PHYSICAL REVIEW A VOLUME 55, NUMBER 2 FEBRUARY 1997
Schrodinger-cat states in Paul traps
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We study the evolution of coherent and Salinger cat states in radio-frequency traps, which were used to
bound Hg' ions. The quantum confinement is determined by evaluating the expectation values and dispersions
of the position and momentum operators, together with the probability densities in coordinate and momenta
representations. Also the Wigner functions associated to this nonstationary quantum system, a parametric
oscillator, are constructefiS1050-294{®7)07801-3

PACS numbgs): 32.80.Pj, 03.65-w, 42.50.Vk

[. INTRODUCTION entanglement of electronic and motional states of the atoms
using a sequence of laser pulses.

Macroscopic quantum superposition of states has been In this contribution we are going to talk about the quan-
achieved for unbound electrons since the middle 198Qis tum effects in the dynamic stabilization of ions in three-
In the late 1980s and the 1990s this has been also done féimensional radio-frequency quadrupole fie[d§].
atom beam splitter§2]. Superposition of macroscopically ~ The quantum dynamics of a charged particle in a conven-
distinguishable states called even and odd coherent statéignal Paul trap is separable into two independent motions,
was suggested if8]. Matos Filho and Vogdl4] have shown one of them in the plan¥-Y and the other in th& direction.
that this superposition is naturally realized as a steady staf@oth motions are described by a parametric oscillator, that is,
for a trapped ion in a bichromatic laser irradiation. Morea harmonic oscillator with a time-dependent frequency. The
recently, Nietd 5] has studied the even and odd coherent angtudy of time-dependent quantum systems is in general com-
squeezed states of an ion in a Paul trap regarding possibilplicated, however for quadratic systems in position and mo-
ties of experimental realization of such staf$ The mea- mentum, the formalism of the linear time-dependent invari-
surements of nonclassical states of trapped ions, includingnts developed and summarized17] can be used. Itis also
even and odd coherent states, were discussed using the d@rossible to apply algebraic methods to express the evolution
doscopy method7] and symplectic tomography8]. There  operator as an element of the (8%®) group with time-
have also been proposals to build macroscopic superpodilependent parametefd8]. This algebraic procedure has
tions of bound statef®] and to create Schdinger-cat states been very successful in describing atomic and molecular col-
in a single-mode electromagnetic fidli0]. As pointed out lisions[19].
by Spiridonov[11], the superposition states considered in In this work we show for general one-dimensional qua-
Ref. [10] are a particular case of the generalized coherendratic systems that these two procedures are indeed equiva-
states introduced by Titulaer and Glaubgt2] and lent. This result is also true foi-dimensional systems, at
Bialynicka-Birula[13], and these states have the same Poismost quadratic, and in this case we hawe iddependent
son statistics as the coherent states. This is the importafinear constants of the motion to construct the Green func-
difference between the states discussefild] and the ones tion. The evolution operator is an element of the semidirect
discussed in3]. The even and odd Schiimger cats are product group of the Weyl and symplectic groupsdirdi-
more nonclassical states because both quadrature and numensionsW(d)/\Sp(2d,R).
ber operator statistics are different from those in the coherent We study the quantum behavior of ions that at tirse0
states. In generalized coherent stdte®,13, including the are either in a generalized correlate®], or even and odd
particular Schrdinger cats irf10], only quadrature statistics Schralinger-cat states, and their subsequent evolution in a
are changed in comparison with the coherent states, meaRaul trap. We give general analytic expressions of several
while the number operator statistics is preserved. Using abservables: the expectation values of the position and mo-
Kerr nonlinear medium, the observation of nonclassicamentum operators, the dispersions in the posiigg and
states of an atom moving in a Paul trgip] and the subse- the momentuno,,, plus a measure of the correlati
guent construction of Schdinger cats from such an atom between both variables. Also the probability densities in the
have been reportdd 5]. These results have opened the pos-coordinates and momenta representations, together with the
sibility of testing the theory of quantum measurements in astructure of the associated quasiprobabilistic Wigner func-
quite clean way because the dispersion of the wave packéibn [21] are found. These analytic expressions are written in
can be manipulated to a high degree. The experimental aperms of the two independent classical solutions of the para-
proach is based on a highly controlled harmonic motion ofmetric oscillator, the Mathieu functions.
the trapped atom by exciting the motion from initial zero-  Recently a single Hg ion harmonically bound in a radio-
point wave packets to coherent state wave packets of a welfrequency trap has been cooled to an extent where it spends
defined amplitude and phase. This is acomplished by thenost of the time in the ground st&t22]. For this reason we
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consider the physical features of the traps used in that study The equationg2.2) can be rewritten in matrix form, and

