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Laser-enhanced tunneling through resonant intermediate levels
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We apply the tools of adiabatic Floquet theory to study the control of population transfer and tunneling
processes by strong laser pulses. We show how tunneling can be enhanced by intermediate resonant levels by
choosing appropriate pulse parameters. We obtain complete tunneling in times that are much shorter than the
bare tunneling time or the times obtained without intermediate le}@k050-294{@7)02002-1

PACS numbd(s): 42.50.Hz, 73.40.Gk, 03.65w

I. INTRODUCTION and extend several technical aspects of the adiabatic Floquet
approach that had not been treated in the literature. In par-
The availability of intense pulsed laser sources hadicular we clarify the mechanism of breaking of degeneracy
opened new possibilities in the control of molecular pro-in the case oN-photon resonances, in terms of degenerate
cesses. This includes a variety of phenomena such as photperturbation theory applied to Floquet states.
dissociation and recombination of molecules, fast selective In Sec. Ill, which contains the main results of this article,
excitation of molecular vibrational states, and tunneling ef-we use a pulse of the same length to achieve the same effect
fects. All these tasks cannot be generally treated by pertuiPut using intermediate resonant or quasiresonant levels. We
bative methods because the high intensity of the fieldPbtain the same final effect, but using a field intensity that is
strongly modifies the level structure of the unperturbed syslower by a factor 40.

tem.
In the present paper, we use Floquet methpts5], Il. CONTROL OF TUNNELING
which provide a generalization for periodic or quasiperiodic DRIVEN BY A PULSE-SHAPED LASER FIELD

time-dependent systems of the notion of energy eigenvalues
and eigenstates and leads to a generalization of the represen-
tation of the time evolution in an eigenfunction expansion. The general system that we study is a particle in a quartic
This formalism can also be extended to treat pulse-shapedbuble-well potential driven by a smooth pulse-shaped
laser fields by means of the addition of adiabatic principlesnonochromatic laser field. With the usual notations, in di-
[6,7]. One important role of these short laser puléessub-  mensionless units and denoting Bythe initial phase of the
picosecond time domajris to excite selectively one molecu- periodic force of frequencw, the Hamiltonian is
lar vibrational statd8—14]. The main difficulty is the com-
petition with the redistribution of energy over other degrees HO(x,p, 0+ wt) =Ho(x,p) +Hir (x, 0+ ot), (1)
of freedom. More generally, short pulses avoid damage of
the molecule caused by the high intensity. With the FloquetvhereH, corresponds to the molecule
formalism, very interesting results of coherent effects have
been obtained concernin@ the prediction and control of H :E 2 }x2+ix4 ©
population transfer in a Morse oscillatidr2—14 and(ii) the 072 P 4 64D
prediction and controlenhancement or suppressiasf the
tunneling processes in a double-well potenties—21]. and H;,; describes the interaction, which we write in the
In the present article we combine these two mechanismglipole approximation as
i.e., we enhance the tunneling using a controlled transition.
The result is that the tunneling enhancement can be achieved Hine=Xa(t)sin( 0+ wt). €)
with less intense laser pulses than those used in the previous
mechanism. We point out that this lower intensity can beThe pulse of duratio, is taken to be of the form
crucial to prevent damaging the molecule or activating pro-
cesses not included in the model. a(D=a sinz(lt) 0
We treat the problem by solving numerically the time- m Tp)’
dependent Schdinger equation in a quartic double-well po-
tential driven by a monochromatic laser pulse, using an acthe particular form of the pulse is not important for the
curate and fast pseudospectral numerical metfzi-26 phenomenon, the only relevant property is the slow varia-
(with a Lanczos algorithni27,28). We choose the param- tion. The particular analytic forn) is chosen for the sim-
eters to model the inversion of the NHnolecule[29]. plicity of its treatment. The constait, which characterizes
In Sec. Il we recall the method of control of the tunneling the height of the unperturbed barrier, is chosen to approxi-
effect as proposed by Holtha{i$8] and present the results mately correspond to the inversion of the Blholecule[29]
corresponding to the NElparameters. We describe the adia- (2=1) (Fig. 1). We denote the unperturbed eigenvalues and
batic Floguet formalism to interpret the results. We completenormalized eigenfunctions ByE, , ¢} with E;<E,<- - -.

A. Tunneling model

<t<T,. 4
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quencyw and describe the extension needed for the addition
of a slow time-dependent modulatian(t). We use units
such thati =1.

The problem with a time-dependent Hamiltonian can be
reduced to an autonomous system by introducing a classical
dynamical systemd(t): H=H(x, 6(t)), where 6(t) repre-
sents the time evolution of the initial phaggt) = 6+ wt
\ / [32—39. In the periodic case(t) is thus a rotation ors!,

the circle of length Zr. We introduce the enlarged space
K=H®L,(S') whereL,(S) is the space of square inte-
grable periodic functiong(6) andH the Hilbert space on
®)(c) which H acts.(This representation provides a simple gener-
Es ] alization to the quasi-periodic case, i.e., the case with several
Es incommensurable frequencigs.

\ / The quasienergy operatris defined as the infinitesimal
generator of the unitary operatacting onk)

E,
&\ /

T,tU(t,to;6’)7{0:=efiK(9)(t7t°), (7)

B, where the translation operatof; acts on L,(S!) as
5 _ T.£(0)=€(0(t)) and U(t,tg;0) denotes the propagator of
the Schrdinger equation. From this definition, the quasien-
ergy operatoK can be written as

FIG. 1. Unperturbed double-well potential with a schematic in- 9
dication of the eight lowest values of the unperturbed energies K()=H(0)—iw—. (8
(not to scale, only the qualitative locations under or above the a0

barrier are indicated The values of the six lower ) ) ) ) )
energies areE;=—1.517 04, E,= —1.516 85, E;= —0.640 819,  This allows us to generalize the eigenfunction expansion of

E,=—0.626 364,E5= —0.016 503, and=¢=0.177 458. We con- the time evolution for a periodic time-dependent system,
sider(a) tunneling without resonance in Sec. (ib) tunneling with a  considering the eigenvectofthe Floguet statgsand the ei-
one-photon resonant transition betwesnandeg in Sec. Il B, and  genvalues(the quasienergigsof K: if K has a pure point
(c) a two-photon resonant transition betweep and ¢g in Sec.  spectrum
I C.
KWn(0)=A¥n(0), C)

