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Diffuse atomic reflection at a rough mirror
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We present a theoretical analysis of the influence of surface roughness on the atomic reflection from an
evanescent wave mirror. In our calculations we assume that light scattered at the rough dielectric surface
interferes with the evanescent wave, creating a rough potential that scatters the atoms. We calculate the
probability of diffuse reflection and the momentum distribution of the scattered atoms with a statistical model
for the rough surface. The atomic reflection is diffuse rather than specular if the surface roughness is compa-
rable to the wavelength of the incident atoms. We discuss the spatial coherence of the reflected matter waves.
We indicate how to generalize our treatment to the case of multilevel atoms.@S1050-2947~97!04002-X#

PACS number~s!: 03.75.Be, 34.50.2s, 39.20.1q, 68.35.Ct
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I. INTRODUCTION

Mirrors are key components of optical devices for bo
electromagnetic and matter waves. In particular for interfe
metric applications, it is important to ensure that the refl
tion at the mirror is specular, since diffuse scattering
equivalent to a loss of spatial coherence of the reflec
wave. This means that the roughness of the mirror surf
must be kept below the wavelength of the incident wave. T
constraints on surface quality required for matter wave m
rors are therefore more stringent than for optical mirrors
the de Broglie wavelength is smaller than the optical wa
length. This situation is frequently encountered in atom
tics.

We discuss in this paper the diffuse reflection of atoms
an evanescent wave mirror. This device has been use
several atom optics experiments@1–7#, including multiple
reflection @8#, diffraction @9–11#, and interferometry@12#.
The atoms are reflected by the repulsive optical potential
blue detuned, evanescent light field above the surface
dielectric prism. At a sufficiently large detuning, the excite
state population is small and hence the probability of sp
taneous emission is negligible. Recently, however, we h
obtained experimental evidence for a nonspecular reflect
depending on the quality of the prism surface@13#. In this
experiment, a surface roughness on the angstrom scale
sufficient to cause a diffuse rather than specular reflectio

Although the optical potential of the evanescent wave p
vents the atoms from interacting directly with the surfa
several mechanisms are responsible for an indirect inte
tion. These include the interaction with stray light that
scattered from the prism, as well as the modification of
van der Waals–London–Casimir interaction due to the s
face roughness. In this paper, we focus on one partic
effect due to the light scattered at the prism surface: w
this light interferes with the unscattered evanescent wav
creates random spatial variations of the optical near-field
tensity above the surface. The repulsive optical potentia
the atomic mirror hence acquires some roughness, leadin
a diffuse rather than specular reflection of the atoms.

In order to characterize the scattering of the atoms at
rough optical potential, we calculate the probability of d
551050-2947/97/55~2!/1160~19!/$10.00
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fuse reflection and the atomic momentum distribution af
reflection. Two different approaches are presented. First,
treat the scattering of the atomic wave by the rough par
the optical potential in first-order perturbation theory, usi
the Born approximation, i.e., assuming that a small fract
of the incident atoms is scattered. The atomic moment
distribution then contains a diffuse background that cor
sponds to the scattered atoms, in addition to a specul
reflected peak. We find that the probability of diffuse refle
tion is equal to the square of the ratio between an effec
mirror roughness and the incident atomic wavelength. T
effective roughness is interpreted as the roughness of
atomic ‘‘turning point surface,’’ i.e., the isopotential surfac
where the optical potential of the rough evanescent w
equals the incident kinetic energy. We find that the diffu
reflection of the atoms is similar to the scattering from
infinite potential barrier located at the rough turning po
surface. This type of potential is known as the ‘‘corrugat
hard wall’’ potential in the scattering of atoms from crysta
line surfaces@14–16#. We point out that the effective mirro
roughness is comparable to the surface roughness of th
electric prism. This implies that the prism surface must
smooth at the scale of the atomic wavelength for the refl
tion of the atoms at the evanescent wave mirror to be spe
lar.

In a second approach, we use a thin phase grating
proximation to take into account the rough optical potent
This approach is based on a semiclassical perturba
method@17# and has been developed for atomic diffracti
by a standing evanescent wave@18,19#. It is equivalent to the
Raman-Nath approximation@20,21# for a transmission grat-
ing. The thin phase grating approximation allows us to
beyond the Born approximation and to cover the diffuse
flection regime where the surface roughness is larger than
incident atomic wavelength. In this regime, the moment
distribution of the reflected atoms contains no specular p
and is broader than in the quasispecular regime. It is in
preted as an average diffraction pattern for an incohe
ensemble of phase gratings with a large phase modulati

In both the Born and the thin phase grating approxim
tions, we apply a statistical description for the rough surfa
in order to compute the atomic scattering. We model
1160 © 1997 The American Physical Society
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55 1161DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
surface profile by a random variable whose statistical av
ages are characterized by a correlation function. This sta
tical framework allows us to introduce in a natural mann
the spatial coherence function of the reflected atoms.
coherence function characterizes the quality of the reflec
when the evanescent wave mirror is used in an atom in
ferometer. It also allows to calculate the average momen
distribution of the reflected atoms by means of a Fou
transformation.

The outline of the paper is as follows. We first recall som
results for the atomic reflection at a perfectly flat evanesc
wave mirror in the small-saturation and large-detuning lim
~Sec. II!. We restrict ourselves in the beginning to a tw
level atom and ignore the polarization of the light. The sc
tered light field above the rough surface is given in Sec.
where we recall the results of a perturbative calculation
first order in the surface roughness@22–27#. In this section
we also introduce the statistical model for the rough surf
and discuss the validity conditions for the light field calcu
tion.

The rough optical potential created by the interference
the scattered light with the evanescent wave is introdu
and discussed in Sec. IV. In Sec. V we study the diffu
reflection of atoms at the rough potential by means of
first Born approximation. Section VI is devoted to the calc
lation of the atomic scattering in the thin phase grating
proach. We show that this approximation recovers the res
of the Born approximation in the quasispecular limit.

We finally outline in Sec. VII the generalization of th
present approach when the light polarization and the ato
Zeeman sublevel structure are taken into account. This
vides the atom optics analog of polarization-resolved li
scattering at rough surfaces. The Appendixes give some
sults for the atomic motion in the flat evanescent wave m
ror ~Appendix A! and the scattering of vector electroma
netic waves at a rough dielectric surface~Appendix B! that
are used in the text.

II. MODEL POTENTIAL FOR THE EVANESCENT
WAVE MIRROR

A. Optical potential

In the limit of large detuning compared to the natu
linewidth of the excited state and low saturation of t
atomic transition, the reactive part of the atom-light intera
tion dominates over the dissipative part. We may then
sume that the atom remains in its ground state, neglect s
taneous emission, and describe the atomic motion by
optical or dipole potential, i.e., the position-dependent lig
shift of the atomic ground state. To begin with, we consid
a two-level atom and defer the discussion of polarization
Sec. VII. The optical potential then takes the form

V~r !5
d2

\D
E* ~r !E~r !, ~2.1!

where the detuningD is the difference between the ligh
frequencyvL and the atomic transition frequency,d is the
atomic dipole moment, andE(r ) andE* (r ) are the positive
and negative frequency components of the electric field
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E~r ,t !5E~r !e2 ivLt1E* ~r !eivLt. ~2.2!

We shall further suppose that the atom is moving sufficien
slowly so that the Doppler shift is negligible compared to t
detuning. The optical potential~2.1! is then independent o
the atomic velocity. Note that this approximation has to
reviewed for atoms that are reflected at grazing incide
@1,3–5#.

B. Flat mirror

The evanescent wave is created by the total internal
flection of a plane light wave with an angle of inciden
uL at the surface of a dielectric with refractive indexn, as
shown in Fig. 1. In the absence of surface roughness,
electric field in the vacuum above the surfacez50 is an
evanescent wave

E~0!~r !5E0exp~ iK•R2kz!, r5~R,z!, ~2.3!

wherek is given in terms ofK by

k5AuK u22kL
2. ~2.4!

We use bold capital lettersK ,R for vector components par
allel to the surface. The electric-field amplitudeE0 at the
surface is related to the incident field by a Fresnel transm
sion coefficient. The magnitude of the in-plane wave vec
K of the evanescent wave isnkLsinuL , wherekL5vL /c is
the magnitude of the optical wave vector in vacuum. T
decay length 1/k of the evanescent wave is of the order
the reduced optical wavelengthlL/2p, unless the light wave
inside the dielectric is close to the critical angle.

For a positive detuningD, the optical potential of the fla
evanescent wave~2.3! is a repulsive barrier that varies expo
nentially as a function of the distance from the surface

V~0!~r !5Vmaxe
22kz. ~2.5!

FIG. 1. Geometry of the problem. The totally internally reflect
light beam is scattered by the rough surface. The scattered b
interferes with the evanescent wave, creating a rough evanes
wave. The roughness of the evanescent wave mirror renders
atomic reflection nonspecular.
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1162 55CARSTEN HENKELet al.
Its value at the surfaceVmax5d2E0
2/\D gives the maximum

kinetic energy~in the z direction! of an atom that may be
reflected at the barrier:pzi

2 /2M<Vmax. We suppose that the
incident atomic velocitypzi /M is sufficiently small that we
may neglect tunneling effects and the van der Waals inte
tion with the surface compared to the optical potential. T
is typically the case when the classical turning point dista
from the surface

z05
1

2k
lnS 2MVmax

pzi
2 D ~2.6!

is larger than aboutlL /2p.
Since the optical potential of the evanescent wave ha

simple exponential form~2.5!, explicit analytical expression
for the classical trajectory and the quantum-mechanical w
function may be found@28–30#. More details are given in
Appendix A.

