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Theory of optical suppression of ultracold-collision rates by polarized light
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We have developed a full three-dimensional quantum scattering approach to optical suppression of ultracold-
collision rates. These calculations are carried out assuming colliding atoms without fine or hyperfine structure,
which have a!S—!P transition. The three-dimensional model predicts that the optical suppression of
ultracold-collision rates saturates with light intensity much more slowly than predicted by two-level curve-
crossing models. Circularly polarized light is significantly more effective for optical suppression, and causes
less increase in atomic kinetic energy due to excited-state production than linearly polarized light. The sup-
pressor optical field can also cause orders of magnitude increases in ground-state elastic-scattering rates.
[S1050-294P@7)06701-2

PACS numbsg(s): 32.80.Pj, 33.80.Ps, 34.50.Rk, 34.80.Qb

[. INTRODUCTION frequency in order to be resonant with the quasimolecular
system. The internuclear distanRe around which the exci-
The quest for achieving Bose-Einstein condensation is &ation is localized is called “the Condon point.” Thus the
major motivation to investigate the nature of ultracold colli- atoms never get closer together than atiRgtand inelastic
sions[1-4]. Such a phase transition is predicted to occurcollision processes due to interactions at much shorter dis-
when the thermal de Broglie wavelength of an assembly ofances are strongly diminished. Figure 1 shows a sketch of
atoms becomes comparable to the average interatomic difliS basic description. .
tance[5,6]; but inelastic collision processes restrict the den-  Although the shielding phenomenon has been semiquan-
sity of trapped atom§7]. These inelastic processes lead tofitatively explained by two-state Landau-Zener models
loss of atoms from magneto-optical8—16], far-off-  [23.28, these models are greatly oversimplified and can be
resonanceg 17,18, or purely magnetid19—21 traps. Re- Misleading. In fact, the two-state Landau-Zener picture pre-
cently, however, optical shielding of short-range collisiondicts that photoassociative ionization in ] and Penning
processes in ensembles of cold atoms has been demonstrat@ization of trapped Xe metastable are suppressed at high
experimentally{12,22—27 and interpreted theoreticalfg]. ~ 1aser intensity much more effectively than is observed
This phenomenon presents the prospect of appreciably rélg,Sq. This failure to achieve complete shielding implies a
ducing occurrence of collisions that lead to loss of trappedimitation on the process that must be understood. In this
atoms and strongly enhancing the ground-state elastic¥ork we go beyond the limits of two-state models by setting
scattering rate. up a cl_ose—coupled t_h_ree-dlmensmnal quantum scattering
The essential phenomenon underlying optical shieldingalculation for the collision

requires the existence of a long-range, excited molecular re-
pulsive potential curve commonly arising from the dipole-
dipole interaction between two identical atoms exchanging a
virtual photon of excitation. Common examples can be found
among noble gas and alkali-metal atoms such a$2%¢ or
Na[29]. Two such atoms, initially approaching each other on
their molecular ground state, will reverse their trajectories
and separate if an optical field resonantly couples the mo- <o Inelastic processes
lecular ground state to a repulsive excited state at a well-
localized internuclear distance. This effective repulsion be-
tween the colliding atoms prevents them from reaching the i, 1. sketch of the basic idea of suppression of collision rates
short-range region where inelastic processes could lead % |aser-cooled atoms. Two atoms in their ground stags d)
trap loss. The atoms are then said to be “shielded” fromapproach each other and a photon is absorbed at about the Condon
reactive or excitation processes, and the corresponding d@oint R.. Then the interaction energy between the atoms becomes
creased collision rates are said to be “suppressed.” Since th@pulsive and the quasimolecule dissociates in one ground-state and
interaction involved is repulsive, it follows that the shielding one excited-state atorg¢-e). This process strongly diminishes
light field has to be tuned to the blue of the atomic transitioninelastic collisions occurring at distances shorter tRan

Interaction energy
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Room temperature collisions in a strong field are known
to saturate differently from a two-state Landau-Zener model
due to multiple photon exchanges during the scattering pro-
cesq 32]. We show that the same is true at ultracold collision
energies and that the shielding phenomenon depends
X ~ ~  strongly on the photon polarization. In the following, we will
of symmetry “P, and P(eq,fiw.) represents a photon©f  consider an energf/k =240 uK, where 240uK is equal
energyh o, and polarization unit vectarq, whereq=0 for  to the Doppler cooling limit temperatufg, for sodium[10].
linear polarization andj= * 1 for circular polarization. This In this work we consider only one energy and detuning
model represents real scattering of group Il atdiMg, Ca, for three reasons. First, our aim is to show how, for a typical
etc) and may serve as a qualitative guide for understandingollision energy and detuning, the three-dimensional physi-
effects in more complex atoms like Xe or Na. Indeed, acal picture is different from the one-dimensional picture.
recent experimenf12], suggested by the present calcula- Second, the length of the calculations makes surveying a
tions, confirms our qualitative predictions. This experimentyige range of conditions difficult. Third, the experiments
shows that optical suppression of photoassociative ionizatio[llzizzg have only been reported at a detuning close to the
of ultracold sodium atoms is dramatically sensitive to theg,a used in these calculations. We have done some calcula-
intensity and polarization of the suppressor field. As intensi%ons for different energies and from our results it is apparent
increases, shielding by circularly polarized light is more ef'that a thermal average would not be qualitatively different
ficient than by linearly polarized light, a result that is in from the results shown here. In a future paper we plan to
)f)resent very low temperature results in the regime appropri-

A(LS)+A(LS) + P(Zq.hw ) —~A(S)+A(P), (1)

whereA(1S) stands for an atom in its ground state of sym-
metry 1S, A(*P) stands for an atom in its first excited state

using our three-dimensional model. Choosing Bq.elimi- . . .
nates spin issues, since only singlet states are involved, afie fqr Bose-E'mstem gondensaﬂon. .
allows us to treat field-dressing effects quite straightfor- This paper s organized as follows. In Sec. _” we descr!be
wardly. Of course the fine and hyperfine structures are imth€ formulation of the standard close-coupling scattering
portant for real alkali-metal and noble gas systems at ultrath€0ry to treat Eq(1), taking into account the high-intensity-
cold temperatures[29], but are too complex to be field issues involved. We begin by defining the asymptotic
incorporated in a theoretical description of strong-field ef-basis set of states, which specify the entrance and exit chan-
fects in a first attempt. Here we present a rigorous, fullynels. Then we establish the correlation between these asymp-
quantum mechanical calculation to investigate physical eftotic states and the molecular basis set. Next we discuss the
fects not predictable by simple two-channel models. It istotal Hamiltonian and present a brief outline of standard
essential to emphasize at this point that we use a standapibse-coupling theory to define the equations to be solved.
scattering theory approach to solve exactly a threeWe introduce thes matrix by imposing scattering boundary
dimensional model including light polarization. We treat ex- conditions to the solutions of the coupled equations and write
actly the effects of the radiation field as power increases andown the cross sections for the processes of penetration to
the light is no longer a weak perturbation on the collision.the inner region, production of excited states, and elastic
With this rigorous three-dimensional model we investigatescattering in terms of th&-matrix elements. Since in this
the validity of simple two-channel models that have beemaper we are considering bosons, we give a brief analysis of
proposed and show that they are not capable of describingqistinguishability and derive its consequences relevant to
the saturatl_on regime correctly. It is not possible t(_) calculatgye present calculations. We obtain the probability of pen-
the saturation behavior if the full fine and hyperfine StrUC-atration into the inner region by introducing an artificial

tures are included in thg theory. Although the. light figld in- hannel that is coupled only to the ground-state inner wall.
teraction can be exactly introduced together with the fine an?iinally, we present the Born-Oppenheimer potential curves

hyperfine structures in the weak-field linj#1], we cannot . . . o .
: X ' and describe the matrix representing the Hamiltonian used in
solve this multichannel problem for the strong-field case be;[h de t Ive this problem
cause the number of coupled equations will become imprac- € code 1o solve this problem. . .
In Sec. lll we describe the numerical outcome of this

ticably large. However, in this paper we show that the mul- . -
tichannel character of this simplified three-dimensionalCl0S€-coupling theory. We present the rate coefficigh®y

model, although excluding internal spin structure, has a dral€/evant to this work and define the shielding measure as the
matic effect on optical shielding of colliding ultracold atoms. Probability of penetration into the inner region, considering
Similar effects will certainly be strong also in collisions be- the contribution of different partial waves. Next we present
tween real alkali-metal atoms including fine and hyperfinethe two-state Landau-Zener theory and show the striking de-
structures, but here we take just the first step towards invegendence of optical shielding on light polarization. We also
tigating these effects. predict that the shielding measure has an anisotropic charac-

