
PHYSICAL REVIEW A FEBRUARY 1997VOLUME 55, NUMBER 2
Quantum structure and dynamics for atom galleries

D. W. Vernooy* and H. J. Kimble
California Institute of Technology, Norman Bridge Laboratory of Physics, 12-33, Pasadena, California 91125

~Received 8 August 1996!

The bound state structure and dynamics for an atom trap formed from the whispering gallery modes
~WGMs! of a dielectric microsphere are investigated. The coupling of the quantized internal and external
atomic degrees of freedom plays a fundamental role in the quantum dynamics of thisatom gallery. The
radiative processes for a cold atom near a microsphere are modified due to the special symmetry of the atom
gallery, the WGM mode structure, and the finite extent of the center-of-mass~c.m.! wave packet. Finally,
interesting implications of the quantized c.m. for atomic matter waves and cavity QED with a quantum field are
mentioned.@S1050-2947~97!01802-7#

PACS number~s!: 42.50.Vk, 32.80.Pj, 33.80.Ps., 42.50.Hz
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I. INTRODUCTION

Understanding atom–light-field interactions in a regim
where the atoms are cold enough such that the center of m
~c.m.! degrees of freedom must be quantized has bec
very important in view of present experimental capabilit
of sub-Doppler cooling and atom trapping. However, th
exist few fully quantum calculations of the atomic c.m. d
namics in realistic three-dimensional~3D! configurations
when dissipative processes must be taken into account@1#.

The configuration of a three-level atom interacting w
two oppositely detuned whispering gallery modes in a fu
silica microsphere, termed anatom galleryin Ref. @2#, is an
ideal system in which to explore 3D atomic quantum dyna
ics because the relevant scale for the confining potential i
the order of the wavelength of light. The atom can behave
a free particle along a circumference of the surface of
sphere and still remain trapped in the two transverse di
tions. This suggests exciting possibilities for studies of m
ter wave resonance phenomena using cold atoms and
cavity QED in an extremely highQ resonator (Q.109) in a
regime of strong coupling. Because experimental mic
sphere technology is rapidly advancing to the point wh
such experiments could actually be performed@3#, it is im-
portant to explore in greater detail many of the the phys
issues associated with such a system. Besides the advan
experimental aspects, several other groups have also
formed calculations related to cavity QED effects in micr
sphere resonators@4,5#.

The work reported here represents an important step
ward in the understanding of the atom gallery. The first c
culations of the 3D bound state structure and the associ
c.m. wave functions for an atom in this trap have been p
formed for realistic experimental parameters in Sec.
These c.m. states form a basis set which has then been
in Sec. IV in an attempt to understand the dynamics when
atom is allowed to evolve from a particular initial stat
Next, in Sec. V these wave functions have been used
calculate the modified spontaneous emission rate for an a
occupying a particular eigenstate of the atom gallery. Wh
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it is well known that radiative processes are fundamenta
modified for an atom outside of a dielectric sphere, previo
calculations@6–9# have not included the quantum mechan
cal nature of the c.m. state. Finally, a few comments
made in Sec. VI about the possibilities for using these w
localized atomic wave packets for atomic resonance stu
and also in cavity QED experiments.

II. THE ATOM GALLERY SYSTEM

In this section, we begin by describing the atom galle
system in terms of the optical fields, the atomic system,
the overall potential affecting the atomic c.m. Figure 1 sho
the geometry of the atom gallery.

A. Whispering gallery modes

The excitation of the whispering gallery modes~WGMs!
in a microsphere is accomplished experimentally by allow
the evanescent component of a focused Gaussian bea
meet the sphere at grazing incidence@10#. The classical elec-
tromagnetics problem of the resultant mode structure in
microsphere has been solved@11#. Two different polariza-

FIG. 1. The geometry of the atom gallery system is shown. T
microsphere has a radius ofa550 mm and the grid on which the
atomic c.m. wave functions are calculated has dimensions of
mm in the êr direction and 3mm in the êz direction.
1239 © 1997 The American Physical Society
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1240 55D. W. VERNOOY AND H. J. KIMBLE
tions, TE and TM, are allowed. The TE modes have no e
tric field amplitude in the radial (êr) direction whereas the
TM modes have a predominantly radial electric field vect
When solving the modal characteristic equations~see Appen-
dix A 1 a! which are derived from enforcing the electroma
netic field boundary conditions at the surface of the sph
one finds that allowed frequenciesvPL

TE andvPL
TM are split far

enough apart to be confident that only one polarization w
be excited at any one time~the P and L indices will be
explained below! and this is also realistic from an exper
mental point of view. Only modes ofelectric type, that is TM
modes, will be considered here. The TM electric field ins
the microsphere as a solution to the vector Helmholtz eq
tion is written in (r ,u,f) spherical polar coordinates as

Er
PLM~r ,u,f,t !52L~L11!

j L~kPL
TMr !

kPL
TMr

3PL
M~cosu!eiMfe2 ivPL

TMt,

Eu
PLM~r ,u,f,t !52

@kPL
TMr j L~kPL

TMr !#8

kPL
TMr

]PL
M~cosu!

]u

3eiMfe2 ivPL
TMt,

Ef
PLM~r ,u,f,t !52

iM

sinu

@kPL
TMr j L~kPL

TMr !#8

kPL
TMr

,

3PL
M~cosu!eiMfe2 ivPL

TMt, ~2.1!

where thePL
M are associated Legendre polynomials and

j L are spherical Bessel functions. The mode indicesP and
M are, respectively, the number of field maxima inside
sphere and the number of maxima in theêf direction. The
mode numberL'kPL

TMa wherea is the sphere radius. Not
that kPL

TM from here on is the magnitude of the wave vect
inside the sphere. WGMs are highly confined to the sph
equator and haveL'M . The field outside the sphere is give
by the above expressions in Eq.~2.1! with j L replaced by the
outgoing spherical Hankel functionhL

(1) andkPL
TM replaced by

kPL
TM/n wheren is the index of refraction of the sphere.

B. Atomic system

The system considered is the one introduced by Mabu
and Kimble @2#, in which a three-level atom in a Vee con
figuration is driven by two oppositely detuned light field
which are simultaneously on resonance with WGMs in
fused silica microsphere as shown in Fig. 2. In particular,
stateu0&[ u6S1/2& ground state in cesium is coupled to th
u1&[u6P1/2& level at 894.6 nm and theu2&[ u7P3/2& level at
455.6 nm by the two WGMsv1,492

TM andv1,996
TM , respectively.

The lower mode with mode numbers (P1 ,L1 ,M1)5
(1,492,488) is detuned from the 894.6 nm transition
d1/2p522.3831012 Hz and the upper mode with mod
numbers (P2 ,L2 ,M2)5(1,996,996) is detuned from th
455.6 nm transition byd2/2p522.2031012 Hz as deter-
mined from the characteristic equations which do not all
precisely symmetric detunings for these particular para
eters. The fact that these modes are oppositely detuned
c-
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the atomic resonances allows them to form a potential min
mum as discussed in the next subsection. The microsphe
radius isa550.04 mm and the index of refraction in the
silica isn51.4518 with a very small wavelength dependence
@12#. Hyperfine structure in these levels is ignored for sim-
plicity and clarity in the calculations.

C. The potential

The bound state problem can be attacked in the followin
manner. First, the fields will be chosen such that the syste
forms a far-off-resonance trap~FORT! @13#. This means
that the detuningsd1/2p andd2/2p will be much greater in
magnitude than both the field Rabi frequenciesV1,2(r ) and
the spontaneous decay ratesG1,2(r ). In this case the satura-
tion parameterss1,2(r )'V1,2

2 (r )/2d1,2
2 have a value much

less than unity. For the 2mK potential to be described be-
low, s1'231026 ands2'1310210. It is then valid to con-
sider that the atom spends most of its time in the interna
ground state. The light fields are coherent states with a larg
mean number of photons and can be treated classicall
Therefore the quantized c.m. analysis proceeds by examinin
only the Stark shift of the ground dressed state of the atom
field system at a particular manifold of excitation number in
order to determine the optical potential energy term. Thi
term will be calculated explicitly later to be
V2

2(r )/4d22V1
2(r )/4d1 . The force associated with this po-

tential is known as the reactive force or dipole force@14#. A
dissipative force due to spontaneous emission is not include
in the potential but will become important when the dynam
ics of the system are discussed in Sec. IV. A van der Waa
potentialVvdW(r ) due to the interaction of the dipole with its
image in the dielectric sphere is added to the optical dipol
potential from the WGMs. The general functional form of
VvdW(r ) is taken to be@15#

FIG. 2. The atomic system of@2# is a three-level atom in a Vee
configuration~such as cesium! driven by two oppositely detuned
whispering gallery modes~WGMs! of a dielectric microsphere. The
Stark shift of the dressed ground stateuD0& consists of two oppos-
ing dipole forces which allows a potential minimum to form, as
illustrated in Fig. 3~and as in Ref.@2#!. Values of the parameters for
various potential wells are discussed in the text.
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FIG. 3. The 3D 2mK potentialV(r,z) as a
function of r and z. The grid density shown is
about two times as fine as was used in the d
namical calculations. A 40340 grid was found to
give good results in a reasonable length of tim
using the Lanczos algorithm@18# and FFT tech-
niques.
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VvdW~r !52
avdW

~r2a!3@11kPL~r2a!#
. ~2.2!

It is found that the correction termkPL(r2a) in the denomi-
nator, representing the Casimir-Polder regime, does not h
a significant effect on the overall potential in the region
which the bound states are confined. Therefore the total
tential is

V~r !5
V2

2~r !

4d2
2

V1
2~r !

4d1
2

avdW

~r2a!3
. ~2.3!

The constantavdW'30 Hz(mm)3 has about 30% variation in
the literature@15# between theory and experiment.

Using the definition ofV1,2(r )[d–EP1,2L1,2M1,2(r ), we
choose the overall magnitude ofV1,2(r ) within the constraint
of a small saturation parameter. After normalizing the fie
mode functions to a maximum value of unity which occu
inside the microsphere, the maximum value of the Rabi
quency in the well region is then chosen. The widths of
potential minima are found to be quite insensitive to chan
in the parametersV1,2(r ) but the depth of the potential i
readily adjustable. The largest well constructed has a de
of 95.6 mK with V1

max/2p5 431010 Hz and V2
max/2p5

23108 Hz occurring very close to the potential minimum
r5 r 0550.141mm. Since the bound state structure of th
potential turned out to be quite complicated~with 195 bound
states! and hence not so useful in the dynamical calculatio
in Sec. IV, a shallower well of depth 2.06mK was also
considered whose bound states were calculated and used
basis for calculations of the c.m. dynamics. This well h
V1

max/2p5 83109 Hz andV2
max/2p543107 Hz. Since the

potential is localized to a very small spread inu aboutu5
p/2, it is most convenient to use a (r,f,z) cylindrical coor-
dinate system. Figure 3 shows the potential in 3D. Figu
4~a! and 4~b! show sections through the potential well min
mum atz50, andr5r 0550.174mm.

