PHYSICAL REVIEW A VOLUME 55, NUMBER 2 FEBRUARY 1997
Diffuse atomic reflection at a rough mirror
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We present a theoretical analysis of the influence of surface roughness on the atomic reflection from an
evanescent wave mirror. In our calculations we assume that light scattered at the rough dielectric surface
interferes with the evanescent wave, creating a rough potential that scatters the atoms. We calculate the
probability of diffuse reflection and the momentum distribution of the scattered atoms with a statistical model
for the rough surface. The atomic reflection is diffuse rather than specular if the surface roughness is compa-
rable to the wavelength of the incident atoms. We discuss the spatial coherence of the reflected matter waves.
We indicate how to generalize our treatment to the case of multilevel af@h850-294707)04002-X]

PACS numbeps): 03.75.Be, 34.50:s, 39.20+(, 68.35.Ct

[. INTRODUCTION fuse reflection and the atomic momentum distribution after
reflection. Two different approaches are presented. First, we
Mirrors are key components of optical devices for bothtreat the scattering of the atomic wave by the rough part of
electromagnetic and matter waves. In particular for interferothe optical potential in first-order perturbation theory, using
metric applications, it is important to ensure that the reflecthe Born approximation, i.e., assuming that a small fraction
tion at the mirror is specular, since diffuse scattering isof the incident atoms is scattered. The atomic momentum
equivalent to a loss of spatial coherence of the reflectedistribution then contains a diffuse background that corre-
wave. This means that the roughness of the mirror surfaceponds to the scattered atoms, in addition to a specularly
must be kept below the wavelength of the incident wave. Theeflected peak. We find that the probability of diffuse reflec-
constraints on surface quality required for matter wave mirtion is equal to the square of the ratio between an effective
rors are therefore more stringent than for optical mirrors ifmirror roughness and the incident atomic wavelength. The
the de Broglie wavelength is smaller than the optical waveeffective roughness is interpreted as the roughness of the
length. This situation is frequently encountered in atom op-atomic “turning point surface,” i.e., the isopotential surface
tics. where the optical potential of the rough evanescent wave
We discuss in this paper the diffuse reflection of atoms aequals the incident kinetic energy. We find that the diffuse
an evanescent wave mirror. This device has been used meflection of the atoms is similar to the scattering from an
several atom optics experiment$—7], including multiple infinite potential barrier located at the rough turning point
reflection [8], diffraction [9—11], and interferometry{12].  surface. This type of potential is known as the “corrugated
The atoms are reflected by the repulsive optical potential of &iard wall” potential in the scattering of atoms from crystal-
blue detuned, evanescent light field above the surface of kne surface§14—16. We point out that the effective mirror
dielectric prism. At a sufficiently large detuning, the excited-roughness is comparable to the surface roughness of the di-
state population is small and hence the probability of sponelectric prism. This implies that the prism surface must be
taneous emission is negligible. Recently, however, we havemooth at the scale of the atomic wavelength for the reflec-
obtained experimental evidence for a nonspecular reflectiortion of the atoms at the evanescent wave mirror to be specu-
depending on the quality of the prism surfdde]. In this lar.
experiment, a surface roughness on the angstrom scale wasIn a second approach, we use a thin phase grating ap-
sufficient to cause a diffuse rather than specular reflection. proximation to take into account the rough optical potential.
Although the optical potential of the evanescent wave preThis approach is based on a semiclassical perturbation
vents the atoms from interacting directly with the surface,method[17] and has been developed for atomic diffraction
several mechanisms are responsible for an indirect interady a standing evanescent waue8,19. It is equivalent to the
tion. These include the interaction with stray light that is Raman-Nath approximatiof20,21] for a transmission grat-
scattered from the prism, as well as the modification of théng. The thin phase grating approximation allows us to go
van der Waals—London—Casimir interaction due to the surbeyond the Born approximation and to cover the diffuse re-
face roughness. In this paper, we focus on one particulditection regime where the surface roughness is larger than the
effect due to the light scattered at the prism surface: wheimcident atomic wavelength. In this regime, the momentum
this light interferes with the unscattered evanescent wave, istribution of the reflected atoms contains no specular peak
creates random spatial variations of the optical near-field inand is broader than in the quasispecular regime. It is inter-
tensity above the surface. The repulsive optical potential opreted as an average diffraction pattern for an incoherent
the atomic mirror hence acquires some roughness, leading ensemble of phase gratings with a large phase modulation.
a diffuse rather than specular reflection of the atoms. In both the Born and the thin phase grating approxima-
In order to characterize the scattering of the atoms at th&ons, we apply a statistical description for the rough surface
rough optical potential, we calculate the probability of dif- in order to compute the atomic scattering. We model the
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55 DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR 1161

surface profile by a random variable whose statistical aver-
ages are characterized by a correlation function. This statis-
tical framework allows us to introduce in a natural manner

the spatial coherence function of the reflected atoms. The
coherence function characterizes the quality of the reflection

when the evanescent wave mirror is used in an atom inter- vacuum

ferometer. It also allows to calculate the average momentum

distribution of the reflected atoms by means of a Fourier B e . -

transformation canescent wave
. e e

The outline of the paper is as follows. We first recall some
results for the atomic reflection at a perfectly flat evanescent
wave mirror in the small-saturation and large-detuning limit

z=s(R)

(Sec. I). We restrict ourselves in the beginning to a two- hK AN
level atom and ignore the polarization of the light. The scat- AN
tered light field above the rough surface is given in Sec. lll, _ﬁ(—?A

where we recall the results of a perturbative calculation to
first order in the surface roughnel22—27. In this section FIG. 1. G iy of th blem. The totally int llv reflected
we also introduce the statistical model for the rough surfac%g -+ >eometry of Ine problem. The fotally Internally refecte

and discuss the validity conditions for the light field calcula-. ht beam IS scattered by the rough Surfa(.:e' The scattered beam
interferes with the evanescent wave, creating a rough evanescent

ave. The roughness of the evanescent wave mirror renders the
tomic reflection nonspecular.

tion.

The rough optical potential created by the interference o
the scattered light with the evanescent wave is introduce
and discussed in Sec. IV. In Sec. V we study the diffuse
reflection of atoms at the rough potential by means of the
first Born approximation. Section VI is devoted to the calcu-
lation of the atomic scattering in the thin phase grating apYVe shall further suppose that the atom is moving sufficiently
proach. We show that this approximation recovers the resultslowly so that the Doppler shift is negligible compared to the
of the Born approximation in the quasispecular limit. detuning. The optical potentia®.1) is then independent of

We finally outline in Sec. VII the generalization of the the atomic velocity. Note that this approximation has to be
present approach when the light polarization and the atomiteviewed for atoms that are reflected at grazing incidence
Zeeman sublevel structure are taken into account. This pr&1,3—5-
vides the atom optics analog of polarization-resolved light
scattering at rough surfaces. The Appendixes give some re- B. Flat mirror
sults for the atomic motion in the flat evanescent wave mir-
ror (Appendix A and the scattering of vector electromag-
netic waves at a rough dielectric surfa@ppendix B that
are used in the text.

E(r,t)=E(r)e '“L'4+E*(r)e'“L!, (2.2

The evanescent wave is created by the total internal re-
flection of a plane light wave with an angle of incidence
6, at the surface of a dielectric with refractive index as
shown in Fig. 1. In the absence of surface roughness, the
electric field in the vacuum above the surfazeO is an

II. MODEL POTENTIAL FOR THE EVANESCENT evanescent wave

WAVE MIRROR .
EQO(r)=EgexpiK-R—«z), r=(R,z), (2.3
A. Optical potential

In the limit of large detuning compared to the naturalWherex is given in terms oK by
linewidth of the excited state and low saturation of the
atomic transition, the reactive part of the atom-light interac- k=J|K[]?—k?. (2.9
tion dominates over the dissipative part. We may then as-

sume that th_e atom remains in_ its ground state, ne_glect SPORye use bold capital lettetis, R for vector components par-
taneous emission, and describe the atomic motion by thSIIeI to the surface. The electric-field amplituéig at the

optical or dipole potential, i.e., the position-dependent Iights.urface is related to the incident field by a Fresnel transmis-

shift of the atomic ground state. To begin with, we considergjo, coefficient. The magnitude of the in-plane wave vector

a two-level atom and defer the discussion of polarization tq¢ ¢ the evanescent wave ik, sing,, wherek, = w, /c is
Sec. V. The optical potential then takes the form the magnitude of the optical wave vector in vacuum. The
2 decay length 1/ of the evanescent wave is of the order of
V(r)= ﬂE*(r)E(r), (2.1)  the reduced optical wavelengih /27, unless the light wave
inside the dielectric is close to the critical angle.

For a positive detuning, the optical potential of the flat
where the detuning\ is the difference between the light €vanescent wave.3) is a repulsive barrier that varies expo-
frequencyw, and the atomic transition frequenay,is the nentially as a function of the distance from the surface
atomic dipole moment, anB(r) andE* (r) are the positive
and negative frequency components of the electric field VO(r)=V e 22 (2.5
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Its value at the surfacvmax=d2E§/ﬁA gives the maximum

kinetic energy(in the z direction of an atom that may be

reflected at the barriepZ/2M <V .. We suppose that the _L Q
incident atomic velocityp,;/M is sufficiently small that we

may neglect tunneling effects and the van der Waals interac-
tion with the surface compared to the optical potential. This
is typically the case when the classical turning point distance

fror);pthe }slurface oP T > nkysing, e

kg

1 2MV ax FIG. 2. Scattering of the light field by the rough surface.
zozﬂln(p—z) (2.6 K,K’, in-plane wave vectors of the zeroth-order evanescent wave
zi

and the scattered light mod®; in-plane wave vector of the surface
roughness; circle, scattered wave vectors With| =k, .
is larger than about, /2.

