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Quantum structure and dynamics for atom galleries
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(Received 8 August 1996

The bound state structure and dynamics for an atom trap formed from the whispering gallery modes
(WGMs) of a dielectric microsphere are investigated. The coupling of the quantized internal and external
atomic degrees of freedom plays a fundamental role in the quantum dynamics atdhisgallery The
radiative processes for a cold atom near a microsphere are modified due to the special symmetry of the atom
gallery, the WGM mode structure, and the finite extent of the center-of-ifcasy wave packet. Finally,
interesting implications of the quantized c.m. for atomic matter waves and cavity QED with a quantum field are
mentioned[S1050-294P7)01802-7

PACS numbes): 42.50.Vk, 32.80.Pj, 33.80.Ps., 42.50.Hz

I. INTRODUCTION it is well known that radiative processes are fundamentally
modified for an atom outside of a dielectric sphere, previous

Understanding atom-light-field interactions in a regimecalculationg6-9] have not included the quantum mechani-
where the atoms are cold enough such that the center of maggl nature of the c.m. state. Finally, a few comments are
(c.m) degrees of freedom must be quantized has becom@ade in Sec. VI about the possibilities for using these well-
very important in view of present experimental capabilitieslocalized atomic wave packets for atomic resonance studies
of sub-Doppler cooling and atom trapping. However, thereand also in cavity QED experiments.
exist few fully quantum calculations of the atomic c.m. dy-
namics in realistic three-dimension&BD) configurations Il. THE ATOM GALLERY SYSTEM
when dissipative processes must be taken into acddiint _ . _ .

The configuration of a three-level atom interacting with ' this section, we begin by describing the atom gallery
two oppositely detuned whispering gallery modes in a fusegYStem in terms of the optical fields, the atomic system, and
silica microsphere, termed aiom galleryin Ref.[2], is an the overall potential affecting the atomic c.m. Figure 1 shows
ideal system in which to explore 3D atomic quantum dynam{n€ geometry of the atom gallery.
ics because the relevant scale for the confining potential is of
the order of the wavelength of light. The atom can behave as A. Whispering gallery modes

a free particle along a circumference of the surface of the Tne excitation of the whispering gallery mod@&GMs)
sphere and still remain trapped in the two transverse direGn g microsphere is accomplished experimentally by allowing
tions. This suggests exciting p035|b|I|_t|es for studies of matye evanescent component of a focused Gaussian beam to
ter wave resonance phenomena using cold atoms and f@feet the sphere at grazing incidefi]. The classical elec-
cavity QED in an extremely higlp resonator Q>10°) ina  tromagnetics problem of the resultant mode structure in the

regime of strong coupling. Because experimental micromjcrosphere has been solvgtil]. Two different polariza-
sphere technology is rapidly advancing to the point where

such experiments could actually be perfornid it is im-
portant to explore in greater detail many of the the physical
issues associated with such a system. Besides the advances in
experimental aspects, several other groups have also per-
formed calculations related to cavity QED effects in micro-
sphere resonatofd4,5].

The work reported here represents an important step for-
ward in the understanding of the atom gallery. The first cal- atomic orbit
culations of the 3D bound state structure and the associated
c.m. wave functions for an atom in this trap have been per-
formed for realistic experimental parameters in Sec. lll.
These c.m. states form a basis set which has then been used
in Sec. IV in an attempt to understand the dynamics when an
atom is allowed to evolve from a particular initial state.
Next, in Sec. V these wave functions have been used to microsphere
calculate the modified spontaneous emission rate for an atom

occupying a particular eigenstate of the atom gallery. While G, 1. The geometry of the atom gallery system is shown. The
microsphere has a radius af=50 um and the grid on which the
atomic c.m. wave functions are calculated has dimensions of 0.4
*Electronic address: dvernooy@cco.caltech.edu mm in theép direction and 3um in the &, direction.

grid for c.m. Wavefunction
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tions, TE and TM, are allowed. The TE modes have no elec-

tric field amplitude in the radialg) direction whereas the ' >
TM modes have a predominantly radial electric field vector.
When solving the modal characteristic equatitsee Appen-

dix A 1 a) which are derived from enforcing the electromag-

netic field boundary conditions at the surface of the sphere,

Ql
one finds that allowed frequencies,; andwp\' are split far 3,
enough apart to be confident that only one polarization will
be excited at any one timéhe P and L indices will be
explained below and this is also realistic from an experi-
mental point of view. Only modes @fectric typethat is TM
modes, will be considered here. The TM electric field inside
the microsphere as a solution to the vector Helmholtz equa-
tion is written in (, 8, ¢) spherical polar coordinates as
. ™
EfLM(r,6,¢,t)=—L(L+1)JL(k-l;—,\P,¢r
_ ot _— FIG. 2. The atomic system ¢2] is a three-level atom in a Vee
X P'ﬁ"(cosg)e"\"%*'wpﬂ, configuration(such as cesiujndriven by two oppositely detuned
whispering gallery mode@VGMs) of a dielectric microsphere. The
[ky{'rj L(kl.“fr)]’ aP'ﬁ"(cosﬁ) Stark shift of the dressed ground stéil,) consists of two oppos-
ESLM(r,G,d),t): - . ing dipole forces which allows a potential minimum to form, as
KpLT a0 illustrated in Fig. 3(and as in Ref[2]). Values of the parameters for
. Y various potential wells are discussed in the text.
X eIM qﬁe—lwpl_t,
: ™ TM 77 the atomic resonances allows them to form a potential mini-
PLM IM [kPLrJ L(kPLr)] . . . .
E, (r0,p)=————"m——, mum as discussed in the next subsection. The microsphere
sing KpLr radius isa=50.04 um and the index of refraction in the

silica isn=1.4518 with a very small wavelength dependence
[12]. Hyperfine structure in these levels is ignored for sim-
éalicity and clarity in the calculations.

X P'ﬁ"(cos9)eiM¢e‘i“’|T>hLA‘, (2.2

where theP'ﬁ’I are associated Legendre polynomials and th
j_ are spherical Bessel functions. The mode indiBeand

M are, respectively, the number of field maxima inside the
sphere and the number of maxima in thg direction. The The bound state problem can be attacked in the following
mode numbet ~kZ\'a wherea is the sphere radius. Note manner. First, the fields will be chosen such that the system
thatkg\! from here on is the magnitude of the wave vector-forms a far-off-resonance trap(FORT) [13]. This means
inside the sphere. WGMs are highly confined to the spherahat the detuning$;/27 and 8,/27 will be much greater in
equator and have~ M. The field outside the sphere is given magnitude than both the field Rabi frequencies,(r) and

by the above expressions in H@.1) with j, replaced by the  the spontaneous decay rafég,(r). In this case the satura-
outgoing spherical Hankel functidif”) andkg)' replaced by tion parameterss; Ar)~Q3 (r)/26% , have a value much

C. The potential

kp/n wheren is the index of refraction of the sphere. less than unity. For the 2K potential to be described be-
low, $;~2x%10 % ands,~1x10 1. It is then valid to con-
B. Atomic system sider that the atom spends most of its time in the internal

The system considered is the one introduced by Mabuchground state. The light fields are coherent states with a large
and Kimble[2], in which a three-level atom in a Vee con- Mean number of photons and can be treated classically.

figuration is driven by two oppositely detuned light fields Therefore the qua_mtlzed c.m. analysis proceeds by examining
which are simultaneously on resonance with WGMs in aonly the Stark shift of the ground dressed state of the atom-
fused silica microsphere as shown in Fig. 2. In particular, thdield system at a particular manifold of excitation number in
state|0)= |6S,,) ground state in cesium is coupled to the order to determine the optical potential energy term. This
|1)=|6P,,) level at 894.6 nm and th@)= |7P3,) level at  term will be calculated explicitty later to be
455.6 nm by the two WGMs»] g, and w] g, respectively. Q3(r)/46,— Q2(r)/48,. The force associated with this po-
The lower mode with mode numbersP{,L,,M;)=  tential is known as the reactive force or dipole foftd]. A
(1,492,488) is detuned from the 894.6 nm transition bydissipative force due to spontaneous emission is not included
8,/2m=—2.38x 10" Hz and the upper mode with mode in the potential but will become important when the dynam-
numbers P,,L,,M5)=(1,996,996) is detuned from the ics of the system are discussed in Sec. IV. A van der Waals
455.6 nm transition bys,/27=—2.20<10'? Hz as deter- potentialV, 4, (r) due to the interaction of the dipole with its
mined from the characteristic equations which do not allowimage in the dielectric sphere is added to the optical dipole
precisely symmetric detunings for these particular parampotential from the WGMs. The general functional form of
eters. The fact that these modes are oppositely detuned fromq(r) is taken to bd15]
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Vyaw(r) = — (r—a)3[1+kp(r—a)]

(2.2

It is found that the correction terkp (r —a) in the denomi-
nator, representing the Casimir-Polder regime, does not have
a significant effect on the overall potential in the region in

50.6

VI, 5203 o

1241

FIG. 3. The 3D 2uK potential V(p,z) as a
function of p andz. The grid density shown is
about two times as fine as was used in the dy-
namical calculations. A 4040 grid was found to
give good results in a reasonable length of time
using the Lanczos algorithfii8] and FFT tech-
nigues.

UA(P’Z)
p

eimba—i(Ey/ht

(3.9

which the bound states are confined. Therefore the total pd¥here thec,n are expansion coefficients. The Satirger

tential is

_Q5n 0 avaw

V=35, " 45, r-aj®

(2.3
The constanty, gy~ 30 Hz(um)?® has about 30% variation in
the literature 15] between theory and experiment.

Using the definition ofQ, Ar)=d-EP1.2-1.Miz(r), we
choose the overall magnitude @f;, ,(r) within the constraint
of a small saturation parameter. After normalizing the field
mode functions to a maximum value of unity which occurs
inside the microsphere, the maximum value of the Rabi fre-
guency in the well region is then chosen. The widths of the
potential minima are found to be quite insensitive to changes
in the parameters$), ,(r) but the depth of the potential is
readily adjustable. The largest well constructed has a depth
of 95.6 uK with QT®27= 4x10° Hz and Q)*27=
2% 10° Hz occurring very close to the potential minimum at
p= ro=>50.141 um. Since the bound state structure of this
potential turned out to be quite complicat@dth 195 bound
state$ and hence not so useful in the dynamical calculations
in Sec. IV, a shallower well of depth 2.06K was also
considered whose bound states were calculated and used as a
basis for calculations of the c.m. dynamics. This well had
Q"27= 8x10° Hz andQ)®727=4x10" Hz. Since the
potential is localized to a very small spreaddrmabout 6=
/2, it is most convenient to use a,(®,z) cylindrical coor-
dinate system. Figure 3 shows the potential in 3D. Figures
4(a) and 4b) show sections through the potential well mini-
mum atz=0, andp=r,=50.174um.

