$10.00
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and extend several technical aspects of the adiabatic Flo
approach that had not been treated in the literature. In
ticular we clarify the mechanism of breaking of degenera
in the case ofN-photon resonances, in terms of degener
perturbation theory applied to Floquet states.

In Sec. III, which contains the main results of this artic
we use a pulse of the same length to achieve the same e
but using intermediate resonant or quasiresonant levels.
obtain the same final effect, but using a field intensity tha
lower by a factor 40.

II. CONTROL OF TUNNELING
DRIVEN BY A PULSE-SHAPED LASER FIELD

A. Tunneling model

The general system that we study is a particle in a qua
double-well potential driven by a smooth pulse-shap
monochromatic laser field. With the usual notations, in
mensionless units and denoting byu the initial phase of the
periodic force of frequencyv, the Hamiltonian is

Ha~ t !~x,p,u1vt !5H0~x,p!1H int
a~ t !~x,u1vt !, ~1!

whereH0 corresponds to the molecule

H05
1

2
p22

1

4
x21

1

64D
x4 ~2!

and H int describes the interaction, which we write in th
dipole approximation as

H int5xa~ t !sin~u1vt !. ~3!

The pulse of durationTp is taken to be of the form

a~ t !5amsin
2S pt

Tp
D , 0<t<Tp . ~4!

The particular form of the pulse is not important for th
phenomenon, the only relevant property is the slow va
tion. The particular analytic form~4! is chosen for the sim-
plicity of its treatment. The constantD, which characterizes
the height of the unperturbed barrier, is chosen to appro
mately correspond to the inversion of the NH3 molecule@29#
(\51) ~Fig. 1!. We denote the unperturbed eigenvalues a
normalized eigenfunctions by$En ,wn% with E1,E2,•••.
1262 © 1997 The American Physical Society
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55 1263LASER-ENHANCED TUNNELING THROUGH RESONANT . . .
We characterize the tunneling effect by the crossing of
particle from one side to the other side of the well. In t
unperturbed system, the tunneling can be described with
two linear combinations of the statesw1 and w2 of the
quasidegenerate lowest doublet (E1 ,E2)

w65
1

A2
@w1~x!6w2~x!#, ~5!

corresponding to the localization on the left- or the rig
hand side, respectively. Choosing one of these states a
initial condition @e.g.,f(t50)5w2#, the unperturbed sys
tem evolves naturally oscillating betweenw1 andw2 with
the bare frequencyvb5(E22E1). This defines the bare tun
neling timetb

~E22E1!tb5~2n11!p, nPZ. ~6!

In the driven regime with an adiabatic pulse, Holthaus@18#
established a similar formula, using an extension of the a
batic theorem for the Floquet states.

B. Floquet formalism

In this section, we briefly summarize the main tools
Floquet theory for periodic Hamiltonians@30,31# of fre-

FIG. 1. Unperturbed double-well potential with a schematic
dication of the eight lowest values of the unperturbed energ
~not to scale, only the qualitative locations under or above
barrier are indicated!. The values of the six lower
energies areE1521.517 04,E2521.516 85,E3520.640 819,
E4520.626 364,E5520.016 503, andE650.177 458. We con-
sider~a! tunneling without resonance in Sec. II,~b! tunneling with a
one-photon resonant transition betweenw1 andw6 in Sec. III B, and
~c! a two-photon resonant transition betweenw2 and w6 in Sec.
III C.
e

he

-
the

a-

f

quencyv and describe the extension needed for the addi
of a slow time-dependent modulationa(t). We use units
such that\51.

The problem with a time-dependent Hamiltonian can
reduced to an autonomous system by introducing a class
dynamical systemu(t): H5H„x,u(t)…, where u(t) repre-
sents the time evolution of the initial phaseu(t)5u1vt
@32–35#. In the periodic case,u(t) is thus a rotation onS1,
the circle of length 2p. We introduce the enlarged spac
K5H^L2(S

1) where L2(S
1) is the space of square inte

grable periodic functionsj(u) andH the Hilbert space on
which H acts.~This representation provides a simple gen
alization to the quasi-periodic case, i.e., the case with sev
incommensurable frequencies.!

The quasienergy operatorK is defined as the infinitesima
generator of the unitary operator~acting onK)

T2tU~ t,t0 ;u!Tt0:5e2 iK ~u!~ t2t0!, ~7!

where the translation operatorTt acts on L2(S
1) as

Ttj(u)5j„u(t)… and U(t,t0 ;u) denotes the propagator o
the Schro¨dinger equation. From this definition, the quasie
ergy operatorK can be written as

K~u!5H~u!2 iv
]

]u
. ~8!

This allows us to generalize the eigenfunction expansion
the time evolution for a periodic time-dependent syste
considering the eigenvectors~the Floquet states! and the ei-
genvalues~the quasienergies! of K: if K has a pure point
spectrum

KCn~u!5lnCn~u!, ~9!

the eigenfunctionsCn form an orthonormal basis of the en
larged spaceK and the time evolution of any initial condition
f(t50) can be written as

f~ t !5Tt(
n

cne
2 ilntCn~u!5(

n
cne

2 ilntCn„u~ t !…,

~10!

where the coefficientscn are determined from the initial con
dition by the scalar product inK,

cn5^Cnuf~0! ^1&K5E
0

2p du

2p
^Cnuf~0!&H . ~11!

@f(0)^1 is the initial condition~in H) embedded into the
enlarged spaceK by multiplying it with the function
f (u)51 ;u.# The index in the scalar product brackets ind
cates the Hilbert space to which it belongs.

For a given Floquet stateCm associated with the quasien
ergylm , it is easy to see thatCme

2 iku is also an eigenfunc-
tion with eigenvaluelm1kv, for all positive or negative
integersk. This implies that the quasienergies appear
families, labeled by the positive integerm, of the form

ln5«m1kv, n[~m,k! ;kPZ. ~12!

-
s
e
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1264 55STÉPHANE GUÉRIN AND HANS-RUDOLF JAUSLIN
The quasienergy spectrum can thus be dense~everywhere or
in some parts!. The quasienergy families allow an equivale
simpler formulation of the generalized eigenfunction exp
sion ~10!, which we write using the labeling~12!

f~x,t !5(
m

c̃m~u!e2 i«mtCm„x,u~ t !…, ~13!

with the coefficients

c̃m~u!5^Cmuf~x,0!&H ~14!

now determined by the scalar product inH. Thus, by choos-
ing for eachm family an appropriatek, all the dynamics can
be described in any single zone of quasienergy of sizev,
e.g., the ‘‘first Brillouin’’ zone2v/2<lm,k<v/2 ;m. In
this paper, we choose to represent the quasienergies in
zone around the energiesE1 andE2 corresponding to the two
initial unperturbed statesw1 andw2.