Since the optical potential of the evanescent wave has @he Rayleigh approximation yields the following result for
simple exponential forni2.5), explicit analytical expressions the Fourier coefficients of the scattered light, to first order in
for the classical trajectory and the quantum-mechanical wavehe surface roughness:
function may be found28-30. More details are given in

Appendix A. EM(K")=Eof(K")kS(K'—K). (3.3
They are proportional to the Fourier compon&(Q) of the
lll. THE LIGHT FIELD ABOVE THE ROUGH SURFACE surface profiles(R),

A. Result of the Rayleigh theory

Due to the roughness of the prism surface, the electric S(Q):f d’R s(Rye ¥, 3.4
field above the surface contains a scattered part, in addition
to the evanescent wav@.3). We focus on surfaces with a at the in-plane wave-vector transf@rbetween the scattered
rms surface roughness small compared to the optical and the incident wave
wavelength, which is typically realized in experiments. The
theory of light scattering at slightly rough surfaces may then Q=K’'—K. (3.9
be used to calculate the scattered part of the light field. In , , " o
this section we recall the result one obtains for a scalar lighf N dimensionless factdi(K") in Eq. (3.3) is given by

field in the Rayleigh approximation, to first order in the sur- T, 5,
face roughness. f(K’)=I ki — K]+« (3.6
We only summarize this approach here; more details may K ’

be found in Refs[22—-27,3]. The scattered light field above ) o )
and below the surface is expanded in Fourier component‘é’here the square root has to be taken with a positive imagi-
that are either propagating away from the surface or evane$a'y part for|K'|>nk_. . .
cent. The Fourier coefficients are determined by imposing, at Eduation(3.5 shows that a specific Fourier component
the rough dielectric surface=s(R), the continuity relations Q Of the surface roughness excites a scattered field mode
for the total field(the field incident from below the surface With in-plane wave vectoK'=K+Q from the incident
plus the scattered fieldThe continuity relations are solved Wave (see Fig. 2 For a small wave-vector transfe, the
by iteration in ascending powers of the surface profileScattered mode is evanescent and the decay constaist
s(R). At zeroth order, one finds the usual Fresnel transmist€@l- The wave-vectdK ' is then located outside the circle in
sion and reflection coefficients for the flat evanescent wavéhe figure. For larger wave vecto@ [with magnitude at
above the surfac€.3) and for the internally reflected field least equal tdk (nsing —1)], the scattered modes may be
below the surface. To first order in the surface roughness, thelane waves that propagate above the surfacekdnig then
scattered electric field is proportional to the transmittedocated inside the circle. In this case, the quankityin the
zeroth-order field amplitud€,, the proportionality factor expansion(3.1) is imaginary with«’=—ik;, wherek; is
being typically of ordetrko<1. the (real and positive vertical component of the scattered

We write the Fourier expansion of the scattered fieldwave vector.
above the surface in the form

B. Statistical model for the rough surface

211
ED(r)= f 22 ED(K)exp(iK'-R—«'z). (3.1) We describe the roughness of the prism surface by a sta-
™ tistical approach and model the surface pro§{&) by a

) o random process. The mean surface height vanishes
The scattered field modes are labeled by their in-plane wave

vectorsK’ and have decay constants (either real and posi- (s(R))=0 (3.7
tive or imaginary with Ink’ <0) given by ) o
and its mean square is given by

k' =K =12 (3.2 (sA(R)=0?, 3.8
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where o is the rms surface roughness. We further assumevant condition ik, o<1 [27]. Since we are also interested
that the surface roughness is statistically translation invariin the light scattered into evanescent mo¢egh decay con-

ant, which means that the correlation function stantx'), this condition has to be replaced by the somewhat
stronger one that the rms roughness be small compared to the
(s(R1)s(R2))=C(R;—Ry) (3.9  decay length of the scattered md@2]

depends only on the differendeR=R;—R,. The correla-
tion functionC(AR) is equal too® for AR=0 and decreases
to zero forAR— o on a scale equal to the correlation length
Is. We shall suppose that the surface roughness has Gau
ian statistics, which means that its higher-order correlation , ,
functions are completely characterized by the aveir@g@ «'=[K'[=[Q] (3.19
and the correlation functio(8.9). ) )

For the Fourier transforr(Q) of the surface profile, as for spatial frequencieX’,Q large compared td,_ . If the
defined in Eq(3.4), Egs.(3.7) and(3.9) yield the statistical roughness power spectrum has a wid@s much larger than

o<l/k’. (3.19

é_lower limit on 1/«' is obtained from Eq(3.2) and

averages the optical wave vector, evanescent modes with wave vectors
up to|K'|~ 8Qg are excited. In this case, the limits on the
(S(Q))=(S*(Q))=0, (3.108  surface roughness imposed by the condition3.13 and
(3.14) are of the same order of magnitude because the cor-
(S(Q1)S*(Q2))=(2m)?Ps(Q1) 8(Q1— Q). (3.10B  relation lengthl5 is related to the widthsQg of the power

spectrum by Eq(3.11). On the other hand, if the power
spectrum is narrower than the optical wave vector, the cor-
relation lengthl g is larger tham\| . In this casex’ ~« and
" _ condition (3.14) is more restrictive than Ed3.13.

(SIQS(Q)=APS(Q) (3.109 In this paper we shall always suppose that the conditions
and vanishes fo®; # Q,. In Egs.(3.10, Ps(Q) is the power  (3.13 and(3.14) are satisfied. As far as the scattering of light
spectrum of the surface roughness and it is equal to the Fo@t the rough surface is concerned, we may hence use the
rier transform of the correlation functidB(AR). The width  first-order perturbation theory outlined here.
6Qg of the power spectrum is related to the surface correla-

tion lengthlg by IV. MODEL FOR THE ROUGH MIRROR POTENTIAL

If the rough surface has a finite aréa the averagé3.10b
becomes, foQ;=Q,,

We now calculate the optical potential of the evanescent
0Qs~ E (81D wave mirror in the presence of light scattered at the rough
dielectric surface. We therefore insert the total electric field
The rms surface roughnessis obtained by integrating the and the unscattered and the scattered fags. (2.3) and
power spectrum over all spatial frequencies (3.1]

d’Q ) )
7= | Gy 7@ (312 B(N=EOM+EDM) *.3

W te that tual t of th h into the optical potentia2.1). Since the scattered field am-
€ note that an actual measurement of thé rms roughnessy, o £()(r) is small compared to the unscattered field

with a surface scanning probe for example, involves only ©)(r), the optical potential contains three terms of different

limited range of spatial frequenmes given by the bandW'dthordersz of magnitude. To zeroth order in the surface rough-
of the experimental device.

ness, we recover the flat optical potentid?)(r) given in
Eq. (2.5). The first-order potentiaV*)(r) corresponds to the
interference term between the scattered light field and the
The validity domain of our calculation of the scattered zeroth-order field. Finally, there is a second-order potential
light field is limited by two constraints. The first one arises V(?)(r) proportional to the square d&)(r). Close to the
from the use of the Rayleigh approximation. From numericakurface(at distances of order &, this second-order term is
calculations of light scattering at periodic gratings, it hassmall compared to the first-order potenti&*)(r). On the
been found that this approximation is valid if the grating other hand, it is nonzero in the half space above the surface
amplitude is small compared to the grating per[@]. In  because of the propagating modes in the scattered light field.
the context of rough surfaces, this condition becofi3ds As mentioned in the Introduction, we focus in this paper on
the roughness of the optical potential around the point where
o<ls, (3.13 the atoms are reflected and ignore the poteifal(r).
wherel s is the surface correlation length. In our model, the roughness of the evanescent wave mir-

Another constraint comes from the fact that the scatteref" IS therefore described by the optical potential
light amplitude is calculated only to first order in the surface P2
roughness. This means that the rms surface roughaess V(1) = — [EO* (1 ED(r) 4+ EL* (1)E©
must be small compared to the wavelength of the incident (r) ﬁA[ (NET(r) (NEZ(M],
and scattered light waves. For far-field calculations, the rel- (4.2

C. Validity of the light-scattering treatment
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-- and corresponds to the first term in E¢.4). In the second
Raman transitiofiFig. 3(b)], a photon from the zeroth-order
field is absorbed and another one emitted into a scattered

EOXK) light mode with wave vectoK —Q, leading to the atomic

momentum transfer

(2
EOK+Q)

P, 3 AP=1K—#(K—Q). 4.7

- The Raman transition amplitude is proportional[td. the
second term in Eq4.4)]

(b -- EM*(K-Q)Ee=«S*(—Q)f*(K-Q) |[Eo|*. (4.8
As a consequence of the relati@f (—Q)=S(Q) [which
EO(K) FK-Q) follows from Eq.(3.4)], the relative phase of the transition
amplitudes(4.6) and (4.8) is independent of thérandom)
phase of the Fourier coefficieB{Q). For a given wave vec-
P P tor Q of the surface roughness, the two Raman processes
L_m 7 therefore add up coherently in the rough dipole potential.
FIG. 3. Interpretation of the atomic scattering in terms of Raman V. DIFFUSE ATOMIC REFLECTION
transitions involving absorption and stimulated emission. IN THE BORN APPROXIMATION

In this section we use potential scattering theory in the
orn approximation to characterize the diffuse reflection of
an atomic wave at the evanescent wave mirror. Our treatment
is equivalent to the distorted-wave Born approximation, ap-
plied, e.g., in atomic collision theory, and we compute the
transition probabilities among the exact eigenstates in the flat

which is created by the interference between the flat evanes-
cent waveE(®)(r) and the light scattered at the rough surface
EM(r) [33]. Using the expansiofB.1) of the scattered light
field E®)(r), we represent the rough potentidl2) as a two-
dimensional Fourier integral

d2Q ~ ‘ mirror potential. We define an average differential probabil-
vO(r)= f 2ﬁv(l)(Q,z) e' QR (4.9 ity of diffuse reflection by means of the scattering cross sec-
(2m) tion for the rough optical potential)(r). This differential
with probability gives the distribution of the in-plane momentum
transfer for the diffusely reflected atoms. We discuss and
vm(Q,Z):VmaxKS(Q){f(K+Q)eXF{—(K+ k')z] analyze this momentum transfer and the total probability of

diffuse reflection. Finally, we estimate the validity of the
+*(K—Q)exp — (k+x_*)z]}. (4.4 Born approximation.