III. THE LIGHT FIELD ABOVE THE ROUGH SURFACE

A. Result of the Rayleigh theory

Due to the roughness of the prism surface, the elec
field above the surface contains a scattered part, in add
to the evanescent wave~2.3!. We focus on surfaces with
rms surface roughnesss small compared to the optica
wavelength, which is typically realized in experiments. T
theory of light scattering at slightly rough surfaces may th
be used to calculate the scattered part of the light field
this section we recall the result one obtains for a scalar l
field in the Rayleigh approximation, to first order in the su
face roughness.

We only summarize this approach here; more details m
be found in Refs.@22–27,31#. The scattered light field abov
and below the surface is expanded in Fourier compon
that are either propagating away from the surface or eva
cent. The Fourier coefficients are determined by imposing
the rough dielectric surfacez5s(R), the continuity relations
for the total field~the field incident from below the surfac
plus the scattered field!. The continuity relations are solve
by iteration in ascending powers of the surface pro
s(R). At zeroth order, one finds the usual Fresnel transm
sion and reflection coefficients for the flat evanescent w
above the surface~2.3! and for the internally reflected field
below the surface. To first order in the surface roughness
scattered electric field is proportional to the transmit
zeroth-order field amplitudeE0, the proportionality factor
being typically of orderks!1.

We write the Fourier expansion of the scattered fi
above the surface in the form

E~1!~r !5E d2K 8

~2p!2
E~1!~K 8!exp~ iK 8•R2k8z!. ~3.1!

The scattered field modes are labeled by their in-plane w
vectorsK 8 and have decay constantsk8 ~either real and posi-
tive or imaginary with Imk8,0) given by

k85AuK 8u22kL
2. ~3.2!
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The Rayleigh approximation yields the following result f
the Fourier coefficients of the scattered light, to first order
the surface roughness:

E~1!~K 8!5E0f ~K 8!kS~K 82K !. ~3.3!

They are proportional to the Fourier componentS(Q) of the
surface profiles(R),

S~Q!5E d2R s~R!e2 iQ•R, ~3.4!

at the in-plane wave-vector transferQ between the scattere
and the incident wave

Q5K 82K . ~3.5!

The dimensionless factorf (K 8) in Eq. ~3.3! is given by

f ~K 8!5
iAn2kL22uK u821k8

k
, ~3.6!

where the square root has to be taken with a positive im
nary part foruK 8u.nkL .

Equation~3.5! shows that a specific Fourier compone
Q of the surface roughness excites a scattered field m
with in-plane wave vectorK 85K1Q from the incident
wave ~see Fig. 2!. For a small wave-vector transferQ, the
scattered mode is evanescent and the decay constantk8 is
real. The wave-vectorK 8 is then located outside the circle i
the figure. For larger wave vectorsQ @with magnitude at
least equal tokL(nsinuL21)#, the scattered modes may b
plane waves that propagate above the surface andK 8 is then
located inside the circle. In this case, the quantityk8 in the
expansion~3.1! is imaginary withk852 ikz8 , wherekz8 is
the ~real and positive! vertical component of the scattere
wave vector.

B. Statistical model for the rough surface

We describe the roughness of the prism surface by a
tistical approach and model the surface profiles(R) by a
random process. The mean surface height vanishes

^s~R!&50 ~3.7!

and its mean square is given by

^s2~R!&5s2, ~3.8!

FIG. 2. Scattering of the light field by the rough surfac
K ,K 8, in-plane wave vectors of the zeroth-order evanescent w
and the scattered light mode;Q, in-plane wave vector of the surfac
roughness; circle, scattered wave vectors withuK 8u5kL .
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55 1163DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
wheres is the rms surface roughness. We further assu
that the surface roughness is statistically translation inv
ant, which means that the correlation function

^s~R1!s~R2!&5C~R12R2! ~3.9!

depends only on the differenceDR[R12R2. The correla-
tion functionC(DR) is equal tos2 for DR50 and decrease
to zero forDR→` on a scale equal to the correlation leng
l S . We shall suppose that the surface roughness has Ga
ian statistics, which means that its higher-order correlat
functions are completely characterized by the average~3.7!
and the correlation function~3.9!.

For the Fourier transformS(Q) of the surface profile, as
defined in Eq.~3.4!, Eqs.~3.7! and ~3.9! yield the statistical
averages

^S~Q!&5^S* ~Q!&50, ~3.10a!

^S~Q1!S* ~Q2!&5~2p!2PS~Q1!d~Q12Q2!. ~3.10b!

If the rough surface has a finite areaA, the average~3.10b!
becomes, forQ15Q2,

^S~Q!S* ~Q!&5APS~Q! ~3.10c!

and vanishes forQ1ÞQ2. In Eqs.~3.10!, PS(Q) is the power
spectrum of the surface roughness and it is equal to the F
rier transform of the correlation functionC(DR). The width
dQS of the power spectrum is related to the surface corre
tion lengthl S by

dQS;
1

l S
. ~3.11!

The rms surface roughnesss is obtained by integrating the
power spectrum over all spatial frequencies

s25E d2Q

~2p!2
PS~Q!. ~3.12!

We note that an actual measurement of the rms roughn
with a surface scanning probe for example, involves onl
limited range of spatial frequencies given by the bandwi
of the experimental device.

C. Validity of the light-scattering treatment

The validity domain of our calculation of the scatter
light field is limited by two constraints. The first one aris
from the use of the Rayleigh approximation. From numeri
calculations of light scattering at periodic gratings, it h
been found that this approximation is valid if the grati
amplitude is small compared to the grating period@27#. In
the context of rough surfaces, this condition becomes@31#

s! l S , ~3.13!

wherel S is the surface correlation length.
Another constraint comes from the fact that the scatte

light amplitude is calculated only to first order in the surfa
roughness. This means that the rms surface roughnes
must be small compared to the wavelength of the incid
and scattered light waves. For far-field calculations, the
e
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evant condition iskLs!1 @27#. Since we are also intereste
in the light scattered into evanescent modes~with decay con-
stantk8), this condition has to be replaced by the somew
stronger one that the rms roughness be small compared t
decay length of the scattered mode@32#

s!1/k8. ~3.14!

A lower limit on 1/k8 is obtained from Eq.~3.2! and

k8&uK 8u'uQu ~3.15!

for spatial frequenciesK 8,Q large compared tokL . If the
roughness power spectrum has a widthdQSmuch larger than
the optical wave vector, evanescent modes with wave vec
up to uK 8u;dQS are excited. In this case, the limits on th
surface roughnesss imposed by the conditions~3.13! and
~3.14! are of the same order of magnitude because the
relation lengthl S is related to the widthdQS of the power
spectrum by Eq.~3.11!. On the other hand, if the powe
spectrum is narrower than the optical wave vector, the c
relation lengthl S is larger thanlL . In this case,k8;k and
condition ~3.14! is more restrictive than Eq.~3.13!.

In this paper we shall always suppose that the conditi
~3.13! and~3.14! are satisfied. As far as the scattering of lig
at the rough surface is concerned, we may hence use
first-order perturbation theory outlined here.

IV. MODEL FOR THE ROUGH MIRROR POTENTIAL

We now calculate the optical potential of the evanesc
wave mirror in the presence of light scattered at the rou
dielectric surface. We therefore insert the total electric fi
and the unscattered and the scattered part@Eqs. ~2.3! and
~3.1!#

E~r !5E~0!~r !1E~1!~r ! ~4.1!

into the optical potential~2.1!. Since the scattered field am
plitude E(1)(r ) is small compared to the unscattered fie
E(0)(r ), the optical potential contains three terms of differe
orders of magnitude. To zeroth order in the surface rou
ness, we recover the flat optical potentialV(0)(r ) given in
Eq. ~2.5!. The first-order potentialV(1)(r ) corresponds to the
interference term between the scattered light field and
zeroth-order field. Finally, there is a second-order poten
V(2)(r ) proportional to the square ofE(1)(r ). Close to the
surface~at distances of order 1/k), this second-order term is
small compared to the first-order potentialV(1)(r ). On the
other hand, it is nonzero in the half space above the sur
because of the propagating modes in the scattered light fi
As mentioned in the Introduction, we focus in this paper
the roughness of the optical potential around the point wh
the atoms are reflected and ignore the potentialV(2)(r ).

In our model, the roughness of the evanescent wave m
ror is therefore described by the optical potential

V~1!~r !5
d2

\D
@E~0!* ~r !E~1!~r !1E~1!* ~r !E~0!~r !#,

~4.2!
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1164 55CARSTEN HENKELet al.
which is created by the interference between the flat eva
cent waveE(0)(r ) and the light scattered at the rough surfa
E(1)(r ) @33#. Using the expansion~3.1! of the scattered light
field E(1)(r ), we represent the rough potential~4.2! as a two-
dimensional Fourier integral

V~1!~r !5E d2Q

~2p!2
Ṽ~1!~Q,z!eiQ•R, ~4.3!

with

Ṽ~1!~Q,z!5VmaxkS~Q!$ f ~K1Q!exp@2~k1k18 !z#

1 f * ~K2Q!exp@2~k1k28 * !z#%. ~4.4!

The functionsf (K6Q) defined in Eq.~3.6! provide the am-
plitudes of the scattered light modes with the in-plane wa
vectorsK6Q. The k68 are the decay~or propagation! con-
stants of these modes.

We note that the Fourier transformṼ(1)(Q,z) of the rough
potential is proportional to the Fourier amplitudeS(Q) of the
surface roughness. The spatial frequencies of the rough
tential are therefore the same as those of the rough sur
However, a given Fourier component of the surface rou
ness contributes to the rough potential via two scattered l
modes with the in-plane wave vectorsK6Q.

We may interpret these contributions in terms of two R
man transitions that both transfer an in-plane momen
DP5\Q to the atom. These transitions are schematized
Fig. 3. In the first Raman transition@Fig. 3~a!#, the atom
absorbs a photon from a scattered light mode with w
vector K1Q and subsequently emits another one into
zeroth-order evanescent wave. The atomic in-plane mom
tum transfer for this stimulated Raman process is

DP5\~K1Q!2\K . ~4.5!

