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Theory of optical suppression of ultracold-collision rates by polarized light
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We have developed a full three-dimensional quantum scattering approach to optical suppression of ultracold-
collision rates. These calculations are carried out assuming colliding atoms without fine or hyperfine structure,
which have a 1S→1P transition. The three-dimensional model predicts that the optical suppression of
ultracold-collision rates saturates with light intensity much more slowly than predicted by two-level curve-
crossing models. Circularly polarized light is significantly more effective for optical suppression, and causes
less increase in atomic kinetic energy due to excited-state production than linearly polarized light. The sup-
pressor optical field can also cause orders of magnitude increases in ground-state elastic-scattering rates.
@S1050-2947~97!06701-2#

PACS number~s!: 32.80.Pj, 33.80.Ps, 34.50.Rk, 34.80.Qb
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I. INTRODUCTION

The quest for achieving Bose-Einstein condensation
major motivation to investigate the nature of ultracold co
sions @1–4#. Such a phase transition is predicted to occ
when the thermal de Broglie wavelength of an assembly
atoms becomes comparable to the average interatomic
tance@5,6#; but inelastic collision processes restrict the de
sity of trapped atoms@7#. These inelastic processes lead
loss of atoms from magneto-optical@8–16#, far-off-
resonance@17,18#, or purely magnetic@19–21# traps. Re-
cently, however, optical shielding of short-range collisi
processes in ensembles of cold atoms has been demons
experimentally@12,22–27# and interpreted theoretically@28#.
This phenomenon presents the prospect of appreciably
ducing occurrence of collisions that lead to loss of trapp
atoms and strongly enhancing the ground-state ela
scattering rate.

The essential phenomenon underlying optical shield
requires the existence of a long-range, excited molecula
pulsive potential curve commonly arising from the dipo
dipole interaction between two identical atoms exchangin
virtual photon of excitation. Common examples can be fou
among noble gas and alkali-metal atoms such as Xe@25# or
Na @29#. Two such atoms, initially approaching each other
their molecular ground state, will reverse their trajector
and separate if an optical field resonantly couples the
lecular ground state to a repulsive excited state at a w
localized internuclear distance. This effective repulsion
tween the colliding atoms prevents them from reaching
short-range region where inelastic processes could lea
trap loss. The atoms are then said to be ‘‘shielded’’ fro
reactive or excitation processes, and the corresponding
creased collision rates are said to be ‘‘suppressed.’’ Since
interaction involved is repulsive, it follows that the shieldin
light field has to be tuned to the blue of the atomic transit
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frequency in order to be resonant with the quasimolecu
system. The internuclear distanceRC around which the exci-
tation is localized is called ‘‘the Condon point.’’ Thus th
atoms never get closer together than aboutRC and inelastic
collision processes due to interactions at much shorter
tances are strongly diminished. Figure 1 shows a sketch
this basic description.

Although the shielding phenomenon has been semiqu
titatively explained by two-state Landau-Zener mod
@23,28#, these models are greatly oversimplified and can
misleading. In fact, the two-state Landau-Zener picture p
dicts that photoassociative ionization in Na@24# and Penning
ionization of trapped Xe metastable are suppressed at
laser intensity much more effectively than is observ
@12,30#. This failure to achieve complete shielding implies
limitation on the process that must be understood. In t
work we go beyond the limits of two-state models by setti
up a close-coupled three-dimensional quantum scatte
calculation for the collision

FIG. 1. Sketch of the basic idea of suppression of collision ra
of laser-cooled atoms. Two atoms in their ground states (g1g)
approach each other and a photon is absorbed at about the Co
pointRC . Then the interaction energy between the atoms beco
repulsive and the quasimolecule dissociates in one ground-state
one excited-state atom (g1e). This process strongly diminishe
inelastic collisions occurring at distances shorter thanRC .
1191 © 1997 The American Physical Society



m
te

in
, a
la
n
tio
he
it
ef
in
b

a
or
im
tra

ef
ll
e
i
da
ee
x
an
n
at
e
bi
at
c
n-
an

be
ra
ul
na
r
s.
e-
n
ve

th

te

as

wn
del
ro-
on
nds
ill

ng
cal
si-
e.
g a
ts
the
ula-
ent
nt
to
pri-

ibe
ing
-
tic
han-
mp-
the
rd
ed.
y
rite
n to
stic

s of
t to
n-
al
all.
ves
d in

is

the
ng
nt
de-
lso
rac-

pro-
el.
ing
for
a-
ce

1192 55NAPOLITANO, WEINER, AND JULIENNE
A~1S!1A~1S!1P~ «̂¢q ,\vL!→A~1S!1A~1P!, ~1!

whereA(1S) stands for an atom in its ground state of sy
metry 1S, A(1P) stands for an atom in its first excited sta

of symmetry 1P, andP(«Ŵ q ,\vL) represents a photon of«Ŵ

energy\vL and polarization unit vector«Ŵq , whereq50 for
linear polarization andq561 for circular polarization. This
model represents real scattering of group II atoms~Mg, Ca,
etc.! and may serve as a qualitative guide for understand
effects in more complex atoms like Xe or Na. Indeed
recent experiment@12#, suggested by the present calcu
tions, confirms our qualitative predictions. This experime
shows that optical suppression of photoassociative ioniza
of ultracold sodium atoms is dramatically sensitive to t
intensity and polarization of the suppressor field. As intens
increases, shielding by circularly polarized light is more
ficient than by linearly polarized light, a result that is
qualitative agreement with the predictions we can make
using our three-dimensional model. Choosing Eq.~1! elimi-
nates spin issues, since only singlet states are involved,
allows us to treat field-dressing effects quite straightf
wardly. Of course the fine and hyperfine structures are
portant for real alkali-metal and noble gas systems at ul
cold temperatures@29#, but are too complex to be
incorporated in a theoretical description of strong-field
fects in a first attempt. Here we present a rigorous, fu
quantum mechanical calculation to investigate physical
fects not predictable by simple two-channel models. It
essential to emphasize at this point that we use a stan
scattering theory approach to solve exactly a thr
dimensional model including light polarization. We treat e
actly the effects of the radiation field as power increases
the light is no longer a weak perturbation on the collisio
With this rigorous three-dimensional model we investig
the validity of simple two-channel models that have be
proposed and show that they are not capable of descri
the saturation regime correctly. It is not possible to calcul
the saturation behavior if the full fine and hyperfine stru
tures are included in the theory. Although the light field i
teraction can be exactly introduced together with the fine
hyperfine structures in the weak-field limit@31#, we cannot
solve this multichannel problem for the strong-field case
cause the number of coupled equations will become imp
ticably large. However, in this paper we show that the m
tichannel character of this simplified three-dimensio
model, although excluding internal spin structure, has a d
matic effect on optical shielding of colliding ultracold atom
Similar effects will certainly be strong also in collisions b
tween real alkali-metal atoms including fine and hyperfi
structures, but here we take just the first step towards in
tigating these effects.

Let \v0 be the energy separation associated with
atomic transition1S→ 1P. To further simplify the model,
we work at a large enough detuningD[vL2v0 that spon-
taneous decay of the upper state during the shielding in
action can be ignored, as shown by Suominenet al.. @28#. In
this work we consider the case in whichD5500 MHz, cor-
responding to approximately 50 natural linewidths of the
sumed atomic transition1S→ 1P.
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Room temperature collisions in a strong field are kno
to saturate differently from a two-state Landau-Zener mo
due to multiple photon exchanges during the scattering p
cess@32#. We show that the same is true at ultracold collisi
energies and that the shielding phenomenon depe
strongly on the photon polarization. In the following, we w
consider an energyE/kB5240mK, where 240mK is equal
to the Doppler cooling limit temperatureTD for sodium@10#.

In this work we consider only one energy and detuni
for three reasons. First, our aim is to show how, for a typi
collision energy and detuning, the three-dimensional phy
cal picture is different from the one-dimensional pictur
Second, the length of the calculations makes surveyin
wide range of conditions difficult. Third, the experimen
@12,24# have only been reported at a detuning close to
one used in these calculations. We have done some calc
tions for different energies and from our results it is appar
that a thermal average would not be qualitatively differe
from the results shown here. In a future paper we plan
present very low temperature results in the regime appro
ate for Bose-Einstein condensation.

This paper is organized as follows. In Sec. II we descr
the formulation of the standard close-coupling scatter
theory to treat Eq.~1!, taking into account the high-intensity
field issues involved. We begin by defining the asympto
basis set of states, which specify the entrance and exit c
nels. Then we establish the correlation between these asy
totic states and the molecular basis set. Next we discuss
total Hamiltonian and present a brief outline of standa
close-coupling theory to define the equations to be solv
We introduce theSmatrix by imposing scattering boundar
conditions to the solutions of the coupled equations and w
down the cross sections for the processes of penetratio
the inner region, production of excited states, and ela
scattering in terms of theT-matrix elements. Since in this
paper we are considering bosons, we give a brief analysi
indistinguishability and derive its consequences relevan
the present calculations. We obtain the probability of pe
etration into the inner region by introducing an artifici
channel that is coupled only to the ground-state inner w
Finally, we present the Born-Oppenheimer potential cur
and describe the matrix representing the Hamiltonian use
the code to solve this problem.