The functionsf (K = Q) defined in Eq(3.6) provide the am-
plitudes of the scattered light modes with the in-plane wave
vectorsK = Q. The . are the decayor propagation con-
stants of these modes. Consider an atomic wave that is incident upon the evanes-
We note that the Fourier transfori?(Q,z) of the rough ~ Cent wave mirror with momentunp;=(P;, —p;;), at an
potential is proportional to the Fourier amplitugiéQ) of the ~ @ngle of incidences; with respect to the mean surface nor-
surface roughness. The spatial frequencies of the rough p&?@! (¢f. Fig. 1). If the mirror potential has no roughness, the
tential are therefore the same as those of the rough surfac&lomic wave is specularly reflected and its wave function is
However, a given Fourier component of the surface rough9Ven by an eigenfunction of the flat potential.5)
ness contributes to the rough potential via two scattered light e D
modes with the in-plane wave vectdfst Q. pi(r)=expliPi-RIf) ¢y (2). (5.9

We may _interpret these contributions_in terms of two Ra- z-dependent part of the wave functiaf, () is given
man transitions that both transfer an in-plane momentum zi

AP=%Q to the atom. These transitions are schematized it" App_((ajndix A.dFar frfcl)m thde mirror s_urr]face, itis the SV‘:/m of
Fig. 3. In the first Raman transitiofFig. 3(a)], the atom arr: Incl ehnt an al_re ected wave with momenta,;. \We
absorbs a photon from a scattered light mode with wav&n00S€ the normalization
vector K+ Q and subsequently emits another one into the i

T Z)=si izlh+ o), z , 5.2
zeroth-order evanescent wave. The atomic in-plane momen- o, (2)=SIN(P,, @)y 2 .2
tum transfer for this stimulated Raman process is

A. Average differential probability of diffuse reflection
in the Born approximation

where ¢ is a phase shift that depends on the incident mo-

AP=%(K+Q)—#K. (4.5 mentum and the magnitudé,,,, of the zeroth-order potential
[30].
Its transition amplitude is proportional faf. Eq. (3.3)] From the point of view of scattering theory, the rough part

o) , VA(r) of the mirror potential induces transitions from the
ESEV(K+Q)=«S(Q) f(K+Q) |Ey| (4.6)  initial state ¢;(r) into a final statey(r) with momentum
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ps=(Ps,p,¢). Since the rough potential is time independent, To_calculate th_e diffuse reflection probability, we are now
energy conservation implies that left with the matrix element

P2+ p2.= P2+ p2,. (5.3 (bp, (D)]exd —(k+")z]| ¢y (2)), (5.9

In the first Born approximation, the differential cross sectionWhich describes the coupling between the initial and final
for this transition is given by atomic states due to the rough potential. In the first Born

approximation of potential scattering, it is known that the

ds M2 L ) momentum change is distributed according to the Fourier
FTOV Wklﬂf(r)w( LOIAGN transform of the potential and we expect that the exponential
f decay of the field limits the normal momentum change by
4M? ~
:Wk(ﬁpzf(z)lv(l)(Q:ZH¢pzi(z)>|21 (5.9 |Apz|E|pzf_ pzi|5ﬁK. (5.9

) ) ~ The integral(5.8 can actually be done analytically and is
whereM is the atomic mass and() the element of solid  giyen in Appendix A. We shall concentrate on the semiclas-
angle aroungd; . The prefactor of the scattering cross sectionsicga| limit where the atomic de Broglie wavelength is small
(5.4) is explained by our particular choice of normalization compared to the decay length of the potential. This regime
propriate normalization of the scattering cross section, as
given in Appendix A, we obtain a differential probability of p,i>fik, (5.10
diffuse reflection per in-plane wave-vector transer

and in this limit, the matrix element can be written in the
dw 4?2 1 d¥ form

—_—= (5.5

9Q  Pai Pzt A Al (6o, (DX~ (k+ k") 2| by, (2))
whereA is the mirror surface area. .

This is the diffuse reflection probability for a particular — (26) Lex — (k+ ') Zq] @( p2f+p2i)

realization of the rough dielectric surface. In the framework Pzi\ 2P
of our statistical approach, we calculate its average value A ,
with respect to the statistical ensemtBel0. We expect that X ,3( P , K_) , (5.11)
the ensemble average equals the average over a large number hik ' K

of reflected atoms from a single realization of the rough sur- _ _ ) . .
face, if the atoms are reflected independently and sampl}é’herezo is the classical turning point for the incident veloc-

uncorrelated parts of the surface. ity p,i/M in the flat mirror potential.
The dimensionless functiof is defined by

B. Calculation of the diffuse reflection probability Ap, «' on' I ot K’ Ap
z . z
From the Born cross sectidb.4) and the Fourier compo- (H 7) =5 T[(k+x')K] P +1 Zﬁx)
nent of the rough potentiah.4), we find that the average
cross section(d>/d()¢) is proportional to(S(Q)S*(Q)). k+k'  _Ap,
Since this quantity is proportional to the ar@a[cf. Eq. XTI 2% '2hkl’ (5.19

(3.100], the finite mirror surface drops out of the average
diffuse reflection probability5.5). The latter is then obtained whereT is the Euler gamma function. We shall cglthe
as a simple product of the surface power spectrum and afoverlap factor.” It is real(complex valued for realimagi-

“atomic response function” nary) «'. One has the explicit expressiof&#|
dw Ap TAP,I2h k
— ) =(2 -2 B 2’ 5.6 =rz _ Z r_—
<dQ> (2m)"*Ps(Q)[Baf( Q)| (5.6 B( f | SORmAp2in) for k' =k, (5.133
whereB,(Q) is given by Ap, w2 ,
B H’O _—COSh:’JTApZ/ZfLK) for k' =0. (513b
_AMK Vi
Ba(Q)= # m They show that the overlap factor takes its maximum value
o for Ap,=0 and decreases exponentiallyip, is large com-
><(¢pzf(z)|{f(K+Q)exq—(K+ k')z] pared to%ik, which is in agreement with our expectation
(5.9 that the normal atomic momentum change is limited to
+*(K-Q)exf — (k+«_*)z]} ¢y _(2)). hk. This cutoff implies that we may make the following
5.7 approximation in the matrix elemer.11):
i i i i i i Pzt pzf+ Pzi Kl
This function characterizes the diffuse atomic reflection for a = ~1, (5.14
given spatial frequency in the surface roughness. Pzi\ 2Pz
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neglecting corrections of relative ordekp,|/p,i<7%«/p,;,
which are small in the semiclassical regirt®10. To the
same approximation, we may also replace the square root
VPzi Pzt bY pzi in Eq. (5.7). If we finally express the height
Vmax Of the zeroth-order potential in terms of the turning
point z, [Eq. (2.6)], we obtain the following result for the
atomic response functiofs.?):

B Q)= (K +Qrexp[ (k=) 2018 0

+1*(K—Q)exd (k— &' *)zo]8*}, (5.15

where B is a shorthand notation for the overlap factors
B(Ap,/hik, k] K). 0.75

C. Discussion of the diffuse reflection probability 05

1. Shape of the atomic response function 0.25

We discuss in this subsection the behavior of the differ-
ential diffuse reflection probabilitdw/dQ) as a function of
the in-plane atomic momentum transfeP=#Q. According
to Eg. (5.6), the maximum first-order momentum transfer
S6Pgom is determined by both the wid#bQg of the roughness 2 ©
power spectrunPg(Q) and the widthsQ,; of the atomic

response functiol Q). L5
In order to determine the widthQ,; of the atomic re-

sponse function, we observe three features of the result !