We characterize the tunneling effect by the crossing of the
particle from one side to the other side of the well. In thethe eigenfunctionV’,, form an orthonormal basis of the en-
unperturbed system, the tunneling can be described with tharged spacé& and the time evolution of any initial condition
two linear combinations of the states;, and ¢, of the  ¢(t=0) can be written as
guasidegenerate lowest doublé&; (E,)

1 PO=T2 ce™ ™MW (0)=2 coe MW o(6(D)),
p== 50100 £ 200 (5) (10

where the coefficients, are determined from the initial con-

corresponding to the localization on the left- or the nght—lqgion by the scalar product ifc,

hand side, respectively. Choosing one of these states as t
initial condition [e.g., ¢(t=0)=¢_], the unperturbed sys- 27d6
tem evolves naturally oscillating betwegn. and ¢_ with Cn:<qfn|¢(o)®1>,c:f 2—<‘1’n|¢(0)>n- (11
the bare frequency,= (E,—E,). This defines the bare tun- 0 ™
neling time 7,
[¢(0)®1 is the initial condition(in ) embedded into the
(E,—Ej)mp=(2n+1)m, nel. (6) enlarged space/C by multiplying it with the function
f(6)=1 V6.] The index in the scalar product brackets indi-

In the driven regime with an adiabatic pulse, Holthaug] ~ cates the Hilbert space to which it belongs. _
established a similar formula, using an extension of the adia- For a given Floquet staté, as§ﬁ(c€|§1ted with th? quasien-
batic theorem for the Floguet states. grgyhm, it is easy to see thab e is al's'o an elgenfupc—
tion with eigenvalueA,+kw, for all positive or negative
_ integersk. This implies that the quasienergies appear in
B. Floquet formalism families, labeled by the positive integar, of the form
In this section, we briefly summarize the main tools of

Floguet theory for periodic Hamiltoniang30,31] of fre- An=emtko, n=(mk) VkelZ. 12
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The quasienergy spectrum can thus be déeserywhere or Floguet state but the Floguet subspace generated by the

in some parts The quasienergy families allow an equivalent states involved in the crossing.

simpler formulation of the generalized eigenfunction expan- The quasienergies and Floquet states give a natural setting

sion (10), which we write using the labelingl2) to study resonances and transitions. In thed) plane(de-
noting by o the amplitude of thev-periodic force, a reso-
nance corresponds to the crossifggeneracyof two (or

MXJ):% Cm(0)e™ W y(x, 6(1)), 13 more Floquet eigenvalues ata=0, giving rise to
N-photon transitions in a perturbative regime. If the fre-
with the coefficients guency is not resonant but close to the resonant one, we
observe an avoided crossing with a minimal distance at some
Cn(0) = (¥ | $(x,0)) (14)  value (w,ayd. In the adiabatic regime, the transitions be-

tween levels are essentially determined by the avoided cross-

now determined by the scalar productfih Thus, by choos- ings[6,43]. They can be treated by Landau-Zener analysis
ing for eachm family an appropriaté, all the dynamics can [7,41.
be described in any single zone of quasienergy of size  If there is some spatial symmetry in the probléeryg., the
e.g., the “first Brillouin” zone — w/2<\,, <w/2 ¥m. In  quartic double wej the gnaIyS|s of quasienergy crossings
this paper, we choose to represent the quasienergies in tR@d Landau-Zener transitions has to be done for each parity
zone around the energi&s andE, corresponding to the two  ¢lass, since states of different symmetry are not coupled by
initial unperturbed stateg; and ¢.. the dipole |-nteract|on($). Thus the quasienergy surfaces
One can treat the case of a periodic field modulated by & («.«) of different parity class can cross without any con-
slowly varying envelopex(t) (e.g., a pulseby combining  S€dJUENCes. _ - _
the Floquet formalism with adiabatic techniqUas36]. For In this paper, we consider transitions |_nduced by_ exact
the HamiltoniarH *D(A(t)) with a slowly varying parameter f€sonances or by near resonances. We give a precise theo-

«, we define instantaneous quasienergy states at each tirffgfic@l analysis of the resonant transitions, applying station-
'Y perturbation theory to the Floquet states. The quasireso-

t calculated with an instantaneous quasienergy operatdt ; X -
KeO(g). nant case 'WI|| b_e treqted W|th the tools Qeveloped to interpret
a{he transitions involving avoided crossings.

_We remark that the preceding ideas on the combination of
the Floquet picture and adiabatic technigues can be extended
to more general time-dependent for¢dg], in particular for
quasiperiodic forcesi.e., two or more incommensurate fre-
guencieg if we assume that the force contaiNsncommen-

surable frequencies, the set of the initial phases associated

Extending the usual adiabatic theorem to these instant
neous Floquet states, one can formulate, under suitable co
ditions, the following adiabatic conjecture, in terms of the
eigenfunctiond 36]: If at time ty the system is an instanta-
neous Floquet staté(to)ﬂlfz(t")(e(to)), in the adiabatic
limit (T,—) the time evolution determined by the Schro

dinger equatiori(d/dt) p=H*"(6(t))¢ is such thatd(t)  with the frequencieso= (o, . . . ,wy) is represented by a
stays for allt in an instantaneous Floquet eigenstate: vector 0. The time-evolved phase (1)
pp— =(0,twqt, ..., 0yt wy\t) is a classical flow on a
p(t)=e" 0w U(9(1))  (5,eR). (19  N-dimensional toru€2=Stx - - - X S. All the previous for-

mulas are thus generalized by substitutingnd 6 by  and
The phasej(t) is the superposition of the dynamical phase g, respectively, ando- 9/90= w1/ 301+ - - - + wndl 30y .
and Berry's geometric pha$87-39. In our case, only one
parametefthe amplitudex(t) of the field is varied adiabati-
cally to form a closed loop between the instattsO and C. Control of tunneling by laser without resonance
t= Tpin the_ parameter space. As a consequence, the geomet- In this section we discuss the nonresonant mechanism of
9n(Tp) is then just the dynamical phase las that we will use for the extension to the resonant mecha-
nism. We also discuss the breakdown of the adiabatic regime
vT(g(T,)). (16  due to the presence of avoided crossings. This effect, which
" P in this case degrades the tunneling, is of the same nature as
the mechanism of resonant population transfer that we will
The precise conditions for the validity of the adiabatic con-have to control in the resonant tunneling mechanism that we
jecture have not yet been proven in the general case, but it {sropose in Sec. lIl.
supported by a fair amount of numerical studies. They In the quartic double-well potential, the quasienergy op-
mainly depend on the separation between the instantaneoesator is
quasienergy levels. The difficulty comes from the fact that
the spectrum can be denge problem of small denomina-
tors). Without any relevant crossing or avoided crossing of
quasienergy levels, this adiabatic conjecture has been proven
for finite N-level models, where the spectrumi¢fis discrete
with well-separated eigenvalug¢40]. If there are crossings Applying the adiabatic conjecture to the initial condition
or avoided crossings, we have to add restrictions. We cag(0)=¢_, we obtain the time evolution at the end of the
apply a generalized version, considering no longer a singlpulse using Eq(16),