IIl. BOUND STATE STRUCTURE
FOR ATOM GALLERIES

A. The Schradinger equation for the c.m.

Energy(uK)

Energy(uK)

equation becomes

3

2 (a)
1
0
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p(pm)

0.5

0

-0.5

-1

-15 -1 -05 0 0.5 1
2 (um)

FIG. 4. In(a), the 2 uK potential is plotted as a function ¢f
for fixed z=0 and in(b) the 2 uK potential is plotted as a function

The Schrdinger equation can be solved most easily nu-of z for fixed p=r,=50.174 um. The well has an extent of

merically in cylindrical polar coordinatd4.6]. Since the po-

~ Noptical 277~ 100 nm(for X gpicar~ 900 N in the €, direction cen-

tential is independent ap, the trial wave function is taken as tered onr, and an extent of-1 um in &,.
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#? 9 #? 92 2mCV . 0. (33
Tpfrﬁ a_szra_zZ_? (p,2)—Ex|uy(p,2)=0. (3.3
u,(p,z)=0,
2m, 52 %_mz _ \(p.2)
— 7z | VD)5 o —E\ As E, becomes more positive for the higher lying bound
C

(3.2 states, the distribution moves closer to the second classical
turning point atp,. States withE, >0 but less than the bar-

wherem, is the mass of the cesium atom amds the quan- rier height atp; will become approximately free waves. This
tum number associated with tl@ direction. The index is  sort of structure should start to become visible in the higher
for the set of solutions to Eq3.2). There are two important bound states. Atoms witk, greater than the barrier at,
points about this equation. First, the effective potential conwill crash into the sphere surface due to the van der Waals
tains a centrifugal terrk.= —(22/2m.)[ (37— m?)/p?]. Now,  potential.
from the preceding discussion of the potential and Fig),4 Finally, by analogy with an anisotropic 2D rectangular
it is clear that the potential itself contains a repulsive barriewell, the different trap sizes in the two directions will lead to
at p;=50.1 um and is effectively zero by,=50.5 um. a series of states associated with increasing numbers of
Likewise, it forms a well in thez direction for|z|<1.5um  nodes towards the higher bound energies. Since the trap is
as can be seen from Fig(b}. One can calculate a tunneling much tighter in theg, direction than in thee, direction, the
probability for the finite barrier height ai; and can show lowest states are gxpected to sequentially increase the num-
the error made by ignoring it is negligibly small. Therefore bers of nodes in the, direction and the appearance of a state
the bound state solutions must be confined to the regiowith a node in thee, direction will be higher up the ladder.
50.1 um<p<50.4 um and —1.5 um<z<1.5 um. The The solution of Eq.(3.3) is now fairly straightforward
boundary condition tha®#2°"r)=0 outside this region is [16]. The use of a sine series representati®ee Appendix
imposed and any evanescent tail to the wave function is igh 2 @ for u,(p,z) means the boundary conditions will auto-
nored. matically be satisfied. By using a discretized grid of points in

The variation of the centrifugal term across the allowedthe region of interest, Eq3.3) can be rewritten as an eigen-
region is also neglected because theariation is so slight Vvalue problem for a matrix whose dimensions are propor-
and to an excellent approximation it can be treated as a gldional to the grid size. Such a problem can be solved effi-
bal shift in the c.m. energy of the atom. The bound states cagiéntly using the Lanczos algorithifii8] and fast Fourier
then be calculated by ignoring the centrifugal term alto-transform(FFT) techniques.
gether. There is a limit to this approximation: when the cen-
trifugal force is large enough to overcome the trapping force,
the atom will no longer be trapped. The trapping force is the
gradient of the trapping potential. Using the asymptotic form
of the spherical Hankel function, we find that this force is Results for the 95uK well are shown in Figs. 5 and 6.
~ 2k{" Vo in the — &, direction, whereV,, is the trap depth. ~ Figure &) shows the c.m. ground statg_,(p,z) and Fig.

11

Equating this to the centripetal force givesyax g(b) ZhOWS the r:anergy Spec’[“];'ﬁﬁ-m-(f.)‘)' Thel;e a:je 195 .
“JkalLlVomcas/ﬁz- For a trap depth of/p=2 uK this ound states. The spectrum of the first 25 bound states is

, overlaid on the potential in Fig.(& showing that the lowest
givesmpa,=30 000 for a total energy di =700 uK. Pre- g states are split by an energy of 1,48 which is some-

cooling the atoms before loading such a trap would get themyat greater than both the recoil energy of 350 nK for the
well below this limit and therefore centrifugal heatingnst 455 \m transition and the recoil energy of 90 nK for the
a pfract|cal limitation as also stated in Rg2] and found in gg4 hm transition. Cooling the atom to this c.m. ground state
Ref. [17]. .would result in a c.m. energi. ,=—89.5 uK in the 95.6

The second point to be emphasized is that the atom '2.K well with a kinetic energy in the trappeg, ande, di-
trapped in thee, ande, directions but is a free particle inthe 0 of 6.1uK. The states\ =16 with E, _ ;5= — 64.23
e, direction, so the situation is somewhat analogous to a 1D « o4\ = 77 with E,_,,= —27.84uK are shown in Figs.

glectron. In the case of the atom gallery, the energy in th (b) and 5c), respectively. Modes can be labeled by the
e, direction can be much greater than the depth of the tra umber of n(;des in the, and thed, directions
) .

itself and yet the atom can remain trapped. For the rest o The results for the 2:K well are summarized in Figs. 7

Fhls work, thetotal atqmlc energy 1 refzerrzed to Efm' This and 8. There are exactly 13 bound states. The first nine states
is a sum of the centrifugal ener@y=#"m-/2mea® and the . o5n0nd to successive increases by one in the number of
c.m. energyE. . to be defined below. In practchMe, the former . ial lobes; it is not until tha = 10 state shown in Fig.(8)
dominates this sum. HencE. ;<0 andEq<kp L @Vo are  that structure in thé, direction appears. Thehapeof the

the conditions for a trapped atom. potentials in the two directions is very important in determin-

A little bit about the structure of the solutions can being bound state structure because this spectroscopic sequence
guessed before actuallyhsolving this equation. First, as thg notwhat one would expect in the limit of a 2D rectangular
energy of the atom in the, ande, directions increases, the well of the same dimensions. FiguregBand &c) show the
probability distribution is expected to_shift to larger and bound states =12 and\ =13, respectively. It is reassuring
larger p and away fronz=0. With E,=E, — #°m?/2m.a®> that these states are also confined fairly well inside the po-
(or Ecm=Eii— E¢) defined asnly the sum of thep andz  tential, which justifies ignoring the small probability outside
energies, the Schdinger equation, E¢3.2), becomes the region of interest by enforcing boundary conditions.

B. Bound state c.m. wave function solutions
and eigenvalue spectra
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p{pm)

(b)
-20

0.5+ (b) Ecm (HK)

ux=16 (p, 2) -40

-100 v
0 50 100 150 , 200

-2 = FIG. 6. The first 25X =1, . . .,25) bound state energy levels of

o\¥ the 95 uK potential overlaid on the potential as a function ©f
plotted for fixedz=0 are shown in(a). The kinetic energy of the
A=1 state is~6.1 uK and the energy splitting of the first two
bound states is 1.2K. In (b), the bound state energy spectrum for
the 195 bound states of the @K potential are shown. The last few
eigenvalues (166X<195) have non-negligible error associated
with them. This can be fixed by more iterations of the Lanczos
algorithm at the cost of significantly more computational time re-
quired[18].

of the bound states. It was found that the sty re-
quired only one or two terms to reconstruct faithfully the
bound states as long as was large. This is because the
spherical harmonicgéand associated Legendre polynomjals
with | ~m andm large are very closely confined to the equa-
FIG. 5. Thex=1 bound state of the 95K potential is shown tor [19]. Largem is not a problem since even a moderate
in (3), the\ = 16 state in(b), and the\ = 77 state in(c). These states M~ 100 corresponds to a very cold atom with total energy
can be labeled by the number of nodes in &g@ndég, directions.  Eir~180 nK. The fact that this reconstruction converges so

well with very few angular components is confirmation that

As shown in the spectrum in Fig. 9, the ground state isne ¢.m. wave functions are extremely well localized.
split from the first excited state by 185 nK. Evidently, there

are also near degeneracies between the modes with excita-

tions in the two directions, such as for the sptg,\ o} and IV. QUANTUM DYNAMICS
{N12,\13}. Such near degeneracies are also responsible for OF THE ATOM-MICROSPHERE SYSTEM
the thicker lines in Fig. @) for the 95uK well.

The calculations in Sec. IV on the dynamics of an atom
trapped around a sphere will be done using thek poten- The wave function which must be considered in a com-
tial since 13 bound states is a computationally reasonablplete quantum description of the system is the following ten-
number to deal with. A 1uK well initially considered had sor product:
only one bound state. syste ato ato microspher

A second expansion of the wave function in a spherical [V = e @ Vi) ® | Wigg ™™y, (4.1
geometry was attempted using

A. Description of the wave function

_ _ with (r,t| w2 given by
‘I’?_tﬁ]m(r,t)Za l;ml dyimo (1) P"(cosp)eMee I (Ex /Mt

3.4
o4 VAN $,2,t)= D, Cym(t) Me”“"ﬁ (4.2)
& 5

with r=(r, 8, ®) in order to better understand the properties p
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0 ”’3//’}%/ Uil
~02 -0.1
<
&1772
) -1 50.2
p\um\

0.1

U =13 (P, Z)

-0.1
<
Cnyy 502
p&u“‘
FIG. 7. In (&) the A=1 bound state is shown for the 2K FIG. 8. Thex=10 bound state of the 2K potential in (a)

potential. Note that it has a significantly greater spatial extent thagpows the first excited state in tige direction, which is almost

the corresponding c.m. state for the 8K potential in Fig. $2).  gegenerate with the=9 state. In(b) and (c), the states\ = 12,13
The number of extrema in thg direction increases with [e.g., In are shown, respectively.

(b) =2 has two lobepuntil the A =9 bound state ir{c).

with r as the c.m. position of the atom and=1,...,13 as <R|\I’iant?”>22 bi(R]i), (4.3

calculated in the preceding section using theuK well.

Since we restricted this expansion to include only the boungyhereR is the position of the electron with respect to the

state solutiongi.e., not the unbound solutiopsit is not a  atomic c.m. and]|i)} is the set of bare internal levels of the

complete expansion for any arbitrary c.m. wave function butcesium atom. Explicitly, |0)=|6Sy,), |1)=|6P;,), and

should be a good approximation for the lower bound stateg2)=|7P,,), which again are taken to be nondegenerate.