One can treat the case of a periodic field modulated b
slowly varying envelopea(t) ~e.g., a pulse! by combining
the Floquet formalism with adiabatic techniques@7,36#. For
the HamiltonianHa(t)

„u(t)… with a slowly varying paramete
a, we define instantaneous quasienergy states at each
t calculated with an instantaneous quasienergy oper
Ka(t)(u).

Extending the usual adiabatic theorem to these insta
neous Floquet states, one can formulate, under suitable
ditions, the following adiabatic conjecture, in terms of t
eigenfunctions@36#: If at time t0 the system is an instanta
neous Floquet statef(t0)5Cn

a(t0)
„u(t0)…, in the adiabatic

limit ( Tp→`) the time evolution determined by the Schr¨-
dinger equationi (]/]t)f5Ha(t)

„u(t)…f is such thatf(t)
stays for allt in an instantaneous Floquet eigenstate:

f~ t !5eidn~ t !Cn
a~ t !

„u~ t !… ~dnPR!. ~15!

The phasedn(t) is the superposition of the dynamical pha
and Berry’s geometric phase@37–39#. In our case, only one
parameter@the amplitudea(t) of the field# is varied adiabati-
cally to form a closed loop between the instantst50 and
t5Tp in the parameter space. As a consequence, the geo
ric phase is zero at the end of the pulse and the ph
dn(Tp) is then just the dynamical phase

f~Tp!5expS 2 i E
0

Tp
dsln

a~s!DCn
a~Tp!

„u~Tp!…. ~16!

The precise conditions for the validity of the adiabatic co
jecture have not yet been proven in the general case, but
supported by a fair amount of numerical studies. Th
mainly depend on the separation between the instantan
quasienergy levels. The difficulty comes from the fact th
the spectrum can be dense~a problem of small denomina
tors!. Without any relevant crossing or avoided crossing
quasienergy levels, this adiabatic conjecture has been pr
for finiteN-level models, where the spectrum ofK is discrete
with well-separated eigenvalues@40#. If there are crossings
or avoided crossings, we have to add restrictions. We
apply a generalized version, considering no longer a sin
t
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Floquet state but the Floquet subspace generated by
states involved in the crossing.

The quasienergies and Floquet states give a natural se
to study resonances and transitions. In the (v,a) plane~de-
noting bya the amplitude of thev-periodic force!, a reso-
nance corresponds to the crossing~degeneracy! of two ~or
more! Floquet eigenvalues ata50, giving rise to
N-photon transitions in a perturbative regime. If the fr
quency is not resonant but close to the resonant one,
observe an avoided crossing with a minimal distance at so
value (v,aac). In the adiabatic regime, the transitions b
tween levels are essentially determined by the avoided cr
ings @6,43#. They can be treated by Landau-Zener analy
@7,41#.

If there is some spatial symmetry in the problem~e.g., the
quartic double well!, the analysis of quasienergy crossin
and Landau-Zener transitions has to be done for each p
class, since states of different symmetry are not coupled
the dipole interaction~3!. Thus the quasienergy surface
l(v,a) of different parity class can cross without any co
sequences.

In this paper, we consider transitions induced by ex
resonances or by near resonances. We give a precise
retical analysis of the resonant transitions, applying stati
ary perturbation theory to the Floquet states. The quasire
nant case will be treated with the tools developed to interp
the transitions involving avoided crossings@6#.

We remark that the preceding ideas on the combination
the Floquet picture and adiabatic techniques can be exten
to more general time-dependent forces@42#, in particular for
quasiperiodic forces~i.e., two or more incommensurate fre
quencies!: if we assume that the force containsN incommen-
surable frequencies, the set of the initial phases associ
with the frequenciesv5(v1 , . . . ,vN) is represented by a
vector u. The time-evolved phase u(t)
5(u11v1t, . . . ,uN1vNt) is a classical flow on a
N-dimensional torusV5S13•••3S1. All the previous for-
mulas are thus generalized by substitutingv andu by v and
u, respectively, andv•]/]u5v1]/]u11•••1vN]/]uN .

C. Control of tunneling by laser without resonance

In this section we discuss the nonresonant mechanism
tunneling control treated in@18#. We set up the main formu
las that we will use for the extension to the resonant mec
nism. We also discuss the breakdown of the adiabatic reg
due to the presence of avoided crossings. This effect, wh
in this case degrades the tunneling, is of the same natur
the mechanism of resonant population transfer that we
have to control in the resonant tunneling mechanism that
propose in Sec. III.

In the quartic double-well potential, the quasienergy o
erator is

Ka~ t !~u!5H01xa~ t !sinu2 iv
]

]u
. ~17!

Applying the adiabatic conjecture to the initial conditio
f(0)5w2 , we obtain the time evolution at the end of th
pulse using Eq.~16!,
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f~Tp!5
1

A2 FexpS 2 i E
0

Tp
l1,0

a~s!dsDC1
a~Tp!

„u~Tp!…

2expS 2 i E
0

Tp
l2,0

a~s!dsDC2
a~Tp!

„u~Tp!…G . ~18!

At the beginning and the end of the pulse, the Floquet st
C1 andC2 are continuously connected@a(t)→0# with the
unperturbed eigenfunctionsw1 andw2. The tunneling prob-
ability is

z^w1uf~Tp!& z25sin2F12E0Tpds~l2,0
a~s!2l1,0

a~s!!G ~19!

which gives the complete tunneling condition

E
0

Tp
ds~l2,0

a~s!2l1,0
a~s!!5~2n11!p, nPZ. ~20!

It is like the bare tunneling condition~6!, but the unperturbed
eigenvalues are replaced by the quasienergies with the
propriate integration over the pulse~note that
lm,0

a ——→
a→0

Em

To avoid any resonance at moderate field amplitudes,
choose the frequencyv50.975~there are no states with en
ergies close toEj1kv, j51,2, for moderatek). To verify
the validity of the tunneling condition~20!, we first solve the
time-dependent Schro¨dinger equation numerically for a puls
of fixed lengthTp5741.8~this pulse contains about 115 o
cillations!. We then plot the probability for the system to b
at the other side of the well@Fig. 3~b!#.