.
¢(Tp):exp( —i JO "dsne®

9
Ka(t)(g):H0+Xa(t)Sin0—iw£. (17)
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a)

—exp( —i fOTp)\g(()S)ds>\Ifg(Tp)(H(Tp)) . (18

o (1220 = Arol/w)

At the beginning and the end of the pulse, the Floquet states ¥
V¥, andWV, are continuously connectddy(t)— 0] with the
unperturbed eigenfunctions; and ¢,. The tunneling prob-
ability is

K@+ d(Tp))P=sir?

1T
> fo ds(xgﬁ)—xii(é))} (19

which gives the complete tunneling condition

QQuasienergies

;
fo "dsAgS A ) =(2n+ 1w, neZ (20

It is like the bare tunneling conditiof®), but the unperturbed
eigenvalues are replaced by the quasienergies with the ap-
propriate integration over the pulse(note that
Mo —=5~ Em

To avoid any resonance at moderate field amplitudes, we
choose the frequenay=0.975(there are no states with en-
ergies close td&; +kw, j=1,2, for moderaté). To verify
the validity of the tunneling conditiofR0), we first solve the
time-dependent Schdinger equation numerically for a pulse o
of fixed lengthT,=741.8(this pulse contains about 115 os-
cillations). We then plot the probability for the system to be  FIG. 2. (a) Logarithm of|\5 o=\ J/w for the system involving
at the other side of the wellFig. 3(b)]. no resonance ¢=0.975). (b) Quasienergy diagram close to the

In order to analyze the numerical result within the adia-Unperturbed energies, andE; (only the relevant quasienergies of
batic Floquet framework, we solve the instantaneous eigerfY probleﬂm are pzllot_ted in this zoneéWe notice(i) two crossings
value problem(9) numerically, fora taken in the interval PEWeemioandA;, involving the two smgula_nnesamja), (ii) the
0<a=<a,,. We use a basis of eigenfunctionstgf for the e avoided crossings pointed by amows, with A1 _; close to
spatial part and Fourier series for tiepart [7] [see Fig. a=0.425, indicating aseve.n-pfoto_n trar;smon between the two un-
2(b)]. We then calculate and plot the integral of E0) _ptzr_turt_;ed levelsp, and ¢15; N0 With A, _s close toa=0.58,
[Fig. 3@)]. We find good agreement with the complete tun-m icating afl\{e-photgn tr_ansTon between the two unperturbed lev-

- i, els¢; andgq,; and\; owith Ag_5. (c) The narrow avoided cross-
neling condition(20) for n=0,1 and for the complete de- ; "¢y e i ya ified

: . g of N5 o with \i5_ is magnified.
struction of tunnelindEq. (20) for n=1/2,3/2. We remark ’ '
that complete destruction of tunneling refers only to the stat@ies of & in their neighborhood. This phenomenon was ob-
at the end of the pulse; during the pulse evolution, the wavgerved in numerical simulations by Grossmastral., who
packet does indeed have a non-negligible projection omalled it acoherent destruction of tunnelifd9].
Q. In Fig. 3(c) we have plotted the projection on the unper-

With the parameteD = 2.5, this result has been obtained turbed states orthogonal ip, and ¢, after the end of the
by Holthaus[18]. He pointed out that the tunneling time pulse, calculated from the numerical solution of the Sehro
obtained in this way fon=0 can be shorter than the bare dinger equation. This measures the deviation from adiabatic
tunneling because the differenag ,—\ 7 during the pulse behavior. As expected, the validity gets worse for stronger
becomes larger than the unperturbed differelage E;. fields.

We obtain for the lowest field amplituden€0, i.e., We made the following somewhat unexpected observa-
an,=0.332) complete tunneling for a pulse length tions. The deviation from adiabatic behavior seems to appear
Tp,=T741.8, which is 20 times smaller than the bare tunnelingvith two separated thresholds, but in between the system
time 7,~16574. We remark that this ratio is not as good asseems to return to a quasiperfect adiabaticity.
the one in[18] because we use a smaller paraméer 2 This can be qualitatively interpreted by the three avoided
(instead ofD=2.5) that involves a larger separation of the crossings appearing in the quasienergy ppaiinted by ar-
doublet €;,E,). We are moreover limited by a minimum rows in Fig. 2b)]: the first one(for «~0.425) involves the
pulse length in order to remain in adiabatic conditions. quasienergiex ;o with N {5 _; (seven-photon resonancand

The plot of Fig. Za) shows the differenck5,—\7,. We  the second and the third involve, respectivelf, with
note the presence of two zeros at small valuea.dEach of  \g_; and\{ywith N7, ¢ (five-photon resonangeThis first
them corresponds to a very long tunneling time for the val-avoided crossing induces transitions between the instanta-
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, ' ' g g ! The smallness of the maximal valyeis due to the fact that

A f the avoided crossing involving, o with 57 is very nar-
A e T o1 row compared to the speed of evolution alowg,: the
v ' : P evolution close to it is effectively highly nonadiabatic and
| : most of the population jumps acroésvice) [41]. This leads

o o to a small component op,5 at the end of the pulse. The
R o return to adiabatic behavidfor «,,~0.5) is predicted by Eqg.
B v T o ‘ (21): we indeed calculate that the integral of this equation is

: . - L — i equal tow for a,,=0.51, givingP,_,15~0. After this value
the two next avoided crossing appear and induce other tran-
sitions.