(5.19: (a) the “optical response functionf(K = Q), which 05

characterizes the scattering of the light field by a given spa-
tial frequency of the rough surfadef. Eq. (3.3)]; (b) the
amplitude exp{«.z) of the scattered light modes at the 0
distancez, of the atomic turning poinftcf. Eq.(3.1)]; and(c)
the overlap factorB(Ap,/%ik,«’ /), which characterizes
t_he cc_)upling between the initial and final atomic wave func- FIG. 4. (a) Absolute value of the optical response function
tions Induqed by the rough potgnt[adf. Eq.(5.1D)]. f(K") (3.6), as a function of the magnitude of the scattered optical
(a) Optical response functionThe absolute value of \ave vectork’ (in units of the vacuum wave vectds ). The
f(K') is represented in Fig.(d), as a function of the mag- gashed curve gives the asymptotic behavior inversely proportional
nitude [K'| of the scattered wave vector. We see that theo |K’| for large |K’|. The refractive index equals~1.63 and
optical response function is of the order of unity for .=k, . (b) Absolute value of the field amplitude expk’z), as a
|K'|=nk_ and decreases proportional to|®/| for larger  function of [K'|. Thick solid line, turning point rather close to the
wave vectors(the dashed line It therefore introduces a surface z;=3«"1In2; thin solid line, intermediate distance
smooth cutoff for high spatial frequencies in the scattered,=«'In2; dashed line, large distanezg=2x"1In2. (c) Absolute
light. value of the overlap factog (5.12, as a function ofK’|. The
(b) Distance of the atomic turning poinkigure 4b) normal momentum difference isp,=0; this situation is approxi-
shows the absolute value of the light field amplitudemately realized at normal atomic incidence.
exp(—«'zy) as a function ofK’|, for different values of the
turning point distancez,. We see that for a turning point contribute to the rough potential. The corresponding atomic
rather close to the surfadghe thick solid ling, the ampli-  response function is represented in Fig. 6. Its dominant fea-
tudes of the scattered light field are comparable for propatures are two disks of radius and centered at-K. For
gating (K'|<k,) and evanescent’|>k, ) modes. Figure these spatial frequencies, the diffuse reflection is due to
5 represents the square of the atomic response functigpropagating light modes: in terms of the Raman transitions
(5.19 for this turning point distancezf= 3« In2). In this  of Fig. 3, the left disk corresponds to the transition of Fig.
figure the atoms are reflected at normal incidence. The re3(a), where the absorbed photon with wave vector
sponse function has a quite complex shape, but we see th§t =K+ Q is propagating |K'|<k.). The disk is centered
spatial frequencies much larger than the optical wave vectoat —K because of the recoil from the photon emission into
do not contribute to the diffuse reflection. the zeroth-order evanescent wave. The right disk corresponds
The atomic response function becomes somewhat simpldo the transition of Fig. @), where the emitted photaqwave
if the turning point distance, is larger. The dashed line in vector K'=K—Q) is propagating. Note the anisotropy of
Fig. 4(b) (for zy=2«1In2) then shows that the amplitudes the atomic response function: it is broader parallel to the
of evanescent modes are small and only propagating modgsopagation vectoK of the zeroth-order evanescent wave.

1 2 3 4 5
|K'| (units of kp)
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FIG. 5. Contour plot of the atomic response funct|@n{Q)|2 FIG. 7. Same as Fig. 5, but at oblique incidenégs 45° with
(5.15 at normal incidence, as a function of the atomic in-planeNormal momentum componept;=507 «. The atoms are incident
wave-vector transfe in units of the optical wave vectok, . in the same plane as the light beam creating the evanescent wave
Shaded areas correspond to large values of the response functid}€x-Z plane with P;=50% ke, . Inside the dashed circles, propa-
The inset shows a profile along the thick dashed line. The turnin@@ting light modes contribute to the diffuse atomic reflection.
point is close to the surfaczb=%;<’1ln2 and atoms are incident
with normal momentunp,;=504«. The zeroth-order evanescent cally large compared to the size of the double disk structure
wave has an in-plane wave vector 2 k_e, parallel to thex axis discussed above.
andxk=k_ . At oblique incidence, however, the normal atomic mo-

mentum changes to first order #Q because of energy con-

(c) Role of the overlap factoiVe recall that the overlap servation. Parallel to the incident in-plane momen®mthe
factor B limits the normal momentum difference to overlap factor then limits the width of the response function
|Ap,| =i« [cf. Eq.(5.13]. At normal atomic incidence, this to spatial frequenciedQ,= x/tand; , whered); is the atomic
does not impose a Significant restriction on the width of theangle of incidence. This is a Sigl’lificant restriction because it
atomic response function because the normal momentur§ Of the order of the optical wave vector. Perpendicular to
changes only to second order in the in-plane momenturfh€ atomic plane of incidence, the limit fafQ, is large
transfer#Q: from Egs. (5.3 and (5.9), we find the limit ~compared tok, , similar to the case of normal incidence.

8Q=\2p,ix/%, which, in the semiclassical regime, is typi- 1his implies that if the atoms are incident at a grazing angle
(6,—90°, butp,; still large compared tdi«), the diffuse

reflection is strongly suppressed in the atomic plane of inci-
dence. For a sufficiently broad surface power spectrum
Ps(Q), the angular distribution of the reflected atoms should
therefore be broader in the direction perpendicular to the
atomic plane of incidence.

In Figs. 7 and 8 we show the atomic response function for
atoms incident at an anglg=45° for two different experi-
mental situations.(The turning point is located at
=1x"1ln2, as in Fig. 5. In Fig. 7 the atomic and optical
planes of incidence coincidéncident atomic momentum
P, parallel to the propagation vectét of the zeroth-order
evanescent waye In this geometry, the atomic response
function is flattened in the direction parallel # and its
anisotropy is reduced. In Fig. B, andK are perpendicular
and the anisotropy of the response function is increased.

Finally, we recall that the overlap factg@® also varies
with the decay constants’. of the scattered light modes. Its
3 2 -l 0 1 2 3 absolute value is shown in Fig(a} for Ap,=0, as a func-

Q. (units of k) tion of |[K’|. The coupling between the atomic wave func-
tions is peaked dK'| =k, because the scattered light modes

FIG. 6. Same as Fig. 5, but with an increased optical potentiafre then constant above the surfagé € 0). The coupling is
such that the turning point is farther away from the surface:smaller both for propagating and evanescent modes. For
2o=2«"1In2. propagating modes, this is due to the averaging over the

20

@Qy (units of k)
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2 4 COSgiO'eff( ¢9i ,Zo) 2

A ﬁu W=[2p,i0en( 0;,20) /1 ]°= NaB '
AN, k "

where \gg=277/|p;| is the de Broglie wavelength of the
incident atoms. This result shows that the atomic reflection at
the evanescent wave mirror is specular only if the effective
roughness is smaller than the atomic wavelength.

In order to give a more physical interpretation of the
quantity o«( 6; ,zo), we introduce the turning point surface
Zo(R), where the value of the optical potential is equal to the
incident energy. We note that since the optical potential is
- . proportional to the optical near field intensity, the turning

el el T point surface is a particular isointensity surface and may be

Qy (units of k)

s R . . ' obtained experimentally by optical near-field microscopy
[35-37.
3 2 - 0 1 2 3 In the absence of roughness, the turning point surface
@, (units of k) Zo(R) is flat and located at the turning poiry. In the pres-

ence of the small rough potenti®*)(r), it acquires some

FIG. 8. Same as Fig. 7, the optical plane of incideftbe x-z  roughness and its deviation from the mean position is ap-
plane being perpendicular to the atomic plane of incideritte proximately given bycf. Eq. (2.6)]
y-z plang with P;=50f xe, .

1 VI(R,zy)

oscillating field amplitude in the matrix elemefg.8). This 6zo(R)~ 5~ VO(zg) (5.19
behavior of the overlap factor enhances the atomic response 0
function on the perimeters of the two circles identified \we may now describe the rough evanescent wave mirror by
above, which is apparent in Figs. 5 ancé also the inset of  an infinite potential barrier located at the rough turning point
Fig. 5, showing a profile of the response function squaregurface. This model is known as the corrugated hard wall
along the dashed horizontal linéit oblique incidencéFigs.  potential and is used in the scattering of atoms from crystal-
7 and 8, the enhancement is less visible because of théine surface§14—16. In the Rayleigh approximation and for
stronger variation of the momentum differente, . 62,(R) small compared to the atomic wavelength, one may

Summarizing, the widthéQ, of the atomic response show that this model gives a total diffuse reflection probabil-
functionB,(Q) is of the order of a few optical wave vectors. ity of the same form as E¢5.18. Assuming small scattering
Its detailed shape depends on the distance of the turningngles, the effective roughness of the atomic mirror is given
point as well as on the geometry of incidence. by the rms roughness, of the turning point surface:

2. Order of magnitude of the diffuse reflection probability O.§ =([625(R)1?)
0

We find the totalfirst-ordep probability of diffuse reflec-

2
tion w by integrating the differential probabilit(5.6) over _ lf d"Q o
all spatial frequencies: 4) (2m)? P(QIF(K+Qrext (x— x)20]

L dw d?Q , +f*(K—Q)exd (k— k" *)z0]|2. (5.20
W=J' dQ ({53 :f—ZPS(Q)lBat(QH : (5.16 . . . ,

dQ (2m) Comparing this expression to the effective roughri&sk?),
] ) we observe that the corrugated hard wall potential does not
The form(5.19 of the atomic response functid@(Q) Sug-  reproduce the overlap facto. . The difference between

gests that we may define an “effective roughness”, (g anda, is small, however, if the variation of the

7ei( 61 ,20) for the atomic mirror by the integral overlap factorB(Ap, /% k, k'l k) is negligible in the range of
10 d20 spatial frequencies that contribute to the intedsa20. We
o246, ,20)= _f —— P(Q)|f(K+Q) recall that this is the case at nprmal incidence because the
4) (2m) normal momentum changdp, is small and3 depends
o * (0 weakly onk’, as already shown in Fig.(d).
XX (x— K )2o] B HTH(K=Q) The concept of the rough turning point surface also allows
xexd (k—«"*)zo] B*|?, (5.17) us to understand the dependence of the effective roughness
oeif( 65 ,29) on the turning point distance,. According to
where the power spectrum of the rough surface is weighte&d-: (5.19, the roughness of the surfazg(R) is determined
by a factor proportional to the square of the atomic responsBY the relative variation of the optical potential at the dis-
function. As discussed in Sec. V C 1, spatial frequencies ufancezo. Scattered light modes that decay more slowly than
to a few optical wave vectors contribute to the effectivethe zeroth-order evanescent wave, (< «x) and propagating
roughnesg5.17). The probability of diffuse reflectiof6.16 ~ modes . imaginary therefore give contributions to
may now be written in the standard form oeii( 0; ,2g) and Oz, that increase witlz, [cf. Egs.(5.20 and
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¥ (log) kinetic energyE; (far from the surface be larger than
VG2(r). As can be seen from Fig. 9, this condition is
equivalent to the requirement that the crossing painbe
farther from the surface than the turning paigt In terms of
the surface roughness, this yields the condition

