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Schrödinger-cat states in Paul traps
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We study the evolution of coherent and Schro¨dinger cat states in radio-frequency traps, which were used to
bound Hg1 ions. The quantum confinement is determined by evaluating the expectation values and dispersions
of the position and momentum operators, together with the probability densities in coordinate and momenta
representations. Also the Wigner functions associated to this nonstationary quantum system, a parametric
oscillator, are constructed.@S1050-2947~97!07801-3#

PACS number~s!: 32.80.Pj, 03.65.2w, 42.50.Vk
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I. INTRODUCTION

Macroscopic quantum superposition of states has b
achieved for unbound electrons since the middle 1950s@1#.
In the late 1980s and the 1990s this has been also don
atom beam splitters@2#. Superposition of macroscopicall
distinguishable states called even and odd coherent s
was suggested in@3#. Matos Filho and Vogel@4# have shown
that this superposition is naturally realized as a steady s
for a trapped ion in a bichromatic laser irradiation. Mo
recently, Nieto@5# has studied the even and odd coherent a
squeezed states of an ion in a Paul trap regarding poss
ties of experimental realization of such states@6#. The mea-
surements of nonclassical states of trapped ions, includ
even and odd coherent states, were discussed using th
doscopy method@7# and symplectic tomography@8#. There
have also been proposals to build macroscopic superp
tions of bound states@9# and to create Schro¨dinger-cat states
in a single-mode electromagnetic field@10#. As pointed out
by Spiridonov @11#, the superposition states considered
Ref. @10# are a particular case of the generalized coher
states introduced by Titulaer and Glauber@12# and
Bialynicka-Birula@13#, and these states have the same P
son statistics as the coherent states. This is the impo
difference between the states discussed in@10# and the ones
discussed in@3#. The even and odd Schro¨dinger cats are
more nonclassical states because both quadrature and
ber operator statistics are different from those in the cohe
states. In generalized coherent states@12,13#, including the
particular Schro¨dinger cats in@10#, only quadrature statistic
are changed in comparison with the coherent states, m
while the number operator statistics is preserved. Usin
Kerr nonlinear medium, the observation of nonclassi
states of an atom moving in a Paul trap@14# and the subse
quent construction of Schro¨dinger cats from such an atom
have been reported@15#. These results have opened the po
sibility of testing the theory of quantum measurements i
quite clean way because the dispersion of the wave pa
can be manipulated to a high degree. The experimental
proach is based on a highly controlled harmonic motion
the trapped atom by exciting the motion from initial zer
point wave packets to coherent state wave packets of a w
defined amplitude and phase. This is acomplished by
551050-2947/97/55~2!/1208~9!/$10.00
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entanglement of electronic and motional states of the ato
using a sequence of laser pulses.

In this contribution we are going to talk about the qua
tum effects in the dynamic stabilization of ions in thre
dimensional radio-frequency quadrupole fields@16#.

The quantum dynamics of a charged particle in a conv
tional Paul trap is separable into two independent motio
one of them in the planeX-Y and the other in theZ direction.
Both motions are described by a parametric oscillator, tha
a harmonic oscillator with a time-dependent frequency. T
study of time-dependent quantum systems is in general c
plicated, however for quadratic systems in position and m
mentum, the formalism of the linear time-dependent inva
ants developed and summarized in@17# can be used. It is also
possible to apply algebraic methods to express the evolu
operator as an element of the Sp~2,R) group with time-
dependent parameters@18#. This algebraic procedure ha
been very successful in describing atomic and molecular
lisions @19#.

In this work we show for general one-dimensional qu
dratic systems that these two procedures are indeed eq
lent. This result is also true ford-dimensional systems, a
most quadratic, and in this case we have 2d independent
linear constants of the motion to construct the Green fu
tion. The evolution operator is an element of the semidir
product group of the Weyl and symplectic groups ind di-
mensions,W(d)`Sp(2d,R).