In Sec. III we describe the numerical outcome of th
close-coupling theory. We present the rate coefficients@19#
relevant to this work and define the shielding measure as
probability of penetration into the inner region, consideri
the contribution of different partial waves. Next we prese
the two-state Landau-Zener theory and show the striking
pendence of optical shielding on light polarization. We a
predict that the shielding measure has an anisotropic cha
ter due to the fact that the higherl -wave contributions can be
appreciable. Then we show the results of excited-state
duction and compare them with the Landau-Zener mod
Finally, we present the results for elastic-scattering, show
the increase in orders of magnitude of the rate coefficient
a few W/cm2 of increase in intensity. In Sec. IV we summ
rize the main results of this work, outlining their significan
for future research.
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55 1193THEORY OF OPTICAL SUPPRESSION OF ULTRACOLD- . . .
II. DESCRIPTION OF THE MODEL

A collision in the presence of a blue-detuned light fie
near atomic resonance can have three consequences
shielding of an inelastic process that occurs when the at
penetrate closer thanRC , production of hot excited atoms
and modified ground-state elastic scattering. Our goal in
section is to set up an exact three-dimensional quantum s
tering calculation for the effect on the rates of all three p
cesses. We have to describe the collision in a strong radia

field of polarization«Ŵ q where the arbitrary collision axis

makes an angleu«Ŵ q
with «Ŵ q . We first must set up the bas

that describes the asymptotically separated field-dresse

oms quantized in a space-fixed frame defined by«Ŵ q . Then
we must describe the rotating symmetric top basis set for
quasimolecule formed when the two atoms are close eno
together to interact. Knowing the transformation betwe
these separated-atom and quasimolecular basis sets lets
up the coupled equations which describe the collision
namics in a radiation field. Since the field breaks the ro
tional symmetry of free space by imposing a preferred dir
tion, the quasimolecular total angular momentum is no
good quantum number, and we generate an infinite se
coupled equations. In practice, these can be truncated af
few angular momenta, and solutions can be obtained. Im
ing standard boundary conditions lets us extract
S-matrix elements that describe ground- and excited-s
collisions of the dressed atoms as functions of the laser
tensity I and u«Ŵ q

. We will explain how this is done in the
following subsections with further details given in the A
pendices. We follow the procedure for weak-field collisio
of type ~1! set up by Julienne and Mies@33,34# generalized
to the case of strong fields. We also point out that, since
are emphasizing the effects of strong electromagnetic in
actions on the colliding system, we have neglected the ra
and angular nonadiabatic Born-Oppenheimer couplings~see
Appendix C!. We are justified in disregarding these cont
butions because, according to the Born-Oppenheimer ex
sion of the Hamiltonian in terms of the dimensionless para
eter (m/M )1/4, wherem is the electron mass andM is the
nuclear mass, the nonadiabatic couplings are of fifth
higher order in this parameter, while the ones we have c
sidered are of the fourth and lower order@35#.

A. Asymptotic basis set

To calculate collision rates for Eq.~1!, let us first write
down the relevant basis of states at a very large separatio
the two approaching atoms. In such a situation, we can
glect any interaction between the two atoms and sepa
their electronic motions from the relative rotational moti
of the nuclei. Let us choose a space-fixed right-handed fra

of coordinates. LetRW be the vector from one of the nuclei t
the other. Therefore, the relative rotational motion of the t
atoms is described by the set of all spherical harmonic fu
tions Yl

ml(u,w) ( l50,1,2, . . . ; ml52 l ,2 l11, . . . ,l21,l ),

where u and w are the polar angles ofRW defined by the
relations
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xŴ•RW 5uRW usinucosw, ~2a!

yŴ•RW 5uRW usinusinw, ~2b!

zŴ•RW 5uRW ucosu, ~2c!

wherexŴ , yŴ , andzŴ are the unit vectors parallel to thex, y, and
z axes, respectively. Later we will assume that the two nu
are identical bosons and we will show that, as a conseque
only even values ofl are involved in the scattering process
Eq. ~1!. For the moment, however, we suppose the two
clei are isotopes that can be distinguished one from the ot
This restriction will be withdrawn when we consider the ca
culation of the scattering cross sections. To formalize

issue of the relative rotational motion, letlW[2 i\RW 3¹W R
W .

Therefore

lW 2Yl
ml~u,w!5 l ~ l11!\2Yl

ml~u,w!, ~3a!

zŴ• lWYl
ml~u,w!5ml\Yl

ml~u,w!. ~3b!

Asymptotically, the motion of the electrons of both atom
can be expanded in terms of basis states of definite t
electronic angular momentum. Let us add together the t
electronic angular momenta of both colliding atoms and
note the resulting quantum number byj . The two relevant
situations, according to Eq.~1!, correspond, first, to two at
oms in their1S ground states, and, second, to one atom in
1S ground state and the other in its1P first excited state.
Thus the first situation is characterized byj50 and the sec-
ond by j51. Hence we denote the relevant electronic ba
states by u j ,mj& (mj50 for j50; and mj50,61 for
j51), wheremj is the quantum number associated with t
projection of the total electronic angular momentum opera

jW alongzŴ. Summarizing,

jW 2u j ,mj&5 j ~ j11!\2u j ,mj&, ~4a!

zŴ• jWu j ,mj&5mj\u j ,mj&. ~4b!

In the absence of laser light, the asymptotic basis set des
ing the two-atom system, including nuclear motion, is giv
by all the statesu j ,mj&Yl

ml(u,w).

B. Correlation between asymptotic and molecular basis sets

To correlate the states of this separated-atom system
the states of the quasimolecular system, let us exp
u j ,mj& in terms of its body-fixed counterpartsu j ,L&, where
L is defined by the eigenvalue equation

RW • jW

uRW u
u j ,L&5L\u j ,L&. ~5!

Thus from Eqs.~4! and the isotropy of space, it follows tha

L50,61. AsR[uRW u→`, the statesu j ,L& do not depend on
R, for, as is expected, one atom does not interact with
other asymptotically. AsR decreases, the interaction b
tween the atoms increases and the motion of the elect
couples with the interatomic axis in such a way thatj is no
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1194 55NAPOLITANO, WEINER, AND JULIENNE
longer a good quantum number@36#. However, because o
the cylindrical symmetry of the quasimolecule,L is still a
good approximate quantum number even for very smallR.

The total angular momentumJW5 jW1 lW ~neglecting nuclear
spins! is a good quantum number in the absence of lig
Thus at short enoughR, Hund’s coupling case~a! is appli-
cable@36# and, neglecting retardation effects, the molecu
wave functions relevant to the process of Eq.~1! are given by
@37#

uR, j50,L50,J,MJ&[QMJ ,L50
J ~u,w!u0,1Sg

1~R!,L50&,
~6a!

uR, j51,L50,J,MJ&[QMJ ,L50
J ~u,w!u1,1Su

1~R!,L50&,
~6b!

uR, j51,L561,J,MJ&

[QMJ ,L561
J ~u,w!u1,1Pu~R!,L561&, ~6c!

whereQMJ ,L
J (u,w) are the symmetric top eigenfunctions i

troduced by Eq.~A5! of Appendix A; u0,1Sg
1(R),L50& is

the electronic ground state of the molecule formed by
two colliding atoms, it has the symmetry1Sg

1 and correlates
with the electronic state of the separated atoms in th
ground states;u1,1Su

1(R),L50& and u1,1Pu(R),L561&
are the molecule electronic states, of symmetries1Su

1 and
1Pu , respectively, that correlate with the electronic states
the separated atoms when one of them is in its ground s
and the other is in its first excited state. For simplicity, w
will assume that1S has even parity and1P has odd parity,
thus the molecule excited-state symmetry1Su

1 is present and
not 1Su

2 @36#.

C. The Hamiltonian

In this model, the HamiltonianH consists of three parts

H5H01HF1HI , ~7!

whereH0 is the quasimolecule Hamiltonian,HF is the laser-
field Hamiltonian, andHI is the interaction Hamiltonian be
tween the quasimolecule and the electric field.H0 is given
by

H052
\2

2m
¹W
R
W
2
1V~R!, ~8!

wherem is the reduced mass of the two colliding atom

2(\2/2m)¹W
R
W
2
is the kinetic energy operator of the two atom

about their center of mass, andV(R) is the interaction en-
ergy of the two atoms that depends on the internuclear s
ration R and the electronic variables. Let us denote the
genvalue of the operatorV(R) associated with the
eigenvectoruR, j ,L,J,MJ& by VuLu

j (R):

V~R!uR, j ,L,J,MJ&5VuLu
j ~R!uR, j ,L,J,MJ&, ~9!

where we suppose noL doubling and thus the states wit
L561 are degenerate. The functionsVuLu

j (R) are the usual
Born-Oppenheimer potentials. Because the zero of energ
t.

r

e

ir

f
te

,

a-
i-

is

arbitrary, letV0
0(`)50 andVuLu50,1

1 (`)5\v0. Since we are
considering a situation in which there is only one laser mo
populated bynL photons and spontaneous emission is
important, the Hamiltonian for the laser field is written

HF5\vL~aq
†aq2nL!, ~10!

whereaq
† is the operator that creates a photon of frequen

vL and polarization unit vector«Ŵ q , aq is the corresponding
annihilation operator, and we have chosen the zero of fi
energy as the eigenvalue of the state withnL photons. In the
electric dipole approximation, forR!c/vL @38#, the interac-
tion HamiltonianHI is written

HI52 i S 2p\vL

VQ
D 1/2mW M•~«Ŵ qaq2«Ŵ q* aq

†!, ~11!

whereVQ is the quantization volume andmW M is the molecu-
lar electric dipole operator.