Its transition amplitude is proportional to@cf. Eq. ~3.3!#

E0*E
~1!~K1Q!5kS~Q! f ~K1Q! uE0u2 ~4.6!

FIG. 3. Interpretation of the atomic scattering in terms of Ram
transitions involving absorption and stimulated emission.
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and corresponds to the first term in Eq.~4.4!. In the second
Raman transition@Fig. 3~b!#, a photon from the zeroth-orde
field is absorbed and another one emitted into a scatte
light mode with wave vectorK2Q, leading to the atomic
momentum transfer

DP5\K2\~K2Q!. ~4.7!

The Raman transition amplitude is proportional to@cf. the
second term in Eq.~4.4!#

E~1!* ~K2Q!E05kS* ~2Q! f * ~K2Q! uE0u2. ~4.8!

As a consequence of the relationS* (2Q)5S(Q) @which
follows from Eq. ~3.4!#, the relative phase of the transitio
amplitudes~4.6! and ~4.8! is independent of the~random!
phase of the Fourier coefficientS(Q). For a given wave vec-
tor Q of the surface roughness, the two Raman proces
therefore add up coherently in the rough dipole potential

V. DIFFUSE ATOMIC REFLECTION
IN THE BORN APPROXIMATION

In this section we use potential scattering theory in
Born approximation to characterize the diffuse reflection
an atomic wave at the evanescent wave mirror. Our treatm
is equivalent to the distorted-wave Born approximation, a
plied, e.g., in atomic collision theory, and we compute t
transition probabilities among the exact eigenstates in the
mirror potential. We define an average differential probab
ity of diffuse reflection by means of the scattering cross s
tion for the rough optical potentialV(1)(r ). This differential
probability gives the distribution of the in-plane momentu
transfer for the diffusely reflected atoms. We discuss a
analyze this momentum transfer and the total probability
diffuse reflection. Finally, we estimate the validity of th
Born approximation.

A. Average differential probability of diffuse reflection
in the Born approximation

Consider an atomic wave that is incident upon the evan
cent wave mirror with momentumpi5(Pi ,2pzi), at an
angle of incidenceu i with respect to the mean surface no
mal ~cf. Fig. 1!. If the mirror potential has no roughness, th
atomic wave is specularly reflected and its wave function
given by an eigenfunction of the flat potential~2.5!

c i~r !5exp~ iPi•R/\!fpzi
~z!. ~5.1!

The z-dependent part of the wave functionfpzi
(z) is given

in Appendix A. Far from the mirror surface, it is the sum
an incident and a reflected wave with momenta7pzi . We
choose the normalization

fpzi
~z!5sin~pziz/\1w!, z→`, ~5.2!

wherew is a phase shift that depends on the incident m
mentum and the magnitudeVmaxof the zeroth-order potentia
@30#.

From the point of view of scattering theory, the rough p
V(1)(r ) of the mirror potential induces transitions from th
initial statec i(r ) into a final statec f(r ) with momentum

n
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55 1165DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
pf5(Pf ,pz f). Since the rough potential is time independe
energy conservation implies that

Pi
21pzi

2 5Pf
21pz f

2 . ~5.3!

In the first Born approximation, the differential cross secti
for this transition is given by

dS

dV f
5

4M2

p2\4z^c f~r !uV~1!~r !uc i~r !& z2

5
4M2

p2\4z^fpz f
~z!uṼ~1!~Q,z!ufpzi

~z!& z2, ~5.4!

whereM is the atomic mass anddV f the element of solid
angle aroundpf . The prefactor of the scattering cross secti
~5.4! is explained by our particular choice of normalizatio
for the atomic wave functions~see Appendix A!. By an ap-
propriate normalization of the scattering cross section,
given in Appendix A, we obtain a differential probability o
diffuse reflection per in-plane wave-vector transferQ:

dw

dQ
5

\2

pzi pz f

1

A

dS

dV f
, ~5.5!

whereA is the mirror surface area.
This is the diffuse reflection probability for a particula

realization of the rough dielectric surface. In the framewo
of our statistical approach, we calculate its average va
with respect to the statistical ensemble~3.10!. We expect that
the ensemble average equals the average over a large nu
of reflected atoms from a single realization of the rough s
face, if the atoms are reflected independently and sam
uncorrelated parts of the surface.

B. Calculation of the diffuse reflection probability

From the Born cross section~5.4! and the Fourier compo
nent of the rough potential~4.4!, we find that the average
cross section̂ dS/dV f& is proportional to^S(Q)S* (Q)&.
Since this quantity is proportional to the areaA @cf. Eq.
~3.10c!#, the finite mirror surface drops out of the avera
diffuse reflection probability~5.5!. The latter is then obtained
as a simple product of the surface power spectrum and
‘‘atomic response function’’

K dwdQ L 5~2p!22PS~Q!uBat~Q!u2, ~5.6!

whereBat(Q) is given by

Bat~Q!5
4Mk

\

Vmax

Apzi pz f
3^fpz f

~z!u$ f ~K1Q!exp@2~k1k18 !z#

1 f * ~K2Q!exp@2~k1k28 * !z#%ufpzi
~z!&.

~5.7!

This function characterizes the diffuse atomic reflection fo
given spatial frequency in the surface roughness.
,

s

k
e

ber
r-
le

an

a

To calculate the diffuse reflection probability, we are no
left with the matrix element

^fpz f
~z!uexp@2~k1k8!z#ufpzi

~z!&, ~5.8!

which describes the coupling between the initial and fi
atomic states due to the rough potential. In the first Bo
approximation of potential scattering, it is known that t
momentum change is distributed according to the Fou
transform of the potential and we expect that the exponen
decay of the field limits the normal momentum change b

uDpzu[upz f2pziu&\k. ~5.9!

The integral~5.8! can actually be done analytically and
given in Appendix A. We shall concentrate on the semicl
sical limit where the atomic de Broglie wavelength is sm
compared to the decay length of the potential. This regi
corresponds to an incident momentum with

pzi@\k, ~5.10!

and in this limit, the matrix element can be written in th
form

^fpz f
~z!uexp@2~k1k8!z#ufpzi

~z!&

5~2k!21exp@2~k1k8!z0#Apz f
pzi

S pz f1pzi
2pzi

D k8/k

3bS Dpz
\k

,
k8

k D , ~5.11!

wherez0 is the classical turning point for the incident velo
ity pzi /M in the flat mirror potential.

The dimensionless functionb is defined by

bS Dpz
\k

,
k8

k D5
2k8/k

2 G@~k1k8!/k#
GS k1k8

2k
1 i

Dpz
2\k D

3GS k1k8

2k
2 i

Dpz
2\k D , ~5.12!

whereG is the Euler gamma function. We shall callb the
‘‘overlap factor.’’ It is real~complex! valued for real~imagi-
nary! k8. One has the explicit expressions@34#

bS Dpz
\k

,1D5
pDpz/2\k

sinh~pDpz/2\k!
for k85k, ~5.13a!

bS Dpz
\k

,0D5
p/2

cosh~pDpz/2\k!
for k850. ~5.13b!

They show that the overlap factor takes its maximum va
for Dpz50 and decreases exponentially ifDpz is large com-
pared to\k, which is in agreement with our expectatio
~5.9! that the normal atomic momentum change is limited
\k. This cutoff implies that we may make the followin
approximation in the matrix element~5.11!:

Apz f
pzi

S pz f1pzi
2pzi

D k8/k

'1, ~5.14!
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neglecting corrections of relative orderuDpzu/pzi&\k/pzi ,
which are small in the semiclassical regime~5.10!. To the
same approximation, we may also replace the square
Apzi pz f by pzi in Eq. ~5.7!. If we finally express the heigh
Vmax of the zeroth-order potential in terms of the turnin
point z0 @Eq. ~2.6!#, we obtain the following result for the
atomic response function~5.7!:

Bat~Q!5
pzi
\

$ f ~K1Q!exp @~k2k18 !z0#b1

1 f * ~K2Q!exp@~k2k28 * !z0#b2* %, ~5.15!

where b6 is a shorthand notation for the overlap facto
b(Dpz /\k,k68 /k).

C. Discussion of the diffuse reflection probability

1. Shape of the atomic response function

We discuss in this subsection the behavior of the diff
ential diffuse reflection probabilitŷdw/dQ& as a function of
the in-plane atomic momentum transferDP5\Q. According
to Eq. ~5.6!, the maximum first-order momentum transf
dPBorn is determined by both the widthdQS of the roughness
power spectrumPS(Q) and the widthdQat of the atomic
response functionBat(Q).

In order to determine the widthdQat of the atomic re-
sponse function, we observe three features of the re
~5.15!: ~a! the ‘‘optical response function’’f (K6Q), which
characterizes the scattering of the light field by a given s
tial frequency of the rough surface@cf. Eq. ~3.3!#; ~b! the
amplitude exp(2k68 z0) of the scattered light modes at th
distancez0 of the atomic turning point@cf. Eq.~3.1!#; and~c!
the overlap factorb(Dpz /\k,k68 /k), which characterizes
the coupling between the initial and final atomic wave fun
tions induced by the rough potential@cf. Eq. ~5.11!#.

(a) Optical response function.The absolute value o
f (K 8) is represented in Fig. 4~a!, as a function of the mag
nitude uK 8u of the scattered wave vector. We see that
optical response function is of the order of unity f
uK 8u&nkL and decreases proportional to 1/uK 8u for larger
wave vectors~the dashed line!. It therefore introduces a
smooth cutoff for high spatial frequencies in the scatte
light.