Let fwy be the energy separation associated with theéer due to the fact that the highkwave contributions can be
atomic transition'S — P. To further simplify the model, appreciable. Then we show the results of excited-state pro-
we work at a large enough detunidg= w, — wg that spon-  duction and compare them with the Landau-Zener model.
taneous decay of the upper state during the shielding inteilinally, we present the results for elastic-scattering, showing
action can be ignored, as shown by Suomieeal.. [28]. In  the increase in orders of magnitude of the rate coefficient for
this work we consider the case in whidh=500 MHz, cor-  a few W/cn? of increase in intensity. In Sec. IV we summa-
responding to approximately 50 natural linewidths of the as+tize the main results of this work, outlining their significance
sumed atomic transitiodS — 1P. for future research.
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Il. DESCRIPTION OF THE MODEL 3. R=|R|Sin0003p, (24
A collision in the presence of a blue-detuned light field ..
near atomic resonance can have three consequences: the y-R=|R]|singsing, (2b)
shielding of an inelastic process that occurs when the atoms L
penetrate closer thaRc, production of hot excited atoms, Z-R=|R|co9, (20

and modified ground-state elastic scattering. Our goal in this A n - _
section is to set up an exact three-dimensional quantum scatherex, y, andz are the unit vectors parallel to they, and
tering calculation for the effect on the rates of all three pro-Z axes, respectively. Later we will assume that the two nuclei

cesses. We have to describe the collision in a strong radiatiodf® identical bosons and we will show that, as a consequence,
only even values df are involved in the scattering process of

field of polarization;*q where the arbitrary collision axis Eq_(1). For the moment, however, we suppose the two nu-
makes an angl@: with ;*q_ We first must set up the basis Clei are isotopes that can be distinguished one from the other.
q

that describes the asymptotically separated field-dressed a;lih's restriction will be \/_Vlthdrawn Whe’? we consider the cal-
culation of the scattering cross sections. To formalize the

oms quantized in a space-fixed frame definedggy Then
we must describe the rotating symmetric top basis set for th
guasimolecule formed when the two atoms are close enoug

together to interact. Knowing Fhe transforma_non between I2Y|m'(0,<p)=l(l+1)h2Y|m'(0,<p), (33
these separated-atom and quasimolecular basis sets lets us set
up the coupled equations which describe the collision dy- 2 rum _ m
namics in a radiation field. Since the field breaks the rota- z 1Y (60, 9)=mAY (6, 0). (3D)

tional symmetry of free space by imposing a preferred direc-  Asymptotically, the motion of the electrons of both atoms
tion, the quasimolecular total angular momentum is not &an be expanded in terms of basis states of definite total
good quantum number, and we generate an infinite set aflectronic angular momentum. Let us add together the total
coupled equations. In practice, these can be truncated afterefectronic angular momenta of both colliding atoms and de-
few angular momenta, and solutions can be obtained. Imposiote the resulting quantum number pyThe two relevant
ing standard boundary conditions lets us extract theituations, according to Eql), correspond, first, to two at-
S-matrix elements that describe ground- and excited-statems in their'S ground states, and, second, to one atom in its
collisions of the dressed atoms as functions of the laser inlS ground state and the other in it first excited state.
tensity | and ¢; . We will explain how this is done in the Thus the first situation is characterized py0 and the sec-
following subsections with further details given in the Ap- ond byj=1. Hence we denote the relevant electronic basis
pendices. We follow the procedure for weak-field collisionsstates by |j,m;) (m;=0 for j=0; and m;=0,+1 for

of type (1) set up by Julienne and Mi¢83,34 generalized j=1), wherem; is the quantum number associated with the
to the case of strong fields. We also point out that, since wgrojection of the total electronic angular momentum operator
are emphasizing the effects of strong electromagnetic interf anngAZ. Summarizing,

actions on the colliding system, we have neglected the radial

issue of the relative rotational motion, le= —iARX 5@.
herefore

and angular nonadiabatic Born-Oppenheimer couplisgs lej m=j(+1)42j,m), (43)

Appendix Q. We are justified in disregarding these contri- ! )

butions because, according to the Born-Oppenheimer expan- z flj m)=miA|j,m;) (4b)
’1 it/

sion of the Hamiltonian in terms of the dimensionless param-
eter (M/M)Y4 wherem is the electron mass arld is the  In the absence of laser light, the asymptotic basis set describ-
nuclear mass, the nonadiabatic couplings are of fifth anihg the two-atom system, including nuclear motion, is given
higher order in this parameter, while the ones we have conpy all the statesj ,m,—)Y,m'(H,cp).
sidered are of the fourth and lower ord85].

B. Correlation between asymptotic and molecular basis sets

To correlate the states of this separated-atom system with
the states of the quasimolecular system, let us express

To calculate collision rates for Eq1), let us first write | ,m;) in terms of its body-fixed counterparts,A), where
down the relevant basis of states at a very large separation of js’ defined by the eigenvalue equation

the two approaching atoms. In such a situation, we can ne-

glect any interaction between the two atoms and separate §;

their electronic motions from the relative rotational motion —|j,A)y=A%|j,A). (5)
of the nuclei. Let us choose a space-fixed right-handed frame R

A. Asymptotic basis set

of coordinates. LeR be the vector from one of the nuclei to Thys from Egs(4) and the isotropy of space, it follows that
the other. Therefore, the relative rotational motion of the twoA_0+1 AsR=IR| . the statesi A} do not d d
atoms is described by the set of all spherical harmonic func=. ~ ~'— - S =|R| -, the statesj, A) do not depend on
tions Y™(6,¢) (1=0,1,2 .. .: m=—1,—1+1 1-1)) R, for, as is expected, one atom does not interact with the
| \O0® G T oL T nh other asymptotically. AR decreases, the interaction be-
where 6 and ¢ are the polar angles dR defined by the tween the atoms increases and the motion of the electrons

relations couples with the interatomic axis in such a way thas no



1194 NAPOLITANO, WEINER, AND JULIENNE 55

longer a good quantum numbE36]. However, because of arbitrary, letV3(e)=0 andV\lA|:o,1(°O)=ﬁwo. Since we are
the cylindrical symmetry of the quasimoleculg, is still a  considering a situation in which there is only one laser mode
good approximate quantum number even for very siRall populated byn, photons and spontaneous emission is not
The total angular momenturﬁ= ;+r (neglecting nuclear important, the Hamiltonian for the laser field is written
sping is a good quantum number in the absence of light.

Thus at short enougR, Hund’s coupling caséa) is appli- He=ho(ajag—ny), (10
cable[36] and, neglecting retardation effects, the molecular

wave functions relevant to the process of E.are given by Whereag is the operator that creates a photon of frequency

[37] w_ and polarization unit vecto&?q, a, is the corresponding
O A= —@J Iy + _ annihilation operator, and we have chosen the zero of field
IRJ=0A=0J,M3)=0}, 1~o(#¢)[0. 24 (R),A=0), energy as the eigenvalue of the state withphotons. In the
63 electric dipole approximation, fdR<c/w, [38], the interac-
. tion HamiltonianH, is written
|Ryj :11A:OPJ1MJ>E®‘|3/IJ,A=O(01¢)|1112J(R)1A:O>1 !