In order to analyze the numerical result within the ad
batic Floquet framework, we solve the instantaneous eig
value problem~9! numerically, fora taken in the interval
0<a<am . We use a basis of eigenfunctions ofH0 for the
spatial part and Fourier series for theu part @7# @see Fig.
2~b!#. We then calculate and plot the integral of Eq.~20!
@Fig. 3~a!#. We find good agreement with the complete tu
neling condition~20! for n50,1 and for the complete de
struction of tunneling@Eq. ~20! for n51/2,3/2#. We remark
that complete destruction of tunneling refers only to the s
at the end of the pulse; during the pulse evolution, the w
packet does indeed have a non-negligible projection
w1 .

With the parameterD52.5, this result has been obtaine
by Holthaus@18#. He pointed out that the tunneling tim
obtained in this way forn50 can be shorter than the ba
tunneling because the differencel2,0

a 2l1,0
a during the pulse

becomes larger than the unperturbed differenceE22E1.
We obtain for the lowest field amplitude (n50, i.e.,

am50.332) complete tunneling for a pulse leng
Tp5741.8, which is 20 times smaller than the bare tunnel
time tb'16574. We remark that this ratio is not as good
the one in@18# because we use a smaller parameterD52
~instead ofD52.5) that involves a larger separation of th
doublet (E1 ,E2). We are moreover limited by a minimum
pulse length in order to remain in adiabatic conditions.

The plot of Fig. 2~a! shows the differencel2,0
a 2l1,0

a . We
note the presence of two zeros at small values ofa. Each of
them corresponds to a very long tunneling time for the v
es
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l-

ues ofa in their neighborhood. This phenomenon was ob
served in numerical simulations by Grossmannet al., who
called it acoherent destruction of tunneling@19#.

In Fig. 3~c! we have plotted the projection on the unper
turbed states orthogonal tow1 and w2 after the end of the
pulse, calculated from the numerical solution of the Schro¨-
dinger equation. This measures the deviation from adiaba
behavior. As expected, the validity gets worse for stronge
fields.

We made the following somewhat unexpected observ
tions. The deviation from adiabatic behavior seems to appe
with two separated thresholds, but in between the syste
seems to return to a quasiperfect adiabaticity.

This can be qualitatively interpreted by the three avoide
crossings appearing in the quasienergy plot@pointed by ar-
rows in Fig. 2~b!#: the first one~for a'0.425) involves the
quasienergiesl2,0

a with l15,27
a ~seven-photon resonance! and

the second and the third involve, respectively,l2,0
a with

l9,23
a andl1,0

a with l12,25
a ~five-photon resonance!. This first

avoided crossing induces transitions between the instan

FIG. 2. ~a! Logarithm oful2,0
a 2l1,0

a u/v for the system involving
no resonance (v50.975). ~b! Quasienergy diagram close to the
unperturbed energiesE1 andE2 ~only the relevant quasienergies of
our problem are plotted in this zone!. We notice~i! two crossings
betweenl1,0

a andl2,0
a involving the two singularities in~a!, ~ii ! the

three avoided crossings pointed by arrows:l2,0
a with l15,27

a close to
a50.425, indicating a seven-photon transition between the two u
perturbed levelsw2 and w15; l1,0

a with l12,25
a close toa50.58,

indicating a five-photon transition between the two unperturbed le
elsw1 andw12; andl2,0

a with l9,23
a . ~c! The narrow avoided cross-

ing of l2,0
a with l15,27

a is magnified.
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neous Floquet statesC2,0
a and C15,27

a For one passage
through the avoided crossing, the transition probability d
pends on the speed of the evolution along the Floquet st
compared to the minimal distance of the avoided crossing
in the usual Landau-Zener transitions@7#. Because of the
shape of the pulse, the instantaneous states pass through
avoided crossing twice and the final transition probabili
depends also on the maximal amplitude that is reached
yond the avoided crossing. If we fix all the parameters exce
the maximal amplitudeam and if we suppose that the pulse
is sufficiently slow, the transition probability as a function o
am can present oscillations between zero and a maxim
valueb ~which depends on the other parameters!. If we de-
noteP2→15 the transition probability fromw2 to w15 at the
end of the pulse, in@6# it is shown that

P2→155bsin2F E
tc

Tp2tc
ds~l15,27

a~s! 2l2,0
a~s!!G , ~21!

wheretc is the time of the avoided crossing. We can interpr
the first small oscillation on Fig. 3~c! with the formula~21!.

FIG. 3. ~a! *0
Tpds(l2,0

a 2l1,0
a ) calculated for eacham with the

values of the quasienergies of the diagram represented in Fig. 2~b!
~plotted in units ofp). ~b! Tunneling probabilityz^w1uf(Tp)& z2 at
the end of the pulse calculated with the numerical solution of t
Schrödinger equation.~c! Projection of the numerical solution
f(Tp) for eacham on the unperturbed states orthogonal tow1 and
w2. We notice large values of the projection foram.0.55, which
corresponds to the avoided crossings shown in Fig. 2~b! and implies
large corrections to the adiabatic behavior of Eq.~18!.
-
te
as

the

e-
pt

al

t

The smallness of the maximal valueb is due to the fact that
the avoided crossing involvingl2,0 with l15,27 is very nar-
row compared to the speed of evolution alongC2,0

a : the
evolution close to it is effectively highly nonadiabatic an
most of the population jumps across~twice! @41#. This leads
to a small component onw15 at the end of the pulse. Th
return to adiabatic behavior~for am'0.5) is predicted by Eq.
~21!: we indeed calculate that the integral of this equation
equal top for am'0.51, givingP2→15'0. After this value
the two next avoided crossing appear and induce other t
sitions.

This mechanism will be used in a similar way to obta
tunneling with adiabatic conditions even in a resonance s
ation. In that case, we have an exact crossing nearam50
~degeneracy of the Floquet states due to the exact resona!.
The tunneling effect will be achieved if we can control th
transition described above. We will then see that with t
mechanism we can increase the differencel2,0

a 2l1,0
a even

more using a resonance with intermediate levels.