We study the quantum behavior of ions that at timet50
are either in a generalized correlated@20#, or even and odd
Schrödinger-cat states, and their subsequent evolution i
Paul trap. We give general analytic expressions of sev
observables: the expectation values of the position and
mentum operators, the dispersions in the positionsqq and
the momentumspp , plus a measure of the correlationspq
between both variables. Also the probability densities in
coordinates and momenta representations, together with
structure of the associated quasiprobabilistic Wigner fu
tion @21# are found. These analytic expressions are written
terms of the two independent classical solutions of the pa
metric oscillator, the Mathieu functions.

Recently a single Hg1 ion harmonically bound in a radio
frequency trap has been cooled to an extent where it spe
most of the time in the ground state@22#. For this reason we
1208 © 1997 The American Physical Society
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55 1209SCHRÖDINGER-CAT STATES IN PAUL TRAPS
consider the physical features of the traps used in that s
to see the evolution of correlated and Schro¨dinger-cat states

The plan of the present paper is as follows. In Sec. II
establish the equivalence between the linear time-depen
constants of motion formalism and the evolution opera
procedure to get the solution of the nonstationary Sch¨-
dinger equation for general quadratic systems with tim
dependent coefficients or strengths. In the Sec. III we de
mine the analytic expressions for the expectation values
dispersions of the position and momentum operators.
probability densities to find the ion in the position and m
mentum spaces are calculated, together with the Wig
function associated to the general homogeneous quad
Hamiltonian. In Sec. IV, the analytic expressions develop
in the previous section are used to study the quantum be
ior of coherent and Schro¨dinger-cat states describing Hg1

ions moving in radio-frequency traps. Finally a summary
the main quantum effects appearing in the evolution of
confined ions is given, emphasizing the differences in
features when the ions are represented by a Gaussian p
with minimum Heisenberg uncertainty with those of even
odd Schro¨dinger-cat states.

II. EVOLUTION OPERATOR

In this section we apply the time-dependent linear inva
ants theory to solve the nonstationary Schro¨dinger equation
for the Hamiltonian

H5
a~ t !

2
p̂21

b~ t !

2
~ p̂q̂1q̂p̂!1

c~ t !

2
q̂2, ~2.1!

where here and in the next section we use the natural uni
the system that ism5\5c(0)51.

First of all we construct the constants of motion of t
system through the Hamiltonian formulation of Noethe
theorem@23,24#. The invariants can be written in the form

p̂0~ t !5h1~ t ! p̂2
1

a~ t !
@ ḣ1~ t !2h1~ t !b~ t !#q̂, ~2.2a!

q̂0~ t !5h2~ t ! p̂2
1

a~ t !
@ ḣ2~ t !2h2~ t !b~ t !#q̂, ~2.2b!

wherehk(t) with k51,2, denote the independent solutions
the classical equations of motion

ḧk~ t !2ḣk~ t !F ȧ~ t !

a~ t !
G1hk~ t !F2ḃ~ t !1a~ t !c~ t !

2b2~ t !1b~ t !
ȧ~ t !

a~ t !
G50. ~2.3!

If the constants of motion are chosen to be the position
momentum operators att50, the solutions of~2.3! are com-
pletely determined by the initial conditions

h1~ t50!51,ḣ1~ t50!5b~0!, ~2.4a!

h2~ t50!50,ḣ2~ t50!52a~0!. ~2.4b!
dy
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The equations~2.2! can be rewritten in matrix form, and
the matrix that connects the position and momentum op
tors with the constants of the motion is a two-dimensio
symplectic matrix. This means that expressions~2.2! are de-
noting a canonical transformation and therefore the comm
tation relations of the constants of the motion are identica
those of the position and momentum operators. Another c
venient form to express the constants of the motion is
terms of creation and annihilation operators:

S Â~ t !

Â†~ t !D 5S M1 M2

M2* M1* D S â

â†D , ~2.5!

where we have defined

M15
1

2 H S 11 i
b

aD ~h12 ih2!2
1

a
~ ḣ21 i ḣ1!J , ~2.6a!