to see the evolution of correlated and Salinger-cat states. the matrix that connects the position and momentum opera-
The plan of the present paper is as follows. In Sec. Il wetors with the constants of the motion is a two-dimensional

establish the equivalence between the linear time-dependesymplectic matrix. This means that expressi@hg) are de-

constants of motion formalism and the evolution operatomoting a canonical transformation and therefore the commu-

procedure to get the solution of the nonstationary Schrotation relations of the constants of the motion are identical to

dinger equation for general quadratic systems with timethose of the position and momentum operators. Another con-

dependent coefficients or strengths. In the Sec. Il we detervenient form to express the constants of the motion is in

mine the analytic expressions for the expectation values anéérms of creation and annihilation operators:

dispersions of the position and momentum operators. The

probability densities to find the ion in the position and mo- A(t) My M\ [ a
mentum spaces are calculated, together with the Wigner AT(t) =l M* M* atl, (2.5
function associated to the general homogeneous quadratic 2 !

Hamiltonian. In Sec. IV, the analytic expressions developed

in the previous section are used to study the quantum behawhere we have defined
ior of coherent and Schdinger-cat states describing Fig

ions moving in radio-frequency traps. Finally a summary of M =1{
the main quantum effects appearing in the evolution of the )
confined ions is given, emphasizing the differences in the

features when the ions are represented by a Gaussian packet 1 b . 1. .
with minimum Heisenberg uncertainty with those of even or 225{ —1+i 5)(h1_'h2)_5(h2+'h1) '
odd Schrdinger-cat states. (2.6b

, (2.6a

1+'b h,—ih 1h+'h
|5( 1~ 2)_5( 2t+ihy)

Il. EVOLUTION OPERATOR and these expressions satisfy the  condition
' |M4|?—|M,|2=1. This property can be proved directly by
In this section we apply the time-dependent linear invari-making the indicated products and using the Wronskian of
ants theory to solve the nonstationary Scfinger equation the differential equations(2.3, W(h,,h;)=h,h;—h,h;

for the Hamiltonian =a(t).
The invariants are very useful because they allow us to
H= @@4 @(f)a +3p) + C(t) 2 2.1) define generalized correlated states, which are solutions of
2 2 ' ' the time-dependent Schidimger equatior{23]. This is car-

ried out by solving the differential equation
where here and in the next section we use the natural units of
the system that im=%=c(0)=1. A(t)Py(q,t)=0, 2.7
First of all we construct the constants of motion of the
system through the Hamiltonian formulation of Noether'sWhereA(t) is written in terms of the position and momentum
theorem[23,24]. The invariants can be written in the form operators. The solution is given by

1 ix
Po(t)=hy()p~ )[hlm hy(Hb(H)1a, (223 %(q't):—r(zﬂlmx;zexp{—ﬁ 2] 28

a(t
with the definitions

Go(t) =ha(t)p———[ha(t) —hx(H)b(1)]G, (22D

(t) 1
)\p:_[h2+ih1], (293
whereh,(t) with k=1,2, denote the independent solutions of V2
the classical equations of motion
hy(t)—h (t) (t) +hi(t)| —b(t)+a(t)c(t)
The factor in Eq(2.8) is a function of time, which was fixed
a(t) by asking thatd, satisfies the time-dependent Sdfirger
—b2(t)+b(t)% =0. (2.3 equation associated to the Hamiltonighl).