This mechanism will be used in a similar way to obtain
tunneling with adiabatic conditions even in a resonance situ-
ation. In that case, we have an exact crossing rgar 0
(degeneracy of the Floquet states due to the exact resgnance
The tunneling effect will be achieved if we can control the
transition described above. We will then see that with this
mechanism we can increase the differendgg—\7, even
more using a resonance with intermediate levels.

ds (M20 — o)
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015F IIl. ENHANCED TUNNELING

BY A PULSE-SHAPED LASER FIELD

01F WITH INTERMEDIATE RESONANT STATE

Probability

The mechanism discussed by Holth&L8] involves only
the two levels of the tunneling doublet. The frequency of the
laser had indeed been chosen in order to avoid resonances
0 ot 02 03 04 05 06 with other unperturbed levels. Here we will study a different
Uy mechanism to control tunneling, which involves resonances
' with others levels. With the help of this effect, we wish to
FIG. 3. (@) J{Pds(\%,— %o calculated for eachr,, with the ~ €nhance tunneling, i.e., obtain controlled tunneling by a
values of the quasienergies of the diagram represented in fg. 2 Pulse-shaped laser field of lengihy< 7, and with as weak
(plotted in units ofw). (b) Tunneling probabilityl( ¢ |¢(T,))[? at ~ an intensity as possible, to avoid damage of the system.
the end of the pulse calculated with the numerical solution of the We consider two possible resonances: one-photon and
Schralinger equation.(c) Projection of the numerical solution two-photon population inversions. We first describe in Sec.

0.051 -

&(T,) for eachay, on the unperturbed states orthogonalstoand Il A how to control population inversion.
¢,. We notice large values of the projection fep,>0.55, which
corresponds to the avoided crossings shown in Rig. @hd implies A. Control of the resonant population transfer

large corrections to the adiabatic behavior of Edf). in a nonperturbative regime

neous Floquet state¥$, and W% . For one passage In this section we present the general results of the_ popu-
through the avoided crossing, the transition probability delation transfer under a strong pulse-shaped laser that is reso-
pends on the speed of the evolution along the Floquet stafé@nt with two unperturbed levels of the system. We consider
compared to the minimal distance of the avoided crossing a@ 9eneral system with eigenvalues and normalized eigen-
in the usual Landau-Zener transitiofig]. Because of the functions denotedE;,¢1}.{Ez, ¢z}, ... and aN-photon
shape of the pulse, the instantaneous states pass through fggonance between two isolated leve{s; ,Ej; and
avoided crossing twice and the final transition probability{®s.Ef}. , _ o ,
depends also on the maximal amplitude that is reached be- We will calculate t_he time evolution of an initial condi-
yond the avoided crossing. If we fix all the parameters excephion ¢(t=0)=«e; with [x|<1 (xeC) under a pulse-

the maximal amplituder,,, and if we suppose that the pulse Shaped field(4). (The reason to include the factar will

is sufficiently slow, the transition probability as a function of become clear later onWe will consider the general case of
a, can present oscillations between zero and a maximanN-photon resonance and then give more precise results for
value 8 (which depends on the other parametetswe de- the cases of one-photon and two-photon resonances.

note P,_, 15 the transition probability fromp, to ¢45 at the
end ofzthle5 pulse, ih6] it ispshown tr):at ’ ® 1. N-photon exact resonances

The frequency of the laser is chosen to produce a reso-

. Tp~te o o nance between the two unperturbed levéls E;} and
Possmpsit [ 7 s ngD) | @) (e P ¢l )
te Cf,Eiy-
wheret. is the time of the avoided crossing. We can interpret 0= Ei—E 22)

the first small oscillation on Fig.(8) with the formula(21). N
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For each timet, these two states give rise to two Floquet H(Tp)=ci(Tp)@i+ci(Tp) s . (27
families {\f" A} (keZ). If the quasienergy zone

0=<\2)<w is considered and, without loss of generality,

we suppose &E;<w, the relevant eigenvalues are then The inversion fromp; to ¢; at the end of the pulse is char-
NS MO whereh (g °=E; andA =% =E;—Nw. Atthe  acterized by the probabilitP; _(T,)=|c(T,)|2 which is
beginning and at the end of the pulge=0 andt=T;), we  obtained from Eq(26):

have =0 and the two quasienergieg’, and \{ _ are
degenerate No=\{ _\=E;): the eigenfunctions are any
linear combination ofp; and ¢;e~'N?.

— 2ai
The perturbation breaks up the degeneracy. We denote the  Pi—(Tp) = 4| kajay| sir?

1T
Ef ds(xg“)—)\g(s))}
0

zeroth-order basis of linear combinations adapted to the de- (28)
generacy breaking as
a=0 _ —iN#
Va ) =aeitaee T (239 Note that this construction is not simply an approximation by
Ve=%0)=—af ¢ +af o™, (23  atwo-level model, since during the pulse evolution the wave
_ o o packet(25) has components in other states bedidg, ¢;}.
with |aj|?+|a|?=1. The initial degeneracy is lifted fo The expressior(28) gives oscillations between the two

#0: the two states split into two branches_ corresponding tQanerturbed levelg; and ¢ (the maximal occupation prob-
the Floquet statests® and W§l" associated with the ability on ¢; is not necessarilyx|?) for a fixed duration of
quasienergies that we denotg” andxg® . the pulset=T,, as a function of the maximal amplitude
We make the working hypothesis that the adiabatic evoy,  This is due to the fact that the quasi-energy difference
lution (15) connects these instantaneous Floquet states b)\(g_hg grows with « (there are no avoided crossings in-

continuity to the initial degenerate statdg, ° and ¥y g volving these quasienergies in the considered range)of

without transitions between the two Floguet b.ran_cﬂgé These oscillations will be characterized more precisely in the
and Wi, in spite of the fact that, at the beginning and atfgllowing sections for the cases of one- and two-photon reso-
the end of the pulse, they are arbitrarily close to each othefances. They can be interpreted as follows. The initial reso-

This conjecture is strongly supported by the numerical eviyant statep, splits into two orthonormal linear combinations
dence and can be expected to be justified by perturbativg,«(0)=0 and q,g(O)=O of the two Floguet states; and
I

arguments, since the intensity is small when the two Floquet 2 _;y, .
branches are close o€ . During the laser pulse, the components evolve

Inverting Eqs.(23), we obtain adiabatically independently of each other, following instan-
R taneous Floquet states and acquiring a phaset at,, the