Vo

1)
prop

e— KZg
o<

(5.29

K

We note that this condition is satisfied if the optical pertur-
z bation theory for the light scattering at the rough surface is
valid [cf. Eq. (3.19)].
In addition, we must verify that the Born approximation
for the diffuse atomic reflection is justified, i.e., that we are
in the quasispecular regima/&1). According to Eq(5.18),

FIG. 9. Zeroth- and first-order optical potentials in logarithmic
scale. Solid line, zeroth-order optical potentiél?’(z) (2.5), with

f/o(l)the classical turning point; dashed line, optical IOc’tem""“this regime is characterized by an effective surface roughness

pron(2) (5.22) created by the interference of a propagating scat- . S . ]

tered light mode with the zeroth-order evanescent wave. e 01,29) small Qompared to the incident atomlc wave
length. At normal incidence, we may use the estin{atal)

for the diffuse reflection probability to find the more practi-

20]. Thi ion yiel imple  esti f i
(5.20] is observation vyields a simple estimate orcal formulation

oeii( 0; ,2p): the factor weighting the surface power spectrum
in Eg. (5.17 is maximum for propagating light modes,
where it is of order &%, The effective roughness is there-
fore overestimated by «( 0, ,zy) < oe**. We then find the
following upper limit for the total diffuse reflection probabil-

Agg

<———e ¥, .
7 4wcos€ie (5.29

This condition requires the surface roughnes® be below

ity (5.18: the incident atomic wavelengttyg, which is a more severe
47C0SH. e o) 2 restriction than Eq(5.24). At oblique incidence, the diffuse
ws()\—' (5.21 reflection probability is smaller than the estim@se21) and
dB

the Born approximation remains valid even if the surface

The atomic reflection at the evanescent wave mirror is therd2Ughnessr surpasses the lim{6.25.

fore specular only if the rms roughnessof the dielectric

surface itself is smaller than the wavelength of the incident VI. DIFFUSE ATOMIC REFLECTION
atoms. Furthermore, if one pushes the turning pajntar- IN THE THIN PHASE GRATING APPROXIMATION
ther away from the surface, by using an optical potential
Vmax Much larger than the incident kinetic energy tio
Ei=p§i/2M, the diffuse reflection probability increases by a

We now present a calculation of the momentum distribu-
n of the diffusely reflected atoms that is able to go beyond
Syl the Born approximation. The rough optical potential of the
factore™ 0=V, /E. evanescent wave mirror is taken into account by a phase shift
Finally, at oblique incidence, the range of wave vectorsyf he reflected atomic wave, in a way similar to a phase
that contribute to the effective roughnesgs(6;.20) (5.17  grating in conventional optics. The phase-shifted wave func-
is smaller due to the narrowing of the atomic response funcion allows us to compute the spatial coherence function of
tion, as shown in Figs. 7 and 8. As a consequence, the dithe reflected atoms. The coherence function givegaker-

fuse reflection probability is below the estimate21). age momentum distribution by means of a Fourier trans-
form.
D. Validity of the Born approximation We show that this approach recovers the Born approxima-

We recall that we describe the rough optical potentialtion_ in the quasispecular regime and_ study then the diffuse_
V() of the evanescent wave mirror by perturbation9ime where the surface roughness is larger than the atomic
theory. We have seen that for a broad surface power spet¥@velength. For a large decay lengttx Lhowever, the eva-
trum, the dominant contribution to this potential comes fromNeScent wave realizes a thick grating for the atoms and the
propagating light modes: the corresponding optical potentiaiin Phase grating approximation becomes invalid, whereas

V(}gp(r) is of the order of t_he B_orn approximation may s_ti_II apply, provided the refleg-
tion is quasispecular. In addition, we recall that the thin
Vé}g)p(r): ARl (5.22 phase grating a_pproach isa serr_nclassmal method and we are
therefore truly limited to the regiméb.10).
and crosses the zeroth-order potential at a distapggven
by A. Principle of the calculation
ko=@ “Z, (5.23 The central idea of the thin phase grating approach is that

the diffuse reflection from the rough mirror distorts the wave
This is illustrated in Fig. 9. A necessary condition for thefront of the atomic matter wave. At a fixed position
perturbation theory to be valid is that the zeroth-order poten{R,z=h) above the mirror, we therefore write the reflected
tial V(©(z2) (close to the surfageand the incident normal wave functiony,(R) in the form
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Y (R)= ¢§0)(R)exm S5¢o(R)], (6.1)  The atom reaches the turning poif,zo), with z, given by
Eqg.(2.6), at timet=0. As a function of the final positioR,
where #{”(R) is the wave function reflected at the flat mir- Ro is given by
ror andSs¢(R) its phase shift. The heiglitis kept fixed and
is suppressed to simplify the nqtation. . . . Ro=R— i(h—zo+ k~1n2), (6.6)
We shall place ourselves in the semiclassical regime Pzi
where the atomic wavelength is small compared to the spa- ) _
tial scale of the potential. The phase shift may then be calwhere we have used that the final heights much larger
culated in terms of the action integral along a classical trathan the decay length &/of the evanescent wave.
jectory [17], in the spirit of the WKB approximation or the To calculate the phase shift, we insert the Fourier expan-
eikonal approximation in optics. The atomic trajectories,sion (4.4) of the rough potentiaV*)(r) into the integral
however, are perturbed by the rough potential, which make§5-3. Interchanging the integration order, one may solve the
an analytical calculation difficult. In the thin phase gratingtime integral using the variable transformatiore™ 2" and
approximation, we assume that the perturbation of the atomithe second Euler integréEgs. 6.2.1 and 6.2.2 ¢84]), with
trajectory is small, similar to the Raman-Nath approximationthe result
[20,21]. One can then show from the principle of least action
that the phase shift is found by integrating the rough poten- J dt e (x+xHZ0gi QRO
tial along the unperturbed trajectories in the flat mirror po-
tential [19]. In the context of atomic scattering at a crystal
surface, a similar approach is known as the trajectory ap- zzTe—<K+K’>ZOeiQ-RoB<
proximation[38].
From the phase-shifted wave functi@l), it is then con- ] )
venient to calculate the transverse coherence function of théhere the overlap factop defined in Eq.(5.12 appears
reflected atoms. In the framework of our statistical descrip29@in. We now suppose thatin this expression takes the

tion of the rough evanescent wave mirror, this function mayS@me numerical value as in the matrix elem@tl). This

QP «
v 7,7), (6.7

be introduced in a natural mann@9] approximation is discussed in more detail in Sec. VID. It
allows us to express the phase shift in terms of the atomic
I'(Ry,Ry)=(4* (R) ¥ (Ry)), (6.2 response functioB,(Q) given in Eq.(5.15), with the result

where the averagé) is taken with respect to the statistical
ensemble for the rough surface introduced in Sec. Il B. We
recall that the coherence function is related to the contrast of
the interference pattern one obtains if the mirror is part of an The thin phase grating approximation is valid if the rough
atom interferometer. Also, its Fourier transform with respectpotentialV(*)(r) does not perturb the atomic trajectory very
to R,—R; is equal to the(averagg transverse momentum much. For a quantitative estimate, consider an atom in a

d? .
se(R)=- | (ZTQ)Z S(QB(QEY™. (68

distribution of the reflected atoms. standing evanescent wave, formed by the interference be-
tween the zeroth-order evanescent wave and a scattered light
B. Calculation of the phase shift mode. We suppose that this light mode is propagating, in

] ) o _order to find an upper limit for the perturbation of the atomic
In the thin phase grapn%)appr.oxmatmn, the phase shiffygiectory. Let 2r/Q be the period of the standing wave and
due to the rough potential®*(r) is given by the integral . its contrast at the dielectric surface. The optical potential

[17,19 of the standing wave exerts a transverse force on the atom
1 that takes its maximum value at the atomic turning ppafit
Sp(R)=— gJ dt VIW[rO(1)], 6.9 Edq.(5.22]
P2
where r(©(t) is a classical trajectory in the flat potential FSQKUVmaXe*"%:QKUe"ZOZ—,\Z/'I. (6.9

vOX(r). This trajectory is uniquely determined by the re-
quirements that it end at the positioR,g=h) and have the s force makes the atom move a transverse distance

same initial momentumR;,—p,;) as the incident atomic _¢ 25\ guring the interaction time (6.5). The perturba-
plane wave. For the exponential potential of E&5), it has  {jon of the atomic trajectory is small if this distance is much

the analytical forn{30] less than the period of the standing wave. This condition

RO(t)=Ro+P.t/M, (6.43 yields the following limit for the rms surface roughness

8me <%0 k2
K Q%

For wave vector®) of the order of a few optical wave vec-

tors, this condition is less restrictive than the lirgbt25 for

= M ) (6.5) the validity of the Born approximation. The thin phase grat-
K Pzi ing approximation therefore allows us to go beyond the qua-

29(t)=zo+ «ncoskt/7), (6.4b) o< (6.10

where is the characteristic time scale of the reflection
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sispecular regime and to cover the experimentally interesting