The action of a constant of motioA,(t) onto®,(q,t) is
Iso a solution of the nonstationary Scllimger equation
ecausedy(q,t) is a solution. Therefore the action of the

unitary operator

If the constants of motion are chosen to be the position an

momentum operators &t 0, the solutions of2.3) are com-

pletely determined by the initial conditions

: D(a)=expaAT—a*A), 2.1

hy(t=0)=1,hy(t=0)=b(0), (2.43 (@)= explah —a™A) 210
. onto (2.8) will be a solution and gives rise to the generalized

h,(t=0)=0,h,(t=0)=—a(0). (2.4b correlated states. It can be rewritten as



1210 0. CASTANOS et al. 55

—|a\2/2 ;
e i .
Ya(g,t)= mﬁexr{ - 2—)\p(7\qq2—2aq+ [ az)\;) )
(2.11)

Q>

A(t) el ™ o) —el%/2¢_

Al(t) —el~%Pc,  eD(1-c_c,) || a"|>
(2.1

which is a canonical transformation. We note that the matrix
appearing in the last expression can also be obtained by con-
0§idering a faithful representation of the symplectic genera-
tors, substituting them into the temporal evolution operator
(2.12 and calculating the inverse of the resultant matrix.
Comparing Eq.(2.17 with the corresponding one ob-
tained with the linear time-dependent constants of the motion
formalism, Eq. (2.5, we have four algebraic equations,
which give the following relations betweet,, ¢, and

U(t)=exp(coKo)explc_K,)expc,K_), (212  ©C--

In summary the solutions of the nonstationary Sdimger
equation associated to the Hamiltonighl) are obtained
explicitly if it is possible to find(h(t),h,(t)), the indepen-
dent solutions of the corresponding classical equations
motion.

According to Refs[18,19 in the algebraic method the
evolution operator of Hamiltoniaf2.1) must be an element
of the symplectic group in two dimensions. Therefore we
propose

where we have defined the operators Co=~2In(My), (2.183
— *
Ko=1(ata+1), (2.133 Cy=M3/My, (2.180
_=—MsM;,. 21
K,=la'? (2.13H ¢ 2V (2.189
. In the expressiong2.5) and(2.12 there is not a contradic-
K_=3a? (2.130  tion between the number of independent parameters because

the complex parameters, andc_ are not independent.
which have the commutation relations of a symplectic alge- BecauseM; andM, are written in terms of two indepen-
bra in two dimension$25]. dent solutions of the classical equations of moti@ré), us-
Substituting the expressiof2.12) into the differential jng Eqgs.(2.18 we get
equation for the time evolution operator, we get the follow-

ing set of first-order coupled differential equations: h,(t)=Ree™ %2+ c_e%?), (2.19a
dc dc ho(t)=—Im(e %0?—c_g%/?), 2.19
i(ol—to—zcd—t+ —a(t)+c(t), (2.143 2t ( ) (2199

In summary, if we know the classical solutiongandh, we
c can determinéVl; and M, and, through the relation2.18),
—Z _o¢ _+) exp(Co) = 2 [a(t) — 2ib(t) —c(t)], the complex parameters appearing in the evolution operator.
We can proceed in the other direction: if the functianps
(2.14h c., andc_ are obtained, the solutions of the classical equa-
tions can be found by means (£.19.

(dcy 1 . B
'(W) BX—Co) = 2 [a(t) +2ib(t) —c(V)], Ill. GAUSSIAN PACKETS

2.14
( 0 In this section we study the evolution of Gaussian packets
with the initial conditions under the Hamiltoniari2.1). We start by evaluating the ex-
pectation values and dispersions of the position and momen-
co(0)=c,(0)=c_(0)=0. (2.15 tum operators in the generalized correlated stagsl),

which are solutions of the Hamiltonia@.1).
In general these equations can be solved numerically, and for To get the expectation values, the position and momen-
the parametric oscillator they are simplified. Thus if wetum operators are written in terms of the integrals of motion
know co, c_, andc. , the evolution of generalized corre- A" and A. Afterwards through the action&|a,t)=a|a,t)
lated or Schrdinger-cat states according to the Hamiltonianand(a,t|AT=a* (a,t] it is immediate that
(2.1) can be obtained. R
To relate these two procedures, we remember that the (R o =1(Aga—Npa*), (3.1a
constants of motion satisfy the relation
(P)ai=—1(NFa—Nqa*). (3.1b
[(tH)=U()1(0)UT(1), (2.16
In a similar form the dispersions can be obtained and the
wherel (t) denotes the invarian#&(t) or AT(t). Throughout results are
the commutation relation properties of the generators of the )
two-dimensional symplectic group with the creation and an- Tqq=INpl, (3.2a
nihilation operators, the expressiéd.16 can be evaluated
and then we get the time evolution of the constants of motion Opg= — z ()\; Apt )\’,; Ng), (3.2b
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(3.20

The last expressions are independent of the parametsr
the generalized correlated state ang, is a measure of the

Opp= |)\q|2.