It will become clear when we apply the scattering boun
ary conditions that it is necessary to use a basis in wh
H is asymptotically diagonal. Thus it is natural to treat t
two-atom system and the laser in the dressed picture.
unL& denote the laser state in which there arenL photons of

frequencyvL and polarization unit vector«Ŵ q . The electro-
magnetic interaction with the two-atom system will coup
the state u j50,mj50&Yl

ml(u,w)unL& with the state

u j51,mj5q&Yl
ml(u,w)unL21& and the corresponding matri

element is the Rabi frequencyV,

\V52 i S 2p

c
I D 1/2^ j51,mj5qu«Ŵ q•mW Mu j50,mj50&,

~12!

which we can choose as a real quantity due to the arbitr
ness of the global phase factors of the quantum states. H
I is the intensity of the laser field:

I[
\cvL

VQ
nL. ~13!

It is worth remarking that some authors define the Rabi f
quency as one-half the matrix element in Eq.~12! @39#. For
fixed l andml , the total HamiltonianH is asymptotically
diagonal if written in the dressed-state basis spanned by

uDb~R!,l ,ml&[ (
g51

4

Mb,guUg~R!,l ,ml& ~14!

for b51,2,3,4, where

uU1~R!,l ,ml&[uR, j50,mj~1!,l ,ml&unL&, ~15a!

uUg~R!,l ,ml&[uR, j51,mj~g!,l ,ml&unL21&, ~15b!

for g52,3,4, with mj (1)[0, mj (2)[q(q21)/221,
mj (3)[12q(q11)/2, andmj (4)[q;
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55 1195THEORY OF OPTICAL SUPPRESSION OF ULTRACOLD- . . .
uR, j ,mj ,l ,ml&[ (
J,MJ ,L

A2l11

2J11
^ j ,l ,mj ,ml uJ,MJ&

3^ j ,l ,L,0uJ,L&uR, j ,L,J,MJ& ~16!

~see Appendix A!; andMb,g are the matrix elements of

@M #5FA1 0 0 B1

0 1 0 0

0 0 1 0

A2 0 0 B2

G , ~17!

where

A6[
6\V

AE6
2 1~\V!2

, ~18a!

B6[
6E6

AE6
2 1~\V!2

~18b!

and

E65
\~2D6AD214V2!

2
. ~18c!

The basis states given by Eq.~14! are the states prepared
detected in the asymptotic region. These are the states
need to define theSmatrix, since they describe two isolate
atoms in a radiation field, separated by a large distance.

In this work we use a conservative Hamiltonian treatm
and neglect spontaneous emission. The shielding dynami
primarily associated with the effect the field has on the q
simolecule in the vicinity of the Condon point. When th
detuning is large enough, the excited 1/R3 molecular poten-
tial induces a strong acceleration to the atoms. Hence
atoms do not spend enough time near the Condon poin
spontaneously emit photons. A rigorous treatment of
spontaneous emission requires a full density matrix appro
@28,30#. Such density matrix calculations indicate that spo
taneous emission can be neglected near the Condon po
D@g. Based on these results, our choice ofD5500 MHz
and g'10 MHz justifies neglecting spontaneous emiss
near the Condon point. We also neglect spontaneous e
sion occurring asymptotically, because the light field inte
sities we consider are not high enough to populate the
dressed excited states appreciably.

D. Close-coupling theory

The standard close-coupling equations are given
@40,41#

^Db9~R!,l 9,ml9u~H2E!uCb8,l 8,ml8
~E,R!&50, ~19!

where
we

t
is
-

he
to
e
ch
-
t if

n
is-
-
n-

y

uCb8,l 8,ml8
~E,R!&[ (

b51

4

(
l50

`

(
ml52 l

1 l F
b8,l 8,ml8

b,l ,ml ~E,R!

R

3uDb~R!,l ,ml&, ~20!

E is the total energy of the colliding pair, and the coefficien

F
b8,l 8,ml8

b,l ,ml (E,R) are required to satisfy boundary condition

suitable for scattering processes:

F
b,l ,ml

b8,l 8,ml8~E,`!5 i S m

2p\2kb
D 1/2db,b8d l ,l 8dml ,ml8

e2 i ~kbR2p l /2!

2 i S m

2p\2kb8
D 1/2ei ~kb8R2p l 8/2!S

b,l ,ml

b8,l 8,ml8~E!,

~21!

whereS
b,l ,ml

b8,l 8,ml8(E) is the so-calledSmatrix for the transition

from stateuDb&Yl
ml(u,w) to stateuDb8&Yl 8

ml8(u,w). There is
an excellent discussion by Mies@42# about this point and the
reader is also referred to Appendix B for details.

E. Scattering cross sections

Defining theT matrix as

T
b,l ,ml

b8,l 8,ml8~E![db,b8d l ,l 8dml ,ml8
2S

b,l ,ml

b8,l 8,ml8~E!, ~22!

and using Eqs.~20! and~21! allows us to write the scattering
amplitude as

f b
b8~ukWb

,wk
W

b
,u,w!5

2p

kb
(
l50

`

(
ml52 l

1 l

(
l 850

`

(
ml852 l 8

1 l 8

i l2 l 821

3T
b,l ,ml

b8,l 8,ml8~E!Yl
ml* ~ukWb

,wk
W

b
!Y

l 8

ml8~u,w!,

~23!

whereukWb
andwk

W
b
specify the incident direction~see Appen-

dix B!. We can calculate the differential cross section
scattering from stateb to b8 by the usual procedure@43# and
we find

dsb→b8~E,uk
W

b
,wk

W
b
,u,w!

sinududw
5u f b

b8~ukWb
,wk

W
b
,u,w!u2. ~24!

To calculate the total cross section for a transitionb→b8 we
proceed by averaging over the incident direction (ukWb

,wk
W

b
)

and integrating over the final direction (u,w):

sb→b8~E!5
1

4pE0
p

dukWb
E
0

2p

dwk
W

b
E
0

p

duE
0

2p

3dwu f b
b8~ukWb

,wk
W

b
,u,w!u2, ~25!

and from Eqs.~23!–~25! we get
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sb→b8~E!5
p

kb
2(
l50

`

(
ml52 l

1 l

(
l 850

`

(
ml852 l 8

1 l 8

uT
b,l ,ml

b8,l 8,ml8~E!u2.

~26!

F. Indistinguishability

So far we have been considering two distinguishable
clei, but now let us determine the required changes in
formulation for the actual case of identical nuclei. The ele
tronic motion for the two-atom system can be described,
ymptotically, by linear combinations of products of atom
wave functions. For the ground state, for example, we
write

u j50,mj50&5AeuS&uS&, ~27!

whereAe is the electronic antisymmetrizer operator, the fi
ket uS& indicates an atom at the origin in its1S ground state,
and the second ketuS& indicates an atom at infinity in its
1S ground state. In the case of identical nuclei of zero sp
no changes are necessary in Eq.~27! because the produc
uS&uS& is symmetrical under exchange of nuclei. For the e
cited states, if the two nuclei are not identical, we have

u j51,mj&5Ae

uS&uP~mj !&1uP~mj !&uS&

A2
, ~28!

where the first product,uS&uP(mj )&, indicates one atom in its
1S ground state at the origin and the other in its1P excited
state, of space-fixed angular momentum projectionmj , at
infinity, and the second product,uP(mj )&uS&, indicates one
atom in its 1P excited state, of space-fixed angular mome
tum projectionmj , at the origin, and the other in its1S
ground state at infinity. Equation~28! correlates to the un
gerade excited states because we have supposed1P has odd
parity and1S even parity. Furthermore, if we exchange n
clei, Eq.~28! remains unchanged, meaning that it represe
exactly the situation for two identical boson nuclei. The co
sequence of Eqs.~27! and ~28! being both invariant unde
nuclei exchange implies that the states of Eq.~14! are also
invariant. Therefore, following the procedure thoroughly d
cussed by Verhaar and co-workers@19,44#, we find that only
even values ofl contribute to the scattering process, since
incident part of the scattering wave function contributes o
even values ofl and the total Hamiltonian Eq.~7! can only
couple states of the same values ofl or differing by two units
@33#. Hence, for the case of identical atoms, including ide
tical nuclei, the necessary change in Eqs.~20!, ~23!, and~26!
is to sum only over even values ofl and l 8.