(b) Distance of the atomic turning point.Figure 4~b!
shows the absolute value of the light field amplitu
exp(2k8z0) as a function ofuK 8u, for different values of the
turning point distancez0. We see that for a turning poin
rather close to the surface~the thick solid line!, the ampli-
tudes of the scattered light field are comparable for pro
gating (uK 8u,kL) and evanescent (uK 8u.kL) modes. Figure
5 represents the square of the atomic response func
~5.15! for this turning point distance (z05

1
2k

21ln2). In this
figure the atoms are reflected at normal incidence. The
sponse function has a quite complex shape, but we see
spatial frequencies much larger than the optical wave ve
do not contribute to the diffuse reflection.

The atomic response function becomes somewhat sim
if the turning point distancez0 is larger. The dashed line in
Fig. 4~b! ~for z052k21ln2) then shows that the amplitude
of evanescent modes are small and only propagating m
ot
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contribute to the rough potential. The corresponding atom
response function is represented in Fig. 6. Its dominant
tures are two disks of radiuskL and centered at6K . For
these spatial frequencies, the diffuse reflection is due
propagating light modes: in terms of the Raman transitio
of Fig. 3, the left disk corresponds to the transition of F
3~a!, where the absorbed photon with wave vec
K 85K1Q is propagating (uK 8u,kL). The disk is centered
at 2K because of the recoil from the photon emission in
the zeroth-order evanescent wave. The right disk correspo
to the transition of Fig. 3~b!, where the emitted photon~wave
vector K 85K2Q) is propagating. Note the anisotropy o
the atomic response function: it is broader parallel to
propagation vectorK of the zeroth-order evanescent wave

FIG. 4. ~a! Absolute value of the optical response functio
f (K 8) ~3.6!, as a function of the magnitude of the scattered opti
wave vectorK 8 ~in units of the vacuum wave vectorkL). The
dashed curve gives the asymptotic behavior inversely proportio
to uK 8u for large uK 8u. The refractive index equalsn'1.63 and
k5kL . ~b! Absolute value of the field amplitude exp(2k8z0), as a
function of uK 8u. Thick solid line, turning point rather close to th
surface z05

1
2k

21ln2; thin solid line, intermediate distanc
z05k21ln2; dashed line, large distancez052k21ln2. ~c! Absolute
value of the overlap factorb ~5.12!, as a function ofuK 8u. The
normal momentum difference isDpz50; this situation is approxi-
mately realized at normal atomic incidence.
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55 1167DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
(c) Role of the overlap factor.We recall that the overlap
factor b limits the normal momentum difference t
uDpzu&\k @cf. Eq. ~5.13!#. At normal atomic incidence, this
does not impose a significant restriction on the width of
atomic response function because the normal momen
changes only to second order in the in-plane momen
transfer\Q: from Eqs. ~5.3! and ~5.9!, we find the limit
dQat&A2pzik/\, which, in the semiclassical regime, is typ

FIG. 5. Contour plot of the atomic response functionuBat(Q)u2

~5.15! at normal incidence, as a function of the atomic in-pla
wave-vector transferQ in units of the optical wave vectorkL .
Shaded areas correspond to large values of the response fun
The inset shows a profile along the thick dashed line. The turn
point is close to the surfacez05

1
2k

21ln2 and atoms are inciden
with normal momentumpzi550\k. The zeroth-order evanesce
wave has an in-plane wave vectorK5A2 kLex parallel to thex axis
andk5kL .

FIG. 6. Same as Fig. 5, but with an increased optical poten
such that the turning point is farther away from the surfa
z052k21ln2.
e
m
m

cally large compared to the size of the double disk struct
discussed above.

At oblique incidence, however, the normal atomic m
mentum changes to first order in\Q because of energy con
servation. Parallel to the incident in-plane momentumPi , the
overlap factor then limits the width of the response functi
to spatial frequenciesdQat&k/tanu i , whereu i is the atomic
angle of incidence. This is a significant restriction becaus
is of the order of the optical wave vector. Perpendicular
the atomic plane of incidence, the limit fordQat is large
compared tokL , similar to the case of normal incidence
This implies that if the atoms are incident at a grazing an
(u i→90°, but pzi still large compared to\k), the diffuse
reflection is strongly suppressed in the atomic plane of in
dence. For a sufficiently broad surface power spectr
PS(Q), the angular distribution of the reflected atoms shou
therefore be broader in the direction perpendicular to
atomic plane of incidence.

In Figs. 7 and 8 we show the atomic response function
atoms incident at an angleu i545° for two different experi-
mental situations.~The turning point is located atz0
5 1

2k
21ln2, as in Fig. 5.! In Fig. 7 the atomic and optica

planes of incidence coincide~incident atomic momentum
Pi parallel to the propagation vectorK of the zeroth-order
evanescent wave!. In this geometry, the atomic respons
function is flattened in the direction parallel toK and its
anisotropy is reduced. In Fig. 8Pi andK are perpendicular
and the anisotropy of the response function is increased.

Finally, we recall that the overlap factorb also varies
with the decay constantsk68 of the scattered light modes. It
absolute value is shown in Fig. 4~c! for Dpz50, as a func-
tion of uK 8u. The coupling between the atomic wave fun
tions is peaked atuK 8u5kL because the scattered light mod
are then constant above the surface (k68 50). The coupling is
smaller both for propagating and evanescent modes.
propagating modes, this is due to the averaging over

ion.
g

al
:

FIG. 7. Same as Fig. 5, but at oblique incidence:u i545° with
normal momentum componentpzi550 \k. The atoms are incident
in the same plane as the light beam creating the evanescent w
~the x-z plane! with Pi550\kex . Inside the dashed circles, propa
gating light modes contribute to the diffuse atomic reflection.
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1168 55CARSTEN HENKELet al.
oscillating field amplitude in the matrix element~5.8!. This
behavior of the overlap factor enhances the atomic respo
function on the perimeters of the two circles identifie
above, which is apparent in Figs. 5 and 6~cf. also the inset of
Fig. 5, showing a profile of the response function squar
along the dashed horizontal line!. At oblique incidence~Figs.
7 and 8!, the enhancement is less visible because of
stronger variation of the momentum differenceDpz .

Summarizing, the widthdQat of the atomic response
functionBat(Q) is of the order of a few optical wave vectors
Its detailed shape depends on the distance of the turn
point as well as on the geometry of incidence.

2. Order of magnitude of the diffuse reflection probability

We find the total~first-order! probability of diffuse reflec-
tion w by integrating the differential probability~5.6! over
all spatial frequencies:

w5E d2Q K dwdQ L 5E d2Q

~2p!2
PS~Q!uBat~Q!u2. ~5.16!

The form~5.15! of the atomic response functionBat(Q) sug-
gests that we may define an ‘‘effective roughnes
seff(u i ,z0) for the atomic mirror by the integral

seff
2 ~u i ,z0![

1

4E d2Q

~2p!2
PS~Q!u f ~K1Q!

3exp@~k2k18 !z0# b11 f * ~K2Q!

3exp@~k2k28 * !z0# b2* u2, ~5.17!

where the power spectrum of the rough surface is weigh
by a factor proportional to the square of the atomic respo
function. As discussed in Sec. V C 1, spatial frequencies
to a few optical wave vectors contribute to the effectiv
roughness~5.17!. The probability of diffuse reflection~5.16!
may now be written in the standard form

FIG. 8. Same as Fig. 7, the optical plane of incidence~the x-z
plane! being perpendicular to the atomic plane of incidence~the
y-z plane! with Pi550\key .
se

d

e

ng

’

d
e
p

w5@2pziseff~u i ,z0!/\#25S 4p cosu iseff~u i ,z0!

ldB
D 2,

~5.18!

whereldB52p\/upi u is the de Broglie wavelength of th
incident atoms. This result shows that the atomic reflectio
the evanescent wave mirror is specular only if the effect
roughness is smaller than the atomic wavelength.

In order to give a more physical interpretation of th
quantityseff(u i ,z0), we introduce the turning point surfac
z0(R), where the value of the optical potential is equal to t
incident energy. We note that since the optical potentia
proportional to the optical near field intensity, the turnin
point surface is a particular isointensity surface and may
obtained experimentally by optical near-field microsco
@35–37#.

In the absence of roughness, the turning point surf
z0(R) is flat and located at the turning pointz0. In the pres-
ence of the small rough potentialV(1)(r ), it acquires some
roughness and its deviation from the mean position is
proximately given by@cf. Eq. ~2.6!#

dz0~R!'
1

2k

V~1!~R,z0!

V~0!~z0!
. ~5.19!

We may now describe the rough evanescent wave mirro
an infinite potential barrier located at the rough turning po
surface. This model is known as the corrugated hard w
potential and is used in the scattering of atoms from crys
line surfaces@14–16#. In the Rayleigh approximation and fo
dz0(R) small compared to the atomic wavelength, one m
show that this model gives a total diffuse reflection probab
ity of the same form as Eq.~5.18!. Assuming small scattering
angles, the effective roughness of the atomic mirror is giv
by the rms roughnesssz0

of the turning point surface:

sz0
2 [^@dz0~R!#2&

5
1

4E d2Q

~2p!2
PS~Q!u f ~K1Q!exp@~k2k18 !z0#

1 f * ~K2Q!exp@~k2k28 * !z0#u2. ~5.20!

Comparing this expression to the effective roughness~5.17!,
we observe that the corrugated hard wall potential does
reproduce the overlap factorsb6 . The difference between
seff(u i ,z0) andsz0

is small, however, if the variation of the

overlap factorb(Dpz /\k,k8/k) is negligible in the range of
spatial frequencies that contribute to the integral~5.20!. We
recall that this is the case at normal incidence because
normal momentum changeDpz is small andb depends
weakly onk8, as already shown in Fig. 4~c!.