1211

and odd coherent states because they are related to irreduc-
ible representations of the finite point group of two elements,
the identity and the reflection, acting on the complex plane of
the parameters labelling the coherent stg26s27]. They are

correlation between the position and momentum. Also thesgiven by the linear combination of coherent states

dispersions minimize the Schiimger-Robertson uncertainty

relation

(3.3

_ 42 -1
0qq0pp~ Opg™ 4-

From the wave function§2.11) associated to the Hamil-
tonian(2.1), the probability density in the position space can

be calculated:

_ 2
Pa(q,t): eX[{ . (q <q>a,t)

Z(qu

amow L 59

where the expression)sp)\;—)\q)\;ﬂ, (3.13, and (3.23
were used.

@)= =Ne(la)y == a)), (3.10

with
exga|?/2

2\/cosHal?’

exp al?/2
N =——= (3.11b

2\/sinHa|?’

It is immediate to show that they are eigenfunctions of the
square of the annihilation operator

N, = (3.113

The wave function in the momentum space is constructed

through the usual Fourier transform of Eg.11). From this

(3.12

a2|a)i=a2|a>i.

result, we can evaluate the probability density in the momen-

tum space:

p[ (P=(P)a)’
expy—————

20'pp

P.(p,t)= ] (3.5

\/2770'pp

Finally we give the analytic expression for the Wigner func-

tion associated to the Hamiltoniai®2.1). This function is
defined by

W(q,p):J (q+u/l2lplg—ur2)e Pudu, (3.6

where p is the density operator and

in this case
p=|a,t){a,t|, with |a,t) denoting the generalized corre-

Therefore in what follows we will find the corresponding
analytic expressions for dispersions, densities, and Wigner
functions but now associated to the eigenfunctioné\f)
[23,26.

The expectation values of the position and momentum
operator are equal to zero because the Stihger-cat states
have the properties

A —(M) 3.13
la,t). = a ala,t)-, (3.133
+<a,t|AT=(j:[7+> a* (a,t, (3.13h

lated states, which are solutions of the time-dependerdand the even and odd generalized correlated states are ortho-
Schralinger equation. Substituting this density operator anchormal.

using the Eq.(2.11), we have the Fourier transform of a

It is easy to get the quadrature dispersions for the gener-

Gaussian term, which can be easily evaluated. Making somalized Schrdinger-cat stateg23]. The results are
algebraic manipulations the Wigner function can be written

as[24]

1 1
W(qipit): [(1_R2)Upp0_qq]1/2exp{ - 2(1_722)

-7 AZ ~
_l+£_m;LJ%I 37

Taa Tpp VOqgq VOpp

where we have defined the correlation coefficient

X

L 3.9
VOppOqq
and the variables
q_=q—<ﬁ>a,u (3.99
p= p_<ﬁ>a,t- (3.9h

Now we study the evolution of Schilinger-cat states un-

0o =N5055(0) + A 5054(0) = 2\ g\ 207 54(0),
(3.143

o)== Nak305p(0) = Aok 1054(0) + N4\ 10754(0)

+Noh304,(0), (3.14bh
Taq(D)=N5055(0) +M04(0) =2\ 3N 1054(0),
(3.1409

whereh; =12 Imh, N,= 12 IMAg, A3=+2 Re\,, and),
=2 Re\,. Fort=0, they correspond to the quadratures for
a standard cat state:

opp(0)=r%(A.—cos2)+3, (3.153
0,4(0)=r?sin26), (3.15b
Taq(0)=r%(A. +cos2) +3, (3.150

der the Hamiltoniar(2.1). These states are also called evenwhere we have defined=rexp(6) and
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tanir? where we have defined
A= 3.1
= | cothr2, (316