Indistinguishability also implies the exclusion of certa
states in the molecular basis setuR, j ,L,J,MJ&. SinceJ5 l
for the ground1Sg

1 state, only evenJ values are possible fo
the ground molecular state. Only oddJ values are possible
for the excited 1Su

1 state, whereas both even and oddJ
values are permitted for the1Pu state. Dipole selection rule
do not permit oddJ values in the1Pu state to couple opti-
cally to the ground state for the special case ofMJ50 for
linearly polarized light only. An important consequence
-
is
-
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t
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-

ts
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this special case is a strong difference between shielding
the cases of linear and circular polarized light, as we sh
below.

G. The artificial channel probe

To probe the amount of flux entering the inner region
the ground-state potential, we use the method of the artifi
state@45#. This method consists of introducing an extra p
tential curve as if there were another electronic probe s
coupled to the real states in the problem. We are allowed
choose the most convenient artificial state for a particu
purpose. For the present problem, we choose a pote
curve that is coupled locally to the classical inner turni
point of the ground-state potentialV0

0(R) at very low kinetic
energies ('240mK!. The changes in the present formalis
amount to introducing one more state of indexb55 and
replacing Eq.~17! with

@M #5F A1 0 0 B1 0

0 1 0 0 0

0 0 1 0 0

A2 0 0 B2 0

0 0 0 0 1

G . ~29!

We define

V~R!uU5~R!,l ,ml&[WA~R!uU5~R!,l ,ml&, ~30!

whereWA(R) is the totally arbitrary artificial potential curve

WA~R!54«AF S sA

R D 42S sA

R D 3G2\DA , ~31!

where we take«A /hc51.83104 cm21, sA54.1a0, and
DA/2p5500 MHz. Also, we need the coupling matrix ele
ment

^Ub~R!,l ,ml uV~R!uU5~R!,l 8,ml8&5db,1d l ,l 8dml ,ml8
DA~R!,

~32!

whereDA(R) is a function ofR localized about the classica
inner turning point ofV0

0(R):

DA~R!5hce2~R2sA!2, ~33!

whereDA(R)/hc has a value of 1 cm21 at R5sA and de-
creases toe21 cm21 at R5sA61a0. The artificial state is
not coupled to any of the other potential curves excep
about the classical inner turning point ofW0

0(R).

H. Potential curves

Let us consider the statesuR, j50,L,J,MJ&unL& and
uR, j51,L,J,MJ&unL21&. These states are eigenstates of
operator

W~R![V~R!1HF , ~34!

with eigenvalues

WuLu
j ~R![VuLu

j ~R!2 j\vL. ~35!
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Figure 2 shows the potential curvesWuLu
j (R) we use in

this work. The curve labeled1Sg is identified with the
ground-state potential curveW0

0(R). Its short-range part
from 3.8a0 to 30a0, is the same as used by Thorshei
Weiner, and Julienne in their paper on laser-induced ph
association of ultracold sodium atoms@46# for the sodium
diatomic molecule Na2. We point out that these are mod
calculations, not for real Na-Na collisions, and thus t
choice of actual potentials is not crucial. ForR>30a0, we
assume the following extrapolation:

W0
0~R!52Ae2BR2

C6

R6 2
C8

R8 2
C10

R10, ~36!

where, in atomic units, we take A50.344 91,
B50.648 771, C651 698, C85102 810, C1056 939 128
@47#. The curves labeled1Su and

1Pu correspond, respec
tively, to the excited-state potential curvesW0

1(R) and
W1

1(R). The short-range portions from 5a0 to 52a0 of
V0
1(R) andV1

1(R), which are needed to defineW0
1(R) and

W1
1(R), are cubic spline fits to the data obtained by Magn

et al. @48# for the sodium diatomic molecule Na2. For
R>52a0, we assume the dipole-dipole resonant interacti
neglecting retardation effects@49#:

W0,1
1 ~R!52

C3
0,1

R3 2\D, ~37!

where, in atomic units, we takeC3
1526.439 846 4 for the

repulsive curve, andC3
0512.823 449 6 for the attractive. Al

these numbers are chosen so that the extrapolations
smoothly to the potential data. For internuclear separati
shorter than 3.8a0 or 5a0, we extrapolate the curves b
straight lines. The form of the potentials for very short ran
is immaterial due to the fact that the kinetic energies we
considering are much lower than the values of the poten

FIG. 2. Potential curves we employ in this work: except for t
artificial-channel potential curve labeled ‘‘A,’’ the others are for
Na2. The curve labeled ‘‘1Sg’’ is identified with W0

0(R), the one
labeled ‘‘1Su’’ is identified with W0

1(R), the one labeled ‘‘1Pu’’
with W1

1(R), and ‘‘A’’ with WA(R). The inset shows the region o
crossing.RC'439.24a0 is the Condon point for the detuning o
500 MHz.
,
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curves at these inner points. Thus there is no appreci
penetration of the wave functions to the linear extrapolat
region.

I. Matrix representation of the Hamiltonian

To set up the numerical calculation, we begin by writin
the total HamiltonianH, Eq. ~7!, in a matrix representation
Let us order the statesuDb(R),l ,ml& (b51,2,3,4,5), Eq.
~14!, in increasing order ofl . Therefore, for any pair
(ml ,ml8) of integers, let us write the matrix forH as consist-
ing of 535 blocks:

@H#ml ,ml8

5F� @~ l ,l !#535
ml ,ml8 @~ l ,l12!#535

ml ,ml8

@~ l12,l !#535
ml ,ml8 @~ l12,l12!#535

ml ,ml8

�

G ,
~38!

where@( l ,l 8)#535
ml ,ml8 is a 535 block whose elements are in

dexed by (b,b8) (b,b851,2,3,4,5) and given by

„@~ l ,l 8!#535
ml ,ml8

…b,b8[^Db~R!,l ,ml uHuDb8~R!,l 8,ml8&,
~39!

where we define the elements„@( l ,l 8)#535
ml ,ml8

…b,b8 for which
uml u. l or uml8u. l 8 as identically zero, so that Eq.~38! is
well defined for all pairs (ml ,ml8) of integers. From Eqs
~14! and ~29!, and the generalization to includeb55 in the
formalism, we have

„@~ l ,l 8!#535
ml ,ml8

…b,b85 (
g51

5

(
g851

5

Mb,gMb8,g8

3^Ug~R!,l ,ml uHuUg8~R!,l 8,ml8&.

~40!

Appendix C outlines the explicit calculation of the Ham
tonian matrix elements.

The close-coupling equations in matrix form are solv
by the numerical procedure of Gordon@50,51#. The
S-matrix elements are obtained from the close-coupling
lutions by imposing the scattering boundary conditions
Eq. ~21!. In the next section we present the results obtain
by following the prescription described above.

III. RESULTS OF THE NUMERICAL CALCULATIONS

A. Rate coefficients

We define the event rate coefficient for a transiti
b→b8 in accordance with Eq.~17! of Ref. @19#, namely,
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Kb→b8[K v rel pkb
2(
l50

`

(
ml52 l

1 l

(
l 850

`

(
ml852 l 8

1 l 8 UTb,l ,ml

b8,l 8,ml8~E!U2L
T

,

~41!

where the summations are over even values ofl and l 8 only,
v rel is the relative speed at which the atoms approach e
other, and̂ F&T indicates the result of averaging any quant
F over the distribution of relative speedsv rel . The rate co-
efficients of Eq.~41! are used in the rate equation that d
scribes all possible transitions among the statesb @19#. For
the purposes of this work we take only one value ofv rel ,
corresponding to

mv rel
2

2kB
5240mK, ~42!

where kB is Boltzmann’s constant. We have chosen 2
mK for the collision energy because we are using sodi
potentials and the typical temperatures one usually find
traps of laser-cooled sodium atoms is of the order of
Doppler cooling limit temperatureTD5240 mK. Therefore
instead of Eq.~41! we use

Kb→b85v rel
p

kb
2(
l50

`

(
ml52 l

1 l

(
l 850

`

(
ml852 l 8

1 l 8

uT
b,l ,ml

b8,l 8,ml8~E!u2.

~43!

B. Shielding measure

We generalize the definition of ‘‘shielding measure’’
Suominenet al. @28# by

PS~ I ![
K1→5~ I !

K1→5~ I50!
, ~44!

whereI is the intensity of the laser beam as defined by E
~13!. PS(I ) is independent of the nature of the artificial sta
and its coupling to the ground state, because the Con
point and the artificial state coupling with the ground st
are very far apart and localized. Figure 3 showsPS(I ) cal-

FIG. 3. Numerical results for the shielding measure,PS(I ), as a
function of intensityI for linear and circular polarizations. A two
state Landau-Zener model calculation for thes-waveR branch, la-
beled ‘‘LZ,’’ is also shown.
ch
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e

culated numerically for linear and circular polarizations,
well as the results of a two-state Landau-Zener model wh
we will describe shortly. The numerical results are obtain
by solving the coupled equations for a truncated range
values of l , which is chosen so that the cross sections
converged up to four or five significant figures for th
1→2,3,4,5 transitions, and up to two significant figures
the 1→1 transitions. For the elastic-scattering, many par
waves are necessary at high intensities, reducing the
ciency of the calculation. Both computing time and the
striction that there is negligible population in the atomic e
cited state asymptotically cause us to restrict the calculat
to a maximum intensity of 6 W/cm2.