For example, restricting the analysis to the dynamics of th&hese levels need to be reexpressed in terms of the dressed

bound state withh=1 andc,,(t=0)=4, 4, it is expected levels{|D;)}.

that the otherc,,, with A# 1 will stay small until the atom The easiest way to do this is to consider the following

becomes appreciably heated out of the ground state. At theigenstates and uncoupled energies of the state manifold:

other extreme, the expansion of E4.2) would not be valid )

in computing the evolution of the state wikl= 13 because |‘I’f§?n>®|‘l'?$%05pher$

this state will very quickly become a state with some large

probability to be in the continuum. :{|i>}®|HETLIMFn1>®|npz/||.2rv125”2>, (4.9
Turning next to the internal state, we have that

(R|W&P™ is given by with quanta distributed as follows:

int
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B ) | 85, 85 26, 25,
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: )= (1) L U
-0.5 \\ B 251 851
! _0,(0) . %0
-r \ 252 852
_1s} | (4.9)
The corresponding Stark shifts are
2t 2 2
Q5  im
25 . : : : : : s : 46, 445,
501 5015 502 5025 503 5035 50.4 5045 505 5055 5EO
o (um) Qi(l’)
ok, | = 15 . (4.10
FIG. 9. The 13 bound state energy levels of theR potential SE 1
overlaid on the potential as a function pfplotted for fixedz=0. 2 Q%(r)
Thex=1 and\=2 c.m. energy E.,,) splitting is 180 nK. The s
A=1 bound state kinetic energy here-s730 nK. 2

Note thatSE, was used in the preceding calculation of the
potential and it is a trapping potential. However, small
_ i amounts of population ifD,) and|D,) are affected by at-

102=10g) ¢ | Er=(m=D)wrtnzop+ ). tractive and repulsive lthorézes, re|sp2gctively. Both of these
|2ny,n—1) Ex=niw;+(N2—1)wy— cause dipole heating which will be investigated in detail in
Sec. IV B below. The heating mechanisms for the atom
cause the internal state to becoemangledwith the exter-

\( t
The coupling Hamiltoniarfin the rotating wave approxima- Nal state so that the wave functiont|¥ 2" ® | ¥ ’") must

int
tion) is written be represented as the following spinor in the bare state basis:

(r AN = (r v e e

|0ng,ny) Eo=n1w1+ Ny,

(4.5

int
A . 1
Hisdem= 2 5(@R/+afR)Q(r), (4.6 W2
=12 2 )\m(t) ¢
A Vo
with a; as a field mode annihilation operator aRd as an uw(p Z) oimo
atomic lowering operator for the three-level system. The to- = 2 by /m( (4.11
tal Hamiltonian, in a frame rotating at; + w,, and ignoring P
mode decay and spontaneous emission in the limit of large U n(p,2z) oim
detunings and small saturation parameters, is AZ dy'm(t) —=— P ¢
Qq(r)  Qy(r) The three entries correspond to different external state ex-
0 2 2 pansions for each internal state, or to an entanglement of the
external and internal states and thg,(t), by y(t), and
Kot _ Q4(r) S 0 47 d,»m(t) are simply coefficients for these three different ex-
fields int ! ' ' pansions associated with the bare internal s{@tgg 1), and
(1) |2), respectively. For the purposes of the computation, this is
> 0 Sy stored as a 39r matrix wherer is the number om values

involved in X, and the 39 corresponds to=1, . ..,13 for
each of the three internal states.

Diagonalizing this gives the following transformation, which A guantum description of the field modes on resonance

is valid to first order in the saturation parameters(r): with the cavity is not necessary because the photon numbers
' are very large (n, )~ 10, see Appendix A $so that a loss
or a gain of a photon is not an issue to these dynamics. It
|Do) |0) should also be noted that even for small photon numbers, the
DY) | =7t | 11) | +0(s? AD) 4.8 high quality factors expected in these microspheres mean the
12 cavity mode decay rates;,=«5," .,  can be much
ID,) 2) c L2 2

smaller than the rate scales governing the dynarjit8],
and Appendix A 1 b Therefore the field component in the

where the transformation matrir) is defined as total qguantum wave function in E¢4.1) is considered to be
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icrosph
the coherent statgWiig**"*f=|ap | v )® |ap,im,), Q3(r) ~ Q2(r) 0 0
which is taken to be constant for all times. 46, 46,
Q2(r
B. Heating of the atomic c.m. in an atom gallery Epot= 0 41; ) 0 — ( anV\;g
r—a

There are two main mechanisms for the heating of an ! )
atom initially in a c.m. bound stafd 4]. The first is fluctua- 0 0 _ Q5(r)
tions in the dipole forces. Even though the internal ground 465,
dressed state will be affected by a trapping potential, an atom (4.15

prepared in this state will also occupy the other two dressed i _

states during the normal course of its evolution, albeit withl the dressed bas|</(r) in Eq. (4.13 is used to transform
greatly reduced probability. These other two states are not ijétween basésin order that the aforementioned approxima-
the same effective trapping potential but are in purely repu|j[|on concerning the _completeness of t_he c.m. ba3|§ used_ln
sive or attractive potentials. This can be seen from the extN® expansion remain valid, the evolution was terminated in
pressions for the Stark shifts of these other two levels in Eqth® calculation when the expected value of the energy,
(4.10. Note, however, that the atomic evolution still remains

unitary for dipole heating. (E(0))= (W) B+ Epotwtsgtﬁen“»' (4.1

The seco_nd_heating prO(r:]ess IS f.e°°“ hea_tlilng aft_er a Slf.o'i}\?as greater than some cutoff close to the trap depth. In prac-
:janeous emission evefnt. The atomic Chm' Wil f?ce"’? a r']diice, the evolution was performed by the split operator FFT
ue to conservation of momentum in the emission of a p OMmethod[20] in sufficiently small time stepét chosen so that
ton, with each kick tending to change the energy of the atonghe change irf| W3St

. : o . ) stemt))||2 from t to t+ St was negligible
by the atomic recoil energy-%<k</2m. Section V will be and the results became independentiof

devoted_ to a more complgte understandln.g of the spontane- The initial state(written as a spinor in the bare basis
ous emission process but it must be mentioned now that the

effect of this process on the c.m. dynamics of the trap is not Uy(p.2)

important. The first reason is obvious: the trap is a FORT (r,t=0|‘Iffg’t5te”}= l—’e‘im°4’®|DO>
and hence the average time between spontaneous decays is \//—)

Atemissionr 1/SI” wheres is the saturation parameter ahd

is the spontaneous decay rate. Even tholghs modi- ui(p,2)
fied somewhat from its free space valiSec. V B, T
Atemissior= 20 ms which turns out to be of the order of =7"(r) p
Theating, IN€ trap lifetime. The processes which tend to limit

the trap lifetime will be discussed below in Sec. IV C. The 0
second reason is rather more subtle. Momentum conserva- (4.17)

tion in spontaneous decay dictates that the orbital angular

momentum carried away by the photon will affect the orbitalwas used. According to E¢4.12 and as a consequence of
angular momentum of the atofiguantum numbem) and the neglect of spontaneous emission, there will be no dy-
hence the energy primarily affected by the atomic recoil isnamical change to the part of the wave function, so that
the centrifugal energ¥.. As described earlier, changes in the distribution ove{m} factors out. In Eq(4.17) an initial

E. caused by typical angular momenteM# froma WGM  c.m. wave function with a well-definedCym— Cym, is

of orbital angular momenturh ~M will not cause signifi-  considered for simplicity; this point is discussed further in
cant trap heating. Therefore we will ignore spontaneousec. VI A. For now, it is sufficient to observe thdE(t)) is

efim0¢>

emission in the atom gallery dynamics. constant in time independent of this choice as long as the
The wave function is evolved according to ¢ dependence is not entangled initially with the rest of the
- state. The ground state of the dressed basis was chosen as the
systel _ a—iHt|4gySYste
(Wi M) =e™ | R0)), (4.12 initial internal state because it is the one which is affected by

the full trapping potential. The calculations were run with a

whereH, in a basis given by|u,)}®{i)}, is given by time stepst=10"" s, which is a time scale much shorter

H=Eyin+77(r)Epo(r), (413  than any of the dynamical rates, ensuring that the change in
the c.m. wave function due to error in using the split operator
with FFT method is small, as discussed above. The c.m. energy
) E.m was calculated every 50 steps, orus, and checked
L 0 0 until it reached— 0.2 uK, which is ~ 75 the well depth. At
2m this point the calculation was stopped because beyond this it
p2 was assumed the atom could have significant contributions
Ewn=| O o 0 (4.14  from the continuum. The statds=1, . . . ,5were used as the

initial c.m. state and the results for the c.m. energy as a
function of time forA=1, 2, and 4 are shown in Figs. 10,
0 0 o= 11, and 12.
It is interesting to note that the=1 state in Fig. 10
in the bare basis and begins to get heated more rapidly than the states with
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~0.21 -0.2F » /
E1 (uK) B3t (1K) /
-04f \ ﬂ‘ ' E -0.4f ) /

s

L s ' L L \ . L ' ) s
0 0.005 0.01 0.015 0.02 0.025 0.03 6 0.035 0 0.005 0.01 0.015 0.02 0.025 1 0.03

FIG. 10. The heating of tha(t=0)=Ay=1 c.m. bound state FIG. 12. The heating of they=4 c.m. bound state. The energy
for an atom initially in the ground dressed stiit). Initially, this is very close to the original enerdg¥. ,(Ag=4) throughout the
state heats very quickly compared to thg=2,4 states shown in atomic evolution before a very fast heating rate fer25 ms.