By means of the wave function of the even and odd gen- Wa,ﬁ(q’p=t):f J du exp(—ipu)#.(q+u/2t)
eralized correlated states in the coordinate or momentum rep-
resentations, we construct the corresponding probability den- X p(q—u/2t). (3.19
sities. For the position case we have

Substituting the wave function@.11) into the last expres-
Pax+(q,t)= |N¢|2{ Pa(0,t)+P_,(0,t) =P ,(q,t) sion, and evaluating the integral we obtain
| ex —2ia—q +exd 2i a**q . W, 4(q,p,t)=2 exp — 2|zo|?+ 2azf +28* 2}
v " xexp—ap* 4o~ } |51
2 2 )
(3.17

3.20
For the momentum we have a similar expression; it is only
necessary to make the replacemerts(qg,t)—P,(p,t) and with
in the exponential terms;——\, andg—p.
To get the Wigner function we follow the procedure indi-

cated in Ref[26] and we get i L
zo(t)= =(M1—=My)p+3z (M1 +My)q.  (3.20)

W.(q,p,t) = |[NL |5 W, o(q,p,1) =W, _,(q,p,1) V2

EW_0,a(A,P.D+ Wy —o(Q.P. D}, Replacing the corresponding expressigd80 into (3.18),
(3.18 and making algebraic simplifications we arrive to the result

W..(0,p,t) = 4| N | ?exp{ — 2| 20|~ | a|*Hexp( — |a|?)cosli4 Re(azs)]+exp(|a|?)cog4 Im(azg)]}.  (3.22

In the next section, we apply the developed formalism to 8eU
study the behavior of an ion moving in a Paul trap. az=— mr202 - —2a;, (4.23
0
IV. PAUL TRAPS b 4eV ob @2
 mri2 T '

The quantum motion of a charged particle in a quadrupole

radio-frequency trap has been solved in terms of the classical.

trajectories. It was shown that the quantum stability regiondVith i =1,2. The corresponding time-dependent Sdfmger
are exactly given by the stability regions for the associateduation yields a separable system of three independent dif-

Mathieu functiong 28]. erential equations, which are given by

Although the p(_)ssibility of ponfining c_harged part_icles by 02 1 dbx )
means of alternating and static electric fields was discovered LS —mQZ(t’)x’Z bl ) =it K\ 7k
forty years agd16,29, the capacity to trap a single atomic 2m 2 Tk IRk R e '

particle was not obtained until the beginning of the 1980s 4.3
[30]. Since this achievement, the use of ion traps to measure )
spectroscopic properties of isolated ions has been increasingherek=1,2,3, and we have defined
For a Paul trap the potential energy is a combination of 02
static and alternating quadrupole fields and so the Hamil- 2pry_ St o ]
tonian of an ion moving in the trap is given by Qi) = 7 (8= 2bcost’). 4.4

Now we introduce into Eq(4.3) dimensionless positions,
momenta, and time variables through the relations

(4.9 _\/m, _\/Ir t=0,(0)t’
Xk= 7 Xk s Px= ﬁle(o)pk, N i( ) '

whereU is the direct currentdc) andV the radio-frequency (4.5
voltages. As will be seen later, it is convenient to introduce
the dimensionless parameters in the last expression: Thus the expressiof#.3) can be rewritten as

H= ﬁzv'z (U Veost')| x2
=" %m _r_g( co N\ X" ———
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, 5 o, construct the constants of the motion we have to solve the
(PF+ Wi (DX =1 —, (4.6 classical equations of motion for the parametric oscillator.
Substituting Eq(4.7) into the expressiofi2.3) we get

N| =

with wi(t) = Q,(t")/€;(0).
Comparing the left-hand side of the last expression with he(t) +W2(t)hy(t) =0, (4.9
Eqg. (2.1) we have that

a(t)=1, b(t)=0, c(t)=wi(t). (4.7  which corresponds to Mathieu equations. Then by means of
the Bogoliubov transformation E@2.6) we obtain the con-
In summary, the quantum motion of an ion in a radio- stants of the motion in terms of the independent solutions of
frequency trap can be described by two kinds of parametrithe Mathieu equations. The solution of the time-dependent
oscillators, one in directioZ and the other in the plank- Schralinger equation is obtained through the generalized
Y. Following the formalism described in the last section, tocorrelated states also constructed in term#$gt). Finally