(6b) 27h o, V2. -
HI:_i( ) MM'(Sqaq_ggag)r (1)

IRj=1A=+1J,M);)
=03 1 =+ N
®MJvA:i1(0’QD)|1’ M,(R),A=*1), 60 whereVy, is the quantization volume angy, is the molecu-
. . . . lar electric dipole operator.
J
where@MJ A(0.¢) are the symn_1etnc tolp Tgenfuncuoqs N1t will become clear when we apply the scattering bound-
troduced by Eq(A5) of Appendix A;[0,"X5(R),A=0) is ary conditions that it is necessary to use a basis in which
the electronic ground state of the molecule formed by theq is asymptotically diagonal. Thus it is natural to treat the
two colliding atoms, it has the symmetfg ; and correlates two-atom system and the laser in the dressed picture. Let
with the electronic state of the separated atoms in theifn ) denote the laser state in which there arephotons of
15 + _ 1 — S
ground states]1,"% (R),A=0) and [LTI(R),A=%1)  foquencyw, and polarization unit vectog,. The electro-
are the molecule electronic states, of symmetri®g and  magnetic interaction with the two-atom system will couple
I1,, respectively, that correlate with the.elgct_romc states OEhe state |j =0,mj=0>Y|m'(9, o)ln) with the state
the separated atoms when one of them is in its ground stafe_ um, , ,
and the other is in its first excited state. For simplicity, well =1mM=a)Y, (‘9'?)|”L_ 1) and the corresponding matrix
will assume that'S has even parity andP has odd parity, €lement is the Rabi frequendy,
thus the molecule excited-state symmet®y is present and

_ 1/2
not 13, [36]. ﬁﬂ_—i(ZTﬂ-|

(i=1m;=dleq wmlj=0m;=0),

C. The Hamiltonian (12

In this model, the Hamiltoniahi consists of three parts: \hich we can choose as a real quantity due to the arbitrari-
_ ness of the global phase factors of the quantum states. Here
H=HotHetH, D s the intensity of the laser field:

whereH, is the quasimolecule Hamiltoniahl is the laser-

field Hamiltonian, andH, is the interaction Hamiltonian be- _ ﬁCwLn (13)
L\Neen the quasimolecule and the electric figlg, is given Vo
y

52 It is worth remarking that some authors define the Rabi fre-
Ho=— —§%+V(R), (8) guency as one-half the matrix element in EtR) [39]. For
2p R fixed | and my, the total HamiltonianH is asymptotically
_ o diagonal if written in the dressed-state basis spanned by
where u is the reduced mass of the two colliding atoms,

- (hzlz,u)V?e is the kinetic energy operator of the two atoms
about their center of mass, aM{R) is the interaction en- |DB(R)*|'mI>E;1 My | U,(R),1,my) (14)
ergy of the two atoms that depends on the internuclear sepa-

ration R and the electronic variables. Let us denote the eizg, B=1,2,3,4, where

genvalue of the operatorV(R) associated with the e

eigenvectofR,j,A,J,M ;) bnyM(R): UL(R).Lm)=|R,j=0m;(1),1,m)|n.), (153
V(R)|R,j,A, M) =V, (RIR,j,A,JMy), (9

4

|U,(R),l,m)=[R,j=1,m;(y),l,m)|n . —1), (15b)
where we suppose nd doubling and thus the states with

A= =1 are degenerate. The functio‘mg\‘(R) are the usual for y=2,3,4, with mj(1)=0, m;(2)=q(q—1)/2—-1,
Born-Oppenheimer potentials. Because the zero of energy i®;(3)=1—q(q+1)/2, andm;(4)=q;
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B.lL.m

21+1 4 =« + F (E,R)
R,j,m;,l,m)= ——<j,l,m ,m|J,M gl m
a ) J,MEJ,A 2320 mi M) Vo mERY)=2 ¥ ¥ ————
| B=11=0 m=—1 R
x(j,1,A,03,A)R,j,AJM;)  (16)
J X|Dg(R),I,m), (20)
(see Appendix A& andM , are the matrix elements of E is the total energy of the colliding pair, and the coefficients
A 0 0B F,’g’,l’lr?'m,(E,R) are required to satisfy boundary conditions
ST
N 10 5 suitable for scattering processes:
[M]= : 17 12
0 1 g1 m . M —i(kgR—l/2)
A_ 0 0 B_ F,B,l,m| (E,OC)—| _rzﬂ_ﬁ kﬁ) 5ﬁv3'5|,|'5m|,ml'e B
" 12 5
—j i(kgrR—ml"/12) m
where '(2wﬁ7kﬁ,> et Spim (B,
+h Q) @)
As= 2’ (183 B'.1".m' . . .
VEL+(7Q) whereS, | - ' (E) is the so-calleds matrix for the transition
CE. from state|D,3>Y|m'(9, @) to state|DB,>Y|"?' (6,¢). There is
B.=———— (18b) an excellent discussion by Mi¢42] about this point and the
VEZ +(7Q)? reader is also referred to Appendix B for details.
and E. Scattering cross sections

Defining theT matrix as

(180 Bl m
Tﬁ,l,ml I

+

o _h(-Ax JAZF407)
- - _

,vllv !
(E)=0p.5/ 61" S ot — Sﬁ,l,mlml (E), (22

The basis states given by Ed4) are the states prepared or and using Eqsi20) and(21) allows us to write the scattering
detected in the asymptotic region. These are the states wamplitude as
need to define th& matrix, since they describe two isolated

atoms in a radiation field, separated by a large distance. ) L ,

In this work we use a conservative Hamiltonian treatmentfg (0;2B,go|2ﬁ, 0,¢)= k_z 2 2 E jii=1'-1
and neglect spontaneous emission. The shielding dynamics is BI=OM==11"=0 m/ -1’
primarily associated with the effect the field has on the qua- - . ,
simolecule in the vicinity of the Condon point. When the x TP MEY™ (66,0 )Y (6, ¢)

- . . B’|’m| | kBY()DkB | Y(P ’

detuning is large enough, the excitedRd/molecular poten-
tial induces a strong acceleration to the atoms. Hence the (23

atoms do not spend enough time near the Condon point to
spontaneously emit photons. A rigorous treatment of thevhered, ande, specify the incident directiofsee Appen-
spontaneous emission requires a full density matrix approactiix B). We can calculate the differential cross section of
[28,30. Such density matrix calculations indicate that spon-scattering from statg to 8’ by the usual proceduf&3] and
taneous emission can be neglected near the Condon pointife find
A>y. Based on these results, our choicedof 500 MHz

and y=10 MHz justifies neglecting spontaneous emission d(fﬁﬂlgr(E,Gﬁﬁ,QDEB,H,(p)
near the Condon point. We also neglect spontaneous emis- .

) . . . T sinfd 6d ¢
sion occurring asymptotically, because the light field inten-
sities we consider are not high enough to populate the u
dressed excited states appreciably.

=115 (6 p 00, 0.0)2 (29

"Fo calculate the total cross section for a transifbr B8’ we
proceed by averaging over the incident directicﬂﬁﬁ(gogﬂ)

_ and integrating over the final directiom(¢):
D. Close-coupling theory

The standard close-coupling equations are given by 1 f” . fZ’T . f’* Jz"
[40'411 (T‘B_,BI(E)—E Odekﬁ 0 d(PkB Odﬂ 0

(Dgr(R),1", M| (H=E)[¥ g1 10 o (E,R)=0, (19 xdel|f8' (6. 0i . 0.0 (25

where and from Eqgs(23)—(25) we get



1196 NAPOLITANO, WEINER, AND JULIENNE 55

I L L this special case is a strong difference between shielding for
0pp(E)= _22 >y |-|-ﬁ Iv' M (E)|2. the cases of linear and circular polarized light, as we show
k,B =0m=-1|7=¢ ml’:7|r Bilmy below.
(26)

G. The atrtificial channel probe

F. Indistinguishability To probe the amount of flux entering the inner region of

— L the ground-state potential, we use the method of the artificial
So far we have been considering two distinguishable nug;.;era5] This method consists of introducing an extra po-

clei, but now let us determine the required changes in thigepiia| curve as if there were another electronic probe state

Iorrr]ulatlc;p fofr th:aha(;tual ctase of |tdent|cal Bucée" Th; glec'coupled to the real states in the problem. We are allowed to
ronic motion for the two-atom Systeém can be Uescribed, aSg 5456 the most convenient artificial state for a particular

ymptotically, by linear combinations of products of atomic urpose. For the present problem, we choose a potential
wave functions. For the ground state, for example, we CarEurve that is coupled locally to the classical inner turning
write point of the ground-state potentMﬁ(R) at very low kinetic
j=0m;=0)=A,S)|S), (27)  energies (w_240 ,uK)._ The changes in the present formalism
amount to introducing one more state of indgx5 and