III. BOUND STATE STRUCTURE
FOR ATOM GALLERIES

A. The Schrödinger equation for the c.m.

The Schro¨dinger equation can be solved most easily n
merically in cylindrical polar coordinates@16#. Since the po-
tential is independent off, the trial wave function is taken a
ve

o-

-
e
s

th

s

as a
d

s

-

Cc.m.
atom~r,f,z,t !5(

l,m
clm

ul~r,z!

Ar
eimfe2 i ~ Ẽl /\!t,

~3.1!

where theclm are expansion coefficients. The Schro¨dinger
equation becomes

FIG. 4. In ~a!, the 2mK potential is plotted as a function ofr
for fixed z50 and in~b! the 2mK potential is plotted as a function
of z for fixed r5r 0550.174 mm. The well has an extent o
;loptical/2p;100 nm~for loptical;900 nm! in the êr direction cen-
tered onr 0 and an extent of;1 mm in êz .
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1242 55D. W. VERNOOY AND H. J. KIMBLE
F ]2

]r2
1

]2

]z2

2
2mc

\2 FV~r,z!2
\2

2mc
S 1

4 2m2

r2
D G2Ẽl

Gul~r,z!50,

~3.2!

wheremc is the mass of the cesium atom andm is the quan-
tum number associated with theêf direction. The indexl is
for the set of solutions to Eq.~3.2!. There are two importan
points about this equation. First, the effective potential c
tains a centrifugal termEc52(\2/2mc)@~142m2)/r2]. Now,
from the preceding discussion of the potential and Fig. 4~a!,
it is clear that the potential itself contains a repulsive bar
at r1550.1 mm and is effectively zero byr2550.5 mm.
Likewise, it forms a well in thez direction for uzu,1.5mm
as can be seen from Fig. 4~b!. One can calculate a tunnelin
probability for the finite barrier height atr1 and can show
the error made by ignoring it is negligibly small. Therefo
the bound state solutions must be confined to the reg
50.1 mm,r,50.4 mm and 21.5 mm,z,1.5 mm. The
boundary condition thatCc.m.

atom(r )50 outside this region is
imposed and any evanescent tail to the wave function is
nored.

The variation of the centrifugal term across the allow
region is also neglected because ther variation is so slight
and to an excellent approximation it can be treated as a
bal shift in the c.m. energy of the atom. The bound states
then be calculated by ignoring the centrifugal term al
gether. There is a limit to this approximation: when the ce
trifugal force is large enough to overcome the trapping for
the atom will no longer be trapped. The trapping force is
gradient of the trapping potential. Using the asymptotic fo
of the spherical Hankel function, we find that this force
' 2kP1L1

TM V0 in the2êr direction, whereV0 is the trap depth.

Equating this to the centripetal force givesmmax

'A2kP1L1V0mca
3/\2. For a trap depth ofV052 mK this

givesmmax'30 000 for a total energy ofEtot5700mK. Pre-
cooling the atoms before loading such a trap would get th
well below this limit and therefore centrifugal heating isnot
a practical limitation as also stated in Ref.@2# and found in
Ref. @17#.

The second point to be emphasized is that the atom
trapped in theêr andêz directions but is a free particle in th
êf direction, so the situation is somewhat analogous to a
electron. In the case of the atom gallery, the energy in
êf direction can be much greater than the depth of the
itself and yet the atom can remain trapped. For the res
this work, thetotal atomic energy is referred to asEtot . This
is a sum of the centrifugal energyEc5\2m2/2mca

2 and the
c.m. energyEc.m. to be defined below. In practice, the form
dominates this sum. Hence,Ec.m.,0 andEtot,kP1L1

TM aV0 are

the conditions for a trapped atom.
A little bit about the structure of the solutions can

guessed before actually solving this equation. First, as
energy of the atom in theêr and êz directions increases, th
probability distribution is expected to shift to larger an
largerr and away fromz50. With El5Ẽl2 \2m2/2mca

2

~or Ec.m.5Etot2Ec) defined asonly the sum of ther andz
energies, the Schro¨dinger equation, Eq.~3.2!, becomes
-

r

n

-
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n
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-
,
e

m

is

D
e
p
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e

F ]2

]r2
1

]2

]z2
2
2mc

\2 V~r,z!2ElGul~r,z!50. ~3.3!

As El becomes more positive for the higher lying bou
states, the distribution moves closer to the second class
turning point atr2 . States withEl.0 but less than the bar
rier height atr1 will become approximately free waves. Th
sort of structure should start to become visible in the hig
bound states. Atoms withEl greater than the barrier atr1
will crash into the sphere surface due to the van der Wa
potential.

Finally, by analogy with an anisotropic 2D rectangul
well, the different trap sizes in the two directions will lead
a series of states associated with increasing number
nodes towards the higher bound energies. Since the tra
much tighter in theêr direction than in theêz direction, the
lowest states are expected to sequentially increase the n
bers of nodes in theêr direction and the appearance of a sta
with a node in theêz direction will be higher up the ladder

The solution of Eq.~3.3! is now fairly straightforward
@16#. The use of a sine series representation~see Appendix
A 2 a! for ul(r,z) means the boundary conditions will auto
matically be satisfied. By using a discretized grid of points
the region of interest, Eq.~3.3! can be rewritten as an eigen
value problem for a matrix whose dimensions are prop
tional to the grid size. Such a problem can be solved e
ciently using the Lanczos algorithm@18# and fast Fourier
transform~FFT! techniques.

B. Bound state c.m. wave function solutions
and eigenvalue spectra

Results for the 95mK well are shown in Figs. 5 and 6
Figure 5~a! shows the c.m. ground stateul51(r,z) and Fig.
6~b! shows the energy spectrumEc.m.(l). There are 195
bound states. The spectrum of the first 25 bound state
overlaid on the potential in Fig. 6~a! showing that the lowes
two states are split by an energy of 1.19mK which is some-
what greater than both the recoil energy of 350 nK for t
456 nm transition and the recoil energy of 90 nK for t
894 nm transition. Cooling the atom to this c.m. ground st
would result in a c.m. energyEc.m.5289.5mK in the 95.6
mK well with a kinetic energy in the trappedêr and êz di-
rections of 6.1mK. The statesl516 with El5165264.23
mK andl577 withEl5775227.84mK are shown in Figs.
5~b! and 5~c!, respectively. Modes can be labeled by t
number of nodes in theêr and theêz directions.

The results for the 2mK well are summarized in Figs. 7
and 8. There are exactly 13 bound states. The first nine s
correspond to successive increases by one in the numb
radial lobes; it is not until thel510 state shown in Fig. 8~a!
that structure in theêz direction appears. Theshapeof the
potentials in the two directions is very important in determ
ing bound state structure because this spectroscopic sequ
is notwhat one would expect in the limit of a 2D rectangul
well of the same dimensions. Figures 8~b! and 8~c! show the
bound statesl512 andl513, respectively. It is reassurin
that these states are also confined fairly well inside the
tential, which justifies ignoring the small probability outsid
the region of interest by enforcing boundary conditions.
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55 1243QUANTUM STRUCTURE AND DYNAMICS FOR ATOM GALLERIES
As shown in the spectrum in Fig. 9, the ground state
split from the first excited state by 185 nK. Evidently, the
are also near degeneracies between the modes with ex
tions in the two directions, such as for the sets$l9 ,l10% and
$l12,l13%. Such near degeneracies are also responsible
the thicker lines in Fig. 6~a! for the 95mK well.

The calculations in Sec. IV on the dynamics of an ato
trapped around a sphere will be done using the 2mK poten-
tial since 13 bound states is a computationally reason
number to deal with. A 1mK well initially considered had
only one bound state.

A second expansion of the wave function in a spheri
geometry was attempted using

Cc.m.
atom~r ,t !5(

l,m
(
l>umu

dl lmvl~r !Pl
m~cosu!eimfe2 i ~El /\!t,

~3.4!

with r5(r ,u,f) in order to better understand the propert

FIG. 5. Thel51 bound state of the 95mK potential is shown
in ~a!, thel516 state in~b!, and thel577 state in~c!. These states
can be labeled by the number of nodes in theêr and êz directions.
s

ita-

or

le

l

of the bound states. It was found that the sum( l>umu re-
quired only one or two terms to reconstruct faithfully th
bound states as long asm was large. This is because th
spherical harmonics~and associated Legendre polynomia!
with l;m andm large are very closely confined to the equ
tor @19#. Largem is not a problem since even a modera
m;100 corresponds to a very cold atom with total ener
Etot;180 nK. The fact that this reconstruction converges
well with very few angular components is confirmation th
the c.m. wave functions are extremely well localized.

IV. QUANTUM DYNAMICS
OF THE ATOM-MICROSPHERE SYSTEM

A. Description of the wave function

The wave function which must be considered in a co
plete quantum description of the system is the following te
sor product:

uC tot
system&5uCc.m.

atom& ^ uC int
atom& ^ uCfield

microsphere&, ~4.1!

with ^r ,tuCc.m.
atom& given by

Cc.m.
atom~r,f,z,t !5(

l,m
clm~ t !

ul~r,z!

Ar
eimf, ~4.2!

FIG. 6. The first 25 (l51, . . .,25) bound state energy levels o
the 95mK potential overlaid on the potential as a function ofr
plotted for fixedz50 are shown in~a!. The kinetic energy of the
l51 state is;6.1 mK and the energy splitting of the first two
bound states is 1.2mK. In ~b!, the bound state energy spectrum f
the 195 bound states of the 95mK potential are shown. The last few
eigenvalues (160,l,195) have non-negligible error associate
with them. This can be fixed by more iterations of the Lancz
algorithm at the cost of significantly more computational time
quired @18#.
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1244 55D. W. VERNOOY AND H. J. KIMBLE
with r as the c.m. position of the atom andl51,...,13 as
calculated in the preceding section using the 2mK well.
Since we restricted this expansion to include only the bo
state solutions~i.e., not the unbound solutions!, it is not a
complete expansion for any arbitrary c.m. wave function
should be a good approximation for the lower bound sta
For example, restricting the analysis to the dynamics of
bound state withl51 andclm(t50)5dl,1 , it is expected
that the otherclm with lÞ1 will stay small until the atom
becomes appreciably heated out of the ground state. At
other extreme, the expansion of Eq.~4.2! would not be valid
in computing the evolution of the state withl513 because
this state will very quickly become a state with some lar
probability to be in the continuum.

Turning next to the internal state, we have th
^RuC int

atom& is given by

FIG. 7. In ~a! the l51 bound state is shown for the 2mK
potential. Note that it has a significantly greater spatial extent t
the corresponding c.m. state for the 95mK potential in Fig. 5~a!.
The number of extrema in theêr direction increases withl @e.g., in
~b! l52 has two lobes# until thel59 bound state in~c!.
d

t
s.
e

he

e

t

^RuC int
atom&5(

i
bi^Ru i &, ~4.3!

whereR is the position of the electron with respect to th
atomic c.m. and$u i &% is the set of bare internal levels of th
cesium atom. Explicitly, u0&5u6S1/2&, u1&5u6P1/2&, and
u2&5u7P3/2&, which again are taken to be nondegenera
These levels need to be reexpressed in terms of the dre
levels$uDi&%.

