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Hartree-Fock theory for Bose-Einstein condensates and the inclusion of correlation effects
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| specialize the Hartree-Fock, random-phase, and configuration-interaction approximations to a system of
interacting bosons in an external potential. This approach affords a more direct connection to the methods and
language of atomic-structure calculations. The derivations and equations parallel those found in atomic struc-
ture and are contrasted with the more commonly used Bogoliubov approach for bosons. | present a numerical
method for solving the Hartree-Fock and random-phase equations to obtain the low-lying excitation energies
for trapped alkali-metal atom§S1050-294{®7)02802-3

PACS numbsg(s): 03.75.Fi, 05.30.Jp, 36.46c

I. INTRODUCTION method for solving the Hartree-Fock and RPA equations and
in Sec. IV present results for the low-lying excitation fre-
The recent experimental observations of Bose-Einsteigjuencies of the JILA time orbiting potential trap,4].
condensate$l—3] and the successful experimerts5] on

condensate properties have increased the desirability of for- Il. THEORY
mulating a comprehensive theoretical description. Several _ o
groups[6—14] have made progress in this direction by adopt- A. Review of second quantization

ing the standard Bogoliubov approach for many interacting The notation of second quantizati¢f5] simplifies the
bosong 15]. This is an approach which treats the condensateonstruction of properly symmetrized many-body states
as a reservoir which can exchange both particles and energyithin the independent particle approximation. This simpli-
with the rest of the system. This approximation, however fication is especially useful for bosonic systems. A many-
does not inherently conserve the number of particles, alhoson wave function is specified by the set of occupation
though the chemical potentigl can be introduced to enforce numbers{n,} wherea represents all of the quantum num-
this condition on average. bers needed to label a single-particle state from some single-

In order to connect to many-body approaches such agarticle basig ,(x)}. For instance,
those used in atomic-structure calculations, | formulate the

theory for trapped atoms using standard Sdirger quan- |¥)y=1no,0, ...,0n;,0,...) 1)

tum mechanic§16]. This, of course, automatically conserves

the number of interacting particles. In my methodology lis a many-boson wave function with, bosons in the Oth
pursue the analogy of atoms in a trap to electrons trapped ksingle-particle state); bosons in theith single-particle state,
the Coulomb field of a nucleus. A fundamental differenceand no bosons in any other single-particle state. The sum of
between these cases is, of course, the character of the paecupation numbers necessarily equals the total number of
ticles: the atoms experimentally studied in such traps to datparticles, i.e..=;n;=N. The above wave function may also
are bosons, whose exchange properties differ profoundlpe written as

from the fermionic electrons in an atom. This viewpoint al-

lows me to discuss concepts such as quasiparticles in terms (ég)no (éi‘r)ni
of configurationsandorbitals, thus permitting me to link the V)= — 0).
g p g W) It it |0)

language of condensed matter physics to that of atomic phys-

ics and nuclear physics. As | will show below, this formula-

tion leads to results which arargely equivalent to those Here,|0) is the state with no bosons present in any single-
obtained in the Bogoliubov approach, aside from very minomarticle state. The creatiof,, and annihilation¢,,, opera-
differences that should be unimportant for current experitors create or annihilate a boson in th¢h single-particle
mental conditions. A key byproduct of my viewpoint is that State in the following sense:

it permits me to apply standard tools of atomic theory, such

as configuration interactiofil7], which transcend Hartree- (‘;L| CooNg, )= ‘/na+ 1 ....n,+1,...),

Fock theory, in order to describe phenomena such as

multiple-particle excitations which are not encompassed by N _ _

Bogoliubov theory. Col ..o nyy o y=ng| .. =1,
In Sec. I, | review the essentials of second quantization

as they apply to bosons before deriving the Hartree-Fock angurther, thec’s satisfy the boson commutation relations

random-phase-approximatioRPA) equations. In addition, |

connect my approach to the Bogoliubov formulation for a [Ca.Chl= 845, and[Cl .chl1=[C,.Es]=0.
system of interacting bosons and derive a configuration-
interaction treatment. In Sec. lll, | present a numericalYet another way to write the wave function in EQ@) is
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Voo (X, XN assumption throughout this paper — the Hamiltonian can be
o represented exactly by Ed@2) for any choice of single-
=S ho(X1) - - - ho(Xn) thi(Xn 1) - - i(Xn) ] particle basis. Only when the composite nature of the par-

ticles is taken into account do three- or more-particle inter-
whereS is the symmetrization operator. This form explicitly actions enter. These multiparticle interactions, however, are
makes the connection to the configuration space viewpoirtypically weak and of much shorter range than the two-body
more commonly adopted in the context of atomic-structurdnteractions and are thus usually neglected.