Figs. 11 and 12. However, extrapolating suggests that it would take
Theaf N\o=1)~ 40 ms for complete heating. In Sec. IV C the sig-

r s

nificance of _the different rates e_vide_nced in Figs_. 10-12 is dis- D:ﬁzkéserZ ITs ﬁzpzz EESE
cussed and is further analyzed in Fig. 13. The time steps of the
calculation on the time axis atet=505t=5 us. . 128%2—T'2 R ﬁ2a,2r s

_ o o T T ST T e
A>1, which tend to be increasingly stable with increasing ) )
\ until the onset of rapid heating. Heating times can be es- 1+ —46°+3I s
timated by extrapolating the graphs Ey ,,—0. Although 45°+T7? , s?
this is a crude approximation, Figs. 10—12 all show a Igrge X 452 +T2 —h a'ﬁ5—(1+s)3
energy decay ratAE. ., /At for t=20 ms. These results will +3s2+ ?33
be discussed more quantitatively after first trying to make a
semiclassical estimate of the heating rate. 412

X 252412 +s;. (4.18

C. Semiclassical analysis of momentum diffusion
and comparison with quantum calculations In this expressiong is the logarithmic gradient of the
amplitude of the Rabi frequendy, B is the gradient of the

It is possible to estimate the rate of heating SemiCIaSSibhase of the Rabi frequency, akge, is the magnitude of

cally using the concept of the momentum diffusion coeffi-yhe |aser wave vector. This expression is valid only for a

cientD. This coefficient can be calculated as follof@s]: two-level atom. However, to the extent that coherences be-
tween the upper levels can be ignored, and due to the fact

0 ; . . ; . that the spontaneous rates for the two levels are very differ-
ent, we will apply it to our three-level atom. Now, for the
—02F i atom gallery as a FORTé>T" and s=Q?/256°<1. Also,
EE (1K) f looking at the expressions for the electric field outside of the
-0.4F / 1 spherd Eq. (2.1) with j, replaced by the outgoing spherical
/ Hankel functionh(!Y) andkg}' replaced bykf}'/n], the quan-
o8 / i tities @ and B can easily be estimated frofd=Qe'®:
-0.81 b
VO V(Qee i kelimry kM
-ir " 1 a=7~—'|'|v|:_|_er, (419)
AP AT Q Qoe_|(ka/n)r n
-1.2p
and since the WGMs are traveling waves,

L s s . L
0 0.005 0.01 0.015 0.02 0.025 t(s) 0.03
19

. ~ M,
p 5¢(IM ¢)e¢~|ge¢. (4.20

FIG. 11. The heating of the;=2 c.m. bound state. This state p=Vd=
stays close to the original energy Bf ,,(\o=2) for longer than in
the case fol\g=1 in Fig. 10. Complete heating here takes very

close t0Thea{ A o=2)~30 ms. D is then rewritten as
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™M\ 2 2 ™\ 2 2
r M- T k r 45 1
Y (i 27 o ZPL} T 70 3
D h( = ) 4s+ﬁ ?—4s+h ) 7S 1+ TZS [ oot
(4.21) "l (1
However, for both of the atom gallery WGMs relevant to the ~ °7¢
FORT,M~L~kiMa, hence os}
kTM ZF 452 0.5
D~ﬁ2(%) 752ttt st (422 oal .
"4

The free space spontaneous emission parameters satisfy
I',<I'4. (This is true also of the modified rates calculated in
Sec. V B. The fact thaf’; should be the important rate can 01f
be seen from the Stark shifts in E@.10. The middle
dressed statfD,) associated with'; is affected by the most
repulsive potential. In order to make absolute comparison
with the dynamics in Sec. IV B which did not include spon-  FIG. 13. The evolution of the coefficients of the bound states
taneous emissiofwhich should be a reasonable approxima-\ during the course of the heating of the initial bound steje: 1
tion SiNCe Theating™ Atemission S Previously discussgdthe  shown in Fig. 10. The states=7,8,9 cause the rapid change in
term due to recoil heating is ignored. Finally, the termheating rate fot=10 ms, which cannot be predicted from semi-
(46%1T?)s® is down many orders of magnitude for all fields classical theory.

and states involved. Thus

0 hanouzasnsa UMM R s P PO o A o o
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

t(s)

KM\ 2 heating rate as their probabilities increase very quickly for

DNﬁz(ﬂ) Esl(lJrnz)_ (423 1=15ms. These states seem to be most unstable whereas all
4 of the other states are relatively quiet. This heating cannot be

understood from a purely semiclassical analysis. It would be

As a diffusion coefficientD can also be written interesting to redo the calculation for the &K well to

14d 1d , 1A understand whether the small basis size of 13 c.m. states
D= > a([p(t)—(p(t))]2)= > a(op)~ 2 AT contributes to the quantum heating. Unfortunately, this was
(4.24 degmed too computationally intensive for the initial investi-
gations.

for c.m. momentunp. Therefore

AE., D hz(kyl"Llln)zFlsl(le n?) D. The quantum Monte Carlo wave function (QMCWF )

At m am, . (429 approach
Finally, the possible use of the QMCWF approd2h] is

Using s,=2x10"% kil{ =6.9736<10° m™%, I'}/2m=  discussed. In this approach, it would be necessary to add a

1.15xX5.093 MHz (the factor 1.15 to be explained in Sec. non-Hermitian tern{in the bare bas)s
V B) givesAE, ,/At~4 uK/s. From Figs. 10-12, this rate

can be identified with thénitial slopes in the heating curves . 0 0 O
which vary from~3 uK/s for thex=1 c.m. state_to~0.5 Hp=i=| 0 I'y O (4.26
uK/s for theAx=5 c.m. state. Even though at a first glance 2

the semiclassical expression in Eg.25 is independent of 0 0 I

c.m. state, the c.m. state dependenc® afan be recovered

by realizing that the expected valgg (r)), should be taken o )

across the wave packef the state\. Hence the semiclassi- t© the HamiltoniarH in Eq. (4.13 to account for spontane-

cal analysis seems to give a good quantitative understandirR'S decay processes. One would then generate a random

of the initial dynamics. number and monitor the norm of the wave function to decide
However, in all of the heating curves, a second heatind the system would undergo a spontaneous decay. Quantum

rate dominates aftet~10-20 ms. For example, for the JUmPs and state vector renormalizations are applied depend-

A=1 state a second rate &fE,,,/At~60 uK/s starts at N9 ON the ogtcome_. This r'net_hod was applied t_o our system

t~15 ms. The best way to understand this anomalous quarqi_nd, as motivated in qualitative terms above, it was found

tum heating is to look at the evolution of the coefficients that the role of spon_taneous emission was negligib_le and that
lc (t)|2 b (t)|2 and|d,” (t)|2 in Eq. (4.11). Both the quantum evolution was unaffected. However, it must be
AmMg ) N'mg ’ Amg q. . .

: emphasized that the jump operators associated with sponta-
|bk’mo(t.)|2 and|dy'm(t)|? remain very small for alk and o5 emission in this system are very interesting objects
for all time because the excited states never become apprgecause they depend intimately on the spherical symmetry of
ciably populated, but in Fig. 13¢,, (t)|* is plotted for the  the atom gallery. This issue is discussed further in Sec. V C

heating curve corresponding to the=1 c.m. state in Fig. after first putting the whole question of spontaneous emis-

10. It is clear that the states=8,9,12 cause the very fast sion in a broader context.
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V. RADIATIVE PROCESSES nances ing(L,M) anday (L,M) at the microsphere modes
IN QUANTIZED ATOM-MICROSPHERE SYSTEMS kpy andkg)'. The quantized field as a Schiinger operator

There are two important regimes in cavity QED in which 'S then

the idea of spontaneous emission is discug&8d-25. The
first corresponds to aerturbative regimen which sponta- Eadl) =2, N¥(agp thsptH.C). (5.2)
neous emission into a complete set of reservoir modes acts to s,P o
damp the atomic excited state at a r&tg which is much
faster than the internal atomic dynamical r@galso known Only valid microsphere modes need now be considered.
as the Rabi frequency. The presence of a cavity can drastFhese modes are denotesiR), wheres labels the polariza-
cally affect the structure of the reservoir modes, causing ation (TE or TM), P=(P,L,M), a5 is a mode annihilation
alteration to the spontaneous decay rRig—I"c,y,. One  Operator, and
must also make the further distinction between the situation
in which no single reservoir mode is resonant with the 0 ™
atomic transition and the case where one of the modes moves WTM,PkT—MVX[J L(KpLN)YLim(6,0)]
close to atomic resonance. When the resonant mode has a o p= PL

. ;i L . M,P
high quality factor and} is simultaneously large, internal 0
atomic dynamics can become dominant over both the cavity lﬂTM,PkT_MVX
decay ratex = wopicaf2Q and the spontaneous rat&ayiy PL
into all modes other than the privileged cavity mode. Here,

ke
h{" Tr Yim(6,9)

we move into anonperturbative, strongly coupleggime. PepiL (KBTI Y LLm( 6, )

The quantization of the c.m. in the atom gallery is ex- e p= kpE (5.3
pected to modify somewhat the usual results in these two ' e ohP| —r | Y m(6,0),
regimes. The FORT nature of the trap keeps the atom prima- ’

rily in its internal ground state, so it might seem hopeless to = (1) 0

try to understand the effect of the atom gallery c.m. wavenith ji (h”) for r< (>)a and g p=1/max(ys ¢l). Note
functions on excited state decay. However, we can take adhat the expressions for the microsphere modes in(Eq4)
vantage of the tremendous separation of time scales. In Se@le equivalent to the<a part of ¢y, p Up to a normaliza-

IV C, it was found that the wave packet decoherence timetion factor of JL(L+1). This arises from the definition of
Theating~ 10 MS, is much larger than the100 ns time scale Yim(0,¢0)=[1/VL(L+1)ILY m(0,¢). The factors N3

for spontaneous decay. In what follows, then, the atomi@re the normalization factors for the field modes. The field is
c.m. is considered to be in a statebut no longer in the normalized by taking the vacuum expectation value of the
presence of the FORT trapping fields so that it is free toequation

decay from its internal excited state. Several authors have

considered the effect of the quantization of the c.m. on spon- _ 1
taneous emission in more general ter28,27. Utietd= Vo 5&(NEradr) - Eradr)
L - 1
A. Radiation field description + E,u,(r)Brad(r) . Brad(r)) dav, (5.9

To understand the role of the reservoir in spontaneous
emission, it is necessary to have a quantum description of thgy get
radiation field. The quantization procedure for the radiation
field is that one must provide eomplete modal expansion
for this field respecting any boundary conditigdd]. This is Usiela= >,
done by solving the classical electromagnetics problem for &P
the field in the given geometry. Any electromagnetic field
external to the microsphere at fixed frequeney=ck/n, Thus

wheren is the index of refraction of the sphere akds the P
_ PL
PN 2nvgp'

ﬁwéL. (5.5)

: 1
agpaspt E

magnitude of the wave vectanside the sphere, can be ex-
panded a$l11]

(5.6

™

k
hﬁl)(%r>YLLM(91¢)}

where

n
Erao(r):% {aTM(L-M)EVX

™

b KeL Vsp= fv (N Pp(r)dV (5.7
+are(L, MNP =1 YL u(6.¢) (5.1) Q

is defined as the effective mode volume for a quantization

where theY | u(6,¢) are vector spherical harmonics. One volumeVq with
2

then chooses therg(L,M) and aty(L,M) to satisfy the
boundary conditions. In the course of doing so for the mi- e(r)= n, r<a (5.9
crosphere caséor any initial conditiong 28], one finds reso- 1, r>a. '
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This definition forV p can be compared with an expressionT,(\)
for Vg p used by Braginskgt al. [10] in the context of opti- Tf@
cal nonlinearity issues of fused silica microspheres,