The easiest way to do this is to consider the followi
eigenstates and uncoupled energies of the state manifol

uC int
atom& ^ uCfield

microsphere&

5$u i &% ^ unP1L1M1

TM [n1& ^ unP2L2M2

TM [n2&, ~4.4!

with quanta distributed as follows:

n
FIG. 8. Thel510 bound state of the 2mK potential in ~a!

shows the first excited state in theêz direction, which is almost
degenerate with thel59 state. In~b! and ~c!, the statesl512,13
are shown, respectively.
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55 1245QUANTUM STRUCTURE AND DYNAMICS FOR ATOM GALLERIES
H u0,n1 ,n2&
u1,n121,n2&

u2,n1 ,n221&
J ↔S E05n1v11n2v2

E15~n121!v11n2v21d1
E25n1v11~n221!v22d2

D .
~4.5!

The coupling Hamiltonian~in the rotating wave approxima
tion! is written

Hfield^ int
interaction5 (

j51,2

1

2
~ajRj

†1aj
†Rj !V j~r !, ~4.6!

with aj as a field mode annihilation operator andRj as an
atomic lowering operator for the three-level system. The
tal Hamiltonian, in a frame rotating atv11v2 , and ignoring
mode decay and spontaneous emission in the limit of la
detunings and small saturation parameters, is

Hfield^ int
tot 5S 0

V1~r !

2

V2~r !

2

V1~r !

2
d1 0

V2~r !

2
0 d2

D . ~4.7!

Diagonalizing this gives the following transformation, whic
is valid to first order in the saturation parameterss1,2(r ):

S uD0&

uD1&

uD2&
D 5T~r !S u0&

u1&

u2&
D 1O„s1,2

2 ~r !…, ~4.8!

where the transformation matrixT(r ) is defined as

FIG. 9. The 13 bound state energy levels of the 2mK potential
overlaid on the potential as a function ofr plotted for fixedz50.
The l51 andl52 c.m. energy (Ec.m.) splitting is 180 nK. The
l51 bound state kinetic energy here is;730 nK.
-

e

T~r ![S 12
V1

2~r !

8d1
2

V2
2~r !

8d2
2

V1~r !

2d1

V2~r !

2d2

V1~r !

2d1
12

V1
2~r !

8d1
0

2
V2~r !

2d2
0 12

V2
2~r !

8d2

D .

(4.9)

The corresponding Stark shifts are

S dE0

dE1

dE2

D 5S V2
2~r !

4d2
2

V1
2~r !

4d1

V1
2~r !

4d1

2
V2

2~r !

4d2

D . ~4.10!

Note thatdE0 was used in the preceding calculation of t
potential and it is a trapping potential. However, sm
amounts of population inuD1& and uD2& are affected by at-
tractive and repulsive forces, respectively. Both of the
cause dipole heating which will be investigated in detail
Sec. IV B below. The heating mechanisms for the at
cause the internal state to becomeentangledwith the exter-
nal state so that the wave function^r ,t zCc.m.

atom& ^ uC int
atom& must

be represented as the following spinor in the bare state b

^r ,t zC tot
system&5^r ,t zCc.m.

atom& ^ uC int
atom&

5S (
l,m

clm~ t !
ul~r,z!

Ar
eimf

(
l8,m

bl8m~ t !
ul8~r,z!

Ar
eimf

(
l9,m

dl9m~ t !
ul9~r,z!

Ar
eimf

D . ~4.11!

The three entries correspond to different external state
pansions for each internal state, or to an entanglement o
external and internal states and theclm(t), bl8m(t), and
dl9m(t) are simply coefficients for these three different e
pansions associated with the bare internal statesu0&, u1&, and
u2&, respectively. For the purposes of the computation, thi
stored as a 393r matrix wherer is the number ofm values
involved in (m and the 39 corresponds tol51, . . . ,13 for
each of the three internal states.

A quantum description of the field modes on resonan
with the cavity is not necessary because the photon num
are very large (̂n1,2&;106, see Appendix A 4! so that a loss
or a gain of a photon is not an issue to these dynamics
should also be noted that even for small photon numbers,
high quality factors expected in these microspheres mean
cavity mode decay ratesk1,25kP1L1 ,P2L2

TM can be much

smaller than the rate scales governing the dynamics~@10#,
and Appendix A 1 b!. Therefore the field component in th
total quantum wave function in Eq.~4.1! is considered to be
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the coherent stateuCfield
microsphere&5uaP1L1M1

& ^ uaP2L2M2
&,

which is taken to be constant for all times.

B. Heating of the atomic c.m. in an atom gallery

There are two main mechanisms for the heating of
atom initially in a c.m. bound state@14#. The first is fluctua-
tions in the dipole forces. Even though the internal grou
dressed state will be affected by a trapping potential, an a
prepared in this state will also occupy the other two dres
states during the normal course of its evolution, albeit w
greatly reduced probability. These other two states are no
the same effective trapping potential but are in purely rep
sive or attractive potentials. This can be seen from the
pressions for the Stark shifts of these other two levels in
~4.10!. Note, however, that the atomic evolution still remai
unitary for dipole heating.

The second heating process is recoil heating after a s
taneous emission event. The atomic c.m. will receive a k
due to conservation of momentum in the emission of a p
ton, with each kick tending to change the energy of the at
by the atomic recoil energy;\2k2/2m. Section V will be
devoted to a more complete understanding of the spont
ous emission process but it must be mentioned now that
effect of this process on the c.m. dynamics of the trap is
important. The first reason is obvious: the trap is a FO
and hence the average time between spontaneous deca
Dtemission;1/sG wheres is the saturation parameter andG
is the spontaneous decay rate. Even thoughG is modi-
fied somewhat from its free space value~Sec. V B!,
Dtemission;20 ms which turns out to be of the order
theating, the trap lifetime. The processes which tend to lim
the trap lifetime will be discussed below in Sec. IV C. T
second reason is rather more subtle. Momentum conse
tion in spontaneous decay dictates that the orbital ang
momentum carried away by the photon will affect the orbi
angular momentum of the atom~quantum numberm) and
hence the energy primarily affected by the atomic recoi
the centrifugal energyEc . As described earlier, changes
Ec caused by typical angular momenta;M\ from a WGM
of orbital angular momentumL;M will not cause signifi-
cant trap heating. Therefore we will ignore spontaneo
emission in the atom gallery dynamics.

The wave function is evolved according to

uC tot
system~ t !&5e2 iHt uC tot

system~0!&, ~4.12!

whereH, in a basis given by$uul&% ^ $u i &%, is given by

H5Ekin1T T~r !EpotT~r !, ~4.13!

with

Ekin5S p2

2m
0 0

0
p2

2m
0

0 0
p2

2m

D ~4.14!

in the bare basis and
n

d
m
d
h
in
l-
x-
q.

n-
k
-
m

e-
he
t
T
s is

t

a-
ar
l

s

s

Epot5S V2
2~r !

4d2
2

V1
2~r !

4d1
0 0

0
V1

2~r !

4d1
0

0 0 2
V2

2~r !

4d2

D 2
avdW

~r2a!3
1

~4.15!

in the dressed basis@T(r ) in Eq. ~4.13! is used to transform
between bases#. In order that the aforementioned approxim
tion concerning the completeness of the c.m. basis use
the expansion remain valid, the evolution was terminated
the calculation when the expected value of the energy,

^E~ t !&5^C tot
system~ t !uEkin1EpotuC tot

system~ t !&, ~4.16!

was greater than some cutoff close to the trap depth. In p
tice, the evolution was performed by the split operator F
method@20# in sufficiently small time stepsdt chosen so that
the change iniuC tot

system(t)&i2 from t to t1dt was negligible
and the results became independent ofdt.

The initial state~written as a spinor in the bare basis!,

^r ,t50zC tot
system&5

u1~r,z!

Ar
e2 im0f

^ uD0&

5T T~r !S u1~r,z!

Ar
e2 im0f

0

0

D ,
~4.17!

was used. According to Eq.~4.12! and as a consequence
the neglect of spontaneous emission, there will be no
namical change to thef part of the wave function, so tha
the distribution over$m% factors out. In Eq.~4.17! an initial
c.m. wave function with a well-defined(mclm→clm0

is
considered for simplicity; this point is discussed further
Sec. VI A. For now, it is sufficient to observe that^Ec(t)& is
constant in time independent of this choice as long as
f dependence is not entangled initially with the rest of t
state. The ground state of the dressed basis was chosen
initial internal state because it is the one which is affected
the full trapping potential. The calculations were run with
time stepdt51027 s, which is a time scale much shorte
than any of the dynamical rates, ensuring that the chang
the c.m. wave function due to error in using the split opera
FFT method is small, as discussed above. The c.m. en
Ec.m. was calculated every 50 steps, or 5ms, and checked
until it reached20.2 mK, which is ; 1

10 the well depth. At
this point the calculation was stopped because beyond th
was assumed the atom could have significant contributi
from the continuum. The statesl51, . . . ,5were used as the
initial c.m. state and the results for the c.m. energy a
function of time forl51, 2, and 4 are shown in Figs. 10
11, and 12.

It is interesting to note that thel51 state in Fig. 10
begins to get heated more rapidly than the states w
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l.1, which tend to be increasingly stable with increasi
l until the onset of rapid heating. Heating times can be
timated by extrapolating the graphs toEc.m.→0. Although
this is a crude approximation, Figs. 10–12 all show a la
energy decay rateDEc.m./Dt for t>20 ms. These results wil
be discussed more quantitatively after first trying to mak
semiclassical estimate of the heating rate.

C. Semiclassical analysis of momentum diffusion
and comparison with quantum calculations

It is possible to estimate the rate of heating semicla
cally using the concept of the momentum diffusion coe
cientD. This coefficient can be calculated as follows@21#:

FIG. 10. The heating of thel(t50)[l051 c.m. bound state
for an atom initially in the ground dressed stateuD0&. Initially, this
state heats very quickly compared to thel052,4 states shown in
Figs. 11 and 12. However, extrapolating suggests that it would
theat(l051); 40 ms for complete heating. In Sec. IV C the si
nificance of the different rates evidenced in Figs. 10–12 is d
cussed and is further analyzed in Fig. 13. The time steps of
calculation on the time axis areDt550dt55 ms.

FIG. 11. The heating of thel052 c.m. bound state. This stat
stays close to the original energy ofEc.m.(l052) for longer than in
the case forl051 in Fig. 10. Complete heating here takes ve
close totheat(l052);30 ms.
s-

e

a

i-
-

D5\2klaser
2 G

4

s

11s
1\2b2

G

4

s

~11s!3

3H 11
12d22G2

4d21G2 s1s2J 1\2a2
G

4

s

~11s!3

3H 11
24d213G2

4d21G2 s

13s21
4d21G2

G2 s3
J 2\2a–bd

s2

~11s!3

3H 4G2

4d21G2 1sJ . ~4.18!