calculations. To proceed, | solve the Schiimger equation variationally
using for a trial function the completely symmetric product
B. Hartree-Fock approximation wave function
With the Hartree-Fock approximation, one seeks the best DXy, - . X)=B(X) - - - D(Xy)- A3)

independent particle wave function for a given set of occu-

pation numbers. In the present case, | concentrate on theo orpital #(x) can,
ground state of a system of _bosons, ife;,}={N,0,...}; particle basis,

more general sets of occupation numbers can be used, how-

ever. Considerable freedom exists in the choice of a single- o
particle basis set. | use this flexibility to derive an equation ¢>(x)=N{ Po(X) + E apPp(X) |,

for those single-particle states which minimize the total en- p#0

ergy. Our derivation of the Hartree-Fock equation for bosons

parallels standard Hartree-Fock derivations for fermiongvith N an overall normalization constant. | will choose the
[15,18,19, so | outline only the essential steps. | begin with Single-particle basis such that,(x) alone is sufficient to

in turn, be expanded on a single-

the second-quantized Hamiltonian minimize the total ground-state energy.
The first few terms in Eq(3) are written in second quan-
~ N .1 atn A a tization as
H :EB Ci{alHo|B)Cs+ > BZ s Ciei(apIV]yo)eL, .
o, a, By,
) cle
D)= 1+, a2
In this expression, all indices are summed over all single- p70 " YN
particle states and it atoa
pCo CpCo HF
+ X apdy +---||®g), (4
<a|H0|,6’>=J d3x¢’;(x)H0(x)¢B(x) p,p’#0 N-1 N
is the single-particle matrix element of where|®{") is the Hartree-Fock ground state of the system,
ﬁZ (6T)N
—__ y2 HFRy _ ~ -0 _
HO(X) 2mV +Vext(x)a |(I)0 > \/m |O> |N,0, >

which includes any external trapping potentiaMg(x). For
example, in the present ca%g,(x) is a cylindrically sym-
metric harmonic trapping potential; in atomic-structure cal- ( X |(DHF>:(DHF(X
culations, V() is the electron-nucleus Coulomb interac- 1~ "N'™0 07
tion. The two-particle interaction matrix element in EB). is

or

o XN) = Po(Xq) - - - Po(Xn) -
5)

given by Thus the trial function includes multiple excitations of the
Hartree-Fock ground state. Inasmuch as the ground energy
(a,8|V|'y5>=f d3xf A3 s () W (X )V (x—X') eigenstate of the system of interacting bosons is the conden-
sate, one can regard the Hartree-Fock ground state as a first
X (X) 5(X'). approximation to the condensate wave function. It is only an

approximation, however, since the true ground state of the
For atoms in a trajy¥(x) represents the interatomic potential system is a linear combination of the Hartree-Fock ground
while in atomic-structure calculationg(x) describes the and excited states.

electron-electron Coulomb interaction. Thie,(x) in these To determine the Hartree-Fock equation fa(x), | re-
matrix elements are th@s yet undeterminedingle-particle  quire variations of the total enerdy to be stationary with
orbitals which are orthonormal: respect to single-particle excitations, which is equivalent to

minimizing E with respect to the coefficients,,

3 * = ~
f d=Xe, (X) Prp(X) = Syp5- s (®|H|D)
e, @) |,
To the extent that the potential energy of the system is p a,=0
described completely by a pairwise sum of two-body inter-

actions and a sum of one-body trap potentials — which is myThis leads to the condition
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ete . R for the direct and exchange contributions to the interparticle
HF TP phF =(®;H| g =0. (6) interaction matrix element. Note that the plus sign in this
VN expression results from the requirement of symmetry upon

ermutation of the identical bosofihe requirement of anti-

This condition ensures that the Hartree-Fock basis is chos mmetry for fermions yields a minus sign instead