3 ESC(r)
(f '/’sz,P(r)dV) !
Vo

: (5.9 =i§rZ2Re§A (bL<[d-V><

1
v

k
hi”(ﬁr) ELM<0,¢>H
) e
A

where ES{r) is the operator corresponding to the scattered
1 portion of the field only for whichar,, can be ignored and
V{R~3.47%7 — L L11’6\/L— M+1. (5.10  the 1 subscript refers to tH&)—|0) internal atomic transi-

|| ruzuneav
Vq

x(d-Vx

h(1) K Y 0,0
L nr LLN( ’ )
which for the mode ,P)=(TM,P,L,M) gives

PL tion. Using
- m \]1? 2L+1
The definitions in Eqs(5.9) and(5.7) give slightly different > YLM(_-O) = , (5.14
mode volumes as is discussed in physical terms in [R6l. M=-L 27 4w

For example, for the mode (TN?,L,M)=(TM,1,492,488)

Eq. (5.10 predictsV{}=3.52x10"1° m3 and calculations Ed- (5.13 becomes
using Eq.(5.7) give Vs p=6.56x 10~ > m* and for the mode ;
(TM.P,L.M)=(TM.1,996,99) Eq.(5.10 predicts V{3 BN 30d S by (LM
=0.72<10 * m?* and calculations with Eq5.7) give V,p ryee 2 LR
=1.29x 10 ** m3. These both differ by the same factor of

YLM

~1.8. @ hy (X) 2

=677Re{ D L(L+1)bL<( L ) >

L=1 X \
We consider first the situation of an initial atom gallery M=—L

c.m. statex which decays from the excited internal state. A

B. Spontaneous emission in the perturbative regime
with nonresonant WGMs T ) 2]
=0
2
photon is emitted by the atom into one mode of a set of L(X) ?
radiation field modes, none of which is resonant with the - ER{ LZI L(L+1)(2L+1)bL<( X ) '
atom so that a perturbative approach is valid. The case of an A
atom with a radial dipolel=deg, which is localized around (5.15
(r 0,0)~(rq, w/2,0) is considered. Using the fact that
&Y. m(6,#)=0, only the TM modes survive in the expan- Apart from the(), , this is the same expression as in Refs.
sion in Eq.(5.2). In Eq. (5.1) applied to the problem at hand, [7,8] where these previous calculations have assumed the
the term ary(L,M) is given by amy(L,M)=am(L,M) atom to be a radial dipole located aty(0,0) as opposed to
+bLam(L,M) where (ro, m/2,0) here.
The evaluation of Eq(5.19 was carried out for the pa-
Ai rametersa=50.04 um and \ g,ica= 894.595 nm that have
aTM(L’M):Tk2<d'VX h(Ll)(ﬁr)YLLM(e*‘ﬁ)D been considered up until now. The numerical result is that
(5 xll) there is an enhancement in the spontaneous emission by a
' factor of 1.15 for thex=1 c.m. state. This result is depen-
dent on the c.m. state, but not significantly; it changes by less
and than 5% from\=1 to A=13. This is clear when compared
to the classical atomic position dependencd gfr)/I"*®in
_ _ — _ / Ref. [7]: T'4(r)/Tf*® changes over a scale @fr/a~10%
b = jL(p)npjL(np)]" —nj(np)[pjL(p)] (5.12 whereas the c¢.m. wave function is localizeddida~0.1%

L2 (np)[phM(p) ] —hP(p)[npj(np)]’ " for A=1 up to only r/a~1% for A=13. However, the
numerical factod™;(\)/T1%®=1.15 is itself extremely sensi-
tive to the geometrical factors such as sphere radiasd

Here, p=(kp\'/n)a=(k/n)a, a is the sphere radius, and atomic decay wavelength oy The physical reason is
amm=am(h’=j.). The expectation valud), in Eq. simple: the actual value df,(\) is highly dependent on the
(5.1)) is taken over the c.m. wave function because the precise location of the atomic resonance relative to the set of

exact location of the dipole is not known when the c.m. isradiation modes and small changes to geometrical factors
guantized. The spontaneous rate is calculatefidy can unpredictably shift a mode onto resonance. This has
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been discussed very clearly by Kleppner in RES0] in nal state|0) so that only the initial atomic wave function
which the ideas of inhibited and enhanced spontaneous emis-
sion are attributed to a careful evaluation of the mode sum.

It is also important to note that level frequency shifts ac- rto psysem N (g u(p.2) emés |1
company the changes in the radiative widths and are in fact {1 tmpl V1™ ;n A Gump) Jp D
the origin of the van der Waals and Casimir-Polder compo- (5.17

nents of the c.m. potential in E(R.2). Similar mode sums as

above occur in the evaluation of these shifts, except that thgeeq pe considered. The quantum jump expression for the
individual modes now contribute a dispersive line shape tQui4| wave function can be written as

the sum. It is not expected that these shifts are important in

the atom gallery system because of the distance of the atomic svstern . — svsterm . —

c.m. wave functions from the sphere; however, R6f.has [Pt Ujump)) — Clog* Erad D Wt jump) ) »

pursued this very interesting issue for microspheres using a (5.18
classical atomic c.m. description.

wheredy, is the atomic dipole operator for the corresponding
C. Spontaneous emission in the perturbative regime internal statg1)—|0) transition, the radiation field,,{r)
with a resonant WGM is evaluated at the atomic c.m. position operatof14], and

In the following, we consider the case for which the C is some overall normalization. The calculation of the post-

atomic transition is brought onto resonance with a particulafMmP Wave function becomes an evaluation of
WGM. The absorption-limited quality factors for certain
WGMs can be greater than %@ the optical domairf31— (0]dog 1) -Erad )| W tiump) ) ©10). (5.19
33], and in order that the perturbative regime remain valid,
we must consider the case where the internal atomic Ra
frequency() is still much less thak = wpyica/ 2Q. Accord-
ing to the estimates in Rdi2] for a 50,um radius sphere, we
require Q<1C%. One could also consider reducify with
respect tok by using a larger sphere. Section V D will lift
this restriction when we discuss the nonperturbative regime. atom
For concreteness, the resonant quantum field mode is |‘Pt50ytswn}ﬂ<o|d01|1>'[ E |\P0-m-’
taken to be the modes(P;)=(TM,P,,L;,M;), with a fre- em
quencywp =ckpy and with PyL;)=(1,492). In order
to calculate the spontaneous rétgWV. ), we pull out the
privileged cavity mode from all of the mode sums and cal-
culatel' (¥ ). The contribution from all of the nonreso-
nant modesI'°"*{¥ ), can proceed exactly as in the
preceding sectiofi.e., Eq.(5.15]. The only tricky point is
that the modes (TMR4,L,,M") with M’ e[—L,L;] must e L
simultaneously be pulled out because they are also resonant (0|doi1)= ﬁf fo(RIRf(R)R*AR(&+ & +&_1)
(for a perfect sphepewith the mode §,P;). Henceforth we
consider only the resonant contribution in the mode sum in =eXy(&+e+e ), (5.21)
Eq. (5.2 and in fact we will show thatl';(V;n)
=TV )+ TPV ) =T (Pcm). Therefore with
r>a we need consider only

tf'nserting a complete set of c.m. stafgsis here that the
completeness of the set ff, (p,2)} is relied upon gives, up
to normalization,

X (WL E o )| PN 0] 0)

c.m/

. (5.20

The internal matrix element is calculated as follows:

where a spherical basis has been used and internal radial
functions fq ;(R) assumed. The final state can be written
down by combining the internal state matrix element with
N the external state matrix element
— ™
Erad(r) % Npl (aTM'Pl kTNI v + systemy __ + ato syste
Pl <r1tjump|\l}tot n}_<r’tjump|q,c.mr.r>®|wtot

™
Pl — o A I~ atom
X hﬁ)( ;1f)YL1L1M<0,¢> +H.c.). (5.16 ‘eXR(eO+el+e-1)'<r P ‘I’m>

X(PEOME ()| P3N g0
1. Effect on the c.m. wave function (Ve [EBrad1)[Wem)®10)

i i Uy (p,2) .
The effect of a radiated photon on the c.m. wave function _ E Crrm rip &M 4g|0).
A,m

is first examined because this will be useful in the discus- Jp

sions of the nonperturbative regime in Sec. V D and of the

guantum jump picture in Sec. V E. (5.22
Spontaneous decay att;,,, from the atomic internal o

state| 1) will move all of the population to the ground inter- Note that thg/c, ./} should be renormalized {&, .} as is
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explained in Appendix A 3. As a reminder that in the quan-

; ) : . ' =€Xg(&t e te 1) N
tum jump process only one photon is ever emitted, we write " m

u(p',z")
XX Crm d3r’(—A i
A,m

C)\/m/:C;\\A,m, ’ (523) \/?
. . . —im’ u(p’,2") gime’
where the superscripl reminds us that there is now a pho- ¢'Gp (I')—=— NG , (5.29
ton in the radiated field in the mode (T®y,L;,M). The p
c;\\",m, are defined by and

Gp,(r')=vLi(L;+1)

p
(Ly+1)(Ly—M)(L;+M) o
\/ (2L, +1)L4(2L,—1) YLl—l,M(ﬁ )&

Kk -
[ n (iﬂrLlH)hﬁ)(&r’)] +\/(|_1+1)(|_1+|v|)(|_1+|v| 1)YL171,M71(0’.¢’)€'1

\/(L1+1) L,—M)(L,—M—1)
(2L;+1)2L,(2L,—1)

(L-M+ (L +M+1)
\/(ZL D DL, (0808

n [d L Kp,L, Li(L;—M+1)(L;—M+2)
(___l)h(tlf(_r')] +\/(2L1—1k1)2(L1+1;(2L1+3)YL riu-1(0 408

(LMD, T M12)
\/(2L1+1)2( D)L, 3) a8

Yo, -im+1(0',¢")e

\

/

\ /

(5.25

Using the fact that integration ovef’ in Eq. (5.24 causes selection in the varialst€, it can be seen that the atom can only
get kicked rotationally into certain c.m. statgs™ ¢} which enforce conservation of angular momentum.