In this expression,a is the logarithmic gradient of the
amplitude of the Rabi frequencyV, b is the gradient of the
phase of the Rabi frequency, andklaser is the magnitude of
the laser wave vector. This expression is valid only for
two-level atom. However, to the extent that coherences
tween the upper levels can be ignored, and due to the
that the spontaneous rates for the two levels are very dif
ent, we will apply it to our three-level atom. Now, for th
atom gallery as a FORT,d@G and s5V2/2d2!1. Also,
looking at the expressions for the electric field outside of
sphere@Eq. ~2.1! with j L replaced by the outgoing spheric
Hankel functionhL

(1) andkPL
TM replaced bykPL

TM/n#, the quan-
tities a andb can easily be estimated fromV5ṼeiF:

a5
¹Ṽ

Ṽ
;

¹~V0e
2 i ~kPL

TM/n!r !

V0e
2 i ~kPL

TM/n!r
52 i

kPL
TM

n
êr , ~4.19!

and since the WGMs are traveling waves,

b5¹F5
1

r

]

]f
~ iMf!êf; i

M

a
êf . ~4.20!

D is then rewritten as

e

-
e

FIG. 12. The heating of thel054 c.m. bound state. The energ
is very close to the original energyEc.m.(l054) throughout the
atomic evolution before a very fast heating rate fort.25 ms.
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D5\S kPLTMn D 2G

4
s1\2

M2

a2
G

4
s1\2S kPLTMn D 2G

4
sH 11

4d2

G2 s
3J .

(4.21)

However, for both of the atom gallery WGMs relevant to t
FORT,M;L;kPL

TMa, hence

D;\2S kPLTMn D 2G

4
sH 21n21

4d2

G2 s
3J . ~4.22!

The free space spontaneous emission parameters s
G2!G1. ~This is true also of the modified rates calculated
Sec. V B!. The fact thatG1 should be the important rate ca
be seen from the Stark shifts in Eq.~4.10!. The middle
dressed stateuD1& associated withG1 is affected by the mos
repulsive potential. In order to make absolute compari
with the dynamics in Sec. IV B which did not include spo
taneous emission~which should be a reasonable approxim
tion since theating;Dtemission as previously discussed!, the
term due to recoil heating is ignored. Finally, the te
(4d2/G2)s3 is down many orders of magnitude for all field
and states involved. Thus

D;\2S kP1L1TM

n
D 2G1

4
s1~11n2!. ~4.23!

As a diffusion coefficient,D can also be written

D5
1

2

d

dt
Š@p~ t !2^p~ t !&#2‹5

1

2

d

dt
~sp

2!;
1

2

D~p2!

Dt
~4.24!

for c.m. momentump. Therefore

DEc.m.

Dt
;

D

mc
;

\2~kP1L1
TM /n!2G1s1~11n2!

4mc
. ~4.25!

Using s15231026, kP1L1
TM 56.97363106 m21, G1/2p5

1.1535.093 MHz ~the factor 1.15 to be explained in Se
V B! givesDEc.m./Dt;4 mK/s. From Figs. 10–12, this rat
can be identified with theinitial slopes in the heating curve
which vary from;3 mK/s for thel51 c.m. state to;0.5
mK/s for thel55 c.m. state. Even though at a first glan
the semiclassical expression in Eq.~4.25! is independent of
c.m. state, the c.m. state dependence ofD can be recovered
by realizing that the expected value^s1(r )&l should be taken
across the wave packetof the statel. Hence the semiclassi
cal analysis seems to give a good quantitative understan
of the initial dynamics.

However, in all of the heating curves, a second heat
rate dominates aftert;10–20 ms. For example, for th
l51 state a second rate ofDEc.m./Dt;60 mK/s starts at
t;15 ms. The best way to understand this anomalous qu
tum heating is to look at the evolution of the coefficien
uclm0

(t)u2, ubl8m0
(t)u2, and udl9m0

(t)u2 in Eq. ~4.11!. Both

ubl8m0
(t)u2 and udl9m0

(t)u2 remain very small for alll and
for all time because the excited states never become ap
ciably populated, but in Fig. 13,uclm0

(t)u2 is plotted for the
heating curve corresponding to thel51 c.m. state in Fig.
10. It is clear that the statesl58,9,12 cause the very fas
isfy

n

-

ng

g

n-

re-

heating rate as their probabilities increase very quickly f
t>15 ms. These states seem to be most unstable wherea
of the other states are relatively quiet. This heating cannot
understood from a purely semiclassical analysis. It would
interesting to redo the calculation for the 95mK well to
understand whether the small basis size of 13 c.m. sta
contributes to the quantum heating. Unfortunately, this w
deemed too computationally intensive for the initial invest
gations.

D. The quantum Monte Carlo wave function „QMCWF …
approach

Finally, the possible use of the QMCWF approach@22# is
discussed. In this approach, it would be necessary to ad
non-Hermitian term~in the bare basis!

HG5 i
1

2 S 0 0 0

0 G1 0

0 0 G2

D ~4.26!

to the HamiltonianH in Eq. ~4.13! to account for spontane-
ous decay processes. One would then generate a ran
number and monitor the norm of the wave function to deci
if the system would undergo a spontaneous decay. Quan
jumps and state vector renormalizations are applied depe
ing on the outcome. This method was applied to our syst
and, as motivated in qualitative terms above, it was fou
that the role of spontaneous emission was negligible and t
the quantum evolution was unaffected. However, it must
emphasized that the jump operators associated with spo
neous emission in this system are very interesting obje
because they depend intimately on the spherical symmetry
the atom gallery. This issue is discussed further in Sec. V
after first putting the whole question of spontaneous em
sion in a broader context.

FIG. 13. The evolution of the coefficients of the bound stat
l during the course of the heating of the initial bound statel051
shown in Fig. 10. The statesl57,8,9 cause the rapid change in
heating rate fort>10 ms, which cannot be predicted from sem
classical theory.
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V. RADIATIVE PROCESSES
IN QUANTIZED ATOM-MICROSPHERE SYSTEMS

There are two important regimes in cavity QED in whi
the idea of spontaneous emission is discussed@23–25#. The
first corresponds to aperturbative regimein which sponta-
neous emission into a complete set of reservoir modes ac
damp the atomic excited state at a rateG0 which is much
faster than the internal atomic dynamical rateV, also known
as the Rabi frequency. The presence of a cavity can dr
cally affect the structure of the reservoir modes, causing
alteration to the spontaneous decay rateG0→Gcavity. One
must also make the further distinction between the situa
in which no single reservoir mode is resonant with t
atomic transition and the case where one of the modes m
close to atomic resonance. When the resonant mode h
high quality factor andV is simultaneously large, interna
atomic dynamics can become dominant over both the ca
decay ratek5voptical/2Q and the spontaneous rateGcavity
into all modes other than the privileged cavity mode. He
we move into anonperturbative, strongly coupledregime.

The quantization of the c.m. in the atom gallery is e
pected to modify somewhat the usual results in these
regimes. The FORT nature of the trap keeps the atom pri
rily in its internal ground state, so it might seem hopeless
try to understand the effect of the atom gallery c.m. wa
functions on excited state decay. However, we can take
vantage of the tremendous separation of time scales. In
IV C, it was found that the wave packet decoherence tim
theating;10 ms, is much larger than the;100 ns time scale
for spontaneous decay. In what follows, then, the atom
c.m. is considered to be in a statel but no longer in the
presence of the FORT trapping fields so that it is free
decay from its internal excited state. Several authors h
considered the effect of the quantization of the c.m. on sp
taneous emission in more general terms@26,27#.

A. Radiation field description

To understand the role of the reservoir in spontane
emission, it is necessary to have a quantum description o
radiation field. The quantization procedure for the radiat
field is that one must provide acomplete modal expansio
for this field respecting any boundary conditions@14#. This is
done by solving the classical electromagnetics problem
the field in the given geometry. Any electromagnetic fie
external to the microsphere at fixed frequencyv5ck/n,
wheren is the index of refraction of the sphere andk is the
magnitude of the wave vectorinside the sphere, can be ex
panded as@11#

Erad~r !5(
L,M

H aTM~L,M !
n

k
“3FhL~1!S kPLTMn r DYLLM~u,f!G

1aTE~L,M !hL
~1!S kPLTMn r DYLLM~u,f!J , ~5.1!

where theYLLM(u,f) are vector spherical harmonics. On
then chooses theaTE(L,M ) and aTM(L,M ) to satisfy the
boundary conditions. In the course of doing so for the m
crosphere case,for any initial conditions@28#, one finds reso-
to

ti-
n

n

es
s a

ty

,

-
o
a-
o
e
d-
ec.
,

ic

o
ve
n-

s
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n

r

-

nances inaE(L,M ) andaM(L,M ) at the microsphere mode
kPL
TE andkPL

TM . The quantized field as a Schro¨dinger operator
is then

Erad~r !5(
s,P
N P

s~as,P cs,P1H.c.!. ~5.2!

Only valid microsphere modes need now be consider
These modes are denoted (s,P), wheres labels the polariza-
tion ~TE or TM!, P5(P,L,M ), as,P is a mode annihilation
operator, and

cTM,P55 cTM,P
0

1

kPL
TM“3@ j L~kPL

TMr !YLLM~u,f!#

cTM,P
0

n

kPL
TM“3FhL~1!S kPLTM

n
r DYLLM~u,f!G

cTE,P5H cTE,P
0 j L~kPL

TEr !YLLM~u,f!

cTE,P
0 hL

~1!S kPLTE
n

r DYLLM~u,f!,
~5.3!

with j L „hL
„1…
… for r, (.)a andcs,P

0 51/max(ucs,Pu). Note
that the expressions for the microsphere modes in Eq.~2.1!
are equivalent to ther,a part ofcTM,P up to a normaliza-
tion factor ofAL(L11). This arises from the definition o
YLLM(u,f)5@1/AL(L11)#LYLM(u,f). The factorsNP

s

are the normalization factors for the field modes. The field
normalized by taking the vacuum expectation value of
equation

Ufield5E
VQ

S 12 «~r !Erad~r !•Erad~r !

1
1

2
m~r !Brad~r !•Brad~r ! DdV, ~5.4!

to get

Ufield5(
s,P

S as,P† as,P1
1

2D\vPL
s . ~5.5!

Thus

NP
s5A\ckPL

s

2nVs,P
, ~5.6!

where

Vs,P5E
VQ

«~r !cs,P
2 ~r !dV ~5.7!

is defined as the effective mode volume for a quantizat
volumeVQ with

«~r !5H n2, r,a

1, r.a.
~5.8!
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This definition forVs,P can be compared with an expressi
for Vs,P used by Braginskyet al. @10# in the context of opti-
cal nonlinearity issues of fused silica microspheres,

Vs,P
~1!;

S E
VQ

cs,P
2 ~r !dVD 2

E
VQ

@cs,P
2 ~r !#2dV

, ~5.9!

which for the mode (s,P)5(TM,P,L,M ) gives

Vs,P
~1!'3.4p3/2S 1

kPL
TMD 3L11/6AL2M11. ~5.10!