III. ENHANCED TUNNELING
BY A PULSE-SHAPED LASER FIELD

WITH INTERMEDIATE RESONANT STATE

The mechanism discussed by Holthaus@18# involves only
the two levels of the tunneling doublet. The frequency of t
laser had indeed been chosen in order to avoid resona
with other unperturbed levels. Here we will study a differe
mechanism to control tunneling, which involves resonan
with others levels. With the help of this effect, we wish
enhance tunneling, i.e., obtain controlled tunneling by
pulse-shaped laser field of lengthTp!tb and with as weak
an intensity as possible, to avoid damage of the system.

We consider two possible resonances: one-photon
two-photon population inversions. We first describe in S
III A how to control population inversion.

A. Control of the resonant population transfer
in a nonperturbative regime

In this section we present the general results of the po
lation transfer under a strong pulse-shaped laser that is r
nant with two unperturbed levels of the system. We consi
a general system with eigenvalues and normalized eig
functions denoted$E1 ,w1%,$E2 ,w2%, . . . and aN-photon
resonance between two isolated levels$w i ,Ei% and
$w f ,Ef%.

We will calculate the time evolution of an initial cond
tion f(t50)5kw i with uku<1 (kPC) under a pulse-
shaped field~4!. ~The reason to include the factork will
become clear later on.! We will consider the general case o
anN-photon resonance and then give more precise results
the cases of one-photon and two-photon resonances.

1. N-photon exact resonances

The frequency of the laser is chosen to produce a re
nance between the two unperturbed levels$w i ,Ei% and
$w f ,Ef%:

v5
Ef2Ei

N
. ~22!

e
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For each timet, these two states give rise to two Floqu
families $l i ,k

a(t) ,l f ,k
a(t)% (kPZ). If the quasienergy zone

0<lm,k
a(t)<v is considered and, without loss of generali

we suppose 0<Ei<v, the relevant eigenvalues are the
$l i ,0

a(t) ,l f ,2N
a(t) %, wherel i ,0

a505Ei andl f ,2N
a50 5Ef2Nv. At the

beginning and at the end of the pulse (t50 andt5Tp), we
have a50 and the two quasienergiesl i ,0

a and l f ,2N
a are

degenerate (l i ,0
0 5l f ,2N

0 [Ei): the eigenfunctions are an
linear combination ofw i andw fe

2 iNu.
The perturbation breaks up the degeneracy. We denote

zeroth-order basis of linear combinations adapted to the
generacy breaking as

Ca
a50~u!5aiw i1afw fe

2 iNu, ~23a!

Cb
a50~u!52af*w i1ai*w fe

2 iNu, ~23b!

with uai u21uaf u251. The initial degeneracy is lifted fora
Þ0: the two states split into two branches corresponding
the Floquet statesCa

a(t) and Cb
a(t) associated with the

quasienergies that we denotela
a(t) andlb

a(t) .
We make the working hypothesis that the adiabatic e

lution ~15! connects these instantaneous Floquet states
continuity to the initial degenerate statesCa

a50 andCb
a50

without transitions between the two Floquet branchesCa
a(t)

andCb
a(t) , in spite of the fact that, at the beginning and

the end of the pulse, they are arbitrarily close to each ot
This conjecture is strongly supported by the numerical e
dence and can be expected to be justified by perturba
arguments, since the intensity is small when the two Floq
branches are close.

Inverting Eqs.~23!, we obtain

w i5ai*Ca
02afCb

0 , ~24a!

w f5eiNu~af*Ca
01aiCb

0!. ~24b!

The adiabatic time evolution of the initial conditio
f(0)5kw i is thus

f~ t !5kai* e
ida~ t !Ca

a~ t !~u1vt !2kaf* e
idb~ t !Cb

a~ t !~u1vt !.
~25!

At the end of the pulset5Tp , the degeneracy of the tw
Floquet states appears again and we can write using~23!

f~Tp!5kai* expS 2 i E
0

Tp
dslaDCa

0~u1vTp!2kaf

3expS 2 i E
0

Tp
dslbDCb

0~u1vTp!

5expS 2 i E
0

Tp
dslaD H F uai u21uaf u2

3expS i E
0

Tp
ds~la2lb! D Gkw i1ai* afe

2 iN~u1vTp!

3F12expS i E
0

Tp
ds~la2lb! D Gkw f J , ~26!

i.e., the time evolution can be again developed in the t
functions$w i ,w f% at the end of the pulse:
t

he
e-

o

-
by

t
r.
i-
ve
et

o

f~Tp!5ci~Tp!w i1cf~Tp!w f . ~27!

The inversion fromw i to w f at the end of the pulse is cha
acterized by the probabilityPi→ f(Tp)[ucf(Tp)u2, which is
obtained from Eq.~26!:

Pi→ f~Tp!54ukaiaf u2sin2F12E0Tpds~la
a~s!2lb

a~s!!G .
~28!

Note that this construction is not simply an approximation
a two-level model, since during the pulse evolution the wa
packet~25! has components in other states beside$w i ,w f%.

The expression~28! gives oscillations between the tw
unperturbed levelsw i andw f ~the maximal occupation prob
ability on w f is not necessarilyuku2) for a fixed duration of
the pulset5Tp , as a function of the maximal amplitud
am . This is due to the fact that the quasi-energy differen
la

a2lb
a grows with a ~there are no avoided crossings i

volving these quasienergies in the considered range ofa).
These oscillations will be characterized more precisely in
following sections for the cases of one- and two-photon re
nances. They can be interpreted as follows. The initial re
nant statew i splits into two orthonormal linear combination
Ca

a(0)50 and Cb
a(0)50 of the two Floquet statesw i and

w fe
2 iNu. During the laser pulse, the components evo

adiabatically independently of each other, following insta
taneous Floquet states and acquiring a phase. Fort5Tp , the
two resonant Floquet states interfere again and the differe
of their two phases determines the occupation probability
the statesw i andw f .

One can then conclude that~i! the inversion fromw i to
w f is complete if and only if the following two conditions ar
fulfilled:

uai u25uaf u25
1

2
, ~29!