2. Cavity enhanced spontaneous emission parameter

Turning to the actual evaluation of the resonant contributiod 16V ,), we can apply Fermi's golden rule in the
perturbative regime to the decay of atom into the special set of resonant g(ddésP,,L,,M")} with M’ e[ —L4,L],

2
Dy(Wom)= 52 K¥REdor Erad 1) W) Pp(ER) S(Ee—E))
2m ~ 2 2 atom atom, |2
:7J’ p(Ep)dEF 2, leXr(€ot+ &t e 1) (Ve EndD)|Vem*8(Er—E)). (5.26

We now just look at a single outcome: the photon is emitted into the final stateRTM;,M). In the end, we sum over all
possible outcomeM e {M'=[—L,,L,]}. Using completeness of the c.m. states, we can simplify the sum in the last line of

Eq. (5.26),

e Xa(By & +8 1) <~1fa‘°"’|Erao<r>|\Ifat°”>

c.m/

=|eXa(&+&+e y)- Z [ (W Erad 1) W20

c.m/

=D leXp(+ & +e 1) (WM Eudr) | WEM2, (5.27)
c.m/

Comparing the second line of E@.27) with Eq. (5.22,
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2
Uy (p,z2) ., Uy (p,2)uu(p,2) .., .,
F= f d3r|r> 2 )\,m,Lp)elm ¢®|0> 2 (C)'\\/',m/(c}'\\/l,m”)*f d3r)‘(p—"(p)el(m -m")¢
\/E )\/’ml’)\ﬁ’mﬁ p
M M M
= Z [C)\,m,(C)\,,m,,)* 5)\7’)\775mr’mn]: z |C)\/m/|ZEPM(M). (528)
)\/’m/‘)\//‘ml/ )\/‘m/
|
The functionPy, (M) will be discussed in detail in Sec. V E. o ﬁw
The next important issue in calculating (V) is the (V)= 2X§E (M)
density of states termp(Eg) for the resonant contribution. ' T v Vm, pl

For a microsphere close to one of these resonances, it is not
possible to turn a mode sum into an integral over many
modes. However, it is possible to quantify the integral over a
particular mode by considering the detailed mode structure. ™ 2u2
The best way to think about this is to consider only the ZwPlLle XR 1

t terms in the field of E¢5.1 = > Pu(M’), (5.33
resonant terms in the field of E¢b.1), hAwy\l,,Ll ~ VTM,Pl

X f p(w)dwa(ﬁw—ﬁw;“l"LlJr SEcm)

n where it is assumed that the c.m. energy shift
Eradl) =2 [bLaTM(LaM)EV SE. m~#fk?/2m is much less than the resonance widkke
M Appendix A 1 1. Using the free space spontaneous emission
™ parameterl' = (e2X2/374)k®, noting thatk pertains to
h(l)(—r)YLLM(t9 ¢)” (5.29  the value outside the sphere, and relabelig—M, the
final result is

which haveb, —« because of the resonance conditisee y(Vem) 67 “’E’YLl 1 ~
Appendix A 1 3. For the particular resonant mode, we need _Fle: K3 Awt™ % Vo p Pum(M)
to incorporate a small imaginary part. More correctly,|? 1 ot
contains the information about the resonance width and in GWQEM,_ 1 -
particular Ref[34] shows howb, |? is well represented by a = — Pu(M), (5.34)
Lorentzian line shapg (w) for the particular frequency of k W Ve,
the emitted photon. Continuing to consider the mode ) ™ ™
(s,P1)=(M,L,Py), this leads to the form where the resonance quality factoQp =(wp /
AwPlLl) has been identified.
Aw;ML 127 It can be verified at a glance that this agrees with the

(5.30 known (e.g., [30]) resonant enhancement ,y/I'o
Q7\opnca/V because th&/ry p, are not very dependent on
M andX PM(M) is a scaling factor dependent on the over-

_ . lap of the atomic c.m. state and the mode volume. The value
where Awp L is the resonance width. Returning to the Q=10° is used to calculate the ratlbl(\lfc,m)ll“fl'ee for the

p(w)=g (w)= ,
(0—wp )+ (Awp] 12)

evaluation ofFl(‘lfC_m) by summing over possible final c.m. statea.=1,...,6,with the results plotted in Fig. 14 for
states, we find jumps of typeJ; (namely,|1)—|0)). Note that enhance-

2 1000

PiWem)= 7 | pl0)d0 Py(M)S(E-E). o
M’ 77 800
(5.3))
600
The factors N My2= hck L,/2NVry,p, and e’X3 are ex- 400
0 5 10 4, 15

plicitly removed fromPM(M ) by deflnlng

FIG. 14. The spontaneous emission ratg\) normalized to

thPTM the free space resulf™® as calculated in Sec. V C 2. Note the
1t 2X§PM(M N=Py(M'). (5.32 dependence of th&';(\) on the pa_rtlcular c.m. state due to the
2nVTM‘pl structure of the c.m. wave function. For example, the modes

A=10,12 corresponding to azimuthal excitati(gee Fig. 8 are
anomalously high because they keep the atomic c.m. probability
Hence closer to the dielectric interface.
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ments over the free space rate by800 are found for tran-  gcterized by the jump operaterikéz, summarizes the effect
sition at 894.5 nm. By contrast, the enhancement for thef the sponatneous decay quantum jump for the c.m. wave
|2)—[0) (or J; type) transition at 455.6 nm is-5 with the  function. The decay ratE is just the free space result.
difference in the two due to the factag,., and the differ- In order to gain an equivalent understanding of the atom
ence in field amplitude for the two modes at the atomic pogallery, its symmetry must be exploited. It is clear that the
sition. This proves the resonant contribution dominates th@otential is¢ independent and that any rotation of the sys-
sum of the off-resonant mode contributions. More signifi-tem about the axis by an angle of 2 causes no change to
cantly, for a given type of jumpJy, J,), the spontaneous the system. As in the 1D molasses case, a spontaneous emis-
rates are not wildly dependent on c.m. wave functio@s  sion event breaks this symmetry, but the corresponding kick
also found in the preceding section. However, the enhanceo the c.m. wave function should respect the symmetry of the
ment factors in the c.m. states= 10,12 (corresponding to c.m. basis. In the 1D molasses case, this is a translation in
&, excitations are noticeably larger than thedy counterparts  linear momentum but here it should correspond to a boost in
which is evidence for possible novel c.m. state effects on thengular momentum.

dynamics; for example, a c.m. transition from épnexcita- If one writes down the electromagnetic analog of the an-
tion state(e.g.,A =9) to ane, excitation statg€e.g.,A=10)  gular momentum operatdr,

would change the internal atomic decay rate.

— *
D. The nonperturbative regime Lem= JVQrX[E,aQ(r)X Brad 1]V, (5.39

When theQ of the resonant mode becomes so high that a
perturbative expansion is no longer formally valid, theand then proceeds to calculate the projection of this operator
coupled atom-cavity mode dynamics can be understood as a@ong thez axis, one find§37]
oscillatory exchange of quanta at the Rabi r@teThe per-
turbative calculation for the nonresonant modes in Sec. V B ~
is still necessary to get the correct decay fatg, into the Lem 2= |—Erv|'ez=;> iM
reservoir, but the photons which couple into the resonant ’
mode now have a long enough cavity lifetimex~? that
they might be absorbed and reemitted into this mode sever
times before they are lost to the reservoir Vigyy. The
typical enhancement factor is called the single atom coope
ativity Cy~ g%/ «T caviry [35] (With g=Q/2 for a single pho-
ton in the cavity, but it can be shown to be equivalent to
~Q)\§pﬁca{v as calculated perturbatively above for a domi- ©°"S€Ve angular momentum.

nant resonant mode. The major difference now is that the In the nonresonant, perturbative regime it is sufficient to
atom can also reabsorb the photon from the resonant cavifgéte from Eq.(5.19 that the functionP,y(L,M), suitably

(5.39

. 1
ag paspt 5/

hich, when evaluated in a field state with a single photon in
the mode §,P;) will give (Lgy ,)=#%M. In other words, it is
joot a linear momentum kick which is applied back on the
c.m. wave function as in the case of 1D molasses, but it is an
angular momentum kick and the overall process has had to

- : lized, forms a probability distribution for the photon to
mode and a perturbative approach could never give a corre rma : .
- ; T e emitted into the modd_(M). This is the analogy to the
understanding of the coupled dynamics. The implication Odistribution 0.(K) A0, ~ |&,% &|2d0, for a dipole in free

this continuous coherent exchange for the c.m. wave func: | ¢ A hoton into the ol d
tion is a very interesting question. Qualitatively at least, th spact:e_ arllo_ngad 0 e_mll ap gon Ing_ ehp a}ne Wa]:/ehmo €

results of Sec. V C 1 indicate that each exchange conserv which Is essential In understanding the form of the c.m.
total angular momenturfmore on this in Sec. V E below jump operator if one thinks of an emission event as a quan-

and must lead to a diffusion of the™? part of the wave tum jump. . .
function. In the resonant perturbative regime, the c.m. wave func-

tion changes due to a spontaneous emission into a dominant
cavity mode. Equationg5.22—(5.25 in fact specify the
jump operators for a spontaneous emission into a dominant
1. Symmetry and the jump operators mode in the atom gallery by showing explicitly how the c.m.
wave function is transformed. The jump operator cannot be

Marte et al. [36], in which an atom is placed in a potential simplified further because there are separate changes to both
. ] |m¢ . .

representing quantized 1D molasses. In their case, the trang;[i;t’i‘éﬁ ’2”323 (\a/vhergazrat gni:r:%ﬁw?ﬁ) fugg;i'ﬁga Ai\r?allzn a

lational symmetry of the standing wave light field aIIowsj< M ' 9-

E. Interpretation of Py,(M) in the quantum jump picture

A guiding light in this work has been the calculation of

them to express not only the c.m. wave function in terms o 5'28)' acts as a.pr.obability dis.tributio_n for a photon to be
a basis of Bloch functions but also to express simply th icked into a radiation mode with orbital mode numidr

effect of the spontaneous emissions on this wave functiod? Fig. 15, the normalized versioRy (M) of Py(M) is
They quantize the radiation field as plane wave states insigelotted for a jump of typel, for an atom in the state

a box appropriate to the boundary conditions. A photon

emission then must cause atomic recoil according to |hc.m..ground ® | Waressed, ground (5.37)
(Z,t|w2om e~ ike&(7 t| W™ This is just a translation of

the Bloch vector with a strength determined by the probabilwhich is written out explicitly in Eq.(4.17). Note that this
ity distribution over angles for the emitted photon as con-distribution is symmetric foM — —M and that the probabil-
tained in the dot produdt-e, and this transformation, char- ity is very strongly peaked aM|~L;.
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0.025 . . . . ; : : — associated with the change in angular momenamd this
energy is largely decoupled from trap heatinthe sphere
Pac (M) will thus tend to shield the atom from recoil heating in the
o02r 1 transverse €, and &,) dimensions. This is not the case in

other geometries: for example, the random direction for a
linear momentum kick in 1D molasses is a limit to the cool-

ing.