30 -

30 F

0 20 40 t 8 & 100

FIG. 1. Dispersions and correlations for a generalized correlated state are shown. In the left column, the dispersions in position
(dashed lingsand momenta , (full lines), are shown while in the right column the correlation faaigy, is shown.(a) and(b) correspond
to the motion in theX-Y plane, whereagc) and (d) to the motion along theZ direction. In the plots we are using adimen-
sional units; the physical magnitudes are obtained by means of the expressiofig();(0)=1.87x10"8 sec, [j] =2.45x 10~ 7 cm, and
[p]=4.31x10 2% g cm/sec.
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40

32

24

16

-5 -2.5 2.5 5 7.5

FIG. 2. The evolution of the probabilty densities in the configu-
ration space, for the motion in th&-Y plane, are illustrated for the
initial coherent statétop), even Schrdinger-cat statémiddle), and
odd Schirdinger-cat state (bottorm), all for the amplitude
a=(1,0). The corresponding contour plots are given in the right-
hand side.

FIG. 3. The evolution of the probabilty densities in the configu-
ration space, for the motion in ti#direction, are illustrated for the
initial coherent statétop), even Schrdinger-cat statémiddle), and
odd Schrdinger-cat state (botton), all for the amplitude
a=(1,0). The corresponding contour plots are given in the right-
hand side.

the coefficients of the evolution operator for this system 4 the ion 19849+ trap the adimensional parameters of
(2.12 are given in terms of the Bogoliubov transformation Eq. (4.2 take the values

matrix.
Next, we will describe the results obtained for the evolu- az=—0.0604, bz=0.508.
tion of correlated and Schdinger cat states in a Paul trap for
the ion 1%Hg ™ of the following characteristici22]: In the following results, we have used the units

Q [t]=1/Q;(0)=1.87x10"8 sec, [q]=2.45x10 " cm,
V=12 kV, U=714V, -—=23.189 MHz,

2w [p]=4.31x 10 %'gcm/sec.

ro=466 um. 4.9 For the generalized correlated states, the expectation val-
ues of the position and momentum operators depend on the
field amplitude«, Eqg. (3.1). The classical trajectory coin-
cides with the expectation value of the position if the initial

In order to calculate the time evolution of correlated andconditions are given by,= 2 Rex and po=+2Ima. In
Schralinger-cat states in a Paul trap we can proceed in sevfact, the corresponding behavior of the momentum expecta-
eral forms. One of them is solving the Mathieu equationstion values arg(p)=d(q)/dt. The trajectory of the ion is
Another one is through the solutions of the equations for theonfined, the motion in th& direction is more localized than
complex time-dependent coefficientsy(t), c.(t), and the motion in the plane. The trajectory of the ion along the
c_(t) [see Eq(2.12]. The differential equations satisfied by Z direction is similar to that shown in Re€f32]. The expec-
these functions were solved numerically using the subroutinéation values of the position and momentum operators are
DE [31]. zero with respect to the Sclhiimger-cat states.

V. NUMERICAL RESULTS
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£=20 £=30 £=20 £=30

=33 t=42

FIG. 5. Evolution of the Wigner function for the odd
Schrai -cat state in th& directi itha=(1,0).

FIG. 4. Evolution of the Wigner function for the even chralinger-cat state In irection, with &= (1.0)
Schralinger-cat state in thé direction, witha=(1,0). The behavior of the dispersions in the position and mo-

The dispersions for the generalized coherent states arrgbentum variables can also be shown by means of the prob-

independent of thex value, Eq.(3.2, and minimize the ability densities. To illustrate this, for the field amplitude
Schralinger Robertson unc’ertaiﬁty' rélation, which also has“:(l’o)’ the prob{:\bility den_sities in the cc_)nfigu_ration space
been used to test the accuracy of the numerical calculationﬂqI ttrt]edX'Y plane(Fig. 2) and in theZ direction(Fig. 3 are

In Fig. 1, we illustrate in the left column the dispersions in Potted.