E
0

Tp
ds~la

a~s!2lb
a~s!!5~2n11!p, nPZ, ~30!

and ~ii ! the inversion fromw i to w f is zero~complete Rabi
cycle! if and only if the condition

E
0

Tp
ds~la

a~s!2lb
a~s!!52np, nPZ ~31!

is fulfilled. In this latter case, inserting condition~31! into
the time evolution~26!, one obtains
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f~Tp!5expS 2 i E
0

Tp
dslaD F uai u21uaf u2

3expS 2 i E
0

Tp
ds~lb2la! D Gkw i

5expS 2 i E
0

Tp
dslaD kw i . ~32!

This last result has an important interpretation: in case of
complete Rabi cycle between two resonant states in adiab
conditions~no avoided crossing involving these two state!,
the time evolution of the initial state leads back to this init
state with the phase given by the adiabatic conjecture, a
no resonance were involved.

Thus, in order to enhance the tunneling, we must nec
sarily fulfill the two conditions: the complete Rabi cyc
from one of the two initial unperturbed states of the qua
double well through another resonant state and the tunne
condition. Another obvious condition is the hypothesis th
all the other states are far enough and do not affect the a
batic evolution of the two states involved in the resonan
~nor the third state involved in the tunneling!.

Breuer et al. @13,14# determined the coefficient
uai u5uaf u51/A2 of the linear combinations~23! for a one-
photon resonance within the rotating-wave approximat
for a two-level system. In order to calculate analytically t
coefficientsai andaf in a more general case, we apply th
stationary perturbation method to the degenerate Floq
states, which gives the linear combinations adapted to
lifting of degeneracy for a small value ofa. We will show
the result for a two-photon resonance. We will expose
Sec. III B the result with enhancement of the tunneling
one-photon and two-photon resonances.
t

is
e
tic

l
if

s-

c
ng
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ia-
e

n

et
e

n
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2. One-photon and two-photon exact resonance:
Stationary perturbation theory for Floquet states

In this section we apply the stationary perturbati
method to calculate the Floquet states in the enlarged s
K from the initial degenerate statesw i and w fe

2 iNu ~for
a50). We calculate up to first order for the one-phot
resonance (N51) and up to second order for the two-photo
resonance (N52), in order to obtain the coefficientsai and
af of the linear combinations~23! that lift the degeneracy for
a small value ofa.

We denoteKa thea-dependent quasienergy operator

Ka5K01aŴ, ~33!

with K0 :52 iv(]/]u)1H0 andŴ:5xsinu acting onK.
The eigenvalue problemKaCa5laCa is solved by the

perturbation method, i.e., in terms of powers of the sm
amplitudea:

la5l~0!1al~1!1a2l~2!1•••, ~34!

Ca5u0&1au1&1a2u2&1•••, ~35!

where u0&PS0, S0 denoting the zeroth-order subspace ge
erated by the two degenerate Floquet sta
$uf i&:5uw i ^ 1&, uf f&:5uw f ^e2 iNu&% and l (0)5Ei5Ef
2Nv. u0& represents the unknown linear combinations~23!.

First, we use this method up to first order in the on
photon resonance case to determine the value of the co
cientsai andaf of the linear combinations involving the tw
degenerate statesw i andw fe

2 iu @Eqs. ~23! for N51# with
the eigenvalueEi5Ef2v. The quasienergy operatorKa,
projected on the degeneracy subspace and written in
zeroth-order basis$w i ,w fe

2 iu%, is
P0K
aP05SEi 0

0 Ef2v
D 1aS ^w i uxuw i&

1

2pE0
2p

dusinu ^w i uxuw f&
1

2pE0
2p

due2 iusinu

^w f uxuw i&
1

2pE0
2p

dueiusinu ^w f uxuw f&
1

2pE0
2p

dusinu
D

5SEi 0

0 Ef2v
D 1

a

2i S 0 ^w i uxuw f&

2^w f uxuw i& 0 D , ~36!
e

whereP0 is the projector on the zeroth-order subspace.
The first order gives the eigenvalue problem restricted

the zeroth-order subspace

Ŵ~1!u0&5l~1!u0&, ~37!

with Ŵ(1)5P0ŴP0. Written in the zeroth-order basis, th
operator gives the matrix
o Ŵ~1!5
1

2 S 0 2 i ^w i uxuw f&

i ^w f uxuw i& 0 D , ~38!

which gives the two different first-order contributions to th
eigenvalues

la
~1!5

1

2
z^w i uxuw f& z, ~39a!
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lb
~1!52

1

2
z^w i uxuw f& z. ~39b!

The degeneracy is thus linearly lifted.
The calculation of the two zeroth-order orthonorm

eigenstates gives the two linear combinations@Eqs.~23! for
N51# with the coefficientsai52 ia f51/A2 :

Ca5
1

A2
~w i1 iw fe

2 iu!, ~40a!

Cb5
1

A2
~ iw i1w fe

2 iu!. ~40b!

These coefficients had been obtained in@12# for a two-level
model using the rotating-wave approximation to calcul
explicitly the Floquet states. The present approach is gen
since it applies to all systems with dipole coupling. The
coefficients satisfy the necessary condition~29! ~but not suf-
ficient! for complete inversion fromw i to w f . Thus, in the
one-photon resonance case we can express the transfer
ability as an integral of the instantaneous quasienergy dif
ence

Pi→ f~Tp!5uku2sin2F12E0Tpds~la
a~s!2lb

a~s!!G . ~41!
wo
ot
he
iv
s
t
n

l

e
ral
e

ob-
r-

In the two-photon resonance case, the two degenerate
quet states, which generate the zeroth-order subspace
notedS0, arew i andw fe

22iu associated with the eigenvalu
Ei5Ef22v. The degeneracy in this subspace@Eqs.~23! for
N52# is not lifted in first-order perturbation theory becau
projection of the quasienergy matrix in the zeroth-order ba
is now

P0K
aP05SEi 0

0 Ef22v
D ;a, ~42!

i.e.

P0ŴP0[0. ~43!

The second-order eigenvalue problem restricted to
zeroth-order subspaceS0 is @44#

Ŵ~2!u0&5l~2!u0&, ~44!

with

Ŵ~2!52P0ŴQ0~K02l~0!!21Q0ŴP0 , ~45!

where Q0512P0. This eigenvalue problem gives th
second-order correction of the eigenvalues and the assoc
zeroth-order eigenvectors.