C. Partial waves contributing to shielding measure

Before we proceed, let us notice some details of the f
malism and establish a partial-wave nomenclature that
be useful in the discussion that follows. From Eqs.~A2!,
~A5!, ~6!, and~16!, it follows that

uU1~R!,l ,ml&5Yl
ml~u,w!u0,1Sg

1~R!,L50&unL&. ~45!

Therefore the stateuU1(R),l ,ml& is an eigenstate oflW 2 for
all R. At low intensities, uDb(R),l ,ml&→uUb(R),l ,ml&
(b51,2,3,4,5). We call a state such asuDb(R),l ,ml& or
uUb(R),l ,ml& an ‘‘l wave’’ because, atR→`, both are pro-
portional to Yl

ml(u,w). If l50, we call the state an ‘‘s
wave,’’ if l52, we call it a ‘‘d wave,’’ and if l54, we call
it a ‘‘g wave.’’

For I50 andE/kB5240 mK, only the s wave can pen-
etrate the inner region of the ground-state potential beca
of the centrifugal barriers for the other partial waves. F
example, thed-wave barrier in the ground state is about
times higher thanE/kB5240 mK. As I increases, partia
waves other than thes wave can contribute tos1→5 due to
absorption and stimulated emission of more than one pho
during the collision. Let us suppose the two colliding atom
approach each other in the long-range region of the grou
state potential as anl wave. At aboutRC , the quasimolecule
interacts with the electromagnetic field, which can stimul
the absorption and emission of several photons. Therefor
penetrate the inner region of the ground-state potential
make a transition to the artificial state, the quasimolec
must end up in the ground state as ans wave after interacting
with the light at aboutRC . An s wave in the ground state ha
ml50. A transition from a ground-statel wave to a ground-
states wave conservesml because a photon cannot ‘‘torque
the nuclear angular momentum. Hence an arbitraryl wave in
the ground state can contribute tos1→5 only if it has
ml50. This consequence is important in selecting the r
evant diagonalized potential curves for all the states in
range of values ofl : from all the possible potential curves
only the ones withml50 in the ground state are relevant
study the shielding measure.

D. Two-state Landau-Zener theory

Now let us consider the regime of very low intensity a
present the two-state Landau-Zener model. Since in this
gime we expect only thes wave in the ground state to con
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tribute toPS(I ), only the 535 block with l50 in Eq.~38! is
necessary to describe the physical situation. In this lo
intensity limit, it follows from Eqs.~15! and ~C11! that the
s-wave stateYl50

ml50(u,w)u0,1Sg
1(R),L50&unL& is coupled,

electromagnetically, only to the stateuU4(R),l 850,ml850&.
Therefore from Eq.~16! we obtain

uU4~R!,l 850,ml850&

5
1

A3
uR, j51,L50,J51,MJ5q&unL21&

1
1

A3
uR, j51,L51,J51,MJ5q&unL21&

1
1

A3
uR, j51,L521,J51,MJ5q&unL21&. ~46!

Thus the relevant body-fixed excited states
uR, j51,L,J51,MJ5q&unL21& for L521,0,1, and the
corresponding eigenvalues of the potential operatorW(R)
areWuLu50,1

1 (R). From Fig. 2 we see that onlyWuLu51
1 (R)

crossesW0
0(R) at RC . Therefore we can neglect the excite

state withL50 because it is nonresonant and we are
with the two degenerate excited states withL521,1. Let us
consider the linear combinations

u6&[
1

A2
uR, j51,L51,J51,MJ5q&unL21&

6
1

A2
uR, j51,L521,J51,MJ5q&unL21&.

~47!

The stateu1& has odd parity and the stateu2& has even
parity, as can be checked by inverting Eq.~16! and using
Eqs. ~27! and ~28!. Since the electric dipole operator is
vector operator, it follows that onlyu1& is coupled electro-
magnetically to thes-wave state. Because thes wave has
J50 andu1& hasJ851, this transition is anR-branch tran-
sition. From Eqs.~12!, ~C4!, ~C5!, ~C9!, and~C12!, and the
Wigner-Eckart theorem@52#, we obtain the following Rabi
frequency for the two-level system involving only sta
u1& and thes wave:

VLZ5
2

A3
VA. ~48!

We have thus reduced the problem to a two-state mode
this low-intensity regime. The dynamics in the region of t
crossing can be described by a Landau-Zener model as
scribed by Suominenet al. @28#. In this theory, the probabil-
ity for the system to remain in thes-wave state after passin
through the crossing atRC is given by

PS
LZ5expS 2

2p\VLZ
2

vaLZ~RC!
D , ~49!

where
-

e

ft

in

e-

aLZ~R![U d

dR
@W1

1~R!2W0
0~R!#U, ~50!

andv is the relative speed of the atoms at the crossing p
tion RC . Equation~49! is the shielding measure according
the Landau-Zener theory. For our choice of parameters
potential curves,PS

LZ of Eq. ~49! can be expressed as a fun
tion of laser intensityI in W/cm2 as

PS
LZ~ I !5exp@22.7239I ~W/cm2!#. ~51!

If we define the saturation intensityI S of the Landau-Zener
shielding measure as the intensity at whi
PS
LZ(I5I S)51/e, we obtain, from Eq. ~51!, I S'367

mW/cm2. Figure 3 shows that the Landau-Zener model
shielding measure approaches zero much faster than the
ear or circular three-dimensional calculations. The th
curves start very close to one another at low intensities,
then diverge appreciably. This low-intensity behavior is e
pected, since in this case all three curves involve the entra
s wave only, and therefore the three-dimensional results
equivalent to the two-stateR-branch Landau-Zener mode
Only when thed wave begins to participate as intensity i
creases do the curves diverge.

E. Light polarization dependence of optical shielding

Figure 4 shows the contribution of thed wave to the
shielding measure, as calculated by the three-dimensi
approach. The quantityK1→5(I ,l52→ l 850) of Fig. 4 is
the contribution to the rate coefficient, Eq.~43!, arising from
the terms withl52 andl 850. In general, we define

Kb→b8~ I ,l→ l 8![
pv rel
kb
2 (

ml52 l

1 l

(
ml852 l 8

1 l 8

uT
b,l ,ml

b8,l 8,ml8~E!u2.

~52!

The difference in behavior for linear and circular polariz
tions is evident in Fig. 4, which shows that thed-wave con-
tribution in the linear case is over one order of magnitu
larger than in the circular case. Before analyzing the reas
why there is such a difference, let us examine theg-wave
contribution to the rate coefficient for both polarizatio
cases. Figure 5 shows the quantityK1→5(I ,l54→ l 850) for

FIG. 4. Contribution of thed wave to the rate coefficient fo
linear and circular polarizations.
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linear and circular polarizations. The contribution of theg
wave in the linear case is about two orders of magnitu
larger than in the circular case. Furthermore, for linear p
larization, theg-wave contribution is about one order o
magnitude smaller than thed-wave contribution; and for cir-
cular polarization, theg-wave contribution is about two or-
ders of magnitude smaller than thed-wave contribution.

It is apparent from Figs. 4 and 5 that the key to unde
standing the polarization dependence of the shielding m
sure is in the different order of magnitudes of the corr
spondingd-wave contributions. To appreciate the fact th
we do not need to consider contributions of partial wav
much higher than thed wave, Fig. 6 shows the quantity

K1→5
partial~ I ![K1→5~ I ,l50→ l 850!1K1→5~ I ,l52→ l 850!

1K1→5~ I ,l54→ l 850!, ~53!

together with the total rate coefficient, Eq.~43!, for linear
and circular polarizations.

To interpret these results, it is useful to concentrate on
Hamiltonian matrix, Eq.~38!, for the case in which we in-
clude the blocks forl50 andl52 for ml50 in the ground
state. Equation~38! minus the matrix for the radial term
2@(\2/2m)(1/R)(]2/]R2)#R, can be diagonalized and th
resulting adiabatic potential curves near the Condon po

FIG. 5. Contribution of theg wave to the rate coefficient for
linear and circular polarizations.