The definitions in Eqs.~5.9! and~5.7! give slightly different
mode volumes as is discussed in physical terms in Ref.@29#.
For example, for the mode (TM,P,L,M )5(TM,1,492,488)
Eq. ~5.10! predictsVs,P

(1)53.52310215 m3 and calculations
using Eq.~5.7! giveVs,P56.56310215 m3 and for the mode
(TM,P,L,M )5(TM,1,996,996) Eq. ~5.10! predicts Vs,P

(1)

50.72310215 m3 and calculations with Eq.~5.7! give Vs,P
51.29310215 m3. These both differ by the same factor
;1.8.

B. Spontaneous emission in the perturbative regime
with nonresonant WGMs

We consider first the situation of an initial atom galle
c.m. statel which decays from the excited internal state.
photon is emitted by the atom into one mode of a set
radiation field modes, none of which is resonant with t
atom so that a perturbative approach is valid. The case o
atom with a radial dipoled5dêr which is localized around
(r ,u,f);(r 0 , p/2,0) is considered. Using the fact th
êr•YLLM(u,f)50, only the TM modes survive in the expan
sion in Eq.~5.1!. In Eq. ~5.1! applied to the problem at hand
the term aTM(L,M ) is given by aTM(L,M )5ãTM(L,M )
1bLaTM(L,M ) where

aTM~L,M !5
4p i

n
k2K d•“3FhL~1!S kn r DYLLM~u,f!G L

l

(5.11)

and

bL5
j L~r!@nr j L~nr!#82n2 j L~nr!@r j L~r!#8

n2 j L~nr!@rhL
~1!~r!#82hL

~1!~r!@nr j L~nr!#8
. ~5.12!

Here, r5(kPL
TM/n)a5(k/n)a, a is the sphere radius, an

ãTM5aTM„hL
(1)→ j L…. The expectation valuê &l in Eq.

~5.11! is taken over the c.m. wave functionl because the
exact location of the dipole is not known when the c.m.
quantized. The spontaneous rate is calculated by@24#
f
e
an

G1~l!

G1
free 21

5
3

2 K ImS d–Esc~r !

d2k3 D L
l

5 i
6p

d2k2
Re(

L,M
S bLK H d•“3FhL~1!S kn r DYLLM* ~u,f!G J

3H d•“3FhL~1!S kn r DYLLM~u,f!G J L
l

D , ~5.13!

whereEsc(r ) is the operator corresponding to the scatte
portion of the field only for whichãTM can be ignored and
the 1 subscript refers to theu1&→u0& internal atomic transi-
tion. Using

(
M52L

L FYLMS p

2
,0D G252L11

4p
, ~5.14!

Eq. ~5.13! becomes

G1~l!

G1
free 215

3

2
ReF(

LM
PLM~L,M !G

56pReH (
L51

`

L~L11!bLK S hL~x!

x D 2L
l

3 (
M52L

L FYLMS p

2
,0D G 2J

5
3

2
ReF (

L51

`

L~L11!~2L11!bLK S hL~x!

x D 2L
l

G .
~5.15!

Apart from the^&l , this is the same expression as in Re
@7,8# where these previous calculations have assumed
atom to be a radial dipole located at (r 0,0,0) as opposed to
(r 0 , p/2,0) here.

The evaluation of Eq.~5.15! was carried out for the pa
rametersa550.04mm andloptical5894.595 nm that have
been considered up until now. The numerical result is t
there is an enhancement in the spontaneous emission
factor of 1.15 for thel51 c.m. state. This result is depen
dent on the c.m. state, but not significantly; it changes by l
than 5% froml51 to l513. This is clear when compare
to the classical atomic position dependence ofG1(r )/G1

free in
Ref. @7#: G1(r )/G1

free changes over a scale ofdr /a;10%
whereas the c.m. wave function is localized todr /a;0.1%
for l51 up to only dr /a;1% for l513. However, the
numerical factorG1(l)/G1

free51.15 is itself extremely sensi
tive to the geometrical factors such as sphere radiusa and
atomic decay wavelengthloptical. The physical reason is
simple: the actual value ofG1(l) is highly dependent on the
precise location of the atomic resonance relative to the se
radiation modes and small changes to geometrical fac
can unpredictably shift a mode onto resonance. This
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been discussed very clearly by Kleppner in Ref.@30# in
which the ideas of inhibited and enhanced spontaneous e
sion are attributed to a careful evaluation of the mode su

It is also important to note that level frequency shifts a
company the changes in the radiative widths and are in
the origin of the van der Waals and Casimir-Polder com
nents of the c.m. potential in Eq.~2.2!. Similar mode sums as
above occur in the evaluation of these shifts, except that
individual modes now contribute a dispersive line shape
the sum. It is not expected that these shifts are importan
the atom gallery system because of the distance of the ato
c.m. wave functions from the sphere; however, Ref.@6# has
pursued this very interesting issue for microspheres usin
classical atomic c.m. description.

C. Spontaneous emission in the perturbative regime
with a resonant WGM

In the following, we consider the case for which th
atomic transition is brought onto resonance with a particu
WGM. The absorption-limited quality factors for certa
WGMs can be greater than 109 in the optical domain@31–
33#, and in order that the perturbative regime remain va
we must consider the case where the internal atomic R
frequencyV is still much less thank5voptical/2Q. Accord-
ing to the estimates in Ref.@2# for a 50mm radius sphere, we
requireQ<108. One could also consider reducingV with
respect tok by using a larger sphere. Section V D will lif
this restriction when we discuss the nonperturbative regi

For concreteness, the resonant quantum field mod
taken to be the mode (s,P1)5(TM,P1 ,L1 ,M1), with a fre-
quencyvP1L1

TM 5ckP1L1
TM and with (P1,L1)5(1,492). In order

to calculate the spontaneous rateG1(Cc.m.), we pull out the
privileged cavity mode from all of the mode sums and c
culateG1

res(Cc.m.). The contribution from all of the nonreso
nant modes,G1

nonres(Cc.m.), can proceed exactly as in th
preceding section@i.e., Eq.~5.15!#. The only tricky point is
that the modes (TM,P1 ,L1 ,M 8) with M 8P@2L1 ,L1# must
simultaneously be pulled out because they are also reso
~for a perfect sphere! with the mode (s,P1). Henceforth we
consider only the resonant contribution in the mode sum
Eq. ~5.2! and in fact we will show thatG1(Cc.m.)
5G1

res(Cc.m.)1G1
nonres(Cc.m.)'G1

res(Cc.m.). Therefore with
r.a we need consider only

Erad~r !5(
M
NP1

TMS aTM,P1H n

kP1L1
TM “

3F hL1~1!S kP1L1TM

n
r D YL1L1M

~u,f!G J 1H.c.D . ~5.16!

1. Effect on the c.m. wave function

The effect of a radiated photon on the c.m. wave funct
is first examined because this will be useful in the disc
sions of the nonperturbative regime in Sec. V D and of
quantum jump picture in Sec. V E.

Spontaneous decay att5t jump
2 from the atomic internal

stateu1& will move all of the population to the ground inte
is-
.
-
ct
-

e
o
in
ic

a

r

,
bi

e.
is

-

ant

n

n
-
e

nal stateu0& so that only the initial atomic wave function

^r ,t jump
2 uC tot

system&[(
l,m

clm~ t jump
2 !

ul~r,z!

Ar
eimf

^ u1&

~5.17!

need be considered. The quantum jump expression for
total wave function can be written as

uC tot
system~ t jump

2 !&→Cd01–Erad~r !uC tot
system~ t jump

2 !&,
~5.18!

whered01 is the atomic dipole operator for the correspondi
internal stateu1&→u0& transition, the radiation fieldErad(r )
is evaluated at the atomic c.m. position operatorr @14#, and
C is some overall normalization. The calculation of the po
jump wave function becomes an evaluation of

^0ud01u1&–Erad~r !uCc.m.
atom~ t jump

2 !& ^ u0&. ~5.19!

Inserting a complete set of c.m. states@it is here that the
completeness of the set of$ul(r,z)% is relied upon# gives, up
to normalization,

uC tot
system&→^0ud01u1&•F (

c.m.8
uCc.m.8

atom&

3^Cc.m.8
atomuErad~r !uCc.m.

atom& ^ u0&G . ~5.20!

The internal matrix element is calculated as follows:

^0ud01u1&5
e

A3
E f 0~R!Rf1~R!R2dR~ ê01ê11ê21!

[eXR~ ê01ê11ê21!, ~5.21!

where a spherical basis has been used and internal r
functions f 0,1(R) assumed. The final state can be writt
down by combining the internal state matrix element w
the external state matrix element

^r ,t jump
1 uC tot

system&5^r ,t jump
1 uCc.m.

atom& ^ uC tot
system&

5eXR~ ê01ê11ê21!•K rU(
c.m.8

UCc.m.8
atomL

3^Cc.m.8
atomuErad~r !uCc.m.

atom& ^ u0&

5 (
l8,m8

cl8m8

ul8~r,z!

Ar
eim8f

^ u0&.

~5.22!

Note that the$cl8m8% should be renormalized to$c̄l8m8% as is



n
rit

o-

1252 55D. W. VERNOOY AND H. J. KIMBLE
explained in Appendix A 3. As a reminder that in the qua
tum jump process only one photon is ever emitted, we w

cl8m85cl8m8
M , ~5.23!

where the superscriptM reminds us that there is now a ph
ton in the radiated field in the mode (TM,P1 ,L1 ,M ). The
cl m
M are defined by

8 8
-
e

cl8m8
M

5eXR~ ê01ê11ê21!•NP1
TM

3(
l,m

clmE d3r 8S ul8~r8,z8!

Ar8

3e2 im8f8GP1
~r 8!

ul~r8,z8!

Ar8
eimf8D , ~5.24!

and
ly

e

l
ne of
GP1
~r 8!5AL1~L111!

31F n

kP1L1
S d

dr8
1
L111

r 8 D hL1~1!S kP1L1n
r 8D G 5

A~L111!~L12M !~L11M !

~2L111!L1~2L121!
YL121,M~u8,f8!ê0

1A~L111!~L11M !~L11M21!

~2L111!2L1~2L121!
YL121,M21~u8,f8!ê1

1A~L111!~L12M !~L12M21!

~2L111!2L1~2L121!
YL121,M11~u8,f8!ê21

6
1F n

kP1L1
S d

dr8
2
L1
r 8 D hL1~1!S kP1L1n

r 8D G 5
2AL1~L12M11!~L11M11!

~2L111!~L111!~2L113!
YL111,M~u8,f8!ê0

1AL1~L12M11!~L12M12!

~2L111!2~L111!~2L113!
YL111,M21~u8,f8!ê1

1AL1~L11M11!~L11M12!

~2L111!2~L111!~2L113!
YL111,M11~u8,f8!ê21

6 2 .

~5.25!

Using the fact that integration overf8 in Eq. ~5.24! causes selection in the variablem8, it can be seen that the atom can on
get kicked rotationally into certain c.m. states$eim8f% which enforce conservation of angular momentum.