The concept of the rough turning point surface also allo
us to understand the dependence of the effective rough
seff(u i ,z0) on the turning point distancez0. According to
Eq. ~5.19!, the roughness of the surfacez0(R) is determined
by the relative variation of the optical potential at the d
tancez0. Scattered light modes that decay more slowly th
the zeroth-order evanescent wave (k68 ,k) and propagating
modes (k68 imaginary! therefore give contributions to
seff(u i ,z0) andsz0

that increase withz0 @cf. Eqs.~5.20! and
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55 1169DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
~5.20!#. This observation yields a simple estimate f
seff(u i ,z0): the factor weighting the surface power spectru
in Eq. ~5.17! is maximum for propagating light modes
where it is of order e2kz0. The effective roughness is there
fore overestimated byseff(u i ,z0)&sekz0. We then find the
following upper limit for the total diffuse reflection probabi
ity ~5.18!:

w&S 4pcosu ise
kz0

ldB
D 2. ~5.21!

The atomic reflection at the evanescent wave mirror is th
fore specular only if the rms roughnesss of the dielectric
surface itself is smaller than the wavelength of the incid
atoms. Furthermore, if one pushes the turning pointz0 far-
ther away from the surface, by using an optical poten
Vmax much larger than the incident kinetic energ
Ei5pzi

2 /2M , the diffuse reflection probability increases by
factore2kz05Vmax/Ei .

Finally, at oblique incidence, the range of wave vect
that contribute to the effective roughnessseff(u i ,z0) ~5.17!
is smaller due to the narrowing of the atomic response fu
tion, as shown in Figs. 7 and 8. As a consequence, the
fuse reflection probability is below the estimate~5.21!.

D. Validity of the Born approximation

We recall that we describe the rough optical poten
V(1)(r ) of the evanescent wave mirror by perturbati
theory. We have seen that for a broad surface power s
trum, the dominant contribution to this potential comes fro
propagating light modes: the corresponding optical poten
Vprop
(1) (r ) is of the order of

Vprop
~1! ~r !.ksVmaxe

2kz ~5.22!

and crosses the zeroth-order potential at a distancezc given
by

ks.e2kzc. ~5.23!

This is illustrated in Fig. 9. A necessary condition for t
perturbation theory to be valid is that the zeroth-order pot
tial V(0)(z) ~close to the surface! and the incident norma

FIG. 9. Zeroth- and first-order optical potentials in logarithm
scale. Solid line, zeroth-order optical potentialV(0)(z) ~2.5!, with
z0 the classical turning point; dashed line, optical poten
Vprop
(1) (z) ~5.22! created by the interference of a propagating sc

tered light mode with the zeroth-order evanescent wave.
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kinetic energyEi ~far from the surface! be larger than
Vprop
(1) (r ). As can be seen from Fig. 9, this condition

equivalent to the requirement that the crossing pointzc be
farther from the surface than the turning pointz0. In terms of
the surface roughnesss, this yields the condition

s!
e2kz0

k
. ~5.24!

We note that this condition is satisfied if the optical pertu
bation theory for the light scattering at the rough surface
valid @cf. Eq. ~3.14!#.

In addition, we must verify that the Born approximatio
for the diffuse atomic reflection is justified, i.e., that we a
in the quasispecular regime (w!1). According to Eq.~5.18!,
this regime is characterized by an effective surface roughn
seff(u i ,z0) small compared to the incident atomic wav
length. At normal incidence, we may use the estimate~5.21!
for the diffuse reflection probability to find the more prac
cal formulation

s!
ldB

4p cosu i
e2kz0. ~5.25!

This condition requires the surface roughnesss to be below
the incident atomic wavelengthldB , which is a more severe
restriction than Eq.~5.24!. At oblique incidence, the diffuse
reflection probability is smaller than the estimate~5.21! and
the Born approximation remains valid even if the surfa
roughnesss surpasses the limit~5.25!.

VI. DIFFUSE ATOMIC REFLECTION
IN THE THIN PHASE GRATING APPROXIMATION

We now present a calculation of the momentum distrib
tion of the diffusely reflected atoms that is able to go beyo
the Born approximation. The rough optical potential of t
evanescent wave mirror is taken into account by a phase
of the reflected atomic wave, in a way similar to a pha
grating in conventional optics. The phase-shifted wave fu
tion allows us to compute the spatial coherence function
the reflected atoms. The coherence function gives the~aver-
age! momentum distribution by means of a Fourier tran
form.

We show that this approach recovers the Born approxim
tion in the quasispecular regime and study then the diff
regime where the surface roughness is larger than the ato
wavelength. For a large decay length 1/k, however, the eva-
nescent wave realizes a thick grating for the atoms and
thin phase grating approximation becomes invalid, wher
the Born approximation may still apply, provided the refle
tion is quasispecular. In addition, we recall that the th
phase grating approach is a semiclassical method and w
therefore truly limited to the regime~5.10!.

A. Principle of the calculation

The central idea of the thin phase grating approach is
the diffuse reflection from the rough mirror distorts the wa
front of the atomic matter wave. At a fixed positio
(R,z5h) above the mirror, we therefore write the reflect
wave functionc r(R) in the form

l
t-
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c r~R!5c r
~0!~R!exp@ idw~R!#, ~6.1!

wherec r
(0)(R) is the wave function reflected at the flat mi

ror anddw(R) its phase shift. The heighth is kept fixed and
is suppressed to simplify the notation.

We shall place ourselves in the semiclassical reg
where the atomic wavelength is small compared to the s
tial scale of the potential. The phase shift may then be
culated in terms of the action integral along a classical
jectory @17#, in the spirit of the WKB approximation or the
eikonal approximation in optics. The atomic trajectorie
however, are perturbed by the rough potential, which ma
an analytical calculation difficult. In the thin phase grati
approximation, we assume that the perturbation of the ato
trajectory is small, similar to the Raman-Nath approximat
@20,21#. One can then show from the principle of least acti
that the phase shift is found by integrating the rough pot
tial along the unperturbed trajectories in the flat mirror p
tential @19#. In the context of atomic scattering at a crys
surface, a similar approach is known as the trajectory
proximation@38#.

From the phase-shifted wave function~6.1!, it is then con-
venient to calculate the transverse coherence function of
reflected atoms. In the framework of our statistical desc
tion of the rough evanescent wave mirror, this function m
be introduced in a natural manner@39#

G~R1 ,R2![^c r* ~R1!c r~R2!&, ~6.2!

where the averagê & is taken with respect to the statistic
ensemble for the rough surface introduced in Sec. III B.
recall that the coherence function is related to the contras
the interference pattern one obtains if the mirror is part of
atom interferometer. Also, its Fourier transform with resp
to R22R1 is equal to the~average! transverse momentum
distribution of the reflected atoms.

B. Calculation of the phase shift

In the thin phase grating approximation, the phase s
due to the rough potentialV(1)(r ) is given by the integral
@17,19#

dw~R!52
1

\E dt V~1!@r ~0!~ t !#, ~6.3!

where r (0)(t) is a classical trajectory in the flat potenti
V(0)(r ). This trajectory is uniquely determined by the r
quirements that it end at the position (R,z5h) and have the
same initial momentum (Pi ,2pzi) as the incident atomic
plane wave. For the exponential potential of Eq.~2.5!, it has
the analytical form@30#

R~0!~ t !5R01Pi t/M , ~6.4a!

z~0!~ t !5z01k21ln cosh~ t/t!, ~6.4b!

wheret is the characteristic time scale of the reflection

t5
M

k pzi
. ~6.5!
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The atom reaches the turning point (R0 ,z0), with z0 given by
Eq. ~2.6!, at timet50. As a function of the final positionR,
R0 is given by

R05R2
Pi
pzi

~h2z01k21ln2!, ~6.6!

where we have used that the final heighth is much larger
than the decay length 1/k of the evanescent wave.

To calculate the phase shift, we insert the Fourier exp
sion ~4.4! of the rough potentialV(1)(r ) into the integral
~6.3!. Interchanging the integration order, one may solve
time integral using the variable transformationt°e22t/t and
the second Euler integral~Eqs. 6.2.1 and 6.2.2 of@34#!, with
the result

E dt e2~k1k8!z~0!~ t !eiQ•R
~0!~ t !

52te2~k1k8!z0eiQ•R0bSQ•PiM
t,

k8

k D , ~6.7!

where the overlap factorb defined in Eq.~5.12! appears
again. We now suppose thatb in this expression takes th
same numerical value as in the matrix element~5.11!. This
approximation is discussed in more detail in Sec. VI D.
allows us to express the phase shift in terms of the ato
response functionBat(Q) given in Eq.~5.15!, with the result

dw~R!52E d2Q

~2p!2
S~Q!Bat~Q!eiQ•R0. ~6.8!

The thin phase grating approximation is valid if the rou
potentialV(1)(r ) does not perturb the atomic trajectory ve
much. For a quantitative estimate, consider an atom i
standing evanescent wave, formed by the interference
tween the zeroth-order evanescent wave and a scattered
mode. We suppose that this light mode is propagating
order to find an upper limit for the perturbation of the atom
trajectory. Let 2p/Q be the period of the standing wave an
ks its contrast at the dielectric surface. The optical poten
of the standing wave exerts a transverse force on the a
that takes its maximum value at the atomic turning point@cf.
Eq. ~5.22!#

F&QksVmaxe
2kz05Qksekz0

pzi
2

2M
. ~6.9!

This force makes the atom move a transverse dista
;Ft2/2M during the interaction timet ~6.5!. The perturba-
tion of the atomic trajectory is small if this distance is mu
less than the period of the standing wave. This condit
yields the following limit for the rms surface roughnesss:

s!
8pe2kz0

k

k2

Q2 . ~6.10!

For wave vectorsQ of the order of a few optical wave vec
tors, this condition is less restrictive than the limit~5.25! for
the validity of the Born approximation. The thin phase gr
ing approximation therefore allows us to go beyond the q
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55 1171DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
sispecular regime and to cover the experimentally interes
case of a surface roughness larger than the incident ato
wavelength.