M25
1

2 H S 211 i
b

aD ~h12 ih2!2
1

a
~ ḣ21 i ḣ1!J ,

~2.6b!

and these expressions satisfy the condit
uM1u22uM2u251. This property can be proved directly b
making the indicated products and using the Wronskian
the differential equations~2.3!, W(h2 ,h1)5h2ḣ12ḣ2h1
5a(t).

The invariants are very useful because they allow us
define generalized correlated states, which are solution
the time-dependent Schro¨dinger equation@23#. This is car-
ried out by solving the differential equation

A~ t !F0~q,t !50, ~2.7!

whereA(t) is written in terms of the position and momentu
operators. The solution is given by

F0~q,t !5
1

~2p!1/4lp
1/2expH 2

ilq

2lp
q2J ~2.8!

with the definitions

lp5
1

A2
@h21 ih1#, ~2.9a!

lq5
1

a~ t !
@b~ t !lp2l̇p#. ~2.9b!

The factor in Eq.~2.8! is a function of time, which was fixed
by asking thatF0 satisfies the time-dependent Schro¨dinger
equation associated to the Hamiltonian~2.1!.

The action of a constant of motion,A†(t) ontoF0(q,t) is
also a solution of the nonstationary Schro¨dinger equation
becauseF0(q,t) is a solution. Therefore the action of th
unitary operator

D~a!5exp~aÂ†2a*A!, ~2.10!

onto ~2.8! will be a solution and gives rise to the generaliz
correlated states. It can be rewritten as
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1210 55O. CASTAÑOSet al.
ca~q,t !5
e2uau2/2

~2p!1/4lp
1/2expH 2

i

2lp
~lqq

222aq1 ia2lp* !J .
~2.11!

In summary the solutions of the nonstationary Schro¨dinger
equation associated to the Hamiltonian~2.1! are obtained
explicitly if it is possible to find„h1(t),h2(t)…, the indepen-
dent solutions of the corresponding classical equations
motion.

According to Refs.@18,19# in the algebraic method th
evolution operator of Hamiltonian~2.1! must be an elemen
of the symplectic group in two dimensions. Therefore
propose

U~ t !5exp~c0K0!exp~c2K1!exp~c1K2!, ~2.12!

where we have defined the operators

K05
1
2 ~a†a1 1

2 !, ~2.13a!

K15 1
2 a

†2, ~2.13b!

K25 1
2a

2, ~2.13c!

which have the commutation relations of a symplectic al
bra in two dimensions@25#.

Substituting the expression~2.12! into the differential
equation for the time evolution operator, we get the follo
ing set of first-order coupled differential equations:

i S dc0dt 22c2

dc1

dt D5a~ t !1c~ t !, ~2.14a!

i S dc2

dt
22c2

2 dc1

dt Dexp~c0!5 1
2 @a~ t !22ib~ t !2c~ t !#,

~2.14b!

i S dc1

dt Dexp~2c0!5 1
2 @a~ t !12ib~ t !2c~ t !#,

~2.14c!

with the initial conditions

c0~0!5c1~0!5c2~0!50. ~2.15!

In general these equations can be solved numerically, an
the parametric oscillator they are simplified. Thus if w
know c0, c2 , and c1 , the evolution of generalized corre
lated or Schro¨dinger-cat states according to the Hamiltoni
~2.1! can be obtained.

To relate these two procedures, we remember that
constants of motion satisfy the relation

I ~ t !5U~ t !I ~0!U†~ t !, ~2.16!

whereI (t) denotes the invariantsA(t) or A†(t). Throughout
the commutation relation properties of the generators of
two-dimensional symplectic group with the creation and
nihilation operators, the expression~2.16! can be evaluated
and then we get the time evolution of the constants of mo
of

-

-

for

e

e
-

n

S Â~ t !