The elements of the matrixŴ(2) are given by
Ŵnm
~2!5 (

~m,k!Þ$~ i ,0!,~ f ,22!%

1

Ei2lm,k
~0! ^fnuŴuwme

iku&K^wme
ikuuŴufm&K , n,mP$ i , f %, ~46!

which we can write more explicitly as

Ŵii
~2!5

1

4(
mPZ

z^w i uxuwm& z2F 1

Ei2Em1v
1

1

Ei2Em2v G , ~47a!

Ŵi f
~2!52

1

4(
mPZ

^w i uxuwm&^wmuxuw f&
Ei2Em1v

5~Ŵf i
~2!!* , ~47b!

Ŵf f
~2!5

1

4(
mPZ

z^w f uxuwm& z2F 1

Ef2Em1v
1

1

Ef2Em2v G . ~47c!
r
ce-

els
The degeneracy is lifted if the coupling between the t
unperturbed states (w i andw f) and some other states is n
negligible, giving in general two different eigenvalues for t
matrix Ŵ(2). The associated orthonormal eigenvectors g
the coefficientsai andaf and the formula of the oscillation
~28! can be completely determined. In the general case,
coefficientsai andaf do not satisfy the necessary conditio
~29! of the complete inversion fromw i to w f . In Sec. III C,
e

he

we will evaluate explicitly this lifting of the degeneracy fo
the two-photon resonance that we will apply to the enhan
ment of tunneling.

3. N-photon quasiresonance

If the frequency is quasiresonant between the two lev
w i andw f , v'(Ef2Ei)/N, the quasienergy diagraml as a
function ofa reveals an avoided crossing neara50 induced
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by the crossing in the (v,a) plane forv5(Ef2Ei)/N and
a50. The two Floquet states associated with these
states are not degenerate fora50. We can therefore denot
without ambiguity the two Floquet statesC i ,0

a(t) andC f ,2N
a(t)

associated with the quasienergiesl i ,0
a(t) andl f ,2N

a(t) .
This avoided crossing suggests the use of the result gi

the transition probability@6# that is calculated with a mode
of the two Floquet levels involved in the avoided crossi
and with the hypothesis of rapid transitions near this avoi
crossing. We conjecture that in this situation, Eq.~28! should
be replaced by

Pi→ f~Tp!;sin2F12Etc
Tp2tc

ds~l i ,0
a~s!2l f ,2N

a~s! !G , ~48!

where tc is the time corresponding to the avoided cross
denotedac in the quasienergy diagram:ac5a(tc).

B. Enhanced tunneling with a one-photon resonant state

We consider the doublet (w1 ,w2) and the higher unper
turbed levelw6, which is above the unperturbed barrier.
this section, we apply a monochromatic pulsed laser field
frequencyv chosen very close to the differenceE62E1 that
leads to resonance with the statew6.

We start with the same initial condition as in Sec. II: t
wave function is localized on one side of the we
@f(0)5w2#. Because the laser beam is pulse-shaped,
frequencyv has actually a certain widthDv that gets thin-
ner for larger pulse widths. The one-photon transition
tween the levelsw2 and w6 is parity forbidden. Thus we
expect transitions betweenw1 andw6, but w2 will stay un-
disturbed in the sense that, at the end of the pulse, the
sitions betweenw2 and the other states will be negligib
~although during the pulsew2 is actually perturbed!.

We can combine the one-photon resonant considerati
described in Sec. III A2 for the evolution ofw1 andw6, with
the evolution of the nonresonant statew2, which follows its
instantaneous quasienergy eigenstateC2

a(t)
„u(t)… without in-

teraction with the others. In this case, the initial degene
quasienergy la

a505lb
a50 labels the degenerate energ

E15E62v. The Floquet eigenstates can be written in t
case

Ca
a50~u!5a1w11a6w6e

2 iu, ~49a!

Cb
a50~u!52a6*w11a1*w6e

2 iu, ~49b!

C2
a50~u!5w2 , ~49c!

with the coefficients a1 and a6 given by Eq. ~40!:
a152 ia651/A2. Inverting these equations and inserti
w1 andw6 in the adiabatic time evolution of the initial con
dition f(0)5w2 , one obtains
o

g

d

g

f

e

-

n-

s,

te

s

f~Tp!5
1

A2
expS 2 i E

0

Tp
dslaD

3H 12 F11expS i E
0

Tp
ds~la2lb! D Gw1

1
i

2
e2 iN~u1vTp!F12expS i E

0

Tp
ds~la2lb! D Gw6

2expS i E
0

Tp
ds~la2l2,0! Dw2J . ~50!

The transition probability fromw1 to w6 at the end of the
pulse is then@formula ~41! for k51/A2#

P1→6~Tp!5
1

2
sin2F12E0Tpds~la

a~s!2lb
a~s!!G , ~51!

which gives exactly the condition of complete Rabi cycle
~31!. As expected, the quasienergy diagram~Fig. 4! shows
clearly the linear evolution of the quasienergiesla and lb
for small values ofa @Eq. ~39!#.

In Fig. 5~a!, we have plotted the Rabi oscillations ob-
tained by the numerical solution of the Schro¨dinger equation

FIG. 4. Forv51.6945'E62E1, quasienergy diagram close to
the unperturbed energiesE1 andE2. Notice the degeneracy of the
Floquet eigenstatesCa

a50 andCb
a50 with eigenvalueE15E62v,

which is linearly lifted foraÞ0.
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for our system and we compare it with the formula~51!. The
comparison shows very good agreement for the consider
field amplitude range.

In order to obtain complete tunneling, we have necessa
ily to fulfill the condition of complete Rabi cycle~31! from
w1 back tow1 at the end of the pulse. We now discuss the
possibility to achieve tunneling with a one-photon resonanc

Inserting the condition~31! in Eq. ~50! gives

f~Tp!5
1

A2
expS 2 i E

0

Tp
dslaD

3Fw12expS i E
0

Tp
ds~la2l2,0! Dw2G , ~52!

which leads to a similar tunneling condition as in the non
resonant case~20!

E
0

Tp
ds~la

a~s!2l2,0
a~s!!5~2n11!p,nPZ. ~53!

FIG. 5. ~a! For v51.6945'E62E1, transition probabilities at
the end of the pulse forw1→w6 @i.e., z^w6uf(Tp)& z2#, given by the
numerical solution of the Schro¨dinger equation ~solid line!;
w1→w6, given by the predicting formula~41! with the quasiener-
gies calculated numerically and shown in Fig. 4~circles!; and
w1→w1 @i.e., z^w1zf(Tp)&u2#, given by the numerical solution of the
Schrödinger equation~dashed line!. ~b! Tunneling probability at the
end of the pulse. It is maximum~equal to 1) for the first complete
Rabi cycle@i.e., z^w6uf(Tp)& z250#.
ed

r-

e.