. . . , ~ replacing Eq(17) with
where A, is the electronic antisymmetrizer operator, the first

ket|S) indicates an atom at the origin in it$ ground state, Ay 0 0 B, 07
and the second kdS) indicates an atom at infinity in its 0 1.0 0 0
1S ground state. In the case of identical nuclei of zero spin,
no changes are necessary in E#7) because the product [M]=] 0 01 0 O (29
|S)|S) is symmetrical under exchange of nuclei. For the ex- A O OB. O
cited states, if the two nuclei are not identical, we have
L 0O 0 0 0 1]
. |S)|P(m))+[P(m;))[S) We define
li=1m;)=A, , (28
V2 V(R)|Us(R),1,m)=W,(R)|Us(R),I,m), (30

where the first productS)| P(my)), indicates one atom i its whereW,(R) is the totally arbitrary artificial potential curve:
1S ground state at the origin and the other in i excited oA

state, of space-fixed angular momentum projectign at Wx(R)=4ep (ﬁ

infinity, and the second produdt®(m;))|S), indicates one

atom in its 1.P excited state, Qf_space—flxed angulqr momen-here we takes,/hc=1.8x10" cm™%, go=4.1a,, and
tum projectionm;, at the origin, and the other in itsS Ap27=500 MHz. Also, we need the coupling matrix ele-
ground state at infinity. Equatiof28) correlates to the un- ment

gerade excited states because we have suppdaéas odd

parity and 'S even parity. Furthermore, if we exchange nu- (Uz(R),I,m|V(R)|Us(R),I",m/)= 84,1011 Om m Da(R),
clei, Eg.(28) remains unchanged, meaning that it represents (32)
exactly the situation for two identical boson nuclei. The con-

sequence of Eq927) and (28) being both invariant under whereD 4(R) is a function ofR localized about the classical
nuclei exchange implies that the states of Eif)) are also  inner turning point ofV3(R):

invariant. Therefore, following the procedure thoroughly dis-

cussed by Verhaar and co-worké¢t®,44], we find that only DA(R)= hce R-ow?,
even values off contribute to the scattering process, since the

incident part of the scattering wave function contributes onlywhereD(R)/hc has a value of 1 cm® at R=0, and de-
even values of and the total Hamiltonian Eq7) can only ~ creases t@ ! cm™! at R=o0,* 1a,. The artificial state is
couple states of the same values of differing by two units  not coupled to any of the other potential curves except at
[33]. Hence, for the case of identical atoms, including iden-about the classical inner turning point Wi(R).

tical nuclei, the necessary change in E@9), (23), and(26)

is to sum only over even values bfand!’. H. Potential curves

Indistinguishability also implies the exclusion of certain Let us consider the statelR,j=0,A,3,My)[n.) and

states in the rPoI+ecuIar basis $&j,A,J,M,). SmcngI IR,j=1,A,3,Mj)|n_—1). These states are eigenstates of the
for the ground™X; state, only eved values are possible for operator

the ground molecular state. Only oddvalues are possible
for the excited'S | state, whereas both even and odld W(R)=V(R)+Hg, (34)
values are permitted for thH1, state. Dipole selection rules

do not permit odd) values in thelll, state to couple opti- with eigenvalues

cally to the ground state for the special caseMf=0 for . . )

linearly polarized light only. An important consequence of W\ (RI=V]y (R —jhoL. (35

4 O_A3

R

_fLAA, (31)

(33
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curves at these inner points. Thus there is no appreciable
penetration of the wave functions to the linear extrapolation
region.

-2000 |-

I. Matrix representation of the Hamiltonian

-4000 | To set up the numerical calculation, we begin by writing
the total HamiltoniarH, Eq. (7), in a matrix representation.
Let us order the statefD 4(R),I,m;) (8=1,2,3,4,5), Eq.
(14), in increasing order ofl. Therefore, for any pair
(m;,m/) of integers, let us write the matrix fét as consist-

ing of 5X5 blocks:

-6000 |-

Potential Energy (units of cm")

-8000

R (units of a)

[H]™ ™
FIG. 2. Potential curves we employ in this work: except for the
artificial-channel potential curve labeledA;” the others are for

Na,. The curve labeled “‘Zg” is identified with WS(R), the one [(I |)]m| m [ |+2)]m| m

labeled “'3 " is identified with W3(R), the one labeled *II,” - TI5%5 ’ 5x5

with W}(R), and “A” with W,x(R). The inset shows the region of [(1+2)) mym/ [(1+2) +2)]m| m '
crossing.R.~439.24, is the Condon point for the detuning of TII5X5 ' 5%5

500 MHz.

. (38)
Figure 2 shows the potential curvwa‘(R) we use in

this work. The curve Iabeleo‘Eg is identified with the ,

ground-state potential curv/3(R). Its short-range part, where[(l,I")];" " is a 5x5 block whose elements are in-
from 3.8, to 30, is the same as used by Thorsheim,dexed by 3,8’) (8,8’ =1,2,3,4,5) and given by

Weiner, and Julienne in their paper on laser-induced photo-

association of ultracold sodium atorfé6] for the sodium ,
diatomic molecule Na. We point out that these are model ([(I,I’)]Sm'x’;n' )p.5r=(D(R),I,m|H|D 4 (R),I",m/),
calculations, not for real Na-Na collisions, and thus the (39
choice of actual potentials is not crucial. Heae 30a,, we
assume the following extrapolation:

where we define the elemend(l,1") 10" ")z g for which
Ce Cs Cio |m;|>1 or |[m/|>1" as identically zero, so that E¢38) is

V\’g(R):—AefBR—ﬁ—@—@, (36)  well defined for all pairs if,,m/) of integers. From Egs.
(14) and(29), and the generalization to inclugg=5 in the

. . ) formalism, we have
where, in atomic units, we take A=0.344091,

B=0.648 771, C4=1698, Cg=102 810, C,,=6 939 128

[47]. The curves labeled>, and II, correspond, respec- 1™ m _ i i M. M

tively, to the excited-state potential curvad/’5(R) and T 555 Dapr =2, AR

Wi(R). The short-range portions fromaj to 52a, of 7

V3(R) and Vi(R), which are needed to defin&5(R) and X(U,(R),1,m[H[U,,(R),I",m/).
W}(R), are cubic spline fits to the data obtained by Magnier (40)

et al. [48] for the sodium diatomic molecule Na For
R=52a,, we assume the dipole-dipole resonant interaction

neglecting retardation effecfd9]; Appendix C outlines the explicit calculation of the Hamil-

tonian matrix elements.

The close-coupling equations in matrix form are solved
by the numerical procedure of Gordofb60,51. The
S-matrix elements are obtained from the close-coupling so-
lutions by imposing the scattering boundary conditions of
Eq. (21). In the next section we present the results obtained
by following the prescription described above.

Co,l
1 _ 3
Wo,l(R)—_?_ﬁAy (37)

where, in atomic units, we tak€3= —6.439 846 4 for the
repulsive curve, an€3=12.823 449 6 for the attractive. All
these numbers are chosen so that the extrapolations join

smoothly to the potential data. For internuclear separations Ill. RESULTS OF THE NUMERICAL CALCULATIONS
shorter than 3&, or 5a,, we extrapolate the curves by
straight lines. The form of the potentials for very short range
is immaterial due to the fact that the kinetic energies we are We define the event rate coefficient for a transition
considering are much lower than the values of the potentigB— 8’ in accordance with Eq17) of Ref.[19], namely,

A. Rate coefficients
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culated numerically for linear and circular polarizations, as
well as the results of a two-state Landau-Zener model which
we will describe shortly. The numerical results are obtained
by solving the coupled equations for a truncated range of
values ofl, which is chosen so that the cross sections are
converged up to four or five significant figures for the
1—-2,3,4,5 transitions, and up to two significant figures for
the 1—1 transitions. For the elastic-scattering, many partial
waves are necessary at high intensities, reducing the effi-
ciency of the calculation. Both computing time and the re-
striction that there is negligible population in the atomic ex-
cited state asymptotically cause us to restrict the calculations
to a maximum intensity of 6 W/ck

Pg(l)

1 (units of Wiem?)

FIG. 3. Numerical results for the shielding measRg(l), as a C. Partial waves contributing to shielding measure
function of intensityl for linear and circular polarizations. A two-
state Landau-Zener model calculation for #iave R branch, la-
beled “LZ,” is also shown.