0.015+

001l 3. The limit of a large number of jumps

It is interesting to consider semiquantitatively the effect
on the quantum dynamics if there were many spontaneous
emission quantum jumps. Even though such a scenario can-
not be compared with the actual dynamics calculated for our
o , ! | ’ - : ; , , system in Sec. IV since there were very few jumps by design

500 450 400 -350 -300 -250 -200 -150 -100 -50 . O of the chosen parameters, this would become important ei-
ther in the context of interaction of the c.m. wave packets

FIG. 15. The normalized probability distributid®y, (M) for a ~ With a quantum field, or simply for deeper wells. The num-
photon to be emitted witM e[ —L, L,] in a spontaneous emission ber of jumpsj scales a$ ~ Theating Atemission@nd the heating
eventin a resonant regimérom the internal atomic stafd) to the ~ time Tpeaing Should scale asheaing*AEcm. SI'. For the 95
state|0). The initial c.m. state is taken to be=1. Note that the K potential, EZ*“(\=1)/E2 (A=1)~100 and so
distribution is symrnetric abouw¥ =0. This probability distribution  j95#K/j2 K _100 since the ratio is independent ofIl/
is used to pick thee, component of the orbital angular momentum This would be noticeable in the number of orbits,,; that
of a spontaneously emitted photon in the case of a jump of typghe atom could make around the sphere. The orbital period
J_l. It is the microsphere an_alogy to pick?ng thecomponent of _the T Scales asTp= Theating/norbit:27Ta/v</>~277a2mc/
linear momentum of an emitted photon in free space according to g i, '\wherem, is the center of the distribution ifm} for the
dipole distribution py (k) d{i~[&;x &|*d€y for a dipole along 11" \vave function. Heating due to recoil effects, which was

0.005}

& not present in previous calculations gfeaingin Sec. IV C,
2. Significance of the jump process can change,,;; in the limit that there are a large number of
. o jumpsj.
The first observation is thaglobal angular momentum For angular momentum conservation for the microsphere

conservation between internal states, external states, and thgy,
guantum radiation field has to be enforced. This is a practical
example of something that has been discussed by van Enk Jatom &— Jatomr &+ LEM: €, (5.39
[38] and others. The internal angular momentum appears due :

to the dot product of the spherical basis vectors with thevhereJgg.=L .+ L5onand, as described explicitly above
quantum radiation field operator in E¢.22. The phase inSec.VC1,
e'M¢ of the radiation field in turn couples to the phaa8?

of the c.m. wave function, causing a diffusion to an initially m+M-=1
well-defined phase and the consequence of this on the dy- m— m+M . (5.39
namics will be discussed in the next section. m+M+ 1

A second comment is that when using these jump opera-
tors in the quantum jump picture, it is implicity assumed This transformation says that evenafl of the quantum
that our measuring device has the ability to distinguish thgumps are recorded, there will be a correspondipgeadin
M value of the emitted photon. This may not be practical orthe c.m. angular momentum. The reason for this is that there
even physically realizable. However, as RE9] explains s an internal component,"  to the total angular momen-

atom

for the case of 1D molasses, the jump operators are nqfm, Ji% which cannot be ignored.

unique. This is true in general for any master equation. In the  £or an initial system wave function before the first jump
1D molasses case, for example, one is able to do a unitary; -
jump

transformation on the jump operators frdy(z)e ' to

[dQB,(z)e”ke#z=N2)  This corresponds to a change in (N tumd Yok o) = (N tiumd Vo @ [WHP

the measurement from the angular position of the emitted

photon to c.m. wave function position localization by look- 2 o\t ux(p,2)

ing at the fluorescence through a lens. Such a transformation = A jump) \/;

is known as a localizing quantum jump. One would hope that

a similar transformation could be found here which would _ imed 2 b (1= Uy (p,2)

avoid relying upon the measurement of photon angular mo- =e’o - v (tum Jp '
! . . . by p

mentum. This is something to be investigated further.

Finally, and most importantly, the significance of the _ Uy(p,2)
spherical geometry is evident. The angular momentum kick EN dx”(tjump)T
causes c.m. transitions and a chang&¢g, , but the major- A p
ity of the recoil energy must go into centrifugal energy (5.40
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the action on thep part of the c.m. wave function by the 2 m=mg+M©OYj)+]

jump operator at the first quantum jump frdt)— |0) is to SEw(j)~ 5|1 >

take the initialmg in €™Mo? and change it to 2mea N m=mo+M©j)—j
my—{my+M—1mg+M,mg+M+1}, (5.41 X|C_)\m(tj:mp)|2m2) —m2|, (5.46

whereM is a random variable corresponding to the final field
state and is chosen .frorﬁ_M(M). If the_normalized c.m. with M“’t(j)=2njzliM(nj) whereM (n;) is theM value of
wave function is rewritten just after the jump, the emitted photon at thgth jump as chosen randomly from

Py (M) at each jump. This can be evaluated approximately
as

> Cumlty th(p.2) elmé

Cc
)\’m jum \/;
<I’ vtjﬁmp|wtsgt5ten} = 0 , . . %2 ) _
OEil(j)~] m'—l—[l— Pu(L1)]E(t=0), (5.47)
C

(5.42

since (M?)~L%. Asymptotically, this scales linearly with
the internal states will mix to produce a new wave function]- This is easy to understand: a random walk in angular mo-

at a later timet’ of the form mentumJ for j steps should gives~j=(SEf(j))~]. If
VjL4 is very large compared tm, then the number of orbits
(p.2) scales as
uy(p,z) .
> Cun(t) 2 gme
A.m Vp Theati 1
Norbit~ heatlng~.3,2 - (5 48)
orpr .
<I’ trlq,syste — 2 b)\rm(t/)weimd’ Torbit SF(ZWamC/ﬁkplLl
’ tot N m p
Upr(p,2) The upper limit on the number of possible jumpshat the
> dw,m(t’)x—'e‘m‘f’ atom can undergo and still remain trapped is either the point

\,m p at which the distribution ifm} becomes peaked at such a
(5.43  large value~+/jL; that the centrifugal force now matches
the potential gradient, or when the bound state diffusion as-
It is evident that all three wave function spinor compo- sociated with these jumpsf. Eq. (5.24 which implicitly
nents contain exactly the same number of terms #nd that ~ shows a spreading frof\} to {\'} as well as from{m} to
the entire wave function spreads ouiinin exactly the same {m’}] is enough to heat the atom. As pointed out earlier, the
way. In fact, it is easy to see that afespontaneous jumps former would most likely dominate because heating by mov-
there will beN,(j)=2j+1 terms inZ,,. After starting out  ing up the bound states ladder is suppressed due to the struc-
in the state with total energi(t=0)=%2m3/2m.a?, the  ture of Py(M).
change in the energy after one jump of tyideis given by

VI. IMPLICATIONS OF THE QUANTIZATION

2 OF THE c.m.

OBo=5—3

zﬂm%wwﬂﬁm |
Am A. The atom-microsphere system as a matter wave resonator

The atom gallery system has the possibility of forming a

where zm:zg;ggmj. From the distributionPy (M),  matter wave resonator under certain conditions. To under-

M is Strong'y peaked abo[llM|%Ll for a Jump Of typeJl Stand th|S requires I’esyntheSiZing the tOtal c.m. wave fUnC'

and so this sum can be evaluated as tion by including the¢ dependence along with the c.m.
bound states. Consider the full c.m. state under free evolu-
tion,

2

h
5Etotmm{(m0i |—1)2§q |E?m(titmp)|2_mg} Uy (p.2)
i A y

p

eim¢>
2

h 2p 2
%W[(moil-l) Pu(Ly)—mg], (5.49

(r VA=, cyn(t)

- Auy(p,z
=2 (; cm<t>e'm¢)%, 6.1
where the results of the normalization procedure in Appen- P

dix A 3 and summarized there by E@\21) have been used.
The = means thaM = *L, are equiprobable. Aftef such and now concentrate on the spread im values in
jumps the energy change is fo (1) ==Chm(t)€M?. It is easy to show that
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#2m? forms a very realistic initial condition for the subsequent
evolution and this situation is a novel one. Clearly, the usual
interpretation ofg(r) as g({r),) cannot be correct as the
=(Ecm(t))+(E(1)). (6.2  Wwave packet can have _appreciabl.e probability on spatial
scales over whicly(r) varies appreciably.

) L _ Many very interesting situations may arise. For example,
The d_e Bro_glle resonance condition is tlm2¢~ﬁ/a with \ith g(r)~d-EP'M(r) (see Appendix A %for a quantized
Pa(t) =((Ailip)(9l9p))~(hIQ)Z\ mmlCrm(t)[*. ~ Hence, \ygm field with mode functions given by Eq2.1), the c.m.
Am ~1 is required such thagkm contains very fewm \yave function would be extremely sensitive to the number of
values. So withm~1, AE.~A"m/m.a” defines an accept- e/ —M| of g(r) in the &, direction, because these de-
able energy width and it is clear that with smaller diametef,o mine howg(r) varies across the wave packtte realistic
spheres, greater flexibility in initial atomic tempgratures issituation of a microsphere with some asphericity to lift the
allowed. For a lum spherezaEC~ 100 nK(Cs recoil at the  \y gegeneracy noted earlier is considerebhis is empha-
D line at 852 nm, AE.~ (f°/mc)(2m/ak) ~30 nK, which ;04 in Figs. 16)—16(c) where the c.m. wave functions for

is not out of the question wi'.[h present cooling and trap'pingthe atom gallery modesi, (p,z) are plotted along with
technology. At this small radius, th@ of the microsphere is glLfM\(p,Z) on the same spatial scalEor concreteness, the

severely limited by its intrinsic radiative value, but the trap- CsD, transition is now taken to be close to resonant with a

ping potential does not depend heavily upon @hePrevious uantum WGM 6,P)=(TM,1,521M). In 16(@ and 16b),
discussions about the role of spontaneous emission in caug; _ 518 and in 16c), M=517. It is clear that the c.m. wave

ing diffusion in them quantum number of the c.m. wave
function are particularly applicable here as the decoherin
mechanism and this will be the subject of a future investiga
tion.

<E(t)>:§n Icm<t>|2EC.m.<>~>+k2m |cam(D)?