R < a.u. (a)
case of a surface roughness larger than the incident atomic
wavelength. 0.3
. ) ) 0.2
C. Calculation of the atomic coherence function
From the resulf6.8) for the phase shift, we note that at a 0.1
given positionR, the phase shif6¢(R) is a linear combina-
tion of surface heights(R'). It is therefore a Gaussian ran- 0 s = P 2 3
dom process itself40,41. This allows us to compute the
ensemble average in the coherence funct@g), au. ®
: . 03
T(R1,Ro) = (4™ (R #” (Rp)exi Sp(Ry) —i 8¢ (Ry)1),
with the result 0.1
0 , - [dw 0
I'(Ry,Ry)=TO(R,—R;)exg —w+ | d?Q ) - 40 4 8
Q au ©
. 0.3
XequQ'(RZ_Rl)]}r (6.12
0.2
where I'O(R,— R;)xexdiP,- (R,—R;)] is the coherence ol
function for the flat mirror anddw/dQ) andw are defined ‘
in Egs. (5.6) and (5.16), respectively. We now discuss the 0
coherence functior{6.12) in the quasispecular and diffuse -8 —4 0 4 3
regimes, respectively. AP, (units of hkr)
D. Comparison to the Born approximation FIG. 10. Transverse atomic momentum distributions for differ-

In the quasispecular regime where the diffuse reflectiorgnt values of the parameter. The distributions are one dimen-

probability is small (v<1), we may expand the outer expo- sional and calculated in the optical plane of incidence. For a small
nential in Eq.(6.12 giving’ a coherence function diffuse reflection probabilityw, the momentum distribution con-
T tains a specular peak superimposed on a diffuse background iden-

dw tical to the inset of Fig. 5. The atomic momentum is given in units
I'(Ry,R,)=TO(R,— Rl)( l—W+f d’Q o) of %k, . The incident atoms are plane waves at normal incidence
Q with p,;=50hk, . (a) w=0.5,(b) w=2, and(c) w=5.

XexgiQ:-(Ry,—Ry)]+---

. (6.13 2 p, 2
?<Zﬂco 0, . (6.19

Taking the Fourier transform of this result with respect to

R,—R;, we obtain the momentum distribution of the re- Since the wave vecto®, which are relevant for the diffuse

flected atoms. We observe that this distribution is the sum ofeflection are of the order of a few optical wave vect@fs

a specular peak and a background equal to the differenti@ec. v C 3, this inequality is satisfied in the semiclassical

diffuse reflection probabilit(dw/dQ) obtained from the regime (5.10 and for the typical case that the evanescent

Born approximation. An example is shown in Fig.(a0 wave's decay length is of the order of the reduced optical
The comparison to the Born approximation allows us towavelength. On the other hand, the thin phase grating ap-

establish a validity condition for the thin phase grating ap-proximation becomes invalid for a large decay lengtk.1h

proximation in the quasispecular regime. Recall that we onlythis case, the Born approximation may still be used provided,

recover the result of the Born approximation because Weowever, that the reflection is quasispectitzr Eq. (5.25)].

have identified the overlap fact@from the phase shift6.7)

with the one appearing in the response functiBgQ)

(5.19. Thus the arguments @ in both casesQ-P, /M

andAp,/# k) must not differ much on the scale of variation ~ The diffuse reflection regime corresponds to the limit

of the overlap factor. One can show that their difference )

arises because the thin phase grating approximation con- (Se(R)%)=w>1, (6.15

serves energy only to first order in the in-plane momentum

transfer2 Q. Expanding the normal momentum changp, = where the fluctuations of the atomic phase shift are large. We

to second order ik Q and comparing the result thx, we  still use the notationw for the integral of the product of the

find the condition power spectrum and the response functidri6. In the dif-

E. Discussion of the diffuse reflection regime
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fuse regime, howevery no longer appears as a total prob- fraction order approximately given by the modulation index.

ability of diffuse reflection, but as a measure of the phasetdentifying the modulation index and the rms phase shift

shift fluctuations. fluctuation yw [cf. Eq. (6.15], we find that the momentum
In the regime(6.15 of large phase fluctuations, we expect distribution of the diffusely reflected atoms has a width

the coherence functioh(R;,R;) to be significantly differ-  §Py given by Eq.(6.18).

ent from zero only if the positionR; andR, are close. We For an alternative interpretation, consider the angular di-

therefore expand the argument of the exponential in Eqvergence of the diffusely reflected atomic wave

(6.12 in powers ofQ- (R,—R;). The integral ove of the

first-order term vanishes if we suppose that the differential _ 6Py

probability (dw/dQ) is symmetric with respect to the sign of 66= Py (6.19

the wave-vector transfefAny asymmetry would only lead

to a shift of the mean momentum of the reflected atomsAt normal incidence, we may approximate the total diffuse

however) The second-order term of the expansion thenreflection probabilityw by the result of the corrugated hard

yields a coherence function that is GaussiaiRj+- R;: wall potential introduced in Sec. V C 2. The estimétel8
then yields
w
F(RlaRZ):F(O)(RZ_Rl)EXF{_ 2, ijy ¥ij(R2i —Ry) 86~ 26Pgom 4, I, (6.20
wherea, is the rms roughness of the turning point surface
X(Rej=Ryj) |, (6.1 (5.19. Since the correlation length of the turning point sur-
face approximately equals/ SPgqp [Cf. EQ. (3.1D)], its rms
where the coherence tensgr , with slope is of the order OzﬁPBoma'zO /%. The angular divergence
66 therefore corresponds to the locally specular reflection
5 :1f dQ <d_W>Q.Q' 6.17) from the rough turning point surface.
YiTw dQ/ ~'=I” ' We give in Fig. 10 a one-dimensional example of the

evolution of the atomic momentum distribution as a function
is equal to the average value of the wave-vector transfesf the parametew. The distributions are calculated by tak-
componentQ;Q;, weighted by the momentum distribution ing the Fourier transform of the coherence functi@nl?2)
of the diffusely reflected atoms in the Born approximation.with respect tdR,— R;. The surface roughness is assumed to
The width 6Pg,, of this distribution has been discussed in have a constant power spectrum in the wave-vector range
Sec. V C 1. The elements of the coherence tensor are therf|<5k, . Figures 10a)—10c) show the broadening of the
fore of the order of §Pg,,/#%)?. By Fourier transforming diffuse part of the momentum distribution for increasing val-
the coherence functiof6.16 with respect toR,—R;, we  ues ofw. In the diffuse reflection regime, the distribution is
find that the momentum distribution in the diffuse regime iscompletely dominated by the diffuse part.
Gaussian with a width of order

VII. LIGHT POLARIZATION
8P~ \W SPgorn. (6.18 AND ATOMIC ZEEMAN SUBLEVELS

As a consequence of E(6.17), the momentum distribution So far we have treated the atom as a pure two-level atom
shows an anisotropy similar to the diffuse reflection prob-with only one lower and one upper state and we have treated
ability (dw/dQ). the electric field as a scalar field. In this section we outline
We note thatoP 4y given in Eq.(6.18) is the width of an  the modifications of our results when the polarization of the
atomic diffraction pattern that would be created by a sinudight field and the Zeeman degeneracy of the atomic levels
soidal phase grating with periodnZ/S6Pg,,,, if the phase are taken into account. We recall that in the field of laser
shift of the atomic wave function were modulated with acooling these “modifications” shifted the main line of inter-
modulation indexyw large compared to unity. This is not est from Doppler cooling and cooling in intense fields to
surprising because the optical potential above the rough disub-Doppler cooling with polarization gradients and the still
electric surface may be understood as an incoherent emvolving field of subrecoil coolinfd2—4§. Polarization gra-
semble of evanescent wave diffraction gratings, each gratindient cooling mechanisms are not only theoretical sugges-
corresponding to a given Fourier component of the surfacéions for different and interesting cooling experiments; they
roughness. In this picture, the momentum distribution of theare inevitable in situations of laser cooling of real atoms in
diffusely reflected atoms is obtained by summing the diffracthree dimensions.
tion patterns over the roughness power spectrum. In the qua- The internal sublevel structure of atoms also leads to dif-
sispecular regime, the diffraction gratings create a smalferent and interesting effects in atom optics, by the possibil-
phase modulation of the atomic wave function and only thety of tailoring specific potentials for the atomic motion. For
zeroth and first diffraction orders are populated. The width ofexample, large-angle diffraction from a triangular potential
the atomic momentum distributiodPg,,, is then given by has been demonstrated by combining a polarization gradient
the range of spatial frequencies that are present in the emaser field and a magnetic fie[d7]. Also, atomic interfer-
semble of gratings, as discussed in Sec. V C 1. In the diffusemetry with spatially overlapping trajectories is possible us-
regime, the large phase modulation implies that higher ordergg superpositions of internal statg$8]. In closer connec-
are present in the diffraction patterns, up to a maximum diftion to the present work, the coherent reflection of multilevel
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atoms from a light field has recently attracted considerable —_— p—
attention[49-51]. Using numerical integration of the Schro ¢, (m-1)
dinger equation, it has recently been shdg] that incor-
poration of the multilevel structure leads to larger diffraction
probabilities, in agreement with experimen®10].
This section of the paper is motivated both by our interest
in identifying the different qualitative features emerging c_(m)
when the light polarization and the atomic Zeeman sublevel
structure are taken into account and by the obvious need of m—1 m
establishing a connection between our model studied above
and the expected outcome of real experiments. We shall stay FIG. 11. Transitions among atomic sublevels and our shorthand
in the limit of large detuning and low saturation of the notation for the Clebsch-Gordan coefficients.
atomic transition, and in analogy to E.1), the ground-
state light shift(2.5) becomes an operator acting only on the ~ Suppose now that an atom is incident on the evanescent
ground state field and that the atom enters in a superposition of the inter-
nal eigenstates of 5. The reflection is specular, but the dif-
ferent components acquire different phases and, e.g., an ini-
tial state with maximal angular momentum with respect to
the z axis, |m,=J), may be detected in the reflected beam
where, in addition to the position dependence, enteringvith amplitudes on different, states showing interferences
through the electric-field vectdg, the light shift is an opera- as a function of the atomic momentum. The phase shift of
tor acting on the Zeeman manifold as indicated by the raisinghe atomic wave for the reflection by any of the potentials
and lowering parts of the atomic dipole operatist™. The (7.2 is known[30], but the only quantities needed for the
matrix elements of the dimensionless operatbrsare given interference problem are the differences between the phase
by the Clebsch-Gordan coefficients, and although the exciteghifts. Due to the common exponential character of the po-
state is eliminate@Eq. (7.1) couples only the ground stales tentials, their amplitude differences are equivalent to a shift
the potential results from the direct coupling of the groundin the location above the dielectric at which they assume
and excited states by the laser field and the operator depenitientical values. This implies that the wave functions in each
on the excited-state degeneracy through the values of theotential are also identical up to a shift in thelependence,
Clebsch-Gordan coefficients. which is simply obtained, e.g., from the locations of the dif-
First, we shall consider the reflection of atoms at the lightferent classical turning point.6). For different eigenvalues
field above a perfectly flat surface. We then take the surface,m’ of they component of the internal angular momentum,
roughness into account, to first order in the scattered lighive simply have
field, and following the approach in Sec. V, the diffuse
atomic reflection is calculated in the Born approximation. 1 CA(m)?
We refrain from generalizing the thin phase grating approach Zm™ Zm' = 2k n c,(m)?)
of Sec. VI to this situation. The problem is similar to the one
of semiclassical approaches to sub-Doppler cooling: withoutWe now match the asymptotic ingoing amplitudes of atoms
surface roughness, different potentigf®osition-dependent arriving with the momentum componentp, along thez
eigenvalues of the light-shift operat¢r.1)] are identified, axis in an arbitrary internal superposition state
resulting in an ambiguous choice of the classical trajectory
and hence a difficulty in consistently accumulating the effect _
of the potential on the atomic motion; cf. E@.3). |X"‘>_%“ am|m) (7.4