Before we proceed, let us notice some details of the for-
malism and establish a partial-wave nomenclature that will
be useful in the discussion that follows. From E¢&a2),
(A5), (6), and(16), it follows that

© +1 o +1’

e ’ /m’ m
Kop=(veiz2, 2 2 3 (T ME)°) U5 (R).Lm)=Y"(6,¢)[013 5 (R),A=0)[n,). (45)
BI=0m==11"—0 m/ =y’ T

(4D Therefore the statfJ;(R),I,m;) is an eigenstate off 2 for

where the summations are over even valuesaiid!’ only, &l R. At low intensities, [D (R).I,m)—[U4(R).I,m;)

v,el iS the relative speed at which the atoms approach eacd$=1.2,3,4,5). er caII”a state such @ 4(R),I,m;) or

other, andF) indicates the result of averaging any quantity|u,6'('R)’I M) an | wave” because, a&R— e, both are pro-
F over the distribution of relative speeds,. The rate co- Portional to Y 1(6,¢). If =0, we call the state an s’
efficients of Eq.(41) are used in the rate equation that de-wave,” if =2, we call it a “d wave,” and if| =4, we call
scribes all possible transitions among the st#d49]. For ita “g wave.”

the purposes of this work we take only one valuevgy, For I =0 andE/kg=240 uK, only the s wave can pen-
corresponding to etrate the inner region of the ground-state potential because
of the centrifugal barriers for the other partial waves. For
wvd, example, thed-wave barrier in the ground state is about 20
7Kg =240ukK, (42 times higher tharE/kg=240 uK. As | increases, partial

waves other than the wave can contribute to;_,5 due to
where kg is Boltzmann’s constant. We have chosen 2402bsorption and stimulated emission of more than one photon
uK for the collision energy because we are using sodiunfluring the collision. Let us suppose the two colliding atoms
potentials and the typical temperatures one usually finds i@PpProach each other in the long-range region of the ground-

traps of laser-cooled sodium atoms is of the order of théstate potential as anwave. At abouRc, the quasimolecule
Doppler cooling limit temperatur@, =240 uK. Therefore interacts with the electromagnetic field, which can stimulate

instead of Eq(41) we use the absorption and emission of several photons. Therefore, to
penetrate the inner region of the ground-state potential and
I B make a transition to the artificial state, the quasimolecule
B’,I’,m' . . .
Kg_pr :Urelk_zz Z_ > > |TB,I,m. '(E)|2 must enq up in the ground state assamave after interacting
AI=0m==11"=0m =1’ with the light at abouR. . An s wave in the ground state has

(43) m,=0. A transition from a ground-statewave to a ground-
states wave conserves because a photon cannot “torque”
the nuclear angular momentum. Hence an arbitramave in

. o o the ground state can contribute @, .5 only if it has

We generalize the definition of “shielding measure” of m =0. This consequence is important in selecting the rel-
Suominenet al. [28] by evant diagonalized potential curves for all the states in a
Ky s(1) range of values_of: from_ all the possible potential curves,
_ s (44)  only the ones withm =0 in the ground state are relevant to

Ky 5(1=0) study the shielding measure.

B. Shielding measure

Ps(l)=

wherel is the intensity of the laser beam as defined by Eq.
(13). P4(1) is independent of the nature of the artificial state
and its coupling to the ground state, because the Condon Now let us consider the regime of very low intensity and
point and the artificial state coupling with the ground statepresent the two-state Landau-Zener model. Since in this re-
are very far apart and localized. Figure 3 shdwgl) cal- gime we expect only the wave in the ground state to con-

D. Two-state Landau-Zener theory
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tribute toPg(1), only the 55 block withl=0 in Eq.(38) is 3.00
necessary to describe the physical situation. In this low-
intensity limit, it follows from Eqgs.(15) and(C11) that the
s-wave stateYﬂzo(e,goHO,lEg(R),A=0)|n,_> is coupled,
electromagnetically, only to the state 4,(R),|’=0,m/=0).
Therefore from Eq(16) we obtain

2.00

|U4(R),I,:0,m|,:0>

3 . 17 3
K, (1 i=2->1'=0) (units of 1077 cm%s)

1
ﬁ“?,j=1,A=0,J=1,M3=q>|n|_—1>

1 (units of Wiem?)

1
+—|Rj=1A=1J=1M,=q)|n, — 1
@I j =q)n —1)

FIG. 4. Contribution of thed wave to the rate coefficient for
1 linear and circular polarizations.
+—3|R,j=1,A:—1,J:l,MJ=q)|nL—l>. (46)

J3

Thus the relevant body-fixed excited states are
IR,j=1A,J=1M,=q)|n_—1) for A=-1,0,1, and the
corresponding eigenvalues of the potential oper&t§R)
are Wy _o4(R). From Fig. 2 we see that onW, _;(R)

d
az(R)=| qr[Wi(R) ~W(R)]), (50

andv is the relative speed of the atoms at the crossing posi-
tion R . Equation(49) is the shielding measure according to

aVOR) atR.. Theref lect th ited the Landau-Zener theory. For our choice of parameters and
crosses, o(R) atRc. erefore we can negiect the excited 1o ntial curvengZ of Eq. (49) can be expressed as a func-
state withA =0 because it is nonresonant and we are Ieftf

: ) ion of laser intensityl in W/cm? as
with the two degenerate excited states witkr —1,1. Let us y

consider the linear combinations P (1) =exd —2.7239(W/cn?)]. (51)
_ we define the saturation intensity of the Landau-Zener
1 If defi h ion i itg of the Landau-Z
|i>EE|R’J:1'A:1’J:1’MJ:q>|”L_1> shielding measure as the intensity at which

P (I=1g)=1/e, we obtain, from Eg.(51), |s~367
1 mW/cm?. Figure 3 shows that the Landau-Zener model of
ElR,j =1A=-1J=1M;=q)|n —1). shielding measure approaches zero much faster than the lin-

ear or circular three-dimensional calculations. The three

(47)  curves start very close to one another at low intensities, and

then diverge appreciably. This low-intensity behavior is ex-
The state|+) has odd parity and the stafe-) has even pected, since in this case all three curves involve the entrance
parity, as can be checked by inverting E¢6) and using s wave only, and therefore the three-dimensional results are
Egs. (27) and (28). Since the electric dipole operator is a equivalent to the two-statR-branch Landau-Zener model.
vector operator, it follows that onli+) is coupled electro-  Only when thed wave begins to participate as intensity in-
magnetically to thes-wave state. Because tieewave has creases do the curves diverge.
J=0 and|+) hasJ’ =1, this transition is afR-branch tran-
sition. From Eqs(12), (C4), (C5), (C9), and(C12), and the
Wigner-Eckart theoremi52], we obtain the following Rabi ) o
frequency for the two-level system involving only state Figure 4 shows the contribution of thet wave to the

I+

E. Light polarization dependence of optical shielding

|+) and thes wave: shielding measure, as calculated by the three-dimensional
approach. The quantitiK, ,5(I,|=2—1"=0) of Fig. 4 is
2 the contribution to the rate coefficient, Eg4.3), arising from
QLZ=ﬁQA. (48)  the terms withl =2 andl’=0. In general, we define
. +1 +1'
We have thus reduced the problem to a two-state model in | | |/)= —® A ey 2,
this low-intensity regime. The dynamics in the region of the popr(1L1=1) K% mZ—l m|'=2l’ | Blmy (Bl

crossing can be described by a Landau-Zener model as de- (52)
scribed by Suomineant al.[28]. In this theory, the probabil-
ity for the system to remain in thewave state after passing The difference in behavior for linear and circular polariza-

through the crossing & is given by tions is evident in Fig. 4, which shows that tHevave con-
tribution in the linear case is over one order of magnitude
Ly ZWﬁQEZ larger than in the circular case. Before analyzing the reasons
Ps=exp — va (R’ (49 why there is such a difference, let us examine gheave

contribution to the rate coefficient for both polarization
where cases. Figure 5 shows the quantity_ (1,1 =4—1"=0) for
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_ 0.005 ————r ——————
Kd
e 0.003 (a) ]
o
S 0.001 1
S ',-A
z E -0.001 1
2 5 ) 1
£ 2 ~0.003 Linear case
s 5 -0.005 P rvea
A > 0 600 800 1000
3 § 0.005 ——————
n -
= S 0.003 (b) ]
i E E
s $ 0.001 3
&
-0.001 ]
| (units of Wiem®) -0.003 Circular case ]
) ) . -0'005 1 (] L 1 1 L
FIG. 5. Contribution of they wave to the rate coefficient for 0 200 400 600 800 1000
linear and circular polarizations. R (units of a;)

linear and circular polarizations. The contribution of the FIG. 7. Diagonalized potential curves in the region of the Con-
wave in the linear case is about two orders of magnitudgjon point fori=0.5 Wicn? and up tol=2. In both cases, the
larger than in the circular case. Furthermore, for linear poground state hamy,=0. (a) Linear polarization case showing that
larization, theg-wave contribution is about one order of there is a crossing that is not avoided, meaning that onlyPtiaad
magnitude smaller than ttlewave contribution; and for cir- R branches from the entrandewave are allowed and th@ branch
cular polarization, they-wave contribution is about two or- is absent(b) Circular polarization case showing that all the curves
ders of magnitude smaller than tdewave contribution. avoid crossing, due to the fact that all thieeQ, andR branches