-

Thus the achievement of complete tunneling effect depen
on the two conditions~31! and~53!. In order to satisfy them,
the two parameters (am ,Tp) can be varied; we can also vary
the frequencyv, keeping it, however, close to the value
E62E1 in order to stay close to resonance.

In order to find the parameters (am ,Tp) for which these
two conditions are satisfied, we perform a numerical calc
lation of the quasienergies for the fixed frequenc
v51.6945, which is very close to the exact resonant valu
~quasienergy diagram in Fig. 4!. For Tp5741.8 and
am50.145, we predict complete tunneling with a good pre
cision. We verify this prediction by the numerical simulation
@see Fig. 5~b!#: the tunneling probability obtained from the
quasienergy diagram~Fig. 4! is ^w1uf(Tp)&50.995 and
from the numerical simulation of the Schro¨dinger equation
@Fig. 5~b!#, we obtain^w1uf(Tp)&50.996. The maximum
amplitude (am(one-photon-resonant)50.145) leading to the en-
hancement of tunneling gives the maximum intensity small
by a factor 5 than the one obtained in the nonresonant ca
(am(nonresonant)50.332).

C. Enhanced tunneling with a two-photon resonant state

1. Two-photon exact resonance between the statesw2 and w6

Now we consider the same laser pulse but of frequen
v very close to (E62E2)/2. The selection rule makes now

FIG. 6. Forv50.847 155'(E62E2)/2, quasienergy diagram
close to the unperturbed energiesE1 andE2. Notice the degeneracy
of the Floquet eigenstatesCa

a50 and Cb
a50 with eigenvalue

E25E622v, which is quadratically lifted foraÞ0.
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the w1→w6 transition parity forbidden. Thus we expect
two-photon transition betweenw2 andw6 that is favored by
the presence of the unperturbed levelw3 approximately equi-
distant betweenw2 andw6 (w4 is irrelevant because of th
selection rules!. The initial condition is againf(0)5w2 .
The initial degenerate quasienergyla

a505lb
a50 now labels

the degenerate energyE25E622v.
In this section we achieve tunneling with two-photo

resonance fromw2 back to itself, using exactly the sam
procedure exposed in Sec. III B. In this case, the ini
Floquet states

Ca
a50~u!5a2w21a6w6e

22iu, ~54a!

Cb
a50~u!52a6*w21a2*w6e

22iu, ~54b!
de

il-

ac

u-

a

l

C1
a50~u!5w1 ~54c!

give the transition probability fromw2 to w6 at the end of the
pulse@formula ~28! with k51/A2#

P2→6~Tp!52ua2a6u2sin2F12E0Tpds~la
a~s!2lb

a~s!!G .
~55!

The values of the weightsa2 anda6 are given by the eigen
vectors of the second-order matrixŴ(2) @matrix ~46! includ-
ing the coefficients~47! with the indicesi and f replaced,
respectively, by 2 and 6#.

The dominant contribution to these matrix elements is
proximately given by the unperturbed levelw3:
Ŵ~2!'
1

4~E22E31v! S u^w2uxuw3&u2 2^w2uxuw3&^w3uxuw6&

2^w6uxuw3&^w3uxuw2& u^w6uxuw3&u2
D . ~56!
he
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The diagonalization gives the two different second-or
contributions to the eigenvalues that lift the degeneracy

la
~2!'

z^w2uxuw3& z2

4~E22E31v!
, ~57a!

lb
~2!'0. ~57b!

The associated zeroth-order eigenvectors are

Ca5cos
d

2
w21sin

d

2
w6e

22iu, ~58a!

Cb52sin
d

2
w21cos

d

2
w6e

22iu, ~58b!

with

tand'
2z^w2uxuw3&^w3uxuw6& z

z^w2uxuw3& z22 z^w6uxuw3& z2 . ~59!

The quasienergy diagram~see Fig. 6! confirms the quadratic
dependence ofla and the absence of change oflb for small
values ofa. The numerical value of the maximum probab
ity transitionP2→6(Tp) @Eq. ~55!# is: 2ua2* a6u

2'0.473@con-
sidering not only the dominant contributions but the ex
elements~47! of the matrixŴ(2)#.

To study the validity of the formula~55!, leading to the
condition of complete Rabi cycle~31!, we compare it with
the transition probability calculated explicitly by solving n
merically the Schro¨dinger equation in Fig. 7~a!. The agree-
ment is quite good.

The condition of complete Rabi cycle gives the addition
condition for complete tunneling

E
0

Tp
ds~la

a~s!2l1,0
a~s!!5~2n11!p, nPZ. ~60!
r

t

l

In order to determine if we can fulfill the two conditions~31!
and ~60!, we calculate numerically the quasienergies for t
fixed frequencyv50.847 155, which is very close to th
exact resonant value~quasienergy diagram in Fig. 6!.

First, we fix the pulse length (Tp5741.8) and make the
maximum amplitudeam vary to achieve complete tunneling
Figure 7~b! shows that the first complete rabi cycle@n50 of
Eq. ~31!, i.e., am50.052# leads to incomplete tunneling
~only about 90%). We do not find any value ofam compat-
ible with adiabatic behavior yielding complete tunneling.

This leads us to vary both parameters to look for compl
tunneling. We find it for the maximum amplitud
am50.0424 and a pulse lengthTp59272.5, which is only
around 2 times smaller than the bare tunneling time.
conclude that in order to obtain a better result we have
optimize also the choice of the frequency. We obtain a be
enhancement, i.e., tunneling for a shorter pulse length an
maximum amplitude of the same order of magnitude, va
ing the frequency around the resonant value. We present
final result in the next subsection.

We remark that in Fig. 10~a!, we have plotted the projec
tion of the time evolution on the three instantaneous Floq
states C1

a(t)
„u(t)…, C2

a(t)
„u(t)…, and C6

a(t)
„u(t)… for

am50.052. We note that, numerically, we do not find t
degeneracy ofC2

0 andC6
0 for a50 because the frequency

not exactly resonant due to the finite numerical precision,
very close to the resonant value. This produces a rapid t
sition betweenC2

a(t) andC6
a(t) for a'0 instead of the de-

generacy.