Â†~ t !D 5S e~2 c0/2! 2e~c0 /2!c2

2e~2c0/2!c1 e~c0/2!~12c2c1!D S â

â†D ,
~2.17!

which is a canonical transformation. We note that the ma
appearing in the last expression can also be obtained by
sidering a faithful representation of the symplectic gene
tors, substituting them into the temporal evolution opera
~2.12! and calculating the inverse of the resultant matrix.

Comparing Eq.~2.17! with the corresponding one ob
tained with the linear time-dependent constants of the mo
formalism, Eq. ~2.5!, we have four algebraic equation
which give the following relations betweenc0, c1 , and
c2 :

c0522ln~M1!, ~2.18a!

c15M2* /M1 , ~2.18b!

c252M2M1 . ~2.18c!

In the expressions~2.5! and ~2.12! there is not a contradic
tion between the number of independent parameters bec
the complex parametersc1 andc2 are not independent.

BecauseM1 andM2 are written in terms of two indepen
dent solutions of the classical equations of motion~2.6!, us-
ing Eqs.~2.18! we get

h1~ t !5Re~e2c0/21c2e
c0/2!, ~2.19a!

h2~ t !52Im~e2c0/22c2e
c0/2!. ~2.19b!

In summary, if we know the classical solutionsh1 andh2 we
can determineM1 andM2 and, through the relations~2.18!,
the complex parameters appearing in the evolution opera
We can proceed in the other direction: if the functionsc0,
c1 , andc2 are obtained, the solutions of the classical eq
tions can be found by means of~2.19!.

III. GAUSSIAN PACKETS

In this section we study the evolution of Gaussian pack
under the Hamiltonian~2.1!. We start by evaluating the ex
pectation values and dispersions of the position and mom
tum operators in the generalized correlated states~2.11!,
which are solutions of the Hamiltonian~2.1!.

To get the expectation values, the position and mom
tum operators are written in terms of the integrals of mot
A† and A. Afterwards through the actionsAua,t&5aua,t&
and ^a,tuA†5a* ^a,tu it is immediate that

^q̂&a,t5 i ~lp*a2lpa* !, ~3.1a!

^ p̂&a,t52 i ~lq*a2lqa* !. ~3.1b!

In a similar form the dispersions can be obtained and
results are

sqq5ulpu2, ~3.2a!

spq52 1
2 ~lq* lp1lp* lq!, ~3.2b!
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55 1211SCHRÖDINGER-CAT STATES IN PAUL TRAPS
spp5ulqu2. ~3.2c!

The last expressions are independent of the parametera of
the generalized correlated state andspq is a measure of the
correlation between the position and momentum. Also th
dispersions minimize the Schro¨dinger-Robertson uncertaint
relation

sqqspp2spq
2 5 1

4 . ~3.3!

From the wave functions~2.11! associated to the Hamil
tonian~2.1!, the probability density in the position space c
be calculated:

Pa~q,t !5
1

A2psqq

expH 2
~q2^q&a,t!

2

2sqq
J , ~3.4!

where the expressionslplq*2lqlp
15 i , ~3.1a!, and ~3.2a!

were used.
The wave function in the momentum space is construc

through the usual Fourier transform of Eq.~2.11!. From this
result, we can evaluate the probability density in the mom
tum space:

Pa~p,t !5
1

A2pspp

expH 2
~p2^p&a,t!

2

2spp
J . ~3.5!

Finally we give the analytic expression for the Wigner fun
tion associated to the Hamiltonian~2.1!. This function is
defined by

W~q,p!5E
2`

`

^q1u/2ur̂uq2u/2&e2 ipudu, ~3.6!

where r̂ is the density operator and in this ca
r̂5ua,t&^a,tu, with ua,t& denoting the generalized corre
lated states, which are solutions of the time-depend
Schrödinger equation. Substituting this density operator a
using the Eq.~2.11!, we have the Fourier transform of
Gaussian term, which can be easily evaluated. Making s
algebraic manipulations the Wigner function can be writ
as @24#

W~q,p,t !5
1

@~12R2!sppsqq#
1/2expH 2

1

2~12R2!