It is apparent from Figs. 4 and 5 that the key to under-from the entrancel wave are present.
standing the polarization dependence of the shielding mea-

sure i_s in the differen_t or_der of magnitudes of the corre-5.¢ given in Fig. 7. In this region, the Hund’s coupling case
spondingd-wave contributions. To appreciate the fact thaty) pasis of states is the most convenient to interpret the
we do not need to consider contributions of partial wavesjjfferences in the topologies of the linear and circular polar-
much higher than thd wave, Fig. 6 shows the quantity jzation cases. In the situations depicted in Fig. 7, an entrance
d wave can absorb a photon and make a transition to an
excitedII state. For linear polarization, there are only two
+Ky . s(l,1=4—1"=0), (53) branches that are allowed for such a transition:
J=2—-J"=1 (P branch, andJ=2—J"=3 (R branch. For
together with the total rate coefficient, E@3), for linear  circular polarization, one more branch is allowed:
and circular polarizations. J=2—J"=2 (Q branch. These selection rules are the result
To interpret these results, it is useful to concentrate on thef the matrix elements given by Eq€4) and(C5), and are
Hamiltonian matrix, Eq(38), for the case in which we in- readily expressed by the conditions under which the
clude the blocks fot=0 andl=2 for m;=0 in the ground Clebsch-Gordan coefficientl,2,q,0/J,q) is different from
state. Equation38) minus the matrix for the radial term, zero. The result of this difference between linear and circular
—[(A2/121) (1/R)(6%/9R?)]R, can be diagonalized and the polarizations is that there are more coupling matrix elements
resulting adiabatic potential curves near the Condon poinin the Hamiltonian for the circular case, resulting in more
avoided crossings, than for the linear, and thus it is reason-
able that the penetration to the inner region is more efficient
for the linear case than for the circular. This dependence on
polarization, due to multichannel effects, cannot be repro-
duced by a two-state Landau-Zener curve-crossing model,
3 since such a theory can only account for the effects associ-
e 3 ated with only one branchR branch). The presence of mul-
] tiphoton processes is important here and multichannel curve
crossings behave inherently differently from two-channel
ones. In summary, it is the existence of the three branches to
--m-- [Inear, partial . . . .
L circular, total ] the repulsive excited states in the circular case and only two
(e[ o creulnpartal TN in the linear that implies a more efficient shielding in the
o , 2 s p s p circular case than in the linear. The results in Fig. 3 are in
I (units of Wiem?) qualitative agreement with the Xe experimeff86], in which
shielding measure approaches zero with increasing intensity
FIG. 6. Comparison between the partial and total rate coeffimuch more slowly than the two-state models predict. How-
cients for linear and circular polarizations. The items in the legencever, Suominest al.[30] have found that if a distribution of
refer, first, to the polarization case, and, second, to the total oRabi frequencies is assumed, then the two-state models can
partial rate coefficients. predict such qualitative variation with intensity. The as-

KRtk |y =K, _5(1,1=0—1"=0)+K;_g(I,1=2—1"=0)

-

o,
N
o

N
]

-
°|

linear, total

K,_5(1) {units of cm®s)

¢
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1=0.0 W/em2 1=0.0 Wiem2

FIG. 8. Angular shielding measure for lin-
early and circularly polarized light. The numbers
aligned vertically give the laser intensities in
Wwicm2,

Linear Polarization Clreular Polarization

sumption of a distribution of Rabi frequencies does not have G. Excited-state production
an obvious justification, but it could be useful in the context

X ) ) A collision that is optically shielded can produce either
of complex systems including many hyperfine states.

two atoms in their ground states, or one atom in its ground
state and the other in one of its excited states. The latter case
F. Anisotropy of the optical shielding process generates fast atoms, for the repulsive excited state acceler-
ates the separating atoms and causes them to gain kinetic
nergy. This kinetic energy increase can lead to trap loss and
a higher temperature of the atomic samp®2]. It is
aightforward to obtail . (1)=K;_,+K;_,3+K;_ 4 with
e present formalism and the results are shown in Fig. 9.
This figure also shows the Landau-Zener calculation given
by the formula

The significant contribution of thd wave in the linear
case manifests itself as an anisotropic angular distribution
shielded collisions, regarding the angle between the entrancg,
collision direction and the quantization axis. This effect cany,
be calculated by integrating E4) over the final directions
(6,¢) only. The result is

o 472
Ul—>5(|!0ki¢k): 7
1

53

>

Oml':—l'

M s

+1
=1

| Kec(D=2, (21+D{2P'(N[1-Pg (N l}req)» (56)

where PE*(1) is the Landau-Zener probability of E¢49),

the quantity within curly brackets is the probability of cross-

ing the Condon point in the ground state without being ex-
) cited on approach, followed by excitation on separation, plus
Because al =0 only thes wave penetrates to the inner yhe nrobability of being excited at the Condon point on ap-
region, oy _5(1=0,0,,¢) =01 _5(1=0) is isotropic and we  r9ach, followed by deceleration in the excited state and
define the angular shielding measure as crossing the Condon point again without being deexcited on
separation; the factor (2-1) accounts for the degeneracy

51",m/

XY (6,001 T3y o (E)] . (59

(Tl—>5(| rngIQDIZ)

o15(1=0) ° 69

Ps(l, bk, p1)=

It is worth noticing that, for linear polarization, the quanti-
zation axis is parallel to the electric field, and, for circular
polarization, it is parallel to the direction of propagation of
the light. Also, because the nonzeéranatrix elements must
satisfym| +q=m;, wherem, refers to the ground state and
m/ to the excited, the dependence @pis eliminated from
Eq. (54), and we need to considék only. Figure 8 shows
P<(l,6,=6,¢,=0) for the linear and circular cases. It is
evident from this figure how much the shielding by circularly
polarized light is more efficient and isotropic than with lin- I (units of Wiem?)

early polarized light. In the linear case, the penetration into

the inner region is most efficient if the atoms approach each F|G. 9. Relaxation constant for producing one atom in its
other parallel to the direction of the light polarization vector. ground state and the other in one of its excited states. The linear and
These predictions on shielding anisotropy could, in principle circular polarization cases are labeled with the words “Linear” and
be tested by cold atomic beam experiments, provided sucfCircular,” respectively. The Landau-Zener result is labeled
investigations are realizable. “Lz.

K, (1) (units of cm®/s)




1202 NAPOLITANO, WEINER, AND JULIENNE 55

transition 8=1]1=24m=0) — (B8'=1]"'=24m/=0) is
about four times greater for the linear polarization case than
for the circular.

The number of partial waves other than thevave con-
tributing to the elastic cross section is appreciable at modest
intensities and this three-dimensional model predicts an ac-
centuated increase in the elastic scattering of several orders
of magnitude in a few W/crh of increase in intensity. Fur-
thermore, this large growth in the elastic cross section is
achieved with substantial shielding of inelastic short-range
processes and decreased production of excited-state atoms,
B T as shown in Figs. 7 and 9, especially if circular polarization

I (units of W/em?) is used. It is also worth mentioning that even at relatively
moderate intensities several partial waves are involved in the

FIG. 10. Elastic scattering rate coefficieiy_,(1) for linear ~ €lastic-scattering and thus these rate coefficients do not ex-
and circular polarizations. hibit purely s-wave Wigner threshold law behavifs5] in
this temperature range. For example, we find that, at 2

. . - W/cm? and an entrance kinetic energy corresponding to
with respect to than, values, and the quantity within curly 0.1 nK, it is necessary to include at least upl to4 in the

brackets is calculated at the Condon pdR¥(l), which is  caicylation for converging the cross section to four signifi-
not the same for the_ pote_nt|al curves (_)f different partial gt figures. Ultimately, as the energy becomes low enough,
waves. Both three-dimensional calculations show slowepply s waves will contribute to the elastic scattering. We will
saturation than th&®-branch Landau-Zener estimate, which explore the many issues associated with elastic scattering,
implies that the three-dimensional situation contributes moreyqnd modified scattering lengths, in a separate paper.
excited-state production than predicted by two-state models.