FIG. 6. Comparison between the partial and total rate coe
cients for linear and circular polarizations. The items in the lege
refer, first, to the polarization case, and, second, to the tota
partial rate coefficients.
e
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are given in Fig. 7. In this region, the Hund’s coupling ca
~a! basis of states is the most convenient to interpret
differences in the topologies of the linear and circular pol
ization cases. In the situations depicted in Fig. 7, an entra
d wave can absorb a photon and make a transition to
excitedP state. For linear polarization, there are only tw
branches that are allowed for such a transitio
J52→J851 ~P branch!, andJ52→J853 (R branch!. For
circular polarization, one more branch is allowe
J52→J852 ~Q branch!. These selection rules are the res
of the matrix elements given by Eqs.~C4! and~C5!, and are
readily expressed by the conditions under which
Clebsch-Gordan coefficient̂1,2,q,0uJ,q& is different from
zero. The result of this difference between linear and circu
polarizations is that there are more coupling matrix eleme
in the Hamiltonian for the circular case, resulting in mo
avoided crossings, than for the linear, and thus it is reas
able that the penetration to the inner region is more effici
for the linear case than for the circular. This dependence
polarization, due to multichannel effects, cannot be rep
duced by a two-state Landau-Zener curve-crossing mo
since such a theory can only account for the effects ass
ated with only one branch (R branch!. The presence of mul-
tiphoton processes is important here and multichannel cu
crossings behave inherently differently from two-chann
ones. In summary, it is the existence of the three branche
the repulsive excited states in the circular case and only
in the linear that implies a more efficient shielding in th
circular case than in the linear. The results in Fig. 3 are
qualitative agreement with the Xe experiments@30#, in which
shielding measure approaches zero with increasing inten
much more slowly than the two-state models predict. Ho
ever, Suominenet al. @30# have found that if a distribution o
Rabi frequencies is assumed, then the two-state models
predict such qualitative variation with intensity. The a

-
d
or

FIG. 7. Diagonalized potential curves in the region of the Co
don point for I50.5 W/cm2 and up to l52. In both cases, the
ground state hasml50. ~a! Linear polarization case showing tha
there is a crossing that is not avoided, meaning that only theP and
R branches from the entranced wave are allowed and theQ branch
is absent.~b! Circular polarization case showing that all the curv
avoid crossing, due to the fact that all threeP, Q, andR branches
from the entranced wave are present.
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FIG. 8. Angular shielding measure for lin
early and circularly polarized light. The numbe
aligned vertically give the laser intensities i
W/cm2.
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sumption of a distribution of Rabi frequencies does not h
an obvious justification, but it could be useful in the conte
of complex systems including many hyperfine states.

F. Anisotropy of the optical shielding process

The significant contribution of thed wave in the linear
case manifests itself as an anisotropic angular distributio
shielded collisions, regarding the angle between the entra
collision direction and the quantization axis. This effect c
be calculated by integrating Eq.~24! over the final directions
(u,w) only. The result is

s1→5~ I ,ukW ,wk
W !5

4p2

k1
2 (
l 850

`

(
ml852 l 8

1 l 8 U(
l50

`

(
ml52 l

1 l

3Yl
ml* ~ukW ,wk

W !i lT1,l ,ml

5,l 8,ml8~E!U2. ~54!

Because atI50 only the s wave penetrates to the inne
region,s1→5(I50,ukW ,wk

W)5s1→5(I50) is isotropic and we
define the angular shielding measure as

PS~ I ,ukW ,wk
W ![

s1→5~ I ,ukW ,wk
W !

s1→5~ I50!
. ~55!

It is worth noticing that, for linear polarization, the quan
zation axis is parallel to the electric field, and, for circu
polarization, it is parallel to the direction of propagation
the light. Also, because the nonzeroT matrix elements mus
satisfyml81q5ml , whereml refers to the ground state an
ml8 to the excited, the dependence onwk

W is eliminated from
Eq. ~54!, and we need to considerukW only. Figure 8 shows
PS(I ,ukW[u,wk

W50) for the linear and circular cases. It
evident from this figure how much the shielding by circula
polarized light is more efficient and isotropic than with li
early polarized light. In the linear case, the penetration i
the inner region is most efficient if the atoms approach e
other parallel to the direction of the light polarization vecto
These predictions on shielding anisotropy could, in princip
be tested by cold atomic beam experiments, provided s
investigations are realizable.
e
t

of
ce
n

o
h
.
,
ch

G. Excited-state production

A collision that is optically shielded can produce eithe
two atoms in their ground states, or one atom in its grou
state and the other in one of its excited states. The latter c
generates fast atoms, for the repulsive excited state acce
ates the separating atoms and causes them to gain kin
energy. This kinetic energy increase can lead to trap loss a
to a higher temperature of the atomic sample@22#. It is
straightforward to obtainKex(I )[K1→21K1→31K1→4 with
the present formalism and the results are shown in Fig.
This figure also shows the Landau-Zener calculation giv
by the formula

Kex
LZ~ I ![(

l50

`

~2l11!$2PS
LZ~ I !@12PS

LZ~ I !#%RC~ l ! , ~56!

wherePS
LZ(I ) is the Landau-Zener probability of Eq.~49!,

the quantity within curly brackets is the probability of cross
ing the Condon point in the ground state without being e
cited on approach, followed by excitation on separation, pl
the probability of being excited at the Condon point on a
proach, followed by deceleration in the excited state a
crossing the Condon point again without being deexcited
separation; the factor (2l11) accounts for the degeneracy

FIG. 9. Relaxation constant for producing one atom in i
ground state and the other in one of its excited states. The linear
circular polarization cases are labeled with the words ‘‘Linear’’ an
‘‘Circular,’’ respectively. The Landau-Zener result is labele
‘‘LZ.’’
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with respect to theml values, and the quantity within curl
brackets is calculated at the Condon pointRC( l ), which is
not the same for the potential curves of different par
waves. Both three-dimensional calculations show slow
saturation than theR-branch Landau-Zener estimate, whic
implies that the three-dimensional situation contributes m
excited-state production than predicted by two-state mod
The linear case is predicted to be worse in terms of h
generation than the circular polarization case. This resu
again a manifestation of the existence of more branches f
the excited states back to the ground states in the circ
case than in the linear. The only experimental test of excit
state production@22# was not far enough into the saturatio
regime to clearly test the validity of Landau-Zener mode
The present calculations show that additional experime
are needed to establish the amount of excitation due
blue-detuned laser.

H. Ground-state elastic-scattering

At long range, the ground state is the dressed s
uD1&Yl

ml(u,w), whose potential is contaminated by the 1/R3

character of the excited-state dipole-dipole interaction. T
mixing dramatically changes the threshold behavior of
ground-state scattering at moderate intensities as comp
with the same elastic process in absence of the light@53#. As
an illustration of this change in behavior, let us mention t
Mott and Massey@54# show, on pages 44 and 45 of the
book, that it is not possible to define a scattering length if
potential varies as 1/R3 at long range, but there is not such
restriction if the potential varies asymptotically as 1/R6,
which is the case forI50. The elastic rate coefficien
K1→1(I ), as a function of intensity and polarization,
shown in Fig. 10. In both polarization cases,K1→1(I ) in-
creases very fast with intensity and, at the highest inten
shown, 6 W/cm2, there is a difference of less than one ord
of magnitude between the elastic rate coefficient in the lin
and the circular cases. The elastic-scattering rate coeffic
for the linear case is higher than for the circular at the high
intensities in Fig. 10 because the number of partial wa
contributing appreciably to the linear cross section is gre
than to the circular. For example, the cross section for

FIG. 10. Elastic scattering rate coefficientK1→1(I ) for linear
and circular polarizations.
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transition (b51,l524,ml50) → (b851,l 8524,ml850) is
about four times greater for the linear polarization case t
for the circular.

The number of partial waves other than thes wave con-
tributing to the elastic cross section is appreciable at mod
intensities and this three-dimensional model predicts an
centuated increase in the elastic scattering of several or
of magnitude in a few W/cm2 of increase in intensity. Fur-
thermore, this large growth in the elastic cross section
achieved with substantial shielding of inelastic short-ran
processes and decreased production of excited-state at
as shown in Figs. 7 and 9, especially if circular polarizati
is used. It is also worth mentioning that even at relative
moderate intensities several partial waves are involved in
elastic-scattering and thus these rate coefficients do not
hibit purely s-wave Wigner threshold law behavior@55# in
this temperature range. For example, we find that, a
W/cm2 and an entrance kinetic energy corresponding
0.1 nK, it is necessary to include at least up tol54 in the
calculation for converging the cross section to four sign
cant figures. Ultimately, as the energy becomes low enou
only s waves will contribute to the elastic scattering. We w
explore the many issues associated with elastic scatte
and modified scattering lengths, in a separate paper.

IV. SUMMARY

In this work we have shown that there are important
fects in the three-dimensional, spinless model of optical s
pression of ultracold-collision rates that cannot be predic
by one-dimensional, two-state models in the saturation
gime. Despite the simplicity of these calculations, we ha
obtained results that are in qualitative agreement with rec
experimental results. Specifically, the polarization sensitiv
of the shielding in photoassociative ionization collision ra
in a sodium magneto-optic trap has been unquestionably
served in a recent experiment@12#, as qualitatively predicted
by this simple model. The tool developed here is the gen
alization of the close-coupling theory to the thre
dimensional, high-intensity-field situation. This approach
indeed, pioneering into the realm of high-intensity light fie
effects on ultracold atomic collisions. In this regime, there
still much to be understood.
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APPENDIX A: BODY-FIXED
TO SPACE-FIXED TRANSFORMATION

Given the body-fixed basis set of Eq.~5!, the space-fixed
electronic basis set is straightfowardly obtained by a rotat
transformation:

u j ,mj&5 (
L521

11

Dmj ,L
j* ~w,u,0!u j ,L&, ~A1!
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where Dmj ,L
j* (w,u,0) are elements of the rotation matr

@37,56–58#. Using the property@52#

Yl
ml~u,w!5A2l11

4p
Dml ,0
l* ~w,u,0!, ~A2!

and Eq.~A1!, we can write

u j ,mj&Yl
ml~u,w!5A2l11

4p (
L521

11

Dmj ,L
j* ~w,u,0!