Qi= ai*\lfg—af\lfo, (248  two resonant Floquet states interfere again and the difference
NGy %0 0 of their two phases determines the occupation probability on
pr=e""(af Vt+a¥y). (24D the statesp; and ¢; .
The adiabatic time evolution of the initial conditon ©ON€ can then conclude théy the inversion frome; to
#(0)= ke, is thus ;pflf!ﬁ cdomplete if and only if the following two conditions are
ulfilled:
B (1) = ka* € OT O g+ ut) — kat e OV I ( g+ wt).
(25)
At the end of the pulsé=T,, the degeneracy of the two laj|?=|a |2:1 (29)
y k i f '
Floquet states appears again and we can write U&8jg 2
T
d(Ty)= kaj eXp< —i f pds)\a) \Ifg(6+ oT,)— kay .
0
f PdsAKO—\e®)=(2n+1)7m, neZ  (30)
(e 0
xexp<—|fo ds)xb)llfg(eerTp)
(e 5 ) and (ii) the inversion fromy; to ¢; is zero(complete Rabi
=ex _Ifo dsha || lail“+|ay] cycle) if and only if the condition

Ko +ar afe—iN(Hpr)

><exp( i prds(xa—xb)>
0

(T
1-ex |f ds(Aa—Ayp)
0
i.e., the time evolution can be again developed in the twcgs fulfilled. In this latter case, inserting conditidB1) into

functions{¢; ,¢;} at the end of the pulse: the time evolution(26), one obtains

;
f PAds(NS -\ =2n7, neZ (31)
0

X

K‘Pf} 1 (26)
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¢(Tp)=exp< —i JOTpdsxa)

Xexp( —i foTpds(xb—xa)

2. One-photon and two-photon exact resonance:
|<’71i|2+ |af|2 Stationary perturbation theory for Floquet states

In this section we apply the stationary perturbation
method to calculate the Floquet states in the enlarged space
K from the initial degenerate states and o™ 'N? (for
a=0). We calculate up to first order for the one-photon
=exp< L prds)\ )K _ (32) resonanceN=1) and up to second order for the two-photon

0 a| Kei- resonance=2), in order to obtain the coefficients and
a; of the linear combination&3) that lift the degeneracy for
a small value ofa.

This last result has an important interpretation: in case of the We denoteK® the a-dependent quasienergy operator
complete Rabi cycle between two resonant states in adiabatic

conditions(no avoided crossing involving these two states K*=Kg+ aW, (33
the time evolution of the initial state leads back to this initial

state with the phase given by the adiabatic conjecture, as %ith Ko:= —iw(d/36)+H andW: = xsing acting onk

no resonance were involved. The eigenvalue proble{“¥“=\*“¥“ is solved by the

Thus, in order to enhance the tunneling, we must necesserhation method, i.e., in terms of powers of the small
sarily fulfill the two conditions: the complete Rabi cycle

from one of the two initial unperturbed states of the quartic
double well through another resonant state and the tunneling
condition. Another obvious condition is the hypothesis that
all the other states are far enough and do not affect the adia-
batic evolution of the two states involved in the resonance Ve=[0)+a|l)+a?|2)+ - -, (35
(nor the third state involved in the tunneling

Breuer etal. [13,14 determined the coefficients where|0) € Sy, S, denoting the zeroth-order subspace gen-
|ai|=]asf/=1/V2 of the linear combinationt23) for a one-  erated by the two degenerate Floguet —states
photon resonance within the rotating-wave approximatior{|¢i>::|(Pi®][>, |pe):=|p;@e N and NO=E=E,
for a two-level system. In order to calculate analytically the — N,. |0) represents the unknown linear combinati¢23).
coefficientsa; andas in a more general case, we apply the  First, we use this method up to first order in the one-
stationary perturbation method to the degenerate Floqugthoton resonance case to determine the value of the coeffi-
states, which gives the linear combinations adapted to theientsa; anda; of the linear combinations involving the two
lifting of degeneracy for a small value of. We will show  degenerate states; and ¢re~'? [Egs. (23) for N=1] with
the result for a two-photon resonance. We will expose inthe eigenvalueE;=E;— w. The quasienergy operatd¢,

Sec. Il B the result with enhancement of the tunneling forprojected on the degeneracy subspace and written in the
one-photon and two-photon resonances. zeroth-order basife; , ;e '%, is

K@i

amplitudea:

)\CV:)\(O)+ a)\(l)+a2)\(2)+ B (34)

1 (2= 1 (2= .

X N —— i X . —i0a;
e o (eillons= [ Taosin  (olxlen 5 | doesing
PoKaPO: 0 E + o 1 2 1 2

f- . T o f T
(olxl o) o | A0 sing  (oilxlgn) o= | dosing

E; 0 0 @i X| @
:( i )+£ < || | f>)' (36)
0 Ei—ow/ 2i|—(¢xe) 0
|
wherePy, is the projector on the zeroth-order subspace. . 1 0 —i{@ilx|@5)
The first order gives the eigenvalue problem restricted to W(l)=§ i(orlx| 1) 0 , (38
f [

the zeroth-order subspace

which gives the two different first-order contributions to the

W[0)=xD|0), (37 eigenvalues
with W= P WP,. Written in the zeroth-order basis, this w_1
operator gives the matrix Na _2|<(P||X|(Pf>|: (393
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1 In the two-photon resonance case, the two degenerate Flo-
)\E)l):_§|<‘Pi|X|‘Pf>|- (39b) quet states, which generate the zeroth-order subspace de-
notedS,, are¢; and pse~2'? associated with the eigenvalue
The degeneracy is thus linearly lifted. Ei=E;—2w. The degeneracy in this subspdéss. (23) for

The calculation of the two zeroth-order orthonormal N=2] is not lifted in first-order perturbation theory because
eigenstates gives the two linear combinatipBgs. (23) for ~ projection of the quasienergy matrix in the zeroth-order basis

N=1] with the coefficients, = —ia;=1/\2 : is now
1 | (B0
‘I’azﬁ(%ﬂwe*”’), (409 PoK“Po= 0 E-20 Va, (42
i.e.
Vo= (it gre (40b) A
b_\/z(lcpl (Pfe ) POWPOEO (43)

These coefficients had been obtainedi@] for a two-level ~ 11€ hsecccj)nd-orger eigenvalue problem restricted to the
model using the rotating-wave approximation to calculateeroth-order subspac is [44]
explicitly the Floquet states. The present approach is general