The linear case is predicted to be worse in terms of heat IV. SUMMARY

generation than the circular polarization case. This result is . .

again a manifestation of the existence of more branches from In this work we have shown that there are important ef-
the excited states back to the ground states in the circuldfCtS in the three-dimensional, spinless model of optical sup-
case than in the linear. The only experimental test of excitedP'€Ssion of ultracold-collision rates that cannot be predicted
state productio22] was not far enough into the saturation by one—d|m(_an3|onalz two-state models in the. saturation re-
regime to clearly test the validity of Landau-Zener models 3Me: Despite the simplicity of these calculations, we have

The present calculations show that additional experimentgbt"’mf—:‘d results that are |n'qual|tat|ve agreement with recent
) I experimental results. Specifically, the polarization sensitivity
are needed to establish the amount of excitation due to

8f the shielding in photoassociative ionization collision rates
blue-detuned laser. in a sodium magneto-optic trap has been unquestionably ob-
served in a recent experimdri?], as qualitatively predicted
by this simple model. The tool developed here is the gener-
alization of the close-coupling theory to the three-
At long range, the ground state is the dressed statdimensional, high-intensity-field situation. This approach is,

|D1>Y|ml(g, ¢), whose potential is contaminated by th&3/ indeed, pioneering into the realm of high-intensity light field

character of the excited-state dipole-dipole interaction. Thi€ffécts on ultracold atomic collisions. In this regime, there is
mixing dramatically changes the threshold behavior of the>tll much to be understood.

ground-state scattering at moderate intensities as compared

with the same elastic process in absence of the [igBlt As ACKNOWLEDGMENTS

an illustration of this change in behavior, let us mention that

Mott and Masse)[54] show, on pages 44 and 45 of their _ : ;
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which is the case fol=0. The elastic rate coefficient
Ki.1(l), as a function of intensity and polarization, is
shown in Fig. 10. In both polarization casés, (1) in- APPENDIX A: BODY-FIXED

creases very fast with intensity and, at the highest intensity TO SPACE-FIXED TRANSFORMATION

shown, 6 W/cn3, there is a difference of less than one order Given the body-fixed basis set of EG), the space-fixed

of magnitude between the elastic rate coefficient in the lineagq .qnic hasis set is straightfowardly obtained by a rotation
and the circular cases. The elastic-scattering rate Coeﬁ'c'e?rtansformation:

for the linear case is higher than for the circular at the highest
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10"

K,_, () (units of cm®/s)

H. Ground-state elastic-scattering

J. W. and P. S. J. acknowledge support from the National

intensities in Fig. 10 because the number of partial waves +1
contributing a_ppremably to the linear cross sectlon is greater lj,m;)= E Di* \(¢,0,0)j,A), (A1)
than to the circular. For example, the cross section for the A==1 ]
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where DL}"J,’A((,D,H,O) are elements of the rotation matrix

[37,56—58. Using the property52]

m 21+1
Y'(6,0)= 4—D o¢.60.0),

and Eq.(Al), we can write

(A2)

ZD

><D'*0(<p 6,0)|j,A).

1.m)Y (0, ¢)= ' A(9,0,0)

(A3)
From the expressions on page 58 of the book by R66¢
we obtain

(+j) +J
Dl A(¢.6.0D (¢.6,0)= 2 >

=il Mj=-3

X<] N ,mj ,m||J,MJ>

X(j.1,A,03,A)Dy A(@,6,0),
(Ad)

where (j,I,m;,m|3,M;) and (j,I,A,01J,A) are Clebsch-

Gordan coefficients according to Messiah’'s notatj62)].
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APPENDIX B: THE S MATRIX
Asymptotically, Eq.(19) gives

i [[ 25 D) g (ER)
R dR2 R2 B'.1"m
2 B”I”m"
hZ(E Eo)F o '(E R)} 0, (B

where we have kept the centrifugal-potential teﬁﬁ" is the

asymptotic value oH applied on|D,3n>Y'r;,,(6’,go), and we
|

have used

v

1 9
RER R (B2)

2
R

In this work, we assume that the interaction between the
two atoms decreases faster tHan? asymptotically. Hence
the general solution of the asymptotic radial EB10) is
given by[54]

H H ” H H ”

Let us introduce the normalized symmetric top eigenfunc-

tions[57]

; 2041
Om, A0, 0)= 4—D A9, 0,0),

(A5)

where J is the total angular momentum quantum number

(55 | + f) defined by the eigenvalue equation

(3-)0% A(6,0)=H2II+1)OY \(6.¢), (AG)
with valuesJ=|l—j|, |[I—j|+1, ...,I+]. Thus Eqs(A3)-
(A5) give

m 21+
PYIOR)= 2 23+1<J|m,,m||J.MJ>
X<j1I1A10|‘J1A>|j7A7‘J1MJ>1 (A7)
where we have defined
|j,A,J,MJ)E(OﬂAJ’A(H,qo)U,A), (A8)
and
(1+]) +J +1
> = ; > 2 (A9)
IM3,A JI=TT—j| Mj=—J A=-1

Fl{li}nooFﬁ’ I''m I(E R) Aﬁ’ I"'m (k.B")JI(kB”R)
BH IH "
+B B1nm (kﬂn)nw(kﬁHR) (B3)
whereAB/ m I(kﬁ,,) and BB : |(an) are independent of

R, jin(kgR) and nw(kﬁ//R) are the spherical Bessel and
Neumann functions, respectively, akg is defined as

B")

In this model, we assumg> EB” for all 3"=1,2,3,4,5. Be-

cause the asymptotic forms of the Bessel and Neumann func-
tions are given by59]

sifkg/R—(/2)1"]

Iim jp(hrR) ==
eilkgrR—(m2)1"] _ g=ilkgR—(ml2)1"]
- 2ik iR '
(B5a
cog kg R—(m/2)1"
ailkgrR=(m12)1"] 4 g=ilkgR—(m/2)I"]
— 2k R ’
(BSb)

it follows that we can also express E@®12) as
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) TR LN e_i[kﬂ”R_<7T/2)|”] <U (R),l,m||H||U I(R),I’,m|,>
lim FB, , m',(E,R):Cﬁ, . m',(kB,,)— 7 7
R—® B 1| vm| ﬁ vl 1m| R ) 27.[. wL 1/2 N ~ ,:)* T
. " =—I \V; <Uy(R)alvm||MM'(8qaq_8qaq)|
o el [kgrR—(m/2)1"] Q
+07 M (k)
B’vlrvm{ B R ’ XU,yr(R),II,m|,>. (Cl)
(B6) It follows from Egs.(15) that the matrix element of EC1)
"t o0l is not zero only if eithery=1 andy'#1,5 or y'=1 and

BIJ r' BIJ r’
terms of the coefficients in E4B3). Becausd59]

whereC” ! 'm',(kﬁ,,) andD ml,(kﬁ//) can be expressed in y#1,5. Without loss of generality, let us consider the case
™ il for which y’ =1 andy# 1,5. Therefore using Eqél3), (15),

and (16), we obtain

R = - ! ’
=S S ami (0 e Y0 Ry, (IR
Sl
(B7) _ (272 [21+1
- I( c ! J,MZJ,A 2J+1<1'I'mj(w’m'l‘]"wJ>

wherekg is a vector of magnitudé&, and polar angley,zﬁ

and ¢, we can form the linear combination X(LLAOLANRLA I M| - £4|R.0,00,my).

(C2
.o 4 elkg'R ~
| ¥ 4(E,R—x))~|Dges R+ X |Dgi) R Since the polarization unit vectog, is defined, for
B'=1 g=0,*+1, as
kﬁ 1/2
_F B’ " o0 53 3
X kﬁ/) fs (B0, iy 0,0), fo=72,

(B8)
> 1 S .3
, £1=F—=(X=xiy), (C3
Wheref'g (E,0£B,<P£B,0,<p) is the scattering amplitude, and V2
the sign “~" means that the left-hand side of E(B8) is

equal to its right-hand side up to a normalization factor.the quamityﬂgFE,;M.;*q is the space-fixed component of
Equation(B8) is an asymptotic solution of Eq19) which y

includes the direction of the incident flux from the point o
view of the atom at the origin. This dependenceaﬁg and

<p,;ﬁ does not appear in Eq&B3) and (B6). Thus let us in-
troduce such a dependence by defining the superposition

f the spherical tensor operator of rankuy, . Thus using Egs.
(6), let us calculate

(Rj=1A,3,My|y-8¢/R,0,0)",m)
=(R,1,A,J M, 157R,0,0)",m/)

0 +1
W 4(E,R))= 4™ (00,0 ) W 41 m(E,R)). i
VAERI=Z, 2 47T () M1 ER) = 2 (IX(R)A|u(R)034 (R).0)
(B9) ==
27 T
Assuming the normalization Xf d(pJ sin¢9d¢9®§,,*J A(0,0)D5* (9,0,0)
0 0 ' ’
(¥ p1m( BRIV gr1rmy (B R)) X0\, {(0,6), 4
25'3'3/5”/5”1"ml/(S(E_E,), (BlO)

where u 7 (R) is the body-fixed counterpart ofug,
IX(R)=12,(R) for A=0, and X,(R)=1II,(R) for

and imposing that the form of E¢B9) reduces to the form A—:1. Using EqQ.(A5), we can show thafi56]

of Eq. (B8) in the limit R—« implies the asymptotic bound-
ary condition of Eq(21). )
f d(pJ Sin6d6ﬂA*J‘A(G,QD)DéfK(ﬁD,0,0)®|m,’0(0,<p)