C. Calculation of the atomic coherence function

From the result~6.8! for the phase shift, we note that at
given positionR, the phase shiftdw(R) is a linear combina-
tion of surface heightss(R8). It is therefore a Gaussian ran
dom process itself@40,41#. This allows us to compute th
ensemble average in the coherence function~6.2!,

G~R1 ,R2!5^c r
~0!* ~R1!c r

~0!~R2!exp@ idw~R2!2 idw~R1!#&,
~6.11!

with the result

G~R1 ,R2!5G~0!~R22R1!expF2w1E d2Q K dwdQ L
3exp@ iQ•~R22R1!#G , ~6.12!

where G (0)(R22R1)}exp@iPi•(R22R1)# is the coherence
function for the flat mirror and̂dw/dQ& andw are defined
in Eqs. ~5.6! and ~5.16!, respectively. We now discuss th
coherence function~6.12! in the quasispecular and diffus
regimes, respectively.

D. Comparison to the Born approximation

In the quasispecular regime where the diffuse reflect
probability is small (w!1), we may expand the outer expo
nential in Eq.~6.12!, giving a coherence function

G~R1 ,R2!5G~0!~R22R1!H 12w1E d2Q K dwdQ L
3exp@ iQ•~R22R1!#1•••J . ~6.13!

Taking the Fourier transform of this result with respect
R22R1, we obtain the momentum distribution of the r
flected atoms. We observe that this distribution is the sum
a specular peak and a background equal to the differe
diffuse reflection probabilitŷ dw/dQ& obtained from the
Born approximation. An example is shown in Fig. 10~a!.

The comparison to the Born approximation allows us
establish a validity condition for the thin phase grating a
proximation in the quasispecular regime. Recall that we o
recover the result of the Born approximation because
have identified the overlap factorb from the phase shift~6.7!
with the one appearing in the response functionBat(Q)
~5.15!. Thus the arguments ofb in both cases (Q•Pi t/M
andDpz /\k) must not differ much on the scale of variatio
of the overlap factor. One can show that their differen
arises because the thin phase grating approximation
serves energy only to first order in the in-plane moment
transfer\Q. Expanding the normal momentum changeDpz
to second order in\Q and comparing the result to\k, we
find the condition
g
ic

n

of
ial

-
ly
e

e
n-

Q2

k2 !2
pzi
\k

cos2u i . ~6.14!

Since the wave vectorsQ, which are relevant for the diffuse
reflection are of the order of a few optical wave vectors~cf.
Sec. V C 1!, this inequality is satisfied in the semiclassic
regime ~5.10! and for the typical case that the evanesc
wave’s decay length is of the order of the reduced opti
wavelength. On the other hand, the thin phase grating
proximation becomes invalid for a large decay length 1/k. In
this case, the Born approximation may still be used provid
however, that the reflection is quasispecular@cf. Eq. ~5.25!#.

E. Discussion of the diffuse reflection regime

The diffuse reflection regime corresponds to the limit

^dw~R!2&5w@1, ~6.15!

where the fluctuations of the atomic phase shift are large.
still use the notationw for the integral of the product of the
power spectrum and the response function~5.16!. In the dif-

FIG. 10. Transverse atomic momentum distributions for diff
ent values of the parameterw. The distributions are one dimen
sional and calculated in the optical plane of incidence. For a sm
diffuse reflection probabilityw, the momentum distribution con
tains a specular peak superimposed on a diffuse background
tical to the inset of Fig. 5. The atomic momentum is given in un
of \kL . The incident atoms are plane waves at normal incide
with pzi550\kL . ~a! w50.5, ~b! w52, and~c! w55.
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1172 55CARSTEN HENKELet al.
fuse regime, however,w no longer appears as a total pro
ability of diffuse reflection, but as a measure of the pha
shift fluctuations.

In the regime~6.15! of large phase fluctuations, we expe
the coherence functionG(R1 ,R2) to be significantly differ-
ent from zero only if the positionsR1 andR2 are close. We
therefore expand the argument of the exponential in
~6.12! in powers ofQ•(R22R1). The integral overQ of the
first-order term vanishes if we suppose that the differen
probability^dw/dQ& is symmetric with respect to the sign o
the wave-vector transfer.~Any asymmetry would only lead
to a shift of the mean momentum of the reflected atom
however.! The second-order term of the expansion th
yields a coherence function that is Gaussian inR22R1:

G~R1 ,R2!5G~0!~R22R1!expF2
w

2 (
i , j5x,y

g i j ~R2i2R1i !

3~R2 j2R1 j !G , ~6.16!

where the coherence tensorg i j , with

g i j5
1

wE dQ K dwdQ LQiQj , ~6.17!

is equal to the average value of the wave-vector tran
componentsQiQj , weighted by the momentum distributio
of the diffusely reflected atoms in the Born approximatio
The widthdPBorn of this distribution has been discussed
Sec. V C 1. The elements of the coherence tensor are th
fore of the order of (dPBorn/\)

2. By Fourier transforming
the coherence function~6.16! with respect toR22R1, we
find that the momentum distribution in the diffuse regime
Gaussian with a width of order

dPdiff;Aw dPBorn. ~6.18!

As a consequence of Eq.~6.17!, the momentum distribution
shows an anisotropy similar to the diffuse reflection pro
ability ^dw/dQ&.

We note thatdPdiff given in Eq.~6.18! is the width of an
atomic diffraction pattern that would be created by a sin
soidal phase grating with period 2p\/dPBorn, if the phase
shift of the atomic wave function were modulated with
modulation indexAw large compared to unity. This is no
surprising because the optical potential above the rough
electric surface may be understood as an incoherent
semble of evanescent wave diffraction gratings, each gra
corresponding to a given Fourier component of the surf
roughness. In this picture, the momentum distribution of
diffusely reflected atoms is obtained by summing the diffr
tion patterns over the roughness power spectrum. In the
sispecular regime, the diffraction gratings create a sm
phase modulation of the atomic wave function and only
zeroth and first diffraction orders are populated. The width
the atomic momentum distribution,dPBorn, is then given by
the range of spatial frequencies that are present in the
semble of gratings, as discussed in Sec. V C 1. In the diff
regime, the large phase modulation implies that higher ord
are present in the diffraction patterns, up to a maximum
-

q.
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fraction order approximately given by the modulation inde
Identifying the modulation index and the rms phase sh
fluctuationAw @cf. Eq. ~6.15!#, we find that the momentum
distribution of the diffusely reflected atoms has a wid
dPdiff given by Eq.~6.18!.

For an alternative interpretation, consider the angular
vergence of the diffusely reflected atomic wave

du[
dPdiff

pzi
. ~6.19!

At normal incidence, we may approximate the total diffu
reflection probabilityw by the result of the corrugated har
wall potential introduced in Sec. V C 2. The estimate~6.18!
then yields

du;2dPBornsz0
/\, ~6.20!

wheresz0
is the rms roughness of the turning point surfa

~5.19!. Since the correlation length of the turning point su
face approximately equals\/dPBorn @cf. Eq. ~3.11!#, its rms
slope is of the order ofdPBornsz0

/\. The angular divergence

du therefore corresponds to the locally specular reflect
from the rough turning point surface.

We give in Fig. 10 a one-dimensional example of t
evolution of the atomic momentum distribution as a functi
of the parameterw. The distributions are calculated by tak
ing the Fourier transform of the coherence function~6.12!
with respect toR22R1. The surface roughness is assumed
have a constant power spectrum in the wave-vector ra
uQu&5kL . Figures 10~a!–10~c! show the broadening of the
diffuse part of the momentum distribution for increasing v
ues ofw. In the diffuse reflection regime, the distribution
completely dominated by the diffuse part.

VII. LIGHT POLARIZATION
AND ATOMIC ZEEMAN SUBLEVELS

So far we have treated the atom as a pure two-level a
with only one lower and one upper state and we have trea
the electric field as a scalar field. In this section we outl
the modifications of our results when the polarization of t
light field and the Zeeman degeneracy of the atomic lev
are taken into account. We recall that in the field of las
cooling these ‘‘modifications’’ shifted the main line of inte
est from Doppler cooling and cooling in intense fields
sub-Doppler cooling with polarization gradients and the s
evolving field of subrecoil cooling@42–46#. Polarization gra-
dient cooling mechanisms are not only theoretical sugg
tions for different and interesting cooling experiments; th
are inevitable in situations of laser cooling of real atoms
three dimensions.

The internal sublevel structure of atoms also leads to
ferent and interesting effects in atom optics, by the possi
ity of tailoring specific potentials for the atomic motion. Fo
example, large-angle diffraction from a triangular potent
has been demonstrated by combining a polarization grad
laser field and a magnetic field@47#. Also, atomic interfer-
ometry with spatially overlapping trajectories is possible u
ing superpositions of internal states@48#. In closer connec-
tion to the present work, the coherent reflection of multilev
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55 1173DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
atoms from a light field has recently attracted considera
attention@49–51#. Using numerical integration of the Schro¨-
dinger equation, it has recently been shown@52# that incor-
poration of the multilevel structure leads to larger diffracti
probabilities, in agreement with experiments@9,10#.

This section of the paper is motivated both by our inter
in identifying the different qualitative features emergin
when the light polarization and the atomic Zeeman suble
structure are taken into account and by the obvious nee
establishing a connection between our model studied ab
and the expected outcome of real experiments. We shall
in the limit of large detuning and low saturation of th
atomic transition, and in analogy to Eq.~2.1!, the ground-
state light shift~2.5! becomes an operator acting only on t
ground state

V̂5
d2

\D
~d2

•E* !~d1
•E!, ~7.1!

where, in addition to the position dependence, enter
through the electric-field vectorE, the light shift is an opera-
tor acting on the Zeeman manifold as indicated by the rais
and lowering parts of the atomic dipole operatordd6. The
matrix elements of the dimensionless operatorsd6 are given
by the Clebsch-Gordan coefficients, and although the exc
state is eliminated@Eq. ~7.1! couples only the ground states#,
the potential results from the direct coupling of the grou
and excited states by the laser field and the operator dep
on the excited-state degeneracy through the values of
Clebsch-Gordan coefficients.