2. Cavity enhanced spontaneous emission parameter

Turning to the actual evaluation of the resonant contribution toG1(Cc.m.), we can apply Fermi’s golden rule in th
perturbative regime to the decay of atom into the special set of resonant modes$(TM,P1 ,L1 ,M 8)% with M 8P@2L1 ,L1#,

G1~Cc.m.!5
2p

\ (
final

z^Cfinal
systemud01–Erad~r !uCc.m.

atom& z2r~EF!d~EF2EI !

5
2p

\ E r~EF!dEF (
c.m.8

zeXR~ ê01ê11ê21!•^Cc.m.8
atomuErad~r !uCc.m.

atom& z2d~EF2EI !. ~5.26!

We now just look at a single outcome: the photon is emitted into the final state (TM,P1 ,L1 ,M ). In the end, we sum over al
possible outcomesMP$M 85@2L1 ,L1#%. Using completeness of the c.m. states, we can simplify the sum in the last li
Eq. ~5.26!,

F[UeXR~ ê01ê11ê21!•(
c.m.8

uCc.m.8
atom&^Cc.m.8

atomuErad~r !uCc.m.
atom&U25U (

c.m.8
uCc.m.8

atom&eXR~ ê01ê11ê21!•^Cc.m.8
atomuErad~r !uCc.m.

atom&U2
5 (

c.m.8
zeXR~ ê01ê11ê21!•^Cc.m.8

atomuErad~r !uCc.m.
atom& z2. ~5.27!

Comparing the second line of Eq.~5.27! with Eq. ~5.22!,
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F5U E d3r ur & (
l8,m8

cl8m8
M ul8~r,z!

Ar
eim8f

^ u0&U25 (
l8,m8,l9,m9

S cl8m8
M

~cl9m9
M

!* E d3r
ul8~r,z!ul9~r,z!

r
ei ~m82m9!fD

5 (
l8,m8,l9,m9

@cl8m8
M

~cl9m9
M

!* dl8,l9dm8,m9#5 (
l8,m8

ucl8m8
M u2[PM~M !. ~5.28!
.
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The functionPM(M ) will be discussed in detail in Sec. V E
The next important issue in calculatingG1(Cc.m.) is the

density of states termr(EF) for the resonant contribution
For a microsphere close to one of these resonances, it is
possible to turn a mode sum into an integral over ma
modes. However, it is possible to quantify the integral ove
particular mode by considering the detailed mode structu
The best way to think about this is to consider only t
resonant terms in the field of Eq.~5.1!,

Erad$r !5(
M

H bLaTM~L,M !
n

k
“

3FhL~1!S kPLTMn r DYLLM~u,f!G J , ~5.29!

which havebL→` because of the resonance condition~see
Appendix A 1 a!. For the particular resonant mode, we ne
to incorporate a small imaginary part. More correctly,ubLu2
contains the information about the resonance width and
particular Ref.@34# shows howubLu2 is well represented by a
Lorentzian line shapegL(v) for the particular frequency o
the emitted photon. Continuing to consider the mo
(s,P1)5(M ,L1,P1), this leads to the form

r~v!5gL~v!5

DvP1L1
TM /2p

~v2vP1L1
TM !21~DvP1L1

TM /2!2
, ~5.30!

where DvP1L1
TM is the resonance width. Returning to th

evaluation ofG1(Cc.m.) by summing over possible fina
states, we find

G1~Cc.m.!5
2p

\ E r~v!dv(
M8

PM~M 8!d~EF2EI !.

~5.31!

The factors (NP1
TM)25\ckP1L1

TM /2nVTM,P1 and e
2XR

2 are ex-

plicitly removed fromPM(M 8) by defining

\ckP1L1
TM

2nVTM,P1
e2XR

2 P̃M~M 8![PM~M 8!. ~5.32!

Hence
ot
y
a
.

in

e

G1~Cc.m.!5
2p

\

\vP1L1
TM

2
e2XR

2(
M8

1

VTM,P1

P̃M~M 8!

3E r~v!dvd~\v2\vP1L1
TM 1dEc.m.!

5

2vP1L1
TM e2XR

2

\DvP1L1
TM (

M8

1

VTM,P1

P̃M~M 8!, ~5.33!

where it is assumed that the c.m. energy sh
dEc.m.;\k2/2m is much less than the resonance width~see
Appendix A 1 b!. Using the free space spontaneous emiss
parameterG1

free5(e2XR
2/3p\)k3, noting thatk pertains to

the value outside the sphere, and relabelingM 8→M , the
final result is

G1~Cc.m.!

G1
free 5

6p

k3 S vP1L1
TM

DvP1L1
TM D(

M

1

VTM,P1

P̃M~M !

5
6pQP1L1

TM

k3 (
M

1

VTM,P1

P̃M~M !, ~5.34!

where the resonance quality factorQP1L1
TM [(vP1L1

TM /

DvP1L1
TM ) has been identified.

It can be verified at a glance that this agrees with
known ~e.g., @30#! resonant enhancementGcavity/G0

;Qloptical
3 /V because theVTM,P1

are not very dependent o

M and(MP̃M(M ) is a scaling factor dependent on the ove
lap of the atomic c.m. state and the mode volume. The va
Q5108 is used to calculate the ratioG1(Cc.m.)/G1

free for the
c.m. statesl51, . . . ,6,with the results plotted in Fig. 14 fo
jumps of typeJ1 ~namely, u1&→u0&). Note that enhance

FIG. 14. The spontaneous emission rateG1(l) normalized to
the free space resultG1

free as calculated in Sec. V C 2. Note th
dependence of theG1(l) on the particular c.m. state due to th
structure of the c.m. wave function. For example, the mo
l510,12 corresponding to azimuthal excitation~see Fig. 8! are
anomalously high because they keep the atomic c.m. probab
closer to the dielectric interface.
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1254 55D. W. VERNOOY AND H. J. KIMBLE
ments over the free space rate by; 800 are found for tran-
sition at 894.5 nm. By contrast, the enhancement for
u2&→u0& ~or J2 type! transition at 455.6 nm is;5 with the
difference in the two due to the factorloptical

3 and the differ-
ence in field amplitude for the two modes at the atomic
sition. This proves the resonant contribution dominates
sum of the off-resonant mode contributions. More sign
cantly, for a given type of jump (J1 , J2), the spontaneous
rates are not wildly dependent on c.m. wave functionl as
also found in the preceding section. However, the enhan
ment factors in the c.m. statesl510,12 ~corresponding to
êz excitations! are noticeably larger than theirêr counterparts
which is evidence for possible novel c.m. state effects on
dynamics; for example, a c.m. transition from anêr excita-
tion state~e.g.,l59) to anêz excitation state~e.g.,l510)
would change the internal atomic decay rate.

D. The nonperturbative regime

When theQ of the resonant mode becomes so high tha
perturbative expansion is no longer formally valid, t
coupled atom-cavity mode dynamics can be understood a
oscillatory exchange of quanta at the Rabi rateV. The per-
turbative calculation for the nonresonant modes in Sec.
is still necessary to get the correct decay rateGcavity into the
reservoir, but the photons which couple into the reson
mode now have a long enough cavity lifetime;k21 that
they might be absorbed and reemitted into this mode sev
times before they are lost to the reservoir viaGcavity. The
typical enhancement factor is called the single atom coo
ativity C1;g2/kGcavity @35# ~with g5V/2 for a single pho-
ton in the cavity!, but it can be shown to be equivalent
;Qloptical

3 /V as calculated perturbatively above for a dom
nant resonant mode. The major difference now is that
atom can also reabsorb the photon from the resonant ca
mode and a perturbative approach could never give a co
understanding of the coupled dynamics. The implication
this continuous coherent exchange for the c.m. wave fu
tion is a very interesting question. Qualitatively at least,
results of Sec. V C 1 indicate that each exchange conse
total angular momentum~more on this in Sec. V E below!
and must lead to a diffusion of theeimf part of the wave
function.

E. Interpretation of PM„M … in the quantum jump picture

1. Symmetry and the jump operators

A guiding light in this work has been the calculation
Marte et al. @36#, in which an atom is placed in a potenti
representing quantized 1D molasses. In their case, the tr
lational symmetry of the standing wave light field allow
them to express not only the c.m. wave function in terms
a basis of Bloch functions but also to express simply
effect of the spontaneous emissions on this wave funct
They quantize the radiation field as plane wave states in
a box appropriate to the boundary conditions. A pho
emission then must cause atomic recoil according
^z,tuCc.m.

atom&→e2 ik–êz^z,tuCc.m.
atom&. This is just a translation o

the Bloch vector with a strength determined by the proba
ity distribution over angles for the emitted photon as co
tained in the dot productk–êz and this transformation, char
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acterized by the jump operatore2 ik–êz, summarizes the effec
of the sponatneous decay quantum jump for the c.m. w
function. The decay rateG is just the free space result.

In order to gain an equivalent understanding of the at
gallery, its symmetry must be exploited. It is clear that t
potential isf independent and that any rotation of the sy
tem about thez axis by an angle of 2p causes no change t
the system. As in the 1D molasses case, a spontaneous
sion event breaks this symmetry, but the corresponding k
to the c.m. wave function should respect the symmetry of
c.m. basis. In the 1D molasses case, this is a translatio
linear momentum but here it should correspond to a boos
angular momentum.

If one writes down the electromagnetic analog of the a
gular momentum operatorL ,

LEM5E
VQ

r3@Erad~r !3Brad* ~r !#dV, ~5.35!

and then proceeds to calculate the projection of this oper
along thez axis, one finds@37#

LEM,z5LEM•êz5(
s,P

\M S as,P† as,P1
1

2D , ~5.36!

which, when evaluated in a field state with a single photon
the mode (s,P1) will give ^LEM,z&5\M . In other words, it is
not a linear momentum kick which is applied back on t
c.m. wave function as in the case of 1D molasses, but it is
angular momentum kick and the overall process has ha
conserve angular momentum.

In the nonresonant, perturbative regime it is sufficient
note from Eq.~5.15! that the functionPLM(L,M ), suitably
normalized, forms a probability distribution for the photon
be emitted into the mode (L,M ). This is the analogy to the
distribution pk(k)dVk;uêd3êku2dVk for a dipole in free
space alongêd to emit a photon into the plane wave mod
k, which is essential in understanding the form of the c.
jump operator if one thinks of an emission event as a qu
tum jump.