APPENDIX C: EXPLICIT EXPRESSION 0 0 I

OF THE HAMILTONIAN MATRIX ELEMENTS 21" +1
=1/ 117,9,m/|J,M;¥1]",«,03J,A). C5
The total Hamiltonian can be written da$=H,;+H,, 2J+1< a.m| N o ) (€5

whereH,=Hy+Hg. Let us consider the matrix elements of
H, first. From Eq.(11), we obtain From Egs.(C2), (C4), and(C5), it follows that
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(U, (R),Lmi[H [U4(R),I",m/)

1/2 \/—r
:_i<2{|) s 21+ 1)(21"+1)

JM; 2J+1
XL, m(y),m|3,M (1)’ ,q,m/[I,M})
+1

X >, (11,A,03,A)1)",
A=-1

X(1X(R),A| 5 (R0 (R),A"=0). (C6)
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Applying Wigner-Eckart theorem on E@12) allows us to
express Eq(C10 in terms of the Rabi frequend:

<U‘y(R)1||m||H||Ul(R)!I ,:m|,>%h95mj(y),qb‘l,l'5m| ,m|’
(C1D)

To relate the molecular Rabi frequen€y with the atomic
Rabi frequency)”, we use Eqs(27) and(28). Thus we get

=20~

The numerical value of” we take in this work is based on

(C12

Because we are considering optical collisions, in which théhe 3— 3p transition of the sodium atortneglecting fine
electromagnetic coupling is not zero asymptotically, we willand hyperfme structurgsThus for an intensityl given in
neglect the R- dependent part of the matrix element W/cm?, we use the formula

(11Xy(R), AluR7(R)[0'27 (R)) [33,34. Thus we approxi-
mate Eq.(C6) by

<Uy(R)1|1m||H||U1(R)1I’1m|,>
2

~—|< c I) J%J

X(L),m;(y),m|3,M;)(1]l",q,m/|I,M )

+1

xAzl (1),A,03,A)1)",

(21+1)(21"+1)
2J+1

X(LA|u5 ()[04’ =0), )
whereu 8 ()= u8 (R—=) and the statel§,A) are defined
by Eqg. (5). From Eq.(Al) and the orthonormality relation
[56]

2, DI\ (¢,0.0)Dh (9,6,0= 5, (C9
we obtain
(LAJu§(R—=)[0A"=0)
=—E 2 Dhy A(#,6.0D], (4,60
><<J=1||u5'1|1”=0><0,1,0mj’|1,m,->
= —5(1=1111°=0), 9

where we have used Wigner-Eckart theord®2] and

(j=1|«5"j"=0) is the relevant reduced matrix element of
From Eqgs.(C7) and (C9), and the properties of the

MM -
Clebsch-Gordan coefficienf§2], we obtain

<U'y(R)1|!m||H||Ul(R)1|,1m|1>

o \12
~—i<§|) <j:1||MSFHJ”:0>5m,-(7)vq5|v|'5mlvm|,

(C10

A

Q
5o~ 14796610 °I(Wicm?) em ™. (C13)

The noninteracting Hamiltoniahl;; can be written as a
sum of three terms:

B2 1 5 |2

Hniz—ﬂﬁa—RzR‘i‘ZM—Rz‘FW(R). (C14)

Thus let us now consider the matrix elementsVéfR) for
the cases in whichy,y’' #5:

(U,(R),I,m|W(R)|U,(R),I",m/)

J2I+ D)2+ 1)
=Sty 2

3T A 2J+1
X () Lm(y),mi|3, M)
Xy miCy),m{ 13, M) (),1,A,013,A)
X(J(y"),1 A0, AW/ (R), (C19

where we have definef(y=1)=0, andj(y=2,3,4=1.
From Eq.(C15), it follows that

(Us(R), LM W(R)|U5(R), 1", m{) =8+ 8, oy WO(R),

(C16)
(U1(R),1,m|W(R)|U, 1 s(R),1",m/)
=(Uy-14R),LmW(R)|U1(R),I",m/)
=0, (C17)
<U'y#l,5(R)1|1m||W(R)|U'y’#l,5(R)1I,1m|’>
(21+1)(21"+1)
=T e (Hm).mIMy)
+1
X(1) ’,mj(y’),m|'|J,MJ)AZl (11,A,013,A)
X(1)",A,03, A )W}y (R). (C18

Since
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;2; (11,A,013,A)(1)",A,003, A )Wy (R)
=(1,,0,0J,0)(1,)",0,0J,00W5(R)
+[1+ (-1 (1),1,03,1¢1)7,1,d3, HWL(R),
(C19
we conclude that
(Uyz 18R MW(R)[U 1 g(R),I",m{) =0
unlessl’=1,1+2. For the artificial state, we take
(U,215R), 1, mW(R)[U5(R),1",m/)
=(Us(R),I,m[W(R)|U,,/»14R),I",m/)

=0, (C20
<U1(R)1|1m||W(R)|U5(R)1I’1m|,>

:<U5(R)1I1m||W(R)|Ul(R)1I,1m|’>

= 61,1 8m, mDA(R), (c21

(Us(R),1,m|W(R)|Us(R),I",m{) =6 1 6, ' Wa(R).
(C22

The centrifugal part oH,; gives rise to the following
matrix elements:

2
<U7(R),I,m| m UY,(R),I’,m|’>
:(S'yy’(sll'ﬁm m'hZL_FZl)
L Omm T R
—<Uy(R),|,mu ﬂ;—l) U ,(R),I’,m,’>,
2uR Y
(C23
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Here we assume that the Born-Oppenheimer approximation
[35] is valid, as already discussed in Sec. Il. This assumption
is further yet justified because the excitation process is the
one dynamical effect that we are investigating and it occurs
at about 408,, a region where the potentials are already
given by their asymptotic behaviors. Therefor the term ne-
glected in Eq.(C24) depends oR asR™ "=, wheren,>2,
implying that the centrifugaR ™2 term is the leading one at
the dynamically relevant region. Of course, an exact theory
would require the correct expression, EG23), at very short
range, but we have already defined the process we want to
investigate: the suppression of production of two atoms in
the artificial state, which can be studied carefully without the
complications of the neglected term in HG.24).

The radial term ofH,; gives the following matrix ele-
ments:

2 1 &2
UV(R),I,m| _ﬂﬁﬁ_RzR Uy,(R),|’,m|
h? 1 92

_ﬂé%yra’l’éml’mlrﬁﬁR

h? U (R MY (1 9
_;<U7(R),|,m||—&R RTR
h? U, (R),I",m/)
_Z<U7(R),I,m,| . . (C25

We assume that the radial Born-Oppenheimer terms are neg-
ligible and write Eq.(C25) as

h? 1 9 o
UV(R),I,m| _Zﬁ&?R Uyr(R),| ,m,
h? 1

_ﬂéy‘yrgl’lréml‘mllﬁﬁ_RzR' (CZG)
Again, the justification we have given for EC24) also
applies here for Eq(C26), since extra Born-Oppenheimer
terms that are not important in the excitation region only
complicate the problem without clarifying the issue, and we

where the last equality follows from the fact that the matrix@'€ building a model calculation that is only intended to re-

elements in Eq(C23) do not involve an integration ovét in

produce experimental results in a qualitative manner. The

their definition. In this model calculation, we assume that thd€ader interested in how to estimate the long-range values of

term —<Uy(R),I,m||[r2—h2I(l+1)]/2,uR2|U7,(R),I’,m,’>
is negligible and write Eq(C23) as

[ 2
<U7(R),I,m, 2uR2 Uy'(R),|',m|'>
A2A(1+1)
%5%77 5|‘|/5m| ’ml/ Zlu,R . (C24)

the Born-Oppenheimer terms can find a very insightful ex-
ample in Ref[40].

Now we have all the necessary quantities that enter Eq.
(19), which is first of all written in terms of the basis states of
Egs. (14) and (30) by using Eq.(20). The Hamiltonian in
matrix form, Eq.(38), is then written in terms of the un-
dressed basis states through E@®) and (40). All the dif-
ferent matrix elements in the undressed basis are given by
Egs.(C11)—(C26).
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