3F q̄2sqq
1

p̄2

spp
22R

q̄

Asqq

p̄

Aspp
G J , ~3.7!

where we have defined the correlation coefficient

R5
usqpu

Asppsqq

, ~3.8!

and the variables

q̄5q2^q̂&a,t, ~3.9a!

p̄5p2^ p̂&a,t. ~3.9b!

Now we study the evolution of Schro¨dinger-cat states un
der the Hamiltonian~2.1!. These states are also called ev
e

d

-

-

nt
d

e
n

and odd coherent states because they are related to irre
ible representations of the finite point group of two elemen
the identity and the reflection, acting on the complex plane
the parameters labelling the coherent states@26,27#. They are
given by the linear combination of coherent states

ua&65N6~ ua&6u2a&), ~3.10!

with

N15
expuau2/2

2Acoshuau2
, ~3.11a!

N25
expuau2/2

2Asinhuau2
. ~3.11b!

It is immediate to show that they are eigenfunctions of
square of the annihilation operator

a2ua&65a2ua&6. ~3.12!

Therefore in what follows we will find the correspondin
analytic expressions for dispersions, densities, and Wig
functions but now associated to the eigenfunctions ofA2(t)
@23,26#.

The expectation values of the position and moment
operator are equal to zero because the Schro¨dinger-cat states
have the properties

Aua,t&65SN1

N2
Daua,t&7, ~3.13a!

6^a,tuA†5SN1

N2
Da*7^a,tu, ~3.13b!

and the even and odd generalized correlated states are o
normal.

It is easy to get the quadrature dispersions for the ge
alized Schro¨dinger-cat states@23#. The results are

spp
6 ~ t !5l4

2spp
6 ~0!1l2

2sqq
6 ~0!22l4l2spq

6 ~0!,
~3.14a!

spq
6 ~ t !52l4l3spp

6 ~0!2l2l1sqq
6 ~0!1l4l1spq

6 ~0!

1l2l3sqp
6 ~0!, ~3.14b!

sqq
6 ~ t !5l3

2spp
6 ~0!1l1

2sqq
6 ~0!22l3l1spq

6 ~0!,
~3.14c!

wherel15A2 Imlp, l25A2 Imlq, l35A2 Relp, andl4

5A2 Relq. For t50, they correspond to the quadratures f
a standard cat state:

spp
6 ~0!5r 2~D62cos2u!1 1

2 , ~3.15a!

spq
6 ~0!5r 2sin2u, ~3.15b!

sqq
6 ~0!5r 2~D61cos2u!1 1

2 , ~3.15c!

where we have defineda5rexp(iu) and
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D65H tanhr 2cothr 2.
~3.16!

By means of the wave function of the even and odd g
eralized correlated states in the coordinate or momentum
resentations, we construct the corresponding probability d
sities. For the position case we have

Pa6~q,t !5uN6u2H Pa~q,t !1P2a~q,t !6Pa~q,t !

3FexpS 22i
aq

lp
D 1expS 2i a* q

lp*
D G J .

~3.17!

For the momentum we have a similar expression; it is o
necessary to make the replacements:Pa(q,t)°Pa(p,t) and
in the exponential termslp°2lq andq°p.

To get the Wigner function we follow the procedure ind
cated in Ref.@26# and we get

W6~q,p,t !5uN6u2$Wa,a~q,p,t !6Wa,2a~q,p,t !

6W2a,a~q,p,t !1W2a,2a~q,p,t !%,

~3.18!
t
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-
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y

where we have defined

Wa,b~q,p,t !5E E du exp~2 ipu!ca~q1u/2,t !

3cb* ~q2u/2,t !. ~3.19!