In the resonant perturbative regime, the c.m. wave fu
tion changes due to a spontaneous emission into a domi
cavity mode. Equations~5.22!–~5.25! in fact specify the
jump operators for a spontaneous emission into a domin
mode in the atom gallery by showing explicitly how the c.m
wave function is transformed. The jump operator cannot
simplified further because there are separate changes to
the ul(r,z) and eimf part of the wave function. Again a
situation arises where a functionPM(M ), defined in Eq.
~5.28!, acts as a probability distribution for a photon to b
kicked into a radiation mode with orbital mode numberM .
In Fig. 15, the normalized versionP̄M(M ) of PM(M ) is
plotted for a jump of typeJ1 for an atom in the state

ucc.m.,ground& ^ ucdressed,ground&, ~5.37!

which is written out explicitly in Eq.~4.17!. Note that this
distribution is symmetric forM→2M and that the probabil-
ity is very strongly peaked atuM u'L1.
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2. Significance of the jump process

The first observation is thatglobal angular momentum
conservation between internal states, external states, an
quantum radiation field has to be enforced. This is a pract
example of something that has been discussed by van
@38# and others. The internal angular momentum appears
to the dot product of the spherical basis vectors with
quantum radiation field operator in Eq.~5.22!. The phase
eiMf of the radiation field in turn couples to the phaseeimf

of the c.m. wave function, causing a diffusion to an initia
well-defined phase and the consequence of this on the
namics will be discussed in the next section.

A second comment is that when using these jump op
tors in the quantum jump picture, it is implicitly assume
that our measuring device has the ability to distinguish
M value of the emitted photon. This may not be practical
even physically realizable. However, as Ref.@39# explains
for the case of 1D molasses, the jump operators are
unique. This is true in general for any master equation. In
1D molasses case, for example, one is able to do a un
transformation on the jump operators fromBs(z)e

2 ik•êzz to
*dVkBs(z)e

2 ikcosu(z2nl/2). This corresponds to a change
the measurement from the angular position of the emi
photon to c.m. wave function position localization by loo
ing at the fluorescence through a lens. Such a transforma
is known as a localizing quantum jump. One would hope t
a similar transformation could be found here which wou
avoid relying upon the measurement of photon angular m
mentum. This is something to be investigated further.

Finally, and most importantly, the significance of th
spherical geometry is evident. The angular momentum k
causes c.m. transitions and a change toEc.m., but the major-
ity of the recoil energy must go into centrifugal energyEc

FIG. 15. The normalized probability distributionP̄M(M ) for a
photon to be emitted withMP@2L1,L1# in a spontaneous emissio
eventin a resonant regimefrom the internal atomic stateu1& to the
stateu0&. The initial c.m. state is taken to bel51. Note that the
distribution is symmetric aboutM50. This probability distribution
is used to pick theêz component of the orbital angular momentu
of a spontaneously emitted photon in the case of a jump of t
J1 . It is the microsphere analogy to picking theêz component of the
linear momentum of an emitted photon in free space according
dipole distribution pk(k)dVk;uêd3êku2dVk for a dipole along
êd .
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associated with the change in angular momentumand this
energy is largely decoupled from trap heating.The sphere
will thus tend to shield the atom from recoil heating in th
transverse (êr and êz) dimensions. This is not the case
other geometries: for example, the random direction fo
linear momentum kick in 1D molasses is a limit to the co
ing.

3. The limit of a large number of jumps

It is interesting to consider semiquantitatively the effe
on the quantum dynamics if there were many spontane
emission quantum jumps. Even though such a scenario
not be compared with the actual dynamics calculated for
system in Sec. IV since there were very few jumps by des
of the chosen parameters, this would become important
ther in the context of interaction of the c.m. wave pack
with a quantum field, or simply for deeper wells. The num
ber of jumpsj scales asj ;theating/Dtemissionand the heating
time theating should scale astheating}DEc.m. sG. For the 95
mK potential, Ec.m.

95 mK(l51)/Ec.m.
2 mK(l51);100 and so

j 95 mK/ j 2 mK ;100 since the ratio is independent of 1/sG.
This would be noticeable in the number of orbitsnorbit that
the atom could make around the sphere. The orbital pe
Torbit scales asTorbit5theating/norbit52pa/vf;2pa2mc /
\m0 wherem0 is the center of the distribution in$m% for the
c.m. wave function. Heating due to recoil effects, which w
not present in previous calculations oftheating in Sec. IV C,
can changenorbit in the limit that there are a large number
jumps j .

For angular momentum conservation for the microsph
trap,

Jatom•êz→Jatom8 •êz1LEM•êz , ~5.38!

whereJatom
tot 5Latom

int 1Latom
c.m. and, as described explicitly abov

in Sec. V C 1,

m→H m1M21

m1M

m1M11
J . ~5.39!

This transformation says that even ifall of the quantum
jumps are recorded, there will be a correspondingspreadin
the c.m. angular momentum. The reason for this is that th
is an internal component,Latom

int to the total angular momen
tum, Jatom

tot which cannot be ignored.
For an initial system wave function before the first jum

at t5t jump
2

^r ,t jump
2 uC tot

system&5^r ,t jump
2 uCc.m.

atom& ^ uC int
atom&

5eim0fS (
l

cl~ t jump
2 !

ul~r,z!

Ar

(
l8

bl8~ t jump
2 !

ul8~r,z!

Ar

(
l9

dl9~ t jump
2 !

ul9~r,z!

Ar

D ,

~5.40!
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the action on thef part of the c.m. wave function by th
jump operator at the first quantum jump fromu1&→u0& is to
take the initialm0 in eim0f and change it to

m0→$m01M21,m01M ,m01M11%, ~5.41!

whereM is a random variable corresponding to the final fie
state and is chosen fromP̄M(M ). If the normalized c.m.
wave function is rewritten just after the jump,

^r ,t jump
1 uC tot

system&5S (
l,m

c̄lm~ t jump
1 !

ul~r,z!

Ar
eimf

0

0

D ,
~5.42!

the internal states will mix to produce a new wave functi
at a later timet8 of the form

^r ,t8zC tot
system&5S (

l,m
clm~ t8!

ul~r,z!

Ar
eimf

(
l8,m

bl8m~ t8!
ul8~r,z!

Ar
eimf

(
l9,m

dl9m~ t8!
ul9~r,z!

Ar
eimf

D .

~5.43!

It is evident that all three wave function spinor comp
nents contain exactly the same number of terms inm and that
the entire wave function spreads out inm in exactly the same
way. In fact, it is easy to see that afterj spontaneous jump
there will beNm( j )52 j11 terms in(m . After starting out
in the state with total energyEtot(t50)5\2m0

2/2mca
2, the

change in the energy after one jump of typeM is given by

dEtot5
\2

2mca
2 F(

l,m
m2uc̄lm~ t jump

1 !u22m0
2G , ~5.44!

where (m5(m5m01M21
m5m01M11 . From the distributionP̄M(M ),

M is strongly peaked aboutuM u'L1 for a jump of typeJ1
and so this sum can be evaluated as

dEtot'
\2

2mca
2 F ~m06L1!

2(
l,m

uc̄lm
M ~ t jump

1 !u22m0
2G

'
\2

2mca
2 @~m06L1!

2P̄M~L1!2m0
2#, ~5.45!

where the results of the normalization procedure in App
dix A 3 and summarized there by Eq.~A21! have been used
The6 means thatM56L1 are equiprobable. Afterj such
jumps the energy change is
-

dEtot~ j !'
\2

2mca
2 F S (

l
(

m5m01M tot~ j !2 j

m5m01M tot~ j !1 j

3uc̄lm~ t jump
1 !u2m2D 2m0

2G , ~5.46!

with M tot( j )5(nj51
jM (nj ) whereM (nj ) is theM value of

the emitted photon at thenj th jump as chosen randomly from
P̄M(M ) at each jump. This can be evaluated approximat
as

dEtot~ j !' j
\2

2mca
2L1

22@12 P̄M~L1!#Etot~ t50!, ~5.47!

since ^M2&'L1
2 . Asymptotically, this scales linearly with

j . This is easy to understand: a random walk in angular m
mentumJ for j steps should givesJ

2; j⇒^dEtot
free( j )&; j . If

AjL 1 is very large compared tom0 then the number of orbits
scales as

norbit;
theating
Torbit

; j 3/2S 1

sG~2pamc /\kP1L1
TM !D . ~5.48!

The upper limit on the number of possible jumpsj that the
atom can undergo and still remain trapped is either the p
at which the distribution in$m% becomes peaked at such
large value;AjL 1 that the centrifugal force now matche
the potential gradient, or when the bound state diffusion
sociated with these jumps@cf. Eq. ~5.24! which implicitly
shows a spreading from$l% to $l8% as well as from$m% to
$m8%# is enough to heat the atom. As pointed out earlier,
former would most likely dominate because heating by m
ing up the bound states ladder is suppressed due to the s
ture ofPM(M ).

VI. IMPLICATIONS OF THE QUANTIZATION
OF THE c.m.

A. The atom-microsphere system as a matter wave resonator

The atom gallery system has the possibility of forming
matter wave resonator under certain conditions. To und
stand this requires resynthesizing the total c.m. wave fu
tion by including thef dependence along with the c.m
bound states. Consider the full c.m. state under free ev
tion,

^r ,tuCc.m.
atom&5(

l,m
clm~ t !

ul~r,z!

Ar
eimf

5(
l

S (
m

clm~ t !eimfDul~r,z!

Ar
, ~6.1!

and now concentrate on the spread inm values in
f l(t)5(mclm(t)e

imf. It is easy to show that
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^E~ t !&5(
l,m

uclm~ t !u2Ec.m.~l!1(
l,m

uclm~ t !u2
\2m2

2mca
2

5^Ec.m.~ t !&1^Ec~ t !&. ~6.2!

The de Broglie resonance condition is thatDpf;\/a with
pf(t)5^(\/ ir)(]/]f)&;(\/a)(l,mmuclm(t)u2. Hence,
Dm ;1 is required such that(l,m contains very fewm
values. So withDm;1,DEc;\2m/mca

2 defines an accept
able energy width and it is clear that with smaller diame
spheres, greater flexibility in initial atomic temperatures
allowed. For a 1mm sphere atEc;100 nK ~Cs recoil at the
D2 line at 852 nm!, DEc;(\2/mc)(2p/al);30 nK, which
is not out of the question with present cooling and trapp
technology. At this small radius, theQ of the microsphere is
severely limited by its intrinsic radiative value, but the tra
ping potential does not depend heavily upon theQ. Previous
discussions about the role of spontaneous emission in c
ing diffusion in them quantum number of the c.m. wav
function are particularly applicable here as the decohe
mechanism and this will be the subject of a future investi
tion.

B. Cavity QED and the c.m. wave function

Perhaps the most interesting observation to come ou
this analysis is that these c.m. wave packets have a sp
extent ofloptical/2p. As has been alluded to previously, it
a very interesting problem to understand how such a c
wave packet would evolve if a quantum field were intr
duced. The idea of c.m. quantization in the context of cav
QED has recently been emphasized@40–42#. Interesting cav-
ity QED effects arise when the atom is strongly coupled t
single mode of the field and it is necessary that the str
coupling parameterg(r ) between the atom and the priv
leged cavity mode~which is assumed to be at or near res
nance with the atomic transition! dominate the decay rat
G into all other modes and also the cavity decay ratek of the
privileged cavity mode. The atom gallery can realistica
satisfy both these conditions as has been discussed in
@2#.