2 —y (2
since it applies to all systems with dipole coupling. These W®[0)=)1|0), (44
coefficients satisfy the necessary conditi@d) (but not suf-  \yith
ficient) for complete inversion fromp; to ¢;. Thus, in the
one-photon resonance case we can express the transfer prob- W2 = _ po\vao(KO_ )\(0))—1Q0\7\/p0, (45)
ability as an integral of the instantaneous quasienergy differ-
ence where Qg=1—P,. This eigenvalue problem gives the

. second-order correction of the eigenvalues and the associated
p a a zeroth-order eigenvectors.
Efo ds(xa“)—)\b@)} (41) 9

Pi—»f(Tp):|K|ZSin2 ~ 2 .
The elements of the matriw/(® are given by

~ 1 ~ ) LA
\N(z): VW e|k0 e'k‘QW , v, e i'f , 46
Vi (k)£ 0).(f.—2)) E|_)\$n9)|(<¢ | |‘Pm >/C<‘Pm | |¢;L>/C M { } ( )

which we can write more explicitly as

1

~ 1
WI(I 4%2 |<(P||X|‘Pm>| Ei_ Em+0) Ei_ Em—w 1] (47a)
~ 1o (eilXlem{emXlen) -
.2): _ - | m, m _ (2) *
W=, E-Enra M (47b)
~ 1 1 1
2)_ " 2
Wi? 422 Keslx|@ml E—E.to +Ef—Em—w : (470

The degeneracy is lifted if the coupling between the twowe will evaluate explicitly this lifting of the degeneracy for
unperturbed statesp{ and ¢;) and some other states is not the two-photon resonance that we will apply to the enhance-
negligible, giving in general two different eigenvalues for thement of tunneling.

matrix W), The associated orthonormal eigenvectors give
the coefficientss; anda; and the formula of the oscillations
(28) can be completely determined. In the general case, the If the frequency is quasiresonant between the two levels
coefficientsa; anda; do not satisfy the necessary condition ¢; and¢;, w=~(E;—E;)/N, the quasienergy diagramas a
(29) of the complete inversion fromp; to ¢¢. In Sec. Il C,  function of « reveals an avoided crossing near 0 induced

3. N-photon quasiresonance
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by the crossing in thed, @) plane forw=(E;—E;)/N and -15 T . . . ; T T T
a=0. The two Floquet states associated with these two ' ‘ :
states are not degenerate tor=0. We can therefore denote
without ambiguity the two Floquet statels’§’ and ¥
associated with the quasienergie andx#®.

This avoided crossing suggests the use of the result giving
the transition probabilitf6] that is calculated with a model
of the two Floquet levels involved in the avoided crossing
and with the hypothesis of rapid transitions near this avoided
crossing. We conjecture that in this situation, EB) should

be replaced by St R o
20
1 (Tp-t g
. P e @ @ 2
Pi_(Tp)~sir? Eft dsINE -AEW | 48 E
¢ &

E,
wheret, is the time corresponding to the avoided crossing E

denoteda. in the quasienergy diagranx,= «(t.).

-1.52-
B. Enhanced tunneling with a one-photon resonant state

We consider the doublete( ,¢,) and the higher unper-
turbed levelgg, which is above the unperturbed barrier. In
this section, we apply a monochromatic pulsed laser field of . . .
frequencyw chosen very close to the differenEg— E, that o 002 004 oo 008 01 of2 oM o6
leads to resonance with the staig.

We start with the same initial condition as in Sec. IlI: the

wave function is localized on one .S|de of the well - 4 Forw=1.6945~E,— E,, quasienergy diagram close to
[¢(0)=¢]. Because the Iaser_ bea_lm IS pulse-shapgd, thfﬁe unperturbed energi€s; andE,. Notice the degeneracy of the
frequencyw has actually a certain width w that gets thin- Floquet eigenstate®2=° and ¥&=° with eigenvalueE,=Eq— o,
ner for larger pulse widths. The one-photon transition bevhich is linearly lifted fora#0.

tween the levelsp, and ¢g is parity forbidden. Thus we
expect transitions betweep, and ¢g, but ¢, will stay un-
disturbed in the sense that, at the end of the pulse, the tran-¢(T )= iex —iprds)\
sitions betweenp, and the other states will be negligible N} 0 @
(although during the pulse, is actually perturbed
We can combine the one-photon resonant considerations, x[ 1
2

)\(,'

(0%

described in Sec. Il A2 for the evolution @f; and ¢g, with #1

the evolution of the nonresonant state, which follows its

Tp
1+ex if ds(Aa—\p)
0

instantaneous quasienergy eigenstgé) ((t)) without in- +i_ SN+ oTy) .J’Tpd N
teraction with the others. In this case, the initial degenerate 2e ° exp ! 0 Sha= o) | |6
quasienergy A&~ °=\2"° labels the degenerate energy :
E,=E¢— w. The Floquet eigenstates can be written in this _eXF(if pdS(Xa—?\z,o) (Pz]- (50)
case 0
V=09 =a,¢0,+agpee 'Y, 49 L .
a (0)=a1e1+360s (499 Tne transition probability fromp; to ¢4 at the end of the
pulse is therfformula (41) for x=1/\/2]
VETA0) = —ageitaigce ", (490) .
Py _o(Tp) = SSif? —f AN S|, (BY)
M3/,
V57%(0)=¢o, (490

which gives exactly the condition of complete Rabi cycle
(31). As expected, the quasienergy diagréfg. 4) shows
with the coefficientsa; and ag given by Eq. (40): clearly the linear evolution of the quasienergiesand A,
a;=—iag=1/y2. Inverting these equations and insertingfor small values ofx [Eq. (39)].
¢, and g in the adiabatic time evolution of the initial con- In Fig. 5@a), we have plotted the Rabi oscillations ob-
dition ¢(0)=¢_, one obtains tained by the numerical solution of the Sctiimger equation
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FIG. 5. (a) For o=1.6945<E4— E;, transition probabilities at
the end of the pulse fap; — g [i.e., [ @6l #(T,))[?], given by the
numerical solution of the Schdinger equation(solid line);
©1— @g, given by the predicting formuléd1) with the quasiener-
gies calculated numerically and shown in Fig.(eircles; and
@1— @1 [i.e.,[(e1l#(T;))|?], given by the numerical solution of the
Schralinger equatioridashed ling (b) Tunneling probability at the
end of the pulse. It is maximurfequal to 1) for the first complete
Rabi cycle[i.e., | ¢e| 4(T,))P=0].

for our system and we compare it with the form(#d). The

-1.51 T T T T T T
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FIG. 6. Forw=0.847 155=(Eg—E,)/2, quasienergy diagram
close to the unperturbed energiesandE,. Notice the degeneracy
of the Floquet eigenstate® =" and W= with eigenvalue
E,=Eg— 2w, which is quadratically lifted forx# 0.