3Dml ,0
l* ~w,u,0!u j ,L&. ~A3!

From the expressions on page 58 of the book by Rose@56#,
we obtain

Dmj ,L
j* ~w,u,0!Dml ,0

l* ~w,u,0!5 (
J5u l2 j u

~ l1 j !

(
MJ52J

1J

3^ j ,l ,mj ,ml uJ,MJ&

3^ j ,l ,L,0uJ,L&DMJ ,L
J* ~w,u,0!,

~A4!

where ^ j ,l ,mj ,ml uJ,MJ& and ^ j ,l ,L,0uJ,L& are Clebsch-
Gordan coefficients according to Messiah’s notation@52#.
Let us introduce the normalized symmetric top eigenfu
tions @57#

QMJ ,L
J ~u,w![A2J11

4p
DMJ ,L
J* ~w,u,0!, ~A5!

where J is the total angular momentum quantum numb

(JW[ lW1 jW) defined by the eigenvalue equation

~JW•JW !QMJ ,L
J ~u,w!5\2J~J11!QMJ ,L

J ~u,w!, ~A6!

with valuesJ5u l2 j u, u l2 j u11, . . . , l1 j . Thus Eqs.~A3!–

~A5! give

u j ,mj&Yl
ml~u,w!5 (

J,MJ ,L
A2l11

2J11
^ j ,l ,mj ,ml uJ,MJ&

3^ j ,l ,L,0uJ,L&u j ,L,J,MJ&, ~A7!

where we have defined

u j ,L,J,MJ&[QMJ ,L
J ~u,w!u j ,L&, ~A8!

and

(
J,MJ ,L

[ (
J5u l2 j u

~ l1 j !

(
MJ52J

1J

(
L521

11

. ~A9!
-

r

APPENDIX B: THE S MATRIX

Asymptotically, Eq.~19! gives

lim
R→`

F S d2

dR2
2
l 9~ l 911!

R2 DFb8,l 8,ml8

b9,l 9,ml9~E,R!

1
2m

\2 ~E2Eb9
`

!F
b8,l 8,ml8

b9,l 9,ml9~E,R!G50, ~B1!

where we have kept the centrifugal-potential term,Eb9
` is the

asymptotic value ofH applied onuDb9&Ym
l9

l 9 (u,w), and we

have used

¹W
R
W
2
5
1

R

]2

]R2R2
lW 2

\2R2. ~B2!

In this work, we assume that the interaction between
two atoms decreases faster thanR22 asymptotically. Hence
the general solution of the asymptotic radial Eq.~B10! is
given by @54#

lim
R→`

F
b8,l 8,ml8

b9,l 9,ml9~E,R!5A
b8,l 8,ml8

b9,l 9,ml9~kb9! j l~kb9R!

1B
b8,l 8,ml8

b9,l 9,ml9~kb9!nl 9~kb9R!, ~B3!

whereA
b8,l 8,ml8

b9,l 9,ml9(kb9) andBb8,l 8,ml8

b9,l 9,ml9(kb9) are independent o

R, j l 9(kb9R) and nl 9(kb9R) are the spherical Bessel an
Neumann functions, respectively, andkb9 is defined as

kb9[A2m

\2 ~E2Eb9
`

!. ~B4!

In this model, we assumeE.Eb9
` for all b951,2,3,4,5. Be-

cause the asymptotic forms of the Bessel and Neumann f
tions are given by@59#

lim
R→`

j l 9~kb9R!5
sin@kb9R2~p/2!l 9#

kb9R

[
ei [kb9R2~p/2!l 9]2e2 i [kb9R2~p/2!l 9]

2ikb9R
,

~B5a!

lim
R→`

nl 9~kb9R!52
cos@kb9R2~p/2!l 9#

kb9R

[2
ei [kb9R2~p/2!l 9]1e2 i [kb9R2~p/2!l 9]

2kb9R
,

~B5b!

it follows that we can also express Eq.~B12! as
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lim
R→`

F
b8,l 8,ml8

b9,l 9,ml9~E,R!5C
b8,l 8,ml8

b9,l 9,ml9~kb9!
e2 i [kb9R2~p/2!l 9]

R

1D
b8,l 8,ml8

b9,l 9,ml9~kb9!
ei [kb9R2~p/2!l 9]

R
,

~B6!

whereC
b8,l 8,ml8

b9,l 9,ml9(kb9) andDb8,l 8,ml8

b9,l 9,ml9(kb9) can be expressed i

terms of the coefficients in Eq.~B3!. Because@59#

eik
W

b•R
W
5(

l50

`

(
ml52 l

1 l

4p i lYl
ml* ~ukWb

,wk
W

b
!Yl

ml~u,w! j l~kbR!,

~B7!

wherekWb is a vector of magnitudekb and polar anglesukWb

andwk
W

b
, we can form the linear combination

uCb~E,R→`!&;uDb&eik
W

b•R
W
1 (

b851

4

uDb8&
eikb8R

R

3S kb

kb8
D 1/2f b

b8~E,ukWb
,wk

W
b
,u,w!,

~B8!

where f b
b8(E,ukWb

,wk
W

b
,u,w) is the scattering amplitude, an

the sign ‘‘; ’’ means that the left-hand side of Eq.~B8! is
equal to its right-hand side up to a normalization fact
Equation~B8! is an asymptotic solution of Eq.~19! which
includes the direction of the incident flux from the point
view of the atom at the origin. This dependence onukWb

and

wk
W

b
does not appear in Eqs.~B3! and ~B6!. Thus let us in-

troduce such a dependence by defining the superpositio

uC̄b~E,R!&[(
l50

`

(
ml52 l

1 l

4p i lYl
ml* ~ukWb

,wk
W

b
!uCb,l ,ml

~E,R!&.

~B9!

Assuming the normalization

^Cb,l ,ml
~E,R!uCb8,l 8,ml8

~E8,R!&

5db,b8d l ,l 8dml ,ml8
d~E2E8!, ~B10!

and imposing that the form of Eq.~B9! reduces to the form
of Eq. ~B8! in the limit R→` implies the asymptotic bound
ary condition of Eq.~21!.

APPENDIX C: EXPLICIT EXPRESSION
OF THE HAMILTONIAN MATRIX ELEMENTS

The total Hamiltonian can be written asH5Hni1HI ,
whereHni[H01HF . Let us consider the matrix elements
HI first. From Eq.~11!, we obtain
.

^Ug~R!,l ,ml uHI uUg8~R!,l 8,ml8&

52 i S 2p\vL

VQ
D 1/2^Ug~R!,l ,ml umW M•~«Ŵ qaq2«Ŵ q* aq

†!u

3Ug8~R!,l 8,ml8&. ~C1!

It follows from Eqs.~15! that the matrix element of Eq.~C1!
is not zero only if eitherg51 andg8Þ1,5 or g851 and
gÞ1,5. Without loss of generality, let us consider the ca
for whichg851 andgÞ1,5. Therefore using Eqs.~13!, ~15!,
and ~16!, we obtain

^Ug~R!,l ,ml uHI uU1~R!,l 8,ml8&

52 i S 2p

c
I D

1
2

(
J,MJ ,L

A2l11

2J11
^1,l ,mj~g!,ml uJ,MJ&

3^1,l ,L,0uJ,L&^R,1,L,J,MJumW M•«Ŵ quR,0,0,l 8,ml8&.

~C2!

Since the polarization unit vector«Ŵ q is defined, for
q50,61, as

«Ŵ 0[zŴ,

«Ŵ 61[7
1

A2
~xŴ6 iyŴ !, ~C3!

the quantitymq
SF[mW M•«Ŵ q is the space-fixedq component of

the spherical tensor operator of rank 1,mW M . Thus using Eqs.
~6!, let us calculate

^R, j51,L,J,MJumW M•«Ŵ quR,0,0,l 8,ml8&

[^R,1,L,J,MJumq
SFuR,0,0,l 8,ml8&

5 (
k521

11

^1,1Xu~R!,Lumk
BF~R!u0,1Sg

1~R!,0&

3E
0

2p

dwE
0

p

sinuduQMJ ,L
J* ~u,w!Dq,k

1* ~w,u,0!

3Qm
l8,0

l 8 ~u,w!, ~C4!

where mk
BF(R) is the body-fixed counterpart ofmq

SF,
1Xu(R)5

1Su(R) for L50, and 1Xu(R)5
1Pu(R) for

L561. Using Eq.~A5!, we can show that@56#

E
0

2p

dwE
0

p

sinuduQMJ ,L
J* ~u,w!Dq,k

1* ~w,u,0!Qm
l8,0

l 8 ~u,w!

5A2l 811

2J11
^1,l 8,q,ml8uJ,MJ&^1,l 8,k,0uJ,L&. ~C5!

From Eqs.~C2!, ~C4!, and~C5!, it follows that
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^Ug~R!,l ,ml uHI uU1~R!,l 8,ml8&

52 i S 2p

c
I D 1/2(

J,MJ

A~2l11!~2l 811!