As a first example, we consider quickly turning off th
classical trapping potential (V1,2→0) and then using the
Stark shift of a quantum field resonant with a WGM and
internal atomic transition. The initial total wave functio
now contains a very well-defined initial atomic c.m. wa
packetlocalized directly in the spatial region of this quantu
field as pointed out in Ref.@2#. The quantum dynamics in
resonant situation such as this are governed by a Hamilto
of the form

H5
p2

2m
1 ig~r !~s2a

†2s1a!, ~6.3!

where dissipation is ignored. The initial c.m. wave functio

uCc.m.~ t50!&5uCc.m.
l &5E d3r S (

l,m
clm

ul~r,z!

Ar
eimfD ur &

~6.4!
r
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forms a very realistic initial condition for the subseque
evolution and this situation is a novel one. Clearly, the us
interpretation ofg(r ) as g(^r &l) cannot be correct as th
wave packet can have appreciable probability on spa
scales over whichg(r ) varies appreciably.

Many very interesting situations may arise. For examp
with g(r );d•EPLM(r ) ~see Appendix A 4! for a quantized
WGM field with mode functions given by Eq.~2.1!, the c.m.
wave function would be extremely sensitive to the number
nodesuL2M u of g(r ) in the êz direction, because these de
termine howg(r ) varies across the wave packet~the realistic
situation of a microsphere with some asphericity to lift t
M degeneracy noted earlier is considered!. This is empha-
sized in Figs. 16~a!–16~c! where the c.m. wave functions fo
the atom gallery modesul(r,z) are plotted along with
guL2M u(r,z) on the same spatial scale. For concreteness, th
CsD2 transition is now taken to be close to resonant with
quantum WGM (s,P)5(TM,1,521,M ). In 16~a! and 16~b!,
M5518 and in 16~c!, M5517. It is clear that the c.m. wav
packets are not localized well enough to consider us
g(^r &l) in standard quantum dynamical equations for t
internal states of the atom and the quantum field. Such a fi
would also lead to the importance of the coupling of t
phaseeiMf of g(r ) with the phaseeimf of the c.m. wave
function which is a concrete example for the discussion
Sec. V C.

A second possible avenue would be to take advantag
the long lifetime of these atom galleries and keep the tr
ping potential on while turning on a quantum field on a th
transition. Unfortunately, the energy scale associated w
the coupling parametersg(r ) for even a resonant vacuum
field are;5003 greater than the dipole force potential fo
the cesium atom gallery calculated above. Hence, it is c
tainly not valid to assume that the atom will remain trapp
while interacting with the quantum field. However, for
much lighter atom such as He* , it is the case that one migh
be able to treat the fast (g21 time scales! dynamics due to
the quantum field while ignoring the slower~heating time
scales! of the trap. One could now consider the possibility
probing the c.m. state structure dependence of the usua
ternal statê quantum field Jaynes-Cummings ladder in op
cal cavity QED on time scales long compared to anyth
being done at the moment. We look forward to develop
these ideas further in future work.

VII. CONCLUSIONS

In conclusion, the atom gallery proposed in@2# has been
further characterized by calculating the bound states and
examining the subsequent dynamics of the system evolv
in one of these states. Trap lifetimes cannot be fully und
stood from a semiclassical analysis. Next, the broad issu
radiative processes in the atom gallery has been discuss
both the perturbative and nonperturbative regimes. The s
metry of the atom gallery brings to the fore very interesti
issues of angular momentum conservation, which has b
discussed in the context of the quantum jump picture. So
ideas about the atom gallery as a matter wave resonator
been presented. Finally, extremely interesting issues aris
a consequence of c.m. quantization in cavity QED with
quantum field. Exploring quantum dynamics against
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1258 55D. W. VERNOOY AND H. J. KIMBLE
backdrop of the atom gallery should be extremely fruit
because it is a realistic 3D system which begins to empha
the importance of the c.m. wave function in cavity QED.
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APPENDIX A: DETAILS ON THE CALCULATIONS

1. Microsphere resonances

a. Characteristic equations

Microsphere resonances are calculated from resonanc
the Mie scattering coefficients which in turn are determin
from the boundary conditions on Maxwell’s equations at t
surface of the sphere. For the TM modes used in the ca
lations the following characteristic equation has to be solv
@11#:

@r j L~r!#8

n2 j L~r!
5

m2

m1

@~r/n!hL
~1!~r/n!#8

hL
~1!~r/n!

, ~A1!

wheren is the refractive index of silica,m1 andm2 are the
magnetic permeabilities inside and outside the sphere,
spectively,r5k1a for a sphere of radiusa and a wave vec-
tor magnitude inside the sphere ofk1, and the 8 denotes
differentiation with respect to the argument. This can be s
plified to

j L21~r!

j L~r!
2
L

r
5
nhL21

~1! ~r/n!

hL
~1!~r/n!

2
n2L

r
. ~A2!

The solutions are characterized byrPL
TM ~whereP indexes the

zeroes ofhL) and are related to the resonance frequenc
vPL
TM5ckPL

TM/n used in the calculations by vPL
TM

5Re(crPL
TM/na). kPL

TM is understood to beinside the sphere.

b. Quality factors

The cavity damping ratekPL
TM can be averysmall number

and this is the reason why microsphere resonators are in
esting for strongly coupled cavity QED. In practice, the lin
widths would be measured and quoted as aQPL

TMvalue, where
QPL
TM5vPL

TM/DvPL
TM5vPL

TM/2kPL
TM . This value can be predicte

using the results of Ref.@31#. The intrinsic radiativeQ can
be solved by considering the functional form of the square
the Mie scattering coefficientbL given explicitly for TM
modes by Eq.~5.12!. This leads toQ values which can be
.1020 for 2a/loptical>50 ~as is easily satisfied here! and so
radiative losses can be ignored. Present work in Ref.@31# at
633 nm is pushing the intrinsic material absorption limit. F
a typicalQ value;109 atl5894 nm the resonance width i
Dv/2p;300 KHz, but a recoil shift here is;10 KHz so
these can be ignored as was claimed in Sec. V C 2.

2. Bound state calculations

a. Eigenvector representation

As discussed briefly above, the c.m. basis wave functi
are held as coefficients of a sine series because this auto
cally enforces the boundary conditions that the atom be c
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fined to the well region. The sine series representation
ul(r,z) can be written down explicitly as

ul~r,z!→ul~a,b!

5 (
x51

Nr

(
y51

Nz FUl~x,y!sinS pxa

Nr11D sinS pyb

Nz11D G ,
~A3!

and the variablesr andz have been discretized as

r5rmin1
a

Nr11
~rmax2rmin!,

~A4!

z5zmin1
b

Nz11
~zmax2zmin!,

with a51, . . . ,Nr , b51, . . . ,Nz . Nr ,Nz are the grid
sizes in theêr and êz directions, respectively, for which
Nr5Nz540 was chosen.Ul(x,y) is known as the2D In-
verse sine transformof ul(a,b). The complementary rela
tion reads

Ul~x,y!5
4

~Nr11!~Nz11! (a51

Nr

(
b51

Nz

3Ful~a,b!sinS pxa

Nr11D sinS pyb

Nz11D G , ~A5!

andul(a,b) is the2D sine transformof Ul(x,y). The co-
efficients Ul(x,y) and ul(a,b) are purely real and they
obey

(
a,b

ul
2~a,b!5

~Nr11!~Nz11!

4 (
x,y

Ul
2~x,y!. ~A6!

There is still the issue of the overall normalization of t
ul(a,b), because

E d3rCc.m.
atom* ~r,f,z,t !Cc.m.

atom~r,f,z,t !51. ~A7!

This equation can be rewritten as

E d3rF S (
l8,m8

cl8m8
*

ul8~r,z!

Ar
e2 im8fD

3S (
l,m

clm

ul~r,z!

Ar
eimfD G51. ~A8!

Thef integration gives 2pdm8,m and so

2p (
l,l8,m

cl8m
* clmE rdrdz

ul8~r,z!ul~r,z!

r
51.

~A9!

Now evaluating the integral gives

I5E rdrdz
ul8~r,z!ul~r,z!

r
5dl8,lE rdrdz

ul
2~r,z!

r
,

~A10!
ofbecause the$ul(r,z)% are eigenfunctions of a Hermitian op
erator and hence are orthogonal. Using Eqs.~A3! and ~A4!,

I5dl8,l
~rmax2rmin!~zmax2zmin!

4 (
x,y

Ul
2~x,y!. ~A11!

The end requirement is

p

2
~rmax2rmin!~zmax2zmin!(

l,m
clm* clm(

x,y
Ul
2~x,y!51.

~A12!

To independently normalize the$ul(r,z)%, it is required that

(
x,y

Ul
2~x,y!5

2

p~rmax2rmin!~zmax2zmin!
, ~A13!

and then the expansion coefficients must obey

(
l,m

clm* clm51. ~A14!

Thus the proper way to normalize the$ul(r,z)% is to have

(
a,b

ul
2~a,b!5

~Nr11!~Nz11!

2p~rmax2rmin!~zmax2zmin!
. ~A15!

The power of this method is clear when the Schro¨dinger
equation, Eq.~3.2!, is examined. First, the second derivativ
operator just becomes a multiplication ofUl(x,y) by
2p2x2/(rmax2rmin)

22p2y2/(zmax2zmin)
2. Second, it is very

fast to switch betweenul(r,z) andUl(x,y) using modifica-
tions of 2D fast fourier transform~FFT2! algorithms to the
2D fast sine transform~FST2!.

3. Renormalization of the wave function
and the quantum jump probability density

It is necessary to renormalize the distributionPM(M ) ac-
cording to

PM~M !→ P̄M~M !5KPM~M !, ~A16!

where

(
M8

P̄M~M 8!51, ~A17!

so that

K(
l8m8

ucl8m8
M8 u251. ~A18!

In order to renormalizêr ,tuC tot
system& after the jump,

cl8m8
M8 → c̄l8m8

M8 5Mcl8m8
M8 , ~A19!

such that

(
l8m8

uc̄l8m8
M8 u251. ~A20!
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Finally, then, the relationship between the required norm
izations is

K5uMu2. ~A21!

4. Coupling coefficients and photon numbers

If the microsphere is to be used in the regime of stro
coupling, the parameter of interest is the coupling coeffici
gs,P(r ) where@35#

gs,P~r !5g'ucs,P~r !uA 3cl2

4pg'Vs,P
. ~A22!

andg' is thefree spacetransverse decay rate for the intern
. B
.

V.

.

s.

d

pt.

. I

ii,
l-

g
t

l

atomic transition of frequencyv int
atom52pc/latom. These are

easily calculated using the definitions ofVs,P , cs,P(r ), and

g'5
1

2
G free~l!5

4e2XR
2p2

3\l3 . ~A23!

The photon numbers are calculated fromV1,2(r )
52A^n1,2&gs,P(r ). It is also interesting to note that the dis
cussion in Sec. VI B addresses a situation in which the ph
of gs,P(r ) may mix with the phase of the c.m. wave functio
so that the typical definition ofgs,P(r ) which includes the
norm of the radiation field mode functionucs,P(r )u @as in Eq.
~A22!# would have to be modified.
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