Thus the achievement of complete tunneling effect depends
on the two condition$31) and(53). In order to satisfy them,
the two parametersa(,,, T,) can be varied; we can also vary
the frequencyw, keeping it, however, close to the value
Eg—E, in order to stay close to resonance.

In order to find the parameterse,,T,) for which these

comparison shows very good agreement for the considereivo conditions are satisfied, we perform a numerical calcu-

field amplitude range.

lation of the quasienergies for the fixed frequency

In order to obtain complete tunneling, we have necessaryp=1.6945, which is very close to the exact resonant value

ily to fulfill the condition of complete Rabi cyclé€31) from

(quasienergy diagram in Fig.)4 For T,=741.8 and

¢1 back toe, at the end of the pulse. We now discuss theq,=0.145, we predict complete tunneling with a good pre-
possibility to achieve tunneling with a one-photon resonancegision. We verify this prediction by the numerical simulation

Inserting the conditior{31) in Eq. (50) gives

1 e
¢(Tp)=ﬁexp<—|fo ds)\a)

To
X <p1—exr( i f ds(Ag—Ny0)
0

e2|, (52

which leads to a similar tunneling condition as in the non-

resonant cas€0)

.
f "dsAEP-\gh=(2n+1)mneZ (53
0

[see Fig. ®)]: the tunneling probability obtained from the
quasienergy diagrantFig. 4) is (¢.|¢(T,))=0.995 and
from the numerical simulation of the Scliinger equation
[Fig. 5b)], we obtain(¢.|4(Tp))=0.996. The maximum
amplitude @ m(one-photon-resonary 0-145) leading to the en-
hancement of tunneling gives the maximum intensity smaller
by a factor 5 than the one obtained in the nonresonant case
(@m(nonresonany 0-332).

C. Enhanced tunneling with a two-photon resonant state
1. Two-photon exact resonance between the staggsand ¢g

Now we consider the same laser pulse but of frequency
w very close to Eg—E,)/2. The selection rule makes now
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the ¢1— g transition parity forbidden. Thus we expect a qf;kzo( 0)=¢, (540
two-photon transition betweep, and ¢g that is favored by
the presence of the unperturbed legglapproximately equi- give the transition probability fronp, to ¢g at the end of the
distant betweernp, and ¢g (¢4 is irrelevant because of the pulse[formula (28) with k=1/\/2]
selection rules The initial condition (i)s agaigt;b(O):cp_. L
The initial degenerate quasienerff  "=\; "~ now labels . - Tp a(s)_ a(s)
the degenerate enerdfp=Eq— 2. P2-(Tp)=2[aza6| *si Efo A3 =g )}'

In this section we achieve tunneling with two-photon (55)
resonance fromp, back to itself, using exactly the same
procedure exposed in Sec. Il B. In this case, the initialThe values of the weights, andag are given by the eigen-

Floquet states vectors of the second-order mati?) [matrix (46) includ-

0 aie ing the coefficientg47) with the indicesi and f replaced,
V() =azp,+agpee” <7, (548 respectively, by 2 and6
"m0 . . aig The dominant contribution to these matrix elements is ap-

Wy (0)=—agpataz pse 7, (54D proximately given by the unperturbed levg}:
|
W2 ~ 1 [{alX|03)]? —(@2lX|@3){ 3lx| @e) (560)
4(Ex—Es+ o) | —(@e|X|@3)(@3|X| ¢2) | eslX| @3)|?

The diagonalization gives the two different second-ordern order to determine if we can fulfill the two conditiof31)
contributions to the eigenvalues that lift the degeneracy  and(60), we calculate numerically the quasienergies for the
fixed frequencyw=0.847 155, which is very close to the

N KealX|@s)l? (573 exact resonant valu@uasienergy diagram in Fig).6
@ 4(Ex;-Eztw)’ First, we fix the pulse lengthT(,=741.8) and make the
maximum amplitudex,, vary to achieve complete tunneling.
Ay =0. (57 Figure 7b) shows that the first complete rabi cy¢le=0 of

Eq. (31), i.e., @,=0.052 leads to incomplete tunneling
(only about 90%). We do not find any value @, compat-
s P ible with adiabatic behavior yielding complete tunneling.
\Ifazco%goﬁsngoee*z”’, (589 Th|§ leads us to vary_both parameters to look for co_mplete
tunneling. We find it for the maximum amplitude
am=0.0424 and a pulse lengfh,=9272.5, which is only

The associated zeroth-order eigenvectors are

_ .9 g —2i0 around 2 times smaller than the bare tunneling time. We
Vo= Smi(’oﬁco%%e ' (580 conclude that in order to obtain a better result S\;’/ve have to
_ optimize also the choice of the frequency. We obtain a better
with enhancement, i.e., tunneling for a shorter pulse length and a
maximum amplitude of the same order of magnitude, vary-
tans~ 2(¢2lX| e3){¢3lX| ¢6)l _ (59)  ing the frequency around the resonant value. We present this
K ealX|@3)F =K eslX| 03)? final result in the next subsection.

) . ) ] ) We remark that in Fig. 1@, we have plotted the projec-
The quasienergy diagratsee Fig. 6 confirms the quadratic  tjon of the time evolution on the three instantaneous Floquet

dependence aof, and the absence of changelgf for small  giates \If‘l’(t)(e(t)), \Ifg(t)(e(t)), and \Pg(t)(g(t)) for
values ofa. The numerical value of the maximum probabil- a,,;=0.052. We note that, numerically, we do not find the

ity transitionP,_¢(Ty) [Eq. (55)] is: 2|a§ a6,|2”0'473[‘3°”' degeneracy o9 andWQ for a=0 because the frequency is
sidering not only the df{mingg‘t contributions but the exact,,t exactly resonant due to the finite numerical precision, but
elements(47) of the matrixW'<’]. very close to the resonant value. This produces a rapid tran-

To study the validity of the formul&55), leading to the  gition betweer§® and w¢® for a~0 instead of the de-
condition of complete Rabi cyclé31), we compare it with generacy.