cxlm=1) ex(m)

-~ dz
V=oy(d7-E*)(d"-E), (7.7

(7.3

A. Elat mirror and we obtain the internal state of the reflected atoms

If we consider a planar dielectric surface and an incident )
field with the electric-field vector parallel with this surface |Xout>:§ anexd 2ipAZm=0—2zn)/h]IM), (7.5
(TE polarization, we obtain an evanescent wave with its

polarization vector _pointing along_the same directi_on, e.9-where a common phase facfdhe phase shift for reflection
Ei=Eog,, K| . Itis then convenient to adopt thyedirec- 4t the potential7.2) with m=0] has been omitted.

tion for the quantization of the internal atomic angular mo- | the incident atom is in a given internal eigenstéte
mentum and to introduce the resulting eigensthtgs Using e ohserve that the reflection is both specular and scalar as
the Clebsch-Gordan coefficients defined in Fig. 11, we cafy gec. |1. This situation will therefore present the most clear

write out the light-shift potential operatd7.1) in matrix  case for studies of the effect of surface roughness on the
form and, due to our choice of quantization axis, this matrix.efiection properties of the mirror.

becomes diagonal with elements

\’\/0(m~> m)=c_(M)2V e 2%, (7.2 B. Rough mirror

In the case of the rough mirror, we again focus on the
wherevmaxzdzESIﬁA is the scalar value of the dipole poten- diffusely reflected atomic wave and we note that since the
tial at the surface. surface roughness implies scattered light with different po-
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larization components, the diffuse reflection may be accomtum difference vanishes and the decay constants are equal
panied by changes of the internal state, also in the basis ¢Eq. 15.3.1 of Ref[34]), i.e.,Ap,=0, «'=«:
internal angular momentum with respect to thexis. We

find that the elements of the Raman matrix that generalizes {®p,Mtlexd —(k+«")z]| by ,m;)
the rough potentiaV") (4.2) are proportional to the scat- _
gn P (4.2) are prop fik S Pz~ 2)/4]

tered field components yvith the corresponding polarizatipns. =(2x) L exgd — x(z+2))] — = ==
For example, the matrix element proportional to the field Pzi SinH x(zi—2z)]
component witha~ polarization for the diffuse reflection (7.9
from the [m=J) substate into thdm=J—1) substate is
given by It shows that the overlap integral is maximum if the turning
points z; and z; coincide. As a function of the difference
(I-1|(d"-g)(d*- NI =c,(I-D)c_(I)(f,+if,)/\2. z;—z,, it oscillates with a period equal to the incident atomic

(7.6)  wavelength Zr#i/p,;. If the turning pointz; becomes sepa-

o ) o rated fromz; by more than the decay length of the potential,
We give in Appendix B, Eq(B2), the polarization vectof  he gverlap is still oscillating at the same period, but it de-

of the scattered light, to first order in the surface roughnessegses proportional to expk|z—z). At normal incidence,
We note from its expression that the light scattered in th§ynere the momentum change, is close to zero, we there-
optical plane of incidencéhe x-z plang remains polarized  fore expect that the atomic scattering into a different sublevel
parallel to they direction. Equation(7.6) therefore implies s yeduced if the corresponding light shifts differ much.
th_at the atomic reflection is_ scalar in t_his plane. HOV_Veven It is interesting to note that for a fixed distance between
this property breaks down if we take into account higher-he tyrning points, there are particular values of the incident
ortljder[Stg]rms of the surface corrugation in the scattered lighkiomic momentum where the matrix elemény) is zero:
fie .
We generalize the Born approximation applied in Sec. V 0 wlh
and we first identify the initial and final states ; as internal i r— 1=12,.... (7.10
Zeeman substatgsn, ). For convenience we introduce the '
shorthand notation In these situations, the diffuse reflection probability into the
Zeeman sublevein; vanishes because the stationary wave
Ci.t=C(m; )2 (7.7) functions ¢, in the overlap integral are shifted in such a
way that they are approximately in phase quadrature.
The initial and final states are taken as eigenstates of the pore generally, we have found that the overkips) is
zeroth-order potential as discussed above. Transitions amongaked if the classical turning poirtgsandz; coincide. This
states with differentm values are induced by the surface pranck-Condon principle leads to a favored transfer of ki-
roughness, and to lowest order we note the “selection rule’netic energy between the normal and in-plane components

Am=0,* 1-. . - equal to the potential-energy difference at the common turn-
For the diffuse reflection probability, we need to calculatejng point.
the matrix element5.8) between the wave functlonspzi'f. As an example, consider a final st@pg:,m;) in a stron-

The wave functions are known as in the scalar case, and thiger potential than the initial state;>c;. The overlap is
overlap is again obtained in closed form. In the case of identhen maximum for a final momenturp,;=(c;/c;)*?p,;

tical light shifts, one recovers the result for the scalar caséarger thanp,;. For atoms incident at an oblique angle, this
(5.12), with the turning pointzy replaced byzf=zi=zmi . enhances in-plane momentum transfegantiparallel to the
This is not surprising since the Clebsch-Gordan coefficientincident momentun®; because they are associated with an
c;=c; simply shift the dipole potentials, and hence the waveincrease ofp,;. Momentum transfers parallel # (in the
functions¢)pzi o by a common distance for both states. “forward” direction) are suppressed because they lead to a

On the other hand, if the atom is coupled to a state with 4'€9ative normal momentum transfap,<0. The momen-
different light shift, we find a correction to the matrix ele- tUm distribution of the atoms scattered into a different sub-
ment (5.11. Assuming again the semiclassical limit level may therefore differ significantly from the scalar results
p.i.>%i k, it takes the form shown in Figs. 7 and 8. -

’ In summary, we are able to compute, within the Born

, approximation, the momentum distribution of the diffusel

(¢p,pmilexi = (x+ ")zl 6p,,m) ré)flpected atoms in the different Zeeman sublevels. The inte/r-

D, K nal state transitions are driven by the different polarization

=(2x) Yexd—(k+«')z] B(ﬁ—,—) Fzi—z), components of the optical near-field given by the expression

oK (B2) in Appendix B. We already noted that within thxez
(7.8 scattering plane the light is polarized along thaxis and an

important difference from the scalar case is indeed the cor-

where the last factor depends on the distance between thelation between the diffuse reflection in different directions
turning points of the initial and final states, the momentaand the change of internal sublevel. A detection of the inter-
p.i ¢, and the decay constart and is given in the Appen- nal state content of atoms reflected in different directions
dix, Eq. (A13). We have the following expression for the may hence serve as a probe of the polarization structure of
matrix element(7.8) in the particular case that the momen- the optical near field. In addition, the atomic scattering be-
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tween different sublevels is accompanied by a conversioof the optical near field due to the atoms is negligibly small
between internal and kinetic energy. With respect to the scaand because the atoms are sensitive in a straightforward way
lar case, this may significantly change the momentum distrito the light polarization of the near field.
bution of the atoms that are scattered between different Zee- The van der Waals interaction, which has recently been
man substates. investigated by the reflection of atoms at an evanescent wave
mirror [55], introduces an additional rough potential related
to the surface roughness. But for typical turning point dis-
tances, one may sho[®6] that it is small compared to the

In summary, we have studied the scattering of atoms frommough optical potential we considered here. In the case of
the optical potential created by both an evanescent and scatwultilevel atoms, there is another consequence of the van der
tered light field above a rough dielectric surface. The atomidNaals interaction: the phase shifts of specularly reflected
scattering is sensitive to height variations of the dielectricZzeeman substates are modified because they probe this inter-
surface at the scale of the incident atomic wavelengffy  action at different distances.
and spatial frequencies of the roughness up to a few optical Finally, we did not consider the optical potentidf) as-
wave vectors are relevant. The momentum distribution of theociated with the intensitje})|? of the light scattered into
scattered atoms, averaged over a large number of samplestbie half space above the dielectric. A model of the interac-
the rough surface, gives access to the power spectrum of thisn between the atom and, e.g., the far-field speckle pattern
surface roughness in this spectral range. would be a natural extension of the present work.