L o . T In these figures, we display, from the top to the bottom,
p03|t!onAq— g (dash_ed lingsand mqmentaﬁp— 7P the position probability densities of the generalized corre-
(full lines), while in the right column we illustrate the corre-

lation factor . Figures 1a) and Xb) correspond to the lated state, the even Schiinger-cat and odd Scfuitnger-

motion in theX-Y plane, whereas Figs(d and 1d) to the cat states, respectively. On the left hand side we show three-

. ; . . dimensional plots whereas on the right-hand side contour
motion along theZ axis. For the plane motion, a bigger P 9

plots are given. In these, the quadrature values are better

dispersion in the position than in the momentum and a quaéppreciated. At the top of Figs. 2 and 3, the maximum of the

§|per|od|c hehavior for the carrelation are found. The Sq.ueezbosition probability density indicates the classical trajectory
ing phenomenon only occurs for the momentum variable

o > . ) of the 1%Hg™ ion. The position probability densities of the
For the motion in theZ direction the dlsper5|_ons are oné gen Schrdinger cat states have an absolute maximum at the
prder of mz_igm_tud_e less tha_n for the plane motion. Also ther rigin with other maxima for larger values of the position
IS a qga5|_per|0d|c b.ehaV|c.)r. for the correlation a_nd thevariables. These maxima are easily seen through the white
squeezing is present in position and momentum variables. o the contour plots. They are clearer for the motion in
The quadratures for Schiimger-cat states depend on the

) . the Z direction than in the plane. The position probability
field amplitudea as can be seen from E8.14 and .Eq' densities of the odd Schilinger cat states have a minimum

(3.15. For the Paul trap we havé;=h;, A,=—h;,  at the origin with two equal maxima for larger values of the
N3=h,, and\,= —h,. To compare with the generalized cor- position variable.

related states, we seleat=(1,0) and we get for the even The position densities for all the studied cases are well
and odd states a similar shape and structure for the positidocalized packets, with a quasiperiodic behavior. To see the
and momentum dispersions, together with the correlationsterference effects of these macroscopic superposition of
opq- The differences are in the sizes of the functions: for thestates in the phase space it is convenient to display the cor-
even Schrdinger-cat state they are shrunk while for the oddresponding Wigner distribution functions.

Schralinger-cat state they are stretched. The evolution of the Wigner function of the ion, for the
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correlated vacuum state, exhibits a similar quasiperiodic bezero with a quasiperiodic amplitude. However, the order of
havior to the one shown in Ref21]. Thus, initially the  magnitude of the dispersions is different for the motion in
Wigner function is a symmetric Gaussian in position andthe X-Y plane from that in the direction.
momentum, whereas it gets squeezed and rotated as a func-The localization of the states is nicely seen in the contour
tion of time. plots of the probability densities in the configuration space
In Figs. 4 and 5 we show the Wigner functions for the for the coherent and Schiimger-cat states. In th¢-Y plane
even and odd Schdinger-cat states in thé direction, with  all of them are more localized arountd=0, t=50, and
a=(1,0). In all these figures the squeezing phenomena cai=100 whereas the opposite is truetat20 andt=80. In
also be appreciated as well as the rotation of the Wignethe Z direction the oscillations are evident and the interfer-
functions. Finally, it is remarkable how the interferenceence effects are more emphasized than inXh¢é plane mo-
manifests itself for the odd Schitimger-cat state, in particu- tion. In both cases the even Sctimmger-cat state shows the
lar att=35. most appropriate behavior to reach a pronounced localization
of the ion.
VI. CONCLUSIONS The quasiprobabilistic Wigner function corroborates the
) ) i resence of the squeezing phenomenon, which is present for
We have studied the evolution of generalized coherenine generalized coherent and Salirger-cat states. This is
and Schrdinger cat states moving in a radio-frequency onyjllustrated for the Schidinger cat states in th direc-

g trap. We found for the field amplitude=(1,0) that  jon which give information of the system in the phase
the motion of the ion is confined. It is one order of magni-gnace.

tude bigger in theX-Y plane than in th& direction, contrary
;on;vrgst is happening for the corresponding average kinetic ACKNOWLEDGMENT
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