2. Two-photon quasiresonance between the statesw2 and w6

In this section we choose a value of the frequency clos
the previous value, which allows us to obtain tunneling fo
value ofa smaller than the one obtained in the one-pho
resonance.w2 andw6 are now almost in resonance. In th
case of two-photon quasiresonance betweenw2 andw6, the
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selection rules are unchanged from the case of exact re
nance: the initial nonresonant statew1 evolves following its
instantaneous Floquet stateC1

a(t)
„u(t)… and we expect tran-

sitions between the statesw2 andw6. However, the two Flo-
quet states associated with these two states are not dege
ate fora50. The two branches on the quasienergy diagra
@Fig. 8~a!# can be easily identified by continuity from the
different energiesE2 andE622v for a50 and labeled by
C2

a(t)
„u(t)… andC6

a(t)
„u(t)…. On this diagram@Fig. 8~a!# we

observe the expected avoided crossing fora'0.009@see the
more detailed logarithmic plot in Fig. 8~b!#. We can interpret
the transition betweenw2 andw6 with the formula~48!, sup-
posing that the transition is rapid enough close the avoid
crossing:

P2→6~Tp!;sin2F12Etc
Tp2tc

ds~l2
a~s!2l6

a~s!!G , ~61!

where tc is the time corresponding to the avoided crossin
denotedac in the quasienergy diagram:ac5a(tc).

FIG. 7. ~a! Forv50.847 155'(E62E2)/2, transition probabili-
ties at the end of the pulse forw2→w6 @i.e., z^w6uf(Tp)& z2#, given
by the numerical solution of the Schro¨dinger equation~solid line!;
w2→w6, as predicted by Eq.~55! with the quasienergies calculated
numerically and shown in Fig. 6~circles!; and w2→w2 @i.e.,
z^w2uf(Tp)& z2#, given by the numerical solution of the Schro¨dinger
equation~dashed line!. ~b! Tunneling probability at the end of the
pulse. It is equal to 0.9 for the first complete Rabi cycle@i.e.,
z^w6uf(Tp)& z250#.
o-

er-

d

g

In Fig. 9~a! we have plotted the comparison between t
formula ~61! including the maximum calculated with th
method for the exact resonance and the transition probab
obtained from the numerical solution of the Schro¨dinger
equation. We find that the formula~61! is a good approxi-
mation of this transfer of population, especially if the max
mal amplitude is large compared to the point of the avoid
crossing.

To achieve tunneling, we have moreover to suppose
validity of the property shown for the exact resonance~32!
giving the phase of the time evolution of the initial state w
the condition of complete Rabi cycle. In this case, the tu
neling condition is exactly the same as the one obtained
the two-photon exact resonance~60!.

In Fig. 10 we have plotted the projection of the time ev
lution on the three instantaneous Floquet statesC1

a(t)
„u(t)…,

C2
a(t)

„u(t)…, andC6
a(t)

„u(t)… for two-photon quasiresonan
frequencies (am50.052 is fixed!. We note that the beginning
of the C2

a(t)→C6
a(t) transition appears at a higher field in

tensity ~close to the avoided crossing! for the less resonan
frequency@Fig. 10~b!#.

We predict and find enhancement of the tunneling~with
the pulse lengthTp5741.8) for the maximum field ampli-
tudeam(two-photon-resonant)50.052@see Fig. 9~b!#, which gives
the maximum intensity lower by a factor 40 than the ma
mum field intensity needed to enhance tunneling in the n
resonant case. The tunneling probability obtained from

FIG. 8. ~a! For v50.8455, quasienergy diagram close to t
unperturbed energiesE1 andE2. Notice the absence of degenera
of the Floquet eigenstatesC2

a50 and C6
a50. ~b! Logarithm of

ul6,22
a 2l2,0

a u/v, which shows the avoided crossing fora'0.009.
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quasienergy diagram~Fig. 8! is ^w1uf(Tp)&50.9942, and
from the numerical simulation of the Schro¨dinger equation
@Fig. 9~b!#, we obtain^w1uf(Tp)&50.9941.

IV. CONCLUSION

In this paper we obtain an enhancement of tunneling in
quartic double-well potential model of the NH3 molecule by
a pulse-shaped laser field, i.e. the tunneling is achieved i
time corresponding to the pulse length (Tp), which is much
shorter than the bare tunneling time (tb'16574):
Tp5741.8!tb . The enhancement of tunneling is obtaine
for different ranges of maximum field intensity depending o
the frequency of the laser field leading to qualitatively di
ferent processes: no resonance, one-photon resonance

FIG. 9. ~a! Forv50.8455'(E62E2)/2, but further away from
resonance than the case in Fig. 7. Transition probabilities from
initial condition f(0)5(w12w2)/A2, at the end of the pulse for
w2→w6 @i.e., z^w6uf(Tp)& z2#, given by the numerical solution of the
Schrödinger equation~solid line!; w2→w6, as predicted by Eq.~61!
with the quasienergies calculated numerically as shown in Fig
~circles!; andw2→w2 @i.e., z^w2uf(Tp)& z2#, given by the numerical
solution of the Schro¨dinger equation~dashed line!. ~b! Tunneling
probability at the end of the pulse. It is equal to 0.99 for the fir
complete Rabi cycle@i.e., z^w6uf(Tp)& z250#.
a

a

and

two-photon resonance. The interest of using the two-pho
resonant process is that we can work with a lower inten
than for the nonresonant process.~The maximal amplitude of
the pulse is lower by a factor 40.!

The tools we use to interpret the enhancement of tun
ing are the adiabatic Floquet formalism for the theoreti
prediction and the numerical solution of the time-depend
Schrödinger equation. The adiabatic Floquet theory h
proven to be a very well adapted tool that allows us to
velop a precise understanding of the mechanisms
N-photon resonant transitions.
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FIG. 10. Numerical solution of the Schro¨dinger equation pro-
jected at each timet on the instantaneous Floquet states
am50.052: z^C1

a(t)„u(t)…uf(t)& z2, circles; z^C2
a(t)

„u(t)…uf(t)& z2,
solid line; andz^C6

a(t)
„u(t)…uf(t)& z2, dashed line, for~a! the reso-

nant frequencyv50.847 155 and~b! the quasiresonant frequenc
v50.8455.
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