the transition probability calculated explicitly by solving nu-

merically the Schrdinger equation in Fig. (d). The agree- _

ment is quite good. 2. Two-photon quasiresonance between the staggsand ¢g

The condition of complete Rabi cycle gives the additional |n this section we choose a value of the frequency close to

condition for complete tunneling the previous value, which allows us to obtain tunneling for a

T value of @ smaller than the one obtained in the one-photon
f pds(xg@)—)\;“g)):(zm 1), neZ. (60) resonancee, and ¢g are now almost in resonance. In this

0 ' case of two-photon quasiresonance betweegrand ¢g, the
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FIG. 8. (a) For ®=0.8455, quasienergy diagram close to the
N _unperturbed energigs; andE,. Notice the absence of degeneracy
FIG. 7. (a) For w=0.847 155+ (E¢— E,)/2, transition probabili-  of the Floquet eigenstate¥s~° and w¢=°. (b) Logarithm of

ties at the end of the pulse far,— ¢ [i.e., (@l #(Tp))?], given  |\g_,—\§ |/, which shows the avoided crossing fer-0.009.
by the numerical solution of the Sclioger equatior(solid line);

©>,— @g, as predicted by Eq55) with the quasienergies calculated . . .
numerically and shown in Fig. fcircles; and ¢,— @, [i.e., In Fig. 9(a) we have plotted the comparison between this

(02l #(T,))[21, given by the numerical solution of the ScHinger formula (61) including the maximum calculaf[e_zd with th(_a_
equation(dashed ling (b) Tunneling probability at the end of the Method for the exact resonance and the transition probability
pulse. It is equal to 0.9 for the first complete Rabi cyfie.,  obtained from the numerical solution of the Safirmer
[( @6l A(Tp))[?=01. equation. We find that the formul®l) is a good approxi-
mation of this transfer of population, especially if the maxi-
selection rules are unchanged from the case of exact resfal amplitude is large compared to the point of the avoided
nance: the initial nonresonant stage evolves following its ~ Crossing. _
instantaneous Floquet stafef"(4(t)) and we expect tran- To achieve tunneling, we have moreover to suppose the
sitions between the states and ¢g. However, the two Flo-  Validity of the property shown for the exact resonari@g)
quet states associated with these two states are not degen@iing the phase of the time evolution of the initial state with
ate fora=0. The two branches on the quasienergy diagradhe, condltlo_n' of F:omplete Rabi cycle. In this case, the tun-
[Fig. 8@] can be easily identified by continuity from the neling condition is exactly the same as the one obtained for
different energie€€, and Eq— 2w for a=0 and labeled by the fwo-photon exact resonan). _
\Pa(t)(e(t)) andq,a(t)(e(t)). On this diagraniFig. 8(a)] we _In Fig. 10 we haye plotted the projection of the time evo-
2 6 : : lution on the three instantaneous Floquet staltgs’ (4(t)),
observe the expected avoided crossingder0.009[see the (1) alt) .
more detailed logarithmic plot in Fig(8)]. We can interpret  ¥2"*(6(1)), and¥g™*(6(t)) for two-photon quasiresonant
the transition betweenp, and g with the formula(48), sup-  frequencies ¢,,=0.052 is fixed. We note that the beginning
posing that the transition is rapid enough close the avoide@f the W5 —wg( transition appears at a higher field in-
crossing: tensity (close to the avoided crossinépr the less resonant
frequency{Fig. 10b)].
1 (Tp—t We predict and find enhancement of the tunnelinih
Ef ds(A§®—-\g®)|, (61) the pulse lengttT,=741.8) for the maximum field ampli-
te tude am(two-photon-resonant 0-052[see Fig. @)], which gives
the maximum intensity lower by a factor 40 than the maxi-
wheret, is the time corresponding to the avoided crossingmum field intensity needed to enhance tunneling in the non-
denoteda, in the quasienergy diagrany,= a(t.). resonant case. The tunneling probability obtained from the

PZ—»G(Tp) -~ S|r\2
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FIG. 9. (a) For w=0.8455<(E4— E,)/2, but further away from FIG. 10. Numerical solution of the Schitimger equation pro-

resonance than the case in Fig. 7. Transition probabilities from thiected at each timé on the instantaneous Floquet states for
initial condition $(0)=(¢1— ¢,)/v2, at the end of the pulse for ay=0.052: [(WiOD|g(t))2, circles; [(W50(H(t)) (1)),
@2 @6 [i-6.,[( 06| H(T,))[?], given by the numerical solution of the  solid line; and(W¢®"(8(1))| 4(t))|?, dashed line, fo(a) the reso-
Schralinger equatiorisolid line); ¢,— ¢g, as predicted by Eq61) nant frequencyw=0.847 155 andb) the quasiresonant frequency
with the quasienergies calculated numerically as shown in Fig. 8 =0.8455.

(circles; and @,— @, [i.e., (@2l 6(Tp))I?], given by the numerical

solution of the Schidinger equatior(dashed ling (b) Tunneling  two-photon resonance. The interest of using the two-photon
probability at t_he en_d of the pulse. It is equal to 0.99 for the first agonant process is that we can work with a lower intensity
complete Rabi cycléi.e., |(¢s|¢(Tp))[*=0]. than for the nonresonant proce€Ehe maximal amplitude of
the pulse is lower by a factor 40.

The tools we use to interpret the enhancement of tunnel-
ing are the adiabatic Floquet formalism for the theoretical
prediction and the numerical solution of the time-dependent
Schralinger equation. The adiabatic Floquet theory has
IV. CONCLUSION proven to be a very well adapted tool that allows us to de-

In this paper we obtain an enhancement of tunneling in ¥€/0P @ precise understanding of the mechanisms of
quartic double-well potential model of the NHnolecule by ~ N-Photon resonant transitions.
a pulse-shaped laser field, i.e. the tunneling is achieved in a
time corresponding to the pulse length.§, which is much
shorter than the bare tunneling timer,&16574):
T,=741.8<7,. The enhancement of tunneling is obtained We would like to thank G. Jolicard for many helpful
for different ranges of maximum field intensity depending ondiscussions. Support from the EC Contract No.
the frequency of the laser field leading to qualitatively dif- ERBCHRXCT94-0460 for the project “stability and univer-
ferent processes: no resonance, one-photon resonance, aaity in classical mechanics” is acknowledged.

quasienergy diagrantFig. 8) is (¢.|¢(T,))=0.9942, and
from the numerical simulation of the Scliiager equation
[Fig. Ab)], we obtain(¢_ [¢(Tp))=0.9941.
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