Our results have important experimental ramifications.
Consider, for instance, an atom interferometer where the at-
oms are reflected at an evanescent wave mirror in one arm ACKNOWLEDGMENTS
and interfere with an atomic reference beam. Due to the dis-
tortion of the reflected atoms’ wave front, the contrasof
the ensemble-averaged atomic interference pattern is reduc
by a Debye-Waller-type factdb4] and equals
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which may be shown using the characteristic function for the

surface profiles(R) [41]. In the quasispecular regime, the APPENDIX A: EXACT SOLUTIONS

contrast4~1-w/2 is equal to the probability amplitude of FOR THE EXPONENTIAL POTENTIAL

the specularly reflected atoms. For a larger diffuse reflection

probability, the fringe contrast and the specular peak de-

crease exponentially. We give here the solutiod:pzi(z) of the one-dimensional
Another important prediction of our theory is that evenstationary Schidinger equation with an exponential poten-

for an isotropic roughness spectrum, the momentum distribugg|

tion of the reflected atoms shows a significant asymmetry. At

normal incidence, the atoms are predominantly scattered par- #2 dzqspZi gi

allel to the propagation direction of the evanescent wave. At 51—zt Vma ZKZd)pzi(Z):m bp,(2) (A1)

a finite angle of incidence, the asymmetry of the momentum

distribution depends on the relative orientation of the optical

and atomic planes of incidence: the approximate conservaassume for simplicity that the exponential potential applies

tion of normal momentum causes the scattering to occur prefor all values ofz, positive and negative. The region of large

dominantly perpendicular to the atomic plane of incidencenegativez is classically forbidden since the potential be-

Furthermore, when the light polarization and the atomic Zeecomes larger than the atomic energy. The solution of Eq.

man degeneracy are taken into account, the populations @A1) that vanishes in this region reaf28—3Q

different internal states become correlated with the scattering

directions and the conversion between internal and kinetic

energy may lead to a significant increase of the normal mo- P e
mentum transfer. bp,(2)= ;S'”hWPKiP(Pma%e ?). (A2)

Our results suggest that the diffuse atomic reflection from
the evanescent wave above a corrugated dielectric surface
may serve as a probe of the surface quality at the scale of thEhe (real) function K;p(x) is a modified Bessel function of
atomic wavelength. We note that this surface probe ighe second kind34]. The wave functior{A2) is normalized
complementary to optical near-field microscd@$—37. In-  to a sine wave of unit amplitude in the asymptotic region.
deed, the turning point surface we introduced to interpret thd he positive number® and P, are given by
atomic scattering is a particular isointensity surface that may
be obtained directly by a scanning near-field optical micro-

scope operated in the constant-intensity mode. The atomic p— Pzi P [2ZMV max (A3)
scattering presents two advantages because the perturbation hi’ max h2k?

1. Wave functions
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2. Differential scattering probability ﬁZdQ

dQ; (A10)

We first derive the expressio(b.4) for the scattering :|pflzcosﬁf'

cross section in the first Born approximation. To this effect, . ] ]

we normalize the wave function@2) in a large box of Using energy conservatiof$.3), one finds expressio(5.5).
lengthL (in the z direction and areaA (parallel to the av- _

erage mirror surfade Imposing periodic boundary condi- 3. Matrix element

tions in thex andy directions and an infinite hard wall at The matrix element(5.9) involves the wave functions
z=L, the atomic momenta are quantized with spacings ¢, = (2), which correspond to asymptotic momepig; and

(for scattering into another Zeeman substa@tential mag-
5p _2mh D _mh (A4)  Nitudesc; (Vs We make the variable transformation
X,y \/K ’ z

L
Z—>U=\C(P e 2. (A11)
and the final density of states equals The matrix element then leads to an integral of the form

dan AL %

ag, ~ MIPdgrad0 (AS) I(Pi.Pf,b,w:fo du U K;p (WK;p, (bU),

L . (A12)
The normalization factor for the wave functions (r) (5.1

then equals/2/AL and the probability current of the incident whereP; ¢ are related t,; ; by Eq. (A3). The parameters
wave is j;=|pi[/2MAL. We now insert these expressions y,b are defined asy=(x+«')/x and b=(c;/c{)*2 The
into the usual formula for the differential cross section in theintegral (A12) equals(Eq. 6.576.4 of Ref[57])

Born approximation

I(P; ,Pt,b,y)
d¥ 271 ~ ~ dn ip.
d—m=7ﬂ|<¢f|V1(f)|¢i>|2m- (A6) _27om Z+ipf_Pi) (Z—ipf_P')
8I'(y) \2 2 2 2
where ¢; ; are normalized wave functions. The dimensions y  P{+P, y Pi+P
A,L of the box then drop out, as they should, and we find the XF(E +i 5 (E_i 5
cross sectior5.4).

This scattering cross section has to be normalized because y Pi—P, vy Pi+P )
the atom interacts with a potential that extends over an infi- X 2F1{§—| 2 ,§+I 2 ;v 1—Db }
nite surface, in contrast to the spatially localized potentials of
usual scattering theory. Adifferentia) probability of diffuse (A13)

reflectiondw/d(); is defined by normalizing the number of _ _ _
scattering events per unit time and unit element of solidvhere ;F; is the hypergeometric functiof84]
angledNg./dQ);dt to the number of incident atoms per unit

. ) . X I'(y)
timedN, /dt. According to the definition of the cross section, _F R e —
we have Falen 02 Y X = g T (ay)
" T(a;+nT(ay+n) X"
dNge :jlg A7) x> lr +n)2 o (A19)
dodt 11do;’ =0 (y !

wherej; is the incident atomic probability current. The num- Forb=1, the hypergeometric function in EGA13) reduces

ber of incident atoms per unit time is infinite if we consider ©© UNity. We note that in this case, one may easily compute

incident plane waves and a scattering potential that exten&é‘e integral(A12) using an integral representation for the

) : o - esselK function (Eq. 9.6.24 of[ 34]).
?n\ﬁro:hseu\rlggc?(lae(vvi){hp;g;\. -:-ﬂg%?\/gf tl);r/mt of a large, finite We obtain the resulf5.11) by taking the semiclassical

limit P;+>1 in Eq. (A13). The calculation is carried out

dN, using the asymptotic expansion of the gamma funct®eq.

a0 =j,Aco9;, (A8) 6.1.41 of[34]) and expanding the normalization factor of the
wave functiongA2).

In the case of Zeeman sublevels with different light shifts,

where co$, is the projection of the surface normal onto thethe factorA(z,— z,) has the form

direction of the incident atoms. The differential probability

of diffuse reflection is therefore given by pif
_ZeZK(Zf*Zi)

)ipzf/ﬁk

Hzi—z)=
dw 1 d3 (A9) zi
dQ; Acoss; dQ;’ k+ k' Py T
X Fa| @y, ap; ———; 1— —e* 4|,
K Pzi

We shall also express the solid angle elenalt in terms
of the atomic in-plane wave-vector transfer elema@t (A15)
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with a4 ,a, given by EMV(K" ) =Eof(K)f(K")kS(K'—K), (B1)
N _Kktw i Pzit pzi_ (A1)  Which is similar to the scalar result given in E8.3) and
L2 2k 2fhk where the(unnormalizedl polarization vectof(K') equals
The factorF(z;—z) is real for realk’; this follows from the (k- &)k,
property f(K')=e— WK (B2)
1 ™n

oFalay, az; i X]=(1=X)Y" 1792 R [ y—ag, y—az v;X] _ _ _ _ _ _
(A17) In this expressionk;=(K’,i«x") is the (three-dimensional
. . wave vector of the scattered light wave above the plane
of the hypergeometric functio(Eq. 15.3.3 off 34]). z=0, with <’ defined in Eq(3.2), andk’ = (K’ k') where
—k;, is the normal component of the scattered wave vector

APPENDIX B: POLARIZATION below the plane=0:

OF THE SCATTERED LIGHT

The scattering of polarized light at a rough surface may be kn=+n’ki —[K']?, (B3)
calculated by an extension of the Rayleigh approximation of
Sec. 111[25,53. The boundary conditions for the electromag- @nd the imaginary part of the square root is determined by
netic field are the continuity of the tangential components of Mk;>0. In the case of a TE-polarized light wave incident in
the electric- and magnetic-field vectors across the surface. the x-z plane withK =K,e, and polarization vectog,=e,,

For light with arbitrary polarization, the Fourier compo- the light scattered in the optical plane of incidence
nentE®(K") of the transmitted field to first order is linearly K'=K;e&, remains TE polarized since the second term in Eq.
related to the electric-field vectdf,e, of the zeroth-order (B2) vanishes and the polarization vect§K’) reduces to
evanescent wave, according[&b] €.
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