Substituting the wave functions~2.11! into the last expres-
sion, and evaluating the integral we obtain

Wa,b~q,p,t !52 exp$22uz0u212az0*12b* z0%

3exp$2ab*2 1
2 uau22 1

2 ubu2%,

~3.20!

with

z0~ t !5
i

A2
~M12M2!p1 1

2 ~M11M2!q. ~3.21!

Replacing the corresponding expressions~3.20! into ~3.18!,
and making algebraic simplifications we arrive to the res
W6~q,p,t !54uN6u2exp$22uz0u22uau2%$exp~2uau2!cosh@4 Re~az0* !#6exp~ uau2!cos@4 Im~az0* !#%. ~3.22!
dif-

,

In the next section, we apply the developed formalism
study the behavior of an ion moving in a Paul trap.

IV. PAUL TRAPS

The quantum motion of a charged particle in a quadrup
radio-frequency trap has been solved in terms of the class
trajectories. It was shown that the quantum stability regio
are exactly given by the stability regions for the associa
Mathieu functions@28#.

Although the possibility of confining charged particles
means of alternating and static electric fields was discove
forty years ago@16,29#, the capacity to trap a single atom
particle was not obtained until the beginning of the 198
@30#. Since this achievement, the use of ion traps to mea
spectroscopic properties of isolated ions has been increa

For a Paul trap the potential energy is a combination
static and alternating quadrupole fields and so the Ha
tonian of an ion moving in the trap is given by

H52
\2

2m
¹822

e

r 0
2 ~U1VcosVt8!S x3822 x18

21x28
2

2 D ,
~4.1!

whereU is the direct current~dc! andV the radio-frequency
voltages. As will be seen later, it is convenient to introdu
the dimensionless parameters in the last expression:
o

le
al
s
d

d

s
re
ng.
f
il-

e

a352
8eU

mr0
2V2 522ai , ~4.2a!

b35
4eV

mr0
2V2 522bi , ~4.2b!

with i51,2. The corresponding time-dependent Schro¨dinger
equation yields a separable system of three independent
ferential equations, which are given by

S pk822m
1
1

2
mVk

2~ t8!xk8
2Dfk~xk8 ,t8!5 i\

]fk~xk8 ,t8!

]t8
,

~4.3!

wherek51,2,3, and we have defined

Vk
2~ t8!5

V2

4
~ak22bkcosVt8!. ~4.4!

Now we introduce into Eq.~4.3! dimensionless positions
momenta, and time variables through the relations

xk5AmV i~0!

\
xk8 , pk5A 1

\mV i~0!
pk8 , t5V i~0!t8.

~4.5!

Thus the expression~4.3! can be rewritten as
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1

2
~pi

21wi
2~ t !xi

2!f i5 i
]f i

]t
, ~4.6!

with wk(t)5Vk(t8)/V i(0).
Comparing the left-hand side of the last expression w

Eq. ~2.1! we have that

a~ t !51, b~ t !50, c~ t !5wk
2~ t !. ~4.7!

In summary, the quantum motion of an ion in a rad
frequency trap can be described by two kinds of parame
oscillators, one in directionZ and the other in the planeX-

Y. Following the formalism described in the last section, to
h

-
ic

construct the constants of the motion we have to solve
classical equations of motion for the parametric oscillat
Substituting Eq.~4.7! into the expression~2.3! we get

ḧk~ t !1wk
2~ t !hk~ t !50, ~4.8!

which corresponds to Mathieu equations. Then by mean
the Bogoliubov transformation Eq.~2.6! we obtain the con-
stants of the motion in terms of the independent solutions
the Mathieu equations. The solution of the time-depend
Schrödinger equation is obtained through the generaliz
correlated states also constructed in terms ofhk(t). Finally
sition

-

FIG. 1. Dispersions and correlations for a generalized correlated state are shown. In the left column, the dispersions in poDq

~dashed lines! and momentaDp ~full lines!, are shown while in the right column the correlation factorspq is shown.~a! and~b! correspond
to the motion in theX-Y plane, whereas~c! and ~d! to the motion along theZ direction. In the plots we are using adimen
sional units; the physical magnitudes are obtained by means of the expressions [t]51/V i(0)51.8731028 sec, [q]52.4531027 cm, and
[p]54.31310221 g cm/sec.
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the coefficients of the evolution operator for this syste
~2.12! are given in terms of the Bogoliubov transformatio
matrix.