so that the Hamiltonian cannot produce single-particle exci-
tations of|®5F). Also, |®5F) is variationally the best com-
pletely symmetric, single configuration, independent particle
wave function just as the Hartree-Fock ground state for an | showed in Eq.(6) that the Hartree-Fock approximation
atom is the best single Slater determinant wave function. Iccounts for single-particle excitations in the ground state.
fact, an alternative method for deriving the Hartree-FockThis approximation can be improved by including two- or
equation for the ground state is to minimize the total energynore-particle excitations in the trial wave function. One ap-
with respect taj,(x). Equation(6) leads to the more general proach that includes some of the physics of two-particle ex-
Hartree-Fock equation for the single-particle orbitals citations is the random-phase approximatfitf,18,19. This
method amounts to replacing the Hamiltonian, &), by an
, , , , effective Hamiltonian which accounts for up to two-patrticle
J A" g5 (X IV OX=X) ho(X') (%) excitations of the ground statélhe full Hamiltonian allows
for single and double excitations of excited states as well.
Byt k(! / / _ The RPA equations or their equivalent can be derived in a
+f A" o XDV XD (X hol(X) | = 2i44i(X), number of 3vays. I will preser?t a derivation based on the

] o ) time-independent Schadinger equation which makes the
which holds fori including both the condensate and the ex-connection to the Bogoliubov approach most transparent. |

cited orbitals. The first term in the square brackets is thegyig equivalently start from the time-dependent Sehro
direct contribution to the interaction energy and behaves as @inger equatiorf18,19, or | could apply random-phase ar-
local potential arising from the mean field due to the Conde”guments[23] to linearize the interaction term in the Hamil-
sate, and the second term is the nonlocal exchange contribgsnian.

tion to the interaction energy. Further, for a system of only | pegin with the exact solutions to the time-independent
one boson this reduces to the appropriate Stihger equa- many-body Schidinger equation

tion. Fori=0 it simplifies such that the ground-state orbital

C. Random-phase approximation

N—1
Ho(X)lﬁi(X)JrT

o(x) satisfies the analog of the nonlinear Sainger equa- H |v)y=E,|v),
tion for the condensate wave functipsee Refs[15,20,2] .
and Eq.(28) below] and define operato®, such that
~ _ AT A\ —
{Ho<x>+<N—1> f A’ Y (X )V (x=x") go(X') | (%) Q.[0)=0 andQ,[0)=]»),

3 %) @ where|0) is the exact many-body ground state. The energy
= &oto(X). of the vth excited state is written as

The overall normalization of the Hartree-Fock ground state ~
is ensured by normalizing(x) to unity. :<V|H|V>
The total energy of the condensdig" is not Ne, as " (vv)
might be expected but rather

or, using the properties (fpy, as
N(N—-1) ~ o~ A
—g(0avieo. ® (Ol[Q, [A,Q!1][0)
=TT 08,800 2
The “additional” term can be understood as eliminating the { vy

double counting of pairs of particles included Meo. In Thjs js an equation for the energy difference—which is the
oth_er WO.rdSNso includes th(_a energy for each particle INter- experimentally measurable quantity—between the exact
acting with every other particle and so counts the contribumany-hody excited state and the exact many-body ground
tion from a given pair twice as is familiar from electrostatics gtate. One must, however, approximate the solution to Eq.

[22]. S_imila_rly, _the excitati_on energy in the Hartree-Fock (12). One approximation is the RPAL5,18,19, which con-
approximation is not the difference of Hartree-Fock S'ngle'sists of restrictin@ to single-particle excitations,

particle energies ,— &, but rather

Ep=(Pg H|Pg") =Neg—

HF_ =HF_ /& HF[ | HF HF| | o, HF ~ 1 an i
E, —Eg =(®p [H|®)—(Dg [H|Dg 9 le\/—ﬁ 20 Xpyc;co—vacgcp, (13)
p#
N—1 —
=(ep—eo)t 2 (pO[V|pO). (10 wherep refers to the Hartree-Fock single-particle basis. The
first term removes a particle from the lowest Hartree-Fock
In this expression, | have used the shorthand notation orbital and places it in an excited orbital while the second

_ term does the opposite. To consistently treat @@) in this
(q0|V|p0)=(q0|V|p0)+(q0|V|Op) (11)  approximation, both the eigenstates and eigenenergies must
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be approximated by their RPA equivalent. In particular, for[18,19 that a complex energy indicates an instability of the

Q defined by Eq(13) | define the RPA ground state by
Q|05 =0
and the RPA excited states by
| @57 =Ql| ™).