2J11

3^1,l ,mj~g!,ml uJ,MJ&^1,l 8,q,ml8uJ,MJ&

3 (
L521

11

^1,l ,L,0uJ,L&^1,l 8,L,0uJ,L&

3^1,1Xu~R!,LumL
BF~R!u0,1Sg

1~R!,L850&. ~C6!

Because we are considering optical collisions, in which
electromagnetic coupling is not zero asymptotically, we w
neglect the R-dependent part of the matrix eleme
^1,1Xu(R),LumL

BF(R)u0,1Sg
1(R)& @33,34#. Thus we approxi-

mate Eq.~C6! by

^Ug~R!,l ,ml uHI uU1~R!,l 8,ml8&

'2 i S 2p

c
I D 1/2(

J,MJ

A~2l11!~2l 811!

2J11

3^1,l ,mj~g!,ml uJ,MJ&^1,l 8,q,ml8uJ,MJ&

3 (
L521

11

^1,l ,L,0uJ,L&^1,l 8,L,0uJ,L&

3^1,LumL
BF~`!u0,L850&, ~C7!

wheremL
BF(`)[mL

BF(R→`) and the statesu j ,L& are defined
by Eq. ~5!. From Eq.~A1! and the orthonormality relation
@56#

(
m

Dm,l
j* ~w,u,0!Dm,k

j ~w,u,0!5dl,k , ~C8!

we obtain

^1,LumL
BF~R→`!u0,L850&

5
1

A3(mj
(
mj8

Dmj ,L
j* ~w,u,0!Dm

j8 ,L
j

~w,u,0!

3^ j51imSFi j 950&^0,1,0,mj8u1,mj&

5
1

A3
^ j51imSFi j 950&, ~C9!

where we have used Wigner-Eckart theorem@52# and
^ j51imSFi j 950& is the relevant reduced matrix element

mW M . From Eqs.~C7! and ~C9!, and the properties of the
Clebsch-Gordan coefficients@52#, we obtain

^Ug~R!,l ,ml uHI uU1~R!,l 8,ml8&

'2 i S 2p

3c
I D 1/2^ j51imSFi j 950&dmj ~g!,qd l ,l 8dml ,ml8

.

~C10!
e
l

Applying Wigner-Eckart theorem on Eq.~12! allows us to
express Eq.~C10! in terms of the Rabi frequencyV:

^Ug~R!,l ,ml uHI uU1~R!,l 8,ml8&'\Vdmj ~g!,qd l ,l 8dml ,ml8
.

~C11!

To relate the molecular Rabi frequencyV with the atomic
Rabi frequencyVA, we use Eqs.~27! and~28!. Thus we get

V5A2VA. ~C12!

The numerical value ofVA we take in this work is based o
the 3s→3p transition of the sodium atom~neglecting fine
and hyperfine structures!. Thus for an intensityI given in
W/cm2, we use the formula

VA

2pc
'1.479 6631023AI ~W/cm2! cm21. ~C13!

The noninteracting HamiltonianHni can be written as a
sum of three terms:

Hni52
\2

2m

1

R

]2

]R2R1
lW 2

2mR2 1W~R!. ~C14!

Thus let us now consider the matrix elements ofW(R) for
the cases in whichg,g8Þ5:

^Ug~R!,l ,ml uW~R!uUg8~R!,l 8,ml8&

5d j ~g!, j ~g8! (
J,MJ ,L

A~2l11!~2l 811!

2J11

3^ j ~g!,l ,mj~g!,ml uJ,MJ&

3^ j ~g8!,l 8,mj~g8!,ml8uJ,MJ&^ j ~g!,l ,L,0uJ,L&

3^ j ~g8!,l 8,L,0uJ,L&WuLu
j ~g!~R!, ~C15!

where we have definedj (g51)[0, and j (g52,3,4)[1.
From Eq.~C15!, it follows that

^U1~R!,l ,ml uW~R!uU1~R!,l 8,ml8&5d l ,l 8dml ,ml8
W0

0~R!,

~C16!

^U1~R!,l ,ml uW~R!uUg8Þ1,5~R!,l 8,ml8&

5^UgÞ1,5~R!,l ,ml uW~R!uU1~R!,l 8,ml8&

50, ~C17!

^UgÞ1,5~R!,l ,ml uW~R!uUg8Þ1,5~R!,l 8,ml8&

5 (
J,MJ

A~2l11!~2l 811!

2J11
^1,l ,mj~g!,ml uJ,MJ&

3^1,l 8,mj~g8!,ml8uJ,MJ& (
L521

11

^1,l ,L,0uJ,L&

3^1,l 8,L,0uJ,L&WuLu
1 ~R!. ~C18!

Since
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(
L521

11

^1,l ,L,0uJ,L&^1,l 8,L,0uJ,L&WuLu
1 ~R!

5^1,l ,0,0uJ,0&^1,l 8,0,0uJ,0&W0
1~R!

1@11~21! l1 l 8#^1,l ,1,0uJ,1&^1,l 8,1,0uJ,1&W1
1~R!,

~C19!

we conclude that

^UgÞ1,5~R!,l ,ml uW~R!uUg8Þ1,5~R!,l 8,ml8&50

unlessl 85 l ,l62. For the artificial state, we take

^UgÞ1,5~R!,l ,ml uW~R!uU5~R!,l 8,ml8&

5^U5~R!,l ,ml uW~R!uUg8Þ1,5~R!,l 8,ml8&

50, ~C20!

^U1~R!,l ,ml uW~R!uU5~R!,l 8,ml8&

5^U5~R!,l ,ml uW~R!uU1~R!,l 8,ml8&

5d l ,l 8dml ,ml8
DA~R!, ~C21!

^U5~R!,l ,ml uW~R!uU5~R!,l 8,ml8&5d l ,l 8dml ,ml8
WA~R!.

~C22!

The centrifugal part ofHni gives rise to the following
matrix elements:

K Ug~R!,l ,mlU lW 2

2mR2UUg8~R!,l 8,ml8L
5dg,g8d l ,l 8dml ,ml8

\2l ~ l11!

2mR2

2K Ug~R!,l ,mlU lW 22\2l ~ l11!

2mR2 UUg8~R!,l 8,ml8L ,
~C23!

where the last equality follows from the fact that the mat
elements in Eq.~C23! do not involve an integration overR in
their definition. In this model calculation, we assume that

term 2^Ug(R),l ,ml u@ lW 22\2l ( l11)#/2mR2uUg8(R),l 8,ml8&
is negligible and write Eq.~C23! as

K Ug~R!,l ,mlU lW 2

2mR2UUg8~R!,l 8,ml8L
'dg,g8d l ,l 8dml ,ml8

\2l ~ l11!

2mR2 . ~C24!
an

et
e

Here we assume that the Born-Oppenheimer approxima
@35# is valid, as already discussed in Sec. II. This assump
is further yet justified because the excitation process is
one dynamical effect that we are investigating and it occ
at about 400a0, a region where the potentials are alrea
given by their asymptotic behaviors. Therefor the term n
glected in Eq.~C24! depends onR asR2n`, wheren`.2,
implying that the centrifugalR22 term is the leading one a
the dynamically relevant region. Of course, an exact the
would require the correct expression, Eq.~C23!, at very short
range, but we have already defined the process we wan
investigate: the suppression of production of two atoms
the artificial state, which can be studied carefully without t
complications of the neglected term in Eq.~C24!.

The radial term ofHni gives the following matrix ele-
ments:

KUg~R!,l ,mlU2 \2

2m

1

R

]2

]R2RUUg8~R!,l 8,ml8L
52

\2

2m
dg,g8d l ,l 8dml ,ml8

1

R

]2

]R2R

2
\2

m KUg~R!,l ,ml u
]uUg8~R!,l 8,ml8&

]R S 1R1
]

]RD
2

\2

2m KUg~R!,l ,ml u
]2uUg8~R!,l 8,ml8&

]R2 . ~C25!

We assume that the radial Born-Oppenheimer terms are
ligible and write Eq.~C25! as

KUg~R!,l ,mlU2 \2

2m

1

R

]2

]R2RUUg8~R!,l 8,ml8L
52

\2

2m
dg,g8d l ,l 8dml ,ml8

1

R

]2

]R2R. ~C26!

Again, the justification we have given for Eq.~C24! also
applies here for Eq.~C26!, since extra Born-Oppenheime
terms that are not important in the excitation region on
complicate the problem without clarifying the issue, and
are building a model calculation that is only intended to
produce experimental results in a qualitative manner. T
reader interested in how to estimate the long-range value
the Born-Oppenheimer terms can find a very insightful e
ample in Ref.@40#.

Now we have all the necessary quantities that enter
~19!, which is first of all written in terms of the basis states
Eqs. ~14! and ~30! by using Eq.~20!. The Hamiltonian in
matrix form, Eq. ~38!, is then written in terms of the un
dressed basis states through Eqs.~29! and ~40!. All the dif-
ferent matrix elements in the undressed basis are given
Eqs.~C11!–~C26!.
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