Next, we will describe the results obtained for the evo
tion of correlated and Schro¨dinger cat states in a Paul trap fo
the ion 198Hg1 of the following characteristics@22#:

V51.2 kV, U571.4 V ,
V

2p
523.189 MHz,

r 05466 mm . ~4.9!

V. NUMERICAL RESULTS

In order to calculate the time evolution of correlated a
Schrödinger-cat states in a Paul trap we can proceed in s
eral forms. One of them is solving the Mathieu equatio
Another one is through the solutions of the equations for
complex time-dependent coefficientsc0(t), c1(t), and
c2(t) @see Eq.~2.12#. The differential equations satisfied b
these functions were solved numerically using the subrou
DE @31#.

FIG. 2. The evolution of the probabilty densities in the config
ration space, for the motion in theX-Y plane, are illustrated for the
initial coherent state~top!, even Schro¨dinger-cat state~middle!, and
odd Schro¨dinger-cat state ~bottom!, all for the amplitude
a5(1,0). The corresponding contour plots are given in the rig
hand side.
-

v-
.
e

e

For the ion 198Hg1 trap the adimensional parameters
Eq. ~4.2a! take the values

a3520.0604, b350.508.

In the following results, we have used the units

@ t#51/V i~0!51.8731028 sec, @q#52.4531027 cm,

@p#54.31310221g cm/sec.

For the generalized correlated states, the expectation
ues of the position and momentum operators depend on
field amplitudea, Eq. ~3.1!. The classical trajectory coin
cides with the expectation value of the position if the init
conditions are given byq05A2 Rea and p05A2 Im a. In
fact, the corresponding behavior of the momentum expe
tion values arê p̂&5d^q̂&/dt. The trajectory of the ion is
confined, the motion in theZ direction is more localized than
the motion in the plane. The trajectory of the ion along t
Z direction is similar to that shown in Ref.@32#. The expec-
tation values of the position and momentum operators
zero with respect to the Schro¨dinger-cat states.

-

-

FIG. 3. The evolution of the probabilty densities in the config
ration space, for the motion in theZ direction, are illustrated for the
initial coherent state~top!, even Schro¨dinger-cat state~middle!, and
odd Schro¨dinger-cat state ~bottom!, all for the amplitude
a5(1,0). The corresponding contour plots are given in the rig
hand side.
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55 1215SCHRÖDINGER-CAT STATES IN PAUL TRAPS
The dispersions for the generalized coherent states
independent of thea value, Eq. ~3.2!, and minimize the
Schrödinger Robertson uncertainty relation, which also h
been used to test the accuracy of the numerical calculatio
In Fig. 1, we illustrate in the left column the dispersions
positionDq5Asqq ~dashed lines! and momentaDp5Aspp
~full lines!, while in the right column we illustrate the corre
lation factorspq . Figures 1~a! and 1~b! correspond to the
motion in theX-Y plane, whereas Figs. 1~c! and 1~d! to the
motion along theZ axis. For the plane motion, a bigge
dispersion in the position than in the momentum and a q
siperiodic behavior for the correlation are found. The sque
ing phenomenon only occurs for the momentum variab
For the motion in theZ direction the dispersions are on
order of magnitude less than for the plane motion. Also th
is a quasiperiodic behavior for the correlation and t
squeezing is present in position and momentum variable

The quadratures for Schro¨dinger-cat states depend on th
field amplitudea as can be seen from Eq.~3.14! and Eq.
~3.15!. For the Paul trap we havel15h1, l252ḣ1,
l35h2, andl452ḣ2. To compare with the generalized co
related states, we selecta5(1,0) and we get for the even
and odd states a similar shape and structure for the posi
and momentum dispersions, together with the correlatio
spq . The differences are in the sizes of the functions: for t
even Schro¨dinger-cat state they are shrunk while for the od
Schrödinger-cat state they are stretched.