2m.a°

ackets are not localized well enough to consider using
({r))) in standard quantum dynamical equations for the
internal states of the atom and the quantum field. Such a field
would also lead to the importance of the coupling of the
phasee™? of g(r) with the phasee'™? of the c.m. wave
B. Cavity QED and the c.m. wave function function which is a concrete example for the discussion of
ec. VC.
A second possible avenue would be to take advantage of
e long lifetime of these atom galleries and keep the trap-
ing potential on while turning on a quantum field on a third
ansition. Unfortunately, the energy scale associated with
the coupling parameterg(r) for even a resonant vacuum
Yield are ~500x greater than the dipole force potential for

ity QED effects arise when the atom is strongly coupled to the cesium atom gallery calculated above. Hence, it is cer-
y ' S gly P %ainly not valid to assume that the atom will remain trapped
single mode of the field and it is necessary that the stro

ONhile interacting with the quantum field. However, for a

f;ouepélrl%\,ﬂariqngﬁtfﬁﬂghbigt\évsseunmtgg tgtgren aatm(;jr :]erprrgg;)_much lighter atom such as Heit is the case that one might
9 Y be able to treat the fasg(* time scales dynamics due to

nance with the atomic transitiprdominate the decay rate the quantum field while ignoring the slowéneating time

Fril\r/]itlg ae” dog]:vri tmorgS)z:n'?'k?eISZt?ri ca{:lllllg/rdecc;\%/ :giégiall scales of the trap. One could now consider the possibility of
P 9 y y 9 y y obing the c.m. state structure dependence of the usual in-

satisfy both these conditions as has been discussed in R‘%‘rnal state quantum field Jaynes-Cummings ladder in opti-

[2]. cal cavity QED on time scales long compared to anything

claéssiczlﬁi;s; eﬁmplst,e\avt(iaalcon&d%r q;,;%kli/hg:]ml:r;?n offthtge being done at the moment. We look forward to developing
pping p (X, ,—0) 9 these ideas further in future work.

Stark shift of a quantum field resonant with a WGM and an

internal atomic transition. The initial total wave function

now contains a very well-defined initial atomic c.m. wave VIl. CONCLUSIONS
packetiocalized directly in the spatial region of this quantum
field as pointed out in Ref.2]. The quantum dynamics in a
resonant situation such as this are governed by a Hamiltoni

Perhaps the most interesting observation to come out o
this analysis is that these c.m. wave packets have a spatiFH
extent of gyicaf27. As has been alluded to previously, it is
a very interesting problem to understand how such a c.
wave packet would evolve if a quantum field were intro-
duced. The idea of c.m. quantization in the context of cavit
QED has recently been emphasizd@-42. Interesting cav-

In conclusion, the atom gallery proposed[R] has been
aerther characterized by calculating the bound states and then
examining the subsequent dynamics of the system evolving

of the form ) .
in one of these states. Trap lifetimes cannot be fully under-
2 stood from a semiclassical analysis. Next, the broad issue of
H=5ht ig(r)(o_a'~o,a), (6.3  radiative processes in the atom gallery has been discussed in

both the perturbative and nonperturbative regimes. The sym-
metry of the atom gallery brings to the fore very interesting

where dissipation is ignored. The initial c.m. wave function,issues of angular momentum conservation, which has been
discussed in the context of the quantum jump picture. Some

ideas about the atom gallery as a matter wave resonator have

2 C}\mu)\(p,Z) eme | |r) been presented. Finally, extremely interesting issues arise as
Aom a consequence of c.m. quantization in cavity QED with a
(6.4  quantum field. Exploring quantum dynamics against the

|Vem(t=0))= |lI,Z:\.m> = f dr
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APPENDIX A: DETAILS ON THE CALCULATIONS

1. Microsphere resonances

50.4 a. Characteristic equations

izs 50.2

- ™ Microsphere resonances are calculated from resonances in
P

the Mie scattering coefficients which in turn are determined

from the boundary conditions on Maxwell's equations at the

surface of the sphere. For the TM modes used in the calcu-
lations the following characteristic equation has to be solved
[11]:

=10 (0, 2)

[piu(0)] w2 [(pIM)h(M(p/n)]’
) w1 mOpm 0 AY

wheren is the refractive index of silicaw, and w, are the
magnetic permeabilities inside and outside the sphere, re-
spectively,p=Kk,a for a sphere of radiua and a wave vec-

tor magnitude inside the sphere kf, and the ' denotes
differentiation with respect to the argument. This can be sim-
plified to

jLi-i(p) L nhiY(p/m) n2L

il p hD(pn) p

(A2)

The solutions are characterized pY (whereP indexes the
zeroes ofh;) and are related to the resonance frequencies
wpl=ckiM/n used in the calculations by wp)
=Re(cpp,/na). kp)' is understood to bansidethe sphere.

0

< .
17 .

an,) 50.2 pku“”\ b. Quality factors

-2

The cavity damping ratep)' can be avery small number
and this is the reason why microsphere resonators are inter-

FIG. 16. The c.m. wave function, _1(p,z) is shown to have : : . .
appreciable probability across the strong-coupling paramete?Stlng for strongly coupled cavity QED. In practice, the line-

g"~"(r) for the WGM (TM,p,l,m)=(TM,1,521,518) resonant Wle'\}hs V\ﬁ\)/luld bTeMmeaTsMuredTSnd qyoted @%value, wh_ere

with the cesiunD, line at 852 nm, following the discussion in Sec. QpL = wp/Awp| = wp/2kp| . This value can be predicted

VIB. In (b), the same situation with the, _;o(p,z) c.m. state is  using the results of Ref31]. The intrinsic radiativeQ can

shown. In (c), the interesting situation arises that in the statebe solved by considering the functional form of the square of

A=10 and with the WGM (TMp,I,m)= (TM,1,521,517), then the Mie scattering coefficientb, given explicitly for TM

g m=4((r) 210 =(g" "™=4(r))y_10 Which emphasizes the im- modes by Eq(5.12. This leads toQ values which can be

portance of these c.m. wave functions when a quantum cavity field>10?° for 2a/)\0ptica|> 50 (as is easily satisfied herand so

is involved on the same spatial scale. The understanding of thigadiative losses can be ignored. Present work in 34| at

exciting new regime is one focus of our current work. 633 nm is pushing the intrinsic material absorption limit. For
a typicalQ value~ 10’ atA =894 nm the resonance width is

backdrop of the atom gallery should be extremely fruitful Aw/27~300 KHz, but a recoil shift here is-10 KHz so

because it is a realistic 3D system which begins to emphasiztiese can be ignored as was claimed in Sec. V C 2.

the importance of the c.m. wave function in cavity QED.

2. Bound state calculations
ACKNOWLEDGMENTS a. Eigenvector representation
We express our gratitude to S. M. Tan for many of the As discussed briefly above, the c.m. basis wave functions

codes used to implement the Lanczos algorithm and the imare held as coefficients of a sine series because this automati-
valuable aid concerning the use ®ATLAB in the calcula- cally enforces the boundary conditions that the atom be con-
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fined to the well region. The sine series representation obecause th¢u,(p,z)} are eigenfunctions of a Hermitian op-

u,(p,z) can be written down explicitly as
u}\(piz)_)u)\(ang)

N, N,
=> > [Ux(x,y)sin
x=1y=1

XX
N, +1

Ty B
N,+1

sin

(A3)

and the variablep andz have been discretized as

a
P=Pmint W(Pmax_ Pmin)»
(A4)

Z=Zyint No+1 (Zmax— Zmin)
z

with a=1,...,N,, 8=1,...,N,. N,;,N, are the grid
sizes in thee, and e, directions, respectively, for which
N,=N,=40 was chosenU,(x,y) is known as theD In-
verse sine transfornof u, («,B8). The complementary rela-
tion reads
N, N,
0= (D T2

Ty
N+ 1

| mXa )\ A5
x| u,(a,B)sin N1/Sn (A5)

andu, (a,B) is the 2D sine transformof U, (x,y). The co-
efficients U, (Xx,y) and u,(«a,B) are purely real and they
obey

(N;+1)(N,+1)

u? —2 UZ(x,y).

2 Z (AB)

There is still the issue of the overall normalization of the

u,(a,B), because

f A3 rwdom (5 b, 2,) WM p, p,z,t)=1. (A7)
This equation can be rewritten as
UA/(p,Z) o
d3|| D cf, ,———eTim <!>)
f {()\/’m, A'm \/;
uy(p,2) img
X[ D eyp———¢ =1. (A8)
A,m \/I—)
The ¢ integration gives zrd, ,, and so
Uy (p,2)uy(p,z
2,”- 2 C:’mc)\mJ pdpd2M:
MNAT,m
(A9)
Now evaluating the integral gives
uZ(p,2)

U, /(p,Z)u \Z
|=f pdpdzw=&\r’)\f pdpdz

(A10)

erator and hence are orthogonal. Using E&R) and (A4),

(Pmax— Pmin) (Zmax— Zmin)

2 XZy U2(x,y).

| :5)\7’)\ (All)

The end requirement is

T
E(pmax_pmin)(zmax_zmin)z C;mc)\mz U)Z\(va):]-
A,m X,y
(A12)

To independently normalize tHel, (p,2)}, it is required that

2
U2(x,y)= A13
Xzyy n(x0y) T(Pmax— Pmin) (Zmax— Zmin) ( )
and then the expansion coefficients must obey
> Chmtam=1 (A14)
A,m

Thus the proper way to normalize thie, (p,2)} is to have

N, +1)(N,+1
> ui(aB)= 5 (M D) (A15)

a,B (Pmax— Pmin) (Zmax— Zmin)

The power of this method is clear when the Sclinger
equation, Eq(3.2), is examined. First, the second derivative
operator just becomes a multiplication &f,(x,y) by
_WZXZ/(Pmax_Pmin)z_ 7T2l/zl(zmax_zmin)z- Second, it is very
fastto switch betweem, (p,z) andU, (x,y) using modifica-
tions of 2D fast fourier transformiFFT2) algorithms to the
2D fast sine transfornFST2.

3. Renormalization of the wave function
and the quantum jump probability density

It is necessary to renormalize the distributiep (M) ac-
cording to

Pu(M)—Py(M)=KPy(M), (A16)
where
> Pu(M)=1, (A17)
M/
so that
K> |l |12=1. (A18)
Nm'
In order to renormalizér,t| ¥ 2™ after the jump,
e =Ml (A19)
such that
|c)\,m,|2— (A20)

A'm’
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Finally, then, the relationship between the required normalatomic transition of frequency2°™=27c/\ yom. These are

izations is easily calculated using the definitionséfp, ¢ p(r), and
K=|M|2. (A21)
1 4e?X&m?
4. Coupling coefficients and photon numbers v, =§Ff'ee()\)= BTG (A23)

If the microsphere is to be used in the regime of strong
coupling, the parameter of interest is the coupling coefficien

gs p(r) Where[35] tI'he photon numbers are calculated frorf; r)

=2(n1gsp(r). Itis also interesting to note that the dis-
cussion in Sec. VI B addresses a situation in which the phase
3c\? of g p(r) may mix with the phase of the c.m. wave function
sp(r)="yi|tsp(r)| Ay (A22) 50 that the typical definition ofis p(r) which includes the
> norm of the radiation field mode functidgi p(r)| [as in Eq.
andy, is thefree spacdransverse decay rate for the internal (A22)] would have to be modified.
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