First, we shall consider the reflection of atoms at the lig
field above a perfectly flat surface. We then take the surf
roughness into account, to first order in the scattered l
field, and following the approach in Sec. V, the diffu
atomic reflection is calculated in the Born approximatio
We refrain from generalizing the thin phase grating appro
of Sec. VI to this situation. The problem is similar to the o
of semiclassical approaches to sub-Doppler cooling: with
surface roughness, different potentials@position-dependen
eigenvalues of the light-shift operator~7.1!# are identified,
resulting in an ambiguous choice of the classical traject
and hence a difficulty in consistently accumulating the eff
of the potential on the atomic motion; cf. Eq.~6.3!.

A. Flat mirror

If we consider a planar dielectric surface and an incid
field with the electric-field vector parallel with this surfac
~TE polarization!, we obtain an evanescent wave with
polarization vector pointing along the same direction, e
Ei5E0ey , K iex . It is then convenient to adopt they direc-
tion for the quantization of the internal atomic angular m
mentum and to introduce the resulting eigenstatesum&. Using
the Clebsch-Gordan coefficients defined in Fig. 11, we
write out the light-shift potential operator~7.1! in matrix
form and, due to our choice of quantization axis, this ma
becomes diagonal with elements

V̂0~m→m!5cp~m!2Vmaxe
22kz, ~7.2!

whereVmax5d2E0
2/\D is the scalar value of the dipole pote

tial at the surface.
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Suppose now that an atom is incident on the evanes
field and that the atom enters in a superposition of the in
nal eigenstates ofV̂0. The reflection is specular, but the di
ferent components acquire different phases and, e.g., an
tial state with maximal angular momentum with respect
the z axis, umz5J&, may be detected in the reflected bea
with amplitudes on differentmz states showing interference
as a function of the atomic momentum. The phase shift
the atomic wave for the reflection by any of the potenti
~7.2! is known @30#, but the only quantities needed for th
interference problem are the differences between the ph
shifts. Due to the common exponential character of the
tentials, their amplitude differences are equivalent to a s
in the location above the dielectric at which they assu
identical values. This implies that the wave functions in ea
potential are also identical up to a shift in thez dependence,
which is simply obtained, e.g., from the locations of the d
ferent classical turning points~2.6!. For different eigenvalues
m,m8 of they component of the internal angular momentu
we simply have

zm2zm85
1

2k
lnS cp~m!2

cp~m8!2D . ~7.3!

We now match the asymptotic ingoing amplitudes of ato
arriving with the momentum component2pz along thez
axis in an arbitrary internal superposition state

ux in&5(
m

amum& ~7.4!

and we obtain the internal state of the reflected atoms

uxout&5(
m

amexp@2ipz~zm502zm!/\#um&, ~7.5!

where a common phase factor@the phase shift for reflection
at the potential~7.2! with m50# has been omitted.

If the incident atom is in a given internal eigenstateum&,
we observe that the reflection is both specular and scala
in Sec. II. This situation will therefore present the most cle
case for studies of the effect of surface roughness on
reflection properties of the mirror.

B. Rough mirror

In the case of the rough mirror, we again focus on t
diffusely reflected atomic wave and we note that since
surface roughness implies scattered light with different

FIG. 11. Transitions among atomic sublevels and our shorth
notation for the Clebsch-Gordan coefficients.
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1174 55CARSTEN HENKELet al.
larization components, the diffuse reflection may be acco
panied by changes of the internal state, also in the bas
internal angular momentum with respect to they axis. We
find that the elements of the Raman matrix that general
the rough potentialV(1) ~4.2! are proportional to the scat
tered field components with the corresponding polarizatio
For example, the matrix element proportional to the fie
component withs2 polarization for the diffuse reflection
from the um5J& substate into theum5J21& substate is
given by

^J21u~d2
•ey!~d

1
•f!uJ&5cp~J21!c2~J!~ f z1 i f x!/A2.

~7.6!

We give in Appendix B, Eq.~B2!, the polarization vectorf
of the scattered light, to first order in the surface roughne
We note from its expression that the light scattered in
optical plane of incidence~the x-z plane! remains polarized
parallel to they direction. Equation~7.6! therefore implies
that the atomic reflection is scalar in this plane. Howev
this property breaks down if we take into account high
order terms of the surface corrugation in the scattered l
field @53#.

We generalize the Born approximation applied in Sec
and we first identify the initial and final statesc i , f as internal
Zeeman substatesumi , f&. For convenience we introduce th
shorthand notation

ci , f5cp~mi , f !
2. ~7.7!

The initial and final states are taken as eigenstates of
zeroth-order potential as discussed above. Transitions am
states with differentm values are induced by the surfac
roughness, and to lowest order we note the ‘‘selection ru
Dm50,61.

For the diffuse reflection probability, we need to calcula
the matrix element~5.8! between the wave functionsfpzi, f

.
The wave functions are known as in the scalar case, and
overlap is again obtained in closed form. In the case of id
tical light shifts, one recovers the result for the scalar c
~5.11!, with the turning pointz0 replaced byzf5zi5zmi , f

.
This is not surprising since the Clebsch-Gordan coefficie
ci5cf simply shift the dipole potentials, and hence the wa
functionsfpzi, f

, by a common distance for both states.
On the other hand, if the atom is coupled to a state wit

different light shift, we find a correction to the matrix ele
ment ~5.11!. Assuming again the semiclassical lim
pzi, f@\k, it takes the form

^fpz f
,mf uexp@2~k1k8!z#ufpzi

,mi&

5~2k!21 exp@2~k1k8!zi # bS Dpz
\k

,
k8

k DF~zf2zi !,

~7.8!

where the last factor depends on the distance between
turning points of the initial and final states, the momen
pzi, f , and the decay constantk8 and is given in the Appen
dix, Eq. ~A13!. We have the following expression for th
matrix element~7.8! in the particular case that the mome
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tum difference vanishes and the decay constants are e
~Eq. 15.3.1 of Ref.@34#!, i.e.,Dpz50, k85k:

^fpz f
,mf uexp@2~k1k8!z#ufpzi

,mi&

5~2k!21 exp@2k~zi1zf !#
\k

pzi

sin@pzi~zf2zi !/\#

sinh@k~zf2zi !#
.

~7.9!

It shows that the overlap integral is maximum if the turni
points zi and zf coincide. As a function of the differenc
zf2zi , it oscillates with a period equal to the incident atom
wavelength 2p\/pzi . If the turning pointzi becomes sepa
rated fromzf by more than the decay length of the potenti
the overlap is still oscillating at the same period, but it d
creases proportional to exp(2kuzi2zfu). At normal incidence,
where the momentum changeDpz is close to zero, we there
fore expect that the atomic scattering into a different suble
is reduced if the corresponding light shifts differ much.

It is interesting to note that for a fixed distance betwe
the turning points, there are particular values of the incid
atomic momentum where the matrix element~7.9! is zero:

pzi
~ l !5

p l\

uzf2zi u
, l51,2, . . . . ~7.10!

In these situations, the diffuse reflection probability into t
Zeeman sublevelmf vanishes because the stationary wa
functionsfpzi, f

in the overlap integral are shifted in such
way that they are approximately in phase quadrature.

More generally, we have found that the overlap~7.8! is
peaked if the classical turning pointszi andzf coincide. This
Franck-Condon principle leads to a favored transfer of
netic energy between the normal and in-plane compon
equal to the potential-energy difference at the common tu
ing point.

As an example, consider a final stateupz f ,mf& in a stron-
ger potential than the initial state,cf.ci . The overlap is
then maximum for a final momentumpz f.(cf /ci)

1/2pzi
larger thanpzi . For atoms incident at an oblique angle, th
enhances in-plane momentum transfers\Q antiparallel to the
incident momentumPi because they are associated with
increase ofpz f . Momentum transfers parallel toPi ~in the
‘‘forward’’ direction! are suppressed because they lead t
negative normal momentum transferDpz,0. The momen-
tum distribution of the atoms scattered into a different su
level may therefore differ significantly from the scalar resu
shown in Figs. 7 and 8.

In summary, we are able to compute, within the Bo
approximation, the momentum distribution of the diffuse
reflected atoms in the different Zeeman sublevels. The in
nal state transitions are driven by the different polarizat
components of the optical near-field given by the express
~B2! in Appendix B. We already noted that within thex-z
scattering plane the light is polarized along they axis and an
important difference from the scalar case is indeed the c
relation between the diffuse reflection in different directio
and the change of internal sublevel. A detection of the int
nal state content of atoms reflected in different directio
may hence serve as a probe of the polarization structur
the optical near field. In addition, the atomic scattering b
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55 1175DIFFUSE ATOMIC REFLECTION AT A ROUGH MIRROR
tween different sublevels is accompanied by a convers
between internal and kinetic energy. With respect to the s
lar case, this may significantly change the momentum dis
bution of the atoms that are scattered between different Z
man substates.

VIII. CONCLUSION

In summary, we have studied the scattering of atoms fr
the optical potential created by both an evanescent and
tered light field above a rough dielectric surface. The atom
scattering is sensitive to height variations of the dielec
surface at the scale of the incident atomic wavelengthldB
and spatial frequencies of the roughness up to a few op
wave vectors are relevant. The momentum distribution of
scattered atoms, averaged over a large number of sampl
the rough surface, gives access to the power spectrum o
surface roughness in this spectral range.