FIG. 4. Evolution of the Wigner function for the even
Schrödinger-cat state in theZ direction, witha5(1,0).
re

s
s.

a-
z-
.

e
e
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s
e

The behavior of the dispersions in the position and m
mentum variables can also be shown by means of the p
ability densities. To illustrate this, for the field amplitud
a5(1,0), the probability densities in the configuration spa
in theX-Y plane~Fig. 2! and in theZ direction ~Fig. 3! are
plotted.

In these figures, we display, from the top to the botto
the position probability densities of the generalized cor
lated state, the even Schro¨dinger-cat and odd Schro¨dinger-
cat states, respectively. On the left hand side we show th
dimensional plots whereas on the right-hand side cont
plots are given. In these, the quadrature values are b
appreciated. At the top of Figs. 2 and 3, the maximum of
position probability density indicates the classical trajecto
of the 198Hg1 ion. The position probability densities of th
even Schro¨dinger cat states have an absolute maximum at
origin with other maxima for larger values of the positio
variables. These maxima are easily seen through the w
spots of the contour plots. They are clearer for the motion
the Z direction than in the plane. The position probabili
densities of the odd Schro¨dinger cat states have a minimu
at the origin with two equal maxima for larger values of t
position variable.

The position densities for all the studied cases are w
localized packets, with a quasiperiodic behavior. To see
interference effects of these macroscopic superposition
states in the phase space it is convenient to display the
responding Wigner distribution functions.

The evolution of the Wigner function of the ion, for th

FIG. 5. Evolution of the Wigner function for the od
Schrödinger-cat state in theZ direction, witha5(1,0).
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1216 55O. CASTAÑOSet al.
correlated vacuum state, exhibits a similar quasiperiodic
havior to the one shown in Ref.@21#. Thus, initially the
Wigner function is a symmetric Gaussian in position a
momentum, whereas it gets squeezed and rotated as a
tion of time.

In Figs. 4 and 5 we show the Wigner functions for t
even and odd Schro¨dinger-cat states in theZ direction, with
a5(1,0). In all these figures the squeezing phenomena
also be appreciated as well as the rotation of the Wig
functions. Finally, it is remarkable how the interferen
manifests itself for the odd Schro¨dinger-cat state, in particu
lar at t535.

VI. CONCLUSIONS

We have studied the evolution of generalized coher
and Schro¨dinger cat states moving in a radio-frequen
198Hg1 trap. We found for the field amplitudea5(1,0) that
the motion of the ion is confined. It is one order of mag
tude bigger in theX-Y plane than in theZ direction, contrary
to what is happening for the corresponding average kin
energy.

The dispersionsspp , sqq , andspq for these states ar
very similar. All of them present rapid oscillations aroun
.

ch

ys

d

d

d

e-

nc-

an
r

nt

-

ic

zero with a quasiperiodic amplitude. However, the order
magnitude of the dispersions is different for the motion
theX-Y plane from that in theZ direction.

The localization of the states is nicely seen in the cont
plots of the probability densities in the configuration spa
for the coherent and Schro¨dinger-cat states. In theX-Y plane
all of them are more localized aroundt.0, t.50, and
t.100 whereas the opposite is true att.20 andt.80. In
the Z direction the oscillations are evident and the interf
ence effects are more emphasized than in theX-Y plane mo-
tion. In both cases the even Schro¨dinger-cat state shows th
most appropriate behavior to reach a pronounced localiza
of the ion.

The quasiprobabilistic Wigner function corroborates t
presence of the squeezing phenomenon, which is presen
the generalized coherent and Schro¨dinger-cat states. This is
only illustrated for the Schro¨dinger cat states in theZ direc-
tion, which give information of the system in the pha
space.
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