Our results have important experimental ramificatio
Consider, for instance, an atom interferometer where the
oms are reflected at an evanescent wave mirror in one
and interfere with an atomic reference beam. Due to the
tortion of the reflected atoms’ wave front, the contrastA of
the ensemble-averaged atomic interference pattern is red
by a Debye-Waller-type factor@54# and equals

A5^exp@ idw~R!#&5exp@2 1
2 ^dw~R!2&#5e2w/2,

~8.1!

which may be shown using the characteristic function for
surface profiles(R) @41#. In the quasispecular regime, th
contrastA'12w/2 is equal to the probability amplitude o
the specularly reflected atoms. For a larger diffuse reflec
probability, the fringe contrast and the specular peak
crease exponentially.

Another important prediction of our theory is that ev
for an isotropic roughness spectrum, the momentum distr
tion of the reflected atoms shows a significant asymmetry
normal incidence, the atoms are predominantly scattered
allel to the propagation direction of the evanescent wave
a finite angle of incidence, the asymmetry of the moment
distribution depends on the relative orientation of the opti
and atomic planes of incidence: the approximate conse
tion of normal momentum causes the scattering to occur
dominantly perpendicular to the atomic plane of inciden
Furthermore, when the light polarization and the atomic Z
man degeneracy are taken into account, the population
different internal states become correlated with the scatte
directions and the conversion between internal and kin
energy may lead to a significant increase of the normal m
mentum transfer.

Our results suggest that the diffuse atomic reflection fr
the evanescent wave above a corrugated dielectric sur
may serve as a probe of the surface quality at the scale o
atomic wavelength. We note that this surface probe
complementary to optical near-field microscopy@35–37#. In-
deed, the turning point surface we introduced to interpret
atomic scattering is a particular isointensity surface that m
be obtained directly by a scanning near-field optical mic
scope operated in the constant-intensity mode. The ato
scattering presents two advantages because the perturb
n
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of the optical near field due to the atoms is negligibly sm
and because the atoms are sensitive in a straightforward
to the light polarization of the near field.

The van der Waals interaction, which has recently be
investigated by the reflection of atoms at an evanescent w
mirror @55#, introduces an additional rough potential relat
to the surface roughness. But for typical turning point d
tances, one may show@56# that it is small compared to the
rough optical potential we considered here. In the case
multilevel atoms, there is another consequence of the van
Waals interaction: the phase shifts of specularly reflec
Zeeman substates are modified because they probe this
action at different distances.

Finally, we did not consider the optical potentialV(2) as-
sociated with the intensityuE(1)u2 of the light scattered into
the half space above the dielectric. A model of the inter
tion between the atom and, e.g., the far-field speckle pat
would be a natural extension of the present work.
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APPENDIX A: EXACT SOLUTIONS
FOR THE EXPONENTIAL POTENTIAL

1. Wave functions

We give here the solutionfpzi
(z) of the one-dimensiona

stationary Schro¨dinger equation with an exponential pote
tial

2
\2

2M

d2fpzi

dz2
1Vmaxe

22kzfpzi
~z!5

pzi
2

2M
fpzi

~z!. ~A1!

Assume for simplicity that the exponential potential appl
for all values ofz, positive and negative. The region of larg
negativez is classically forbidden since the potential b
comes larger than the atomic energy. The solution of
~A1! that vanishes in this region reads@28–30#

fpzi
~z!5AP

p
sinhpPKiP~Pmaxe

2kz!. ~A2!

The ~real! functionKiP(x) is a modified Bessel function o
the second kind@34#. The wave function~A2! is normalized
to a sine wave of unit amplitude in the asymptotic regio
The positive numbersP andPmax are given by

P5
pzi
\k

, Pmax5A2MVmax

\2k2 . ~A3!
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2. Differential scattering probability

We first derive the expression~5.4! for the scattering
cross section in the first Born approximation. To this effe
we normalize the wave functions~A2! in a large box of
lengthL ~in the z direction! and areaA ~parallel to the av-
erage mirror surface!. Imposing periodic boundary cond
tions in thex and y directions and an infinite hard wall a
z5L, the atomic momenta are quantized with spacings

dpx,y5
2p\

AA
, dpz5

p\

L
~A4!

and the final density of states equals

dn

dEf
5M upf u

AL

4p3\3dV f . ~A5!

The normalization factor for the wave functionsc i f (r ) ~5.1!
then equalsA2/AL and the probability current of the inciden
wave is j i5upi u/2MAL. We now insert these expression
into the usual formula for the differential cross section in t
Born approximation

dS

dV f
5
2p

\

1

j i
z^c̃ f uV1~r !uc̃ i& z2

dn

dEfdV f
, ~A6!

where c̃ i , f are normalized wave functions. The dimensio
A,L of the box then drop out, as they should, and we find
cross section~5.4!.

This scattering cross section has to be normalized bec
the atom interacts with a potential that extends over an i
nite surface, in contrast to the spatially localized potentials
usual scattering theory. A~differential! probability of diffuse
reflectiondw/dV f is defined by normalizing the number o
scattering events per unit time and unit element of so
angledNsc/dV fdt to the number of incident atoms per un
timedNi /dt. According to the definition of the cross sectio
we have

dNsc

dV fdt
5 j i

dS

dV f
, ~A7!

wherej i is the incident atomic probability current. The num
ber of incident atoms per unit time is infinite if we consid
incident plane waves and a scattering potential that exte
over the wholex-y plane. Taking the limit of a large, finite
mirror surface with areaA, it is given by

dNi

dt
5 j iA cosu i , ~A8!

where cosui is the projection of the surface normal onto t
direction of the incident atoms. The differential probabili
of diffuse reflection is therefore given by

dw

dV f
5

1

A cosu i

dS

dV f
. ~A9!

We shall also express the solid angle elementdV f in terms
of the atomic in-plane wave-vector transfer elementdQ:
,

s
e

se
-
f

d

ds

dV f5
\2dQ

upf u2cosu f
. ~A10!

Using energy conservation~5.3!, one finds expression~5.5!.

3. Matrix element

The matrix element~5.8! involves the wave functions
fpzi, f

(z), which correspond to asymptotic momentapzi, f and
~for scattering into another Zeeman substate! potential mag-
nitudesci , fVmax. We make the variable transformation

z°u5AcfPmaxe
2kz. ~A11!

The matrix element then leads to an integral of the form

I~Pi ,Pf ,b,g!5E
0

`

du ug21KiP f
~u!KiPi

~bu!,

~A12!

wherePi , f are related topzi, f by Eq. ~A3!. The parameters
g,b are defined asg5(k1k8)/k and b5(ci /cf)

1/2. The
integral ~A12! equals~Eq. 6.576.4 of Ref.@57#!

I~Pi ,Pf ,b,g!

5
2g biPi

8 G~g!
GS g

2
1 i

Pf2Pi

2 D GS g

2
2 i

Pf2Pi

2 D
3GS g

2
1 i

Pf1Pi

2 DGS g

2
2 i

Pf1Pi

2 D
3 2F1Fg22 i

Pf2Pi

2
,
g

2
1 i

Pf1Pi

2
;g;12b2G ,

~A13!

where 2F1 is the hypergeometric function@34#

2F1@a1 ,a2 ;g;x#5
G~g!

G~a1!G~a2!

3 (
n50

`
G~a11n!G~a21n!

G~g1n!

xn

n!
. ~A14!

For b51, the hypergeometric function in Eq.~A13! reduces
to unity. We note that in this case, one may easily comp
the integral~A12! using an integral representation for th
BesselK function ~Eq. 9.6.24 of@34#!.

We obtain the result~5.11! by taking the semiclassica
limit Pi , f@1 in Eq. ~A13!. The calculation is carried ou
using the asymptotic expansion of the gamma function~Eq.
6.1.41 of@34#! and expanding the normalization factor of th
wave functions~A2!.

In the case of Zeeman sublevels with different light shif
the factorF(zf2zi) has the form

F~zf2zi !5S pz f2pzi2 e2k~zf2zi !D ipz f /\k

3 2F1Fa1 , a2 ;
k1k8

k
; 12

pz f
2

pzi
2 e

2k~zf2zi !G ,
~A15!
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with a1 ,a2 given by

a1,25
k1k8

2k
2 i

pz f6pzi
2\k

. ~A16!

The factorF(zf2zi) is real for realk8; this follows from the
property

2F1@a1 ,a2 ;g;x#5~12x!g2a12a2
2F1@g2a1 ,g2a2;g;x#

~A17!

of the hypergeometric function~Eq. 15.3.3 of@34#!.

APPENDIX B: POLARIZATION
OF THE SCATTERED LIGHT

The scattering of polarized light at a rough surface may
calculated by an extension of the Rayleigh approximation
Sec. III @25,53#. The boundary conditions for the electroma
netic field are the continuity of the tangential components
the electric- and magnetic-field vectors across the surfac

For light with arbitrary polarization, the Fourier compo
nentE(1)(K 8) of the transmitted field to first order is linearl
related to the electric-field vectorE0e0 of the zeroth-order
evanescent wave, according to@25#
-

on
ics
.

J.

.

.

hy

,

n

e
f

f
.

E~1!~K 8!5E0f ~K 8!f~K 8!kS~K 82K !, ~B1!

which is similar to the scalar result given in Eq.~3.3! and
where the~unnormalized! polarization vectorf(K 8) equals

f~K 8!5e02
~k18•e0!kn8

~k18•kn8!
. ~B2!

In this expression,k185(K 8,ik8) is the ~three-dimensional!
wave vector of the scattered light wave above the pla
z50, with k8 defined in Eq.~3.2!, andkn85(K 8,kn8) where
2kn8 is the normal component of the scattered wave vec
below the planez50:

kn851An2kL22uK 8u2, ~B3!

and the imaginary part of the square root is determined
Imkn8.0. In the case of a TE-polarized light wave incident
the x-z plane withK5Kxex and polarization vectore05ey ,
the light scattered in the optical plane of inciden
K 85Kx8ex remains TE polarized since the second term in E
~B2! vanishes and the polarization vectorf(K 8) reduces to
e0.
i,

ys.
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