With these definitions, the RPA version of E3) is written
as

epa_(P67AIQ, [H.QUIII®E™)
© o (@PAQ, QNIeF

RPA__
EV

14

This expression, like Eq12), would be an exact statement
for the RPA quantities had it not been necessary to make the

approximation H|®R”A = ERPAGRPA  Further, since the

RPA ground state remains unknown, | make the approxima-
tion of replacing|®X™) by |®5F) in order to evaluate the
matrix elements in Eq(14). With this replacement, the nu-

merator of the right-hand side of E(L4) can be written as
(P§FI[Q, [H.QIIN @6

= z X;u[xp’vap"'_Yp’vCpp’]
pp’#0

* *
+Y;V[Xp’vcpp/ + Ypr,,Bpp,],

where

Bppr: T<p0|V|p,0>+(8p_80) 5pp’l

N-1
Copr=—5—(PP'|V|00). (15)

Similarly, the denominator of the right-hand side of Ety)
can be written as

<®SF|[QV ’Q1]|q)5":>: {;0 X;VXPV_Y;VYPV .

Minimizing ES"" in Eq. (14) with respect toX}, and

Y3, yields the RPA equations

— RPA:
r;o [XpuBapT Yp,Capl =05 X g,

— RPA
;0 [Xp,Clpt Yp,BEpl= —Hwh Y, (16)
where iwgo=eq—&o and ol "=EX"—~E§*. | should

emphasize that the RPA i®ot a variational approximation.
In other words, the energies computed from Edf) are not

Hartree-Fock solution. The stability of a condensate for
negative scattering lengths could, for instance, be studied by
searching for complex excitation energiesNass increased.
The only differences between E@L6) and the RPA equa-
tions for fermiong15,18,19 are the factor of {—1)/2 and
the plus sign noted in Eq11) above.

The normalization of the eigenvectors of the RPA equa-
tions is determined by requiring the excited states to be or-
thonormal,

(' [y =(DFPNQ, QNI dR=5,,. (17

But, approximating the RPA ground state by the Hartree-
Fock ground stat¢d ") gives

(PEALQ., QUIPE™)

~(®§[Q,,.Q 1@

_ * *
_ %0 (X% Xopr = Y5 Y o) S
pp

(18

Combined with Eq(17) this gives the normalization condi-
tion

2 (X;V’Xp

* _
D?ﬁ() V_YPV’YPV)_5V’V-

(19

The substitution of the Hartree-Fock ground state for the
RPA ground state is known as the quasiboson approximation
[15,19. It has been studied as an approximation to the inter-
acting boson model in the study of nuclear struc{u@. In
the nuclear structure problem, the interacting boson model
replaces the pair of fermion operators which create a single-
particle excitation of the ground state by an expansion on
boson operators; the quasiboson approximation truncates this
expansion to the first term. In the present problem, the quasi-
boson approximation replaces the pair of boson operators
which create a single-particle excitation of the ground state
by a single operator which also obeys boson commutation
relations. That is, the quasiboson approximation effects the
replacement

p—\/NHA:).
The exact commutator is
&le, &8 :63605 &b 20
NN TN
but the quasiboson approximation gives
[Ap.ALT= 8y (22)

upper bounds to the true energies of the system. This prop-

erty was lost when the matrix elements in E44) were  The relation of this replacement to the approximation of the
evaluated only approximately. In addition, because of theRPA ground state by the Hartree-Fock ground state is made
minus sign in the second of the RPA equations, the excitamore clear by comparing the matrix elements of &§) and

tion energies are not guaranteed to be real. It can be showiq. (21):
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The operator@ are the quasiboson approximations to the
Q operators defined in Eq13). Further, for the transforma-
tion to be canonical, th®’s must satisfy boson commutation

relations just as tha’s do. This requirement leads directly to

) ] o ) the normalization condition E¢19) and places an additional
The quasiboson approximation is thus valid only when the.gnstraint on the coefficients andY:
A

occupation of the Hartree-Fock excited states in the RP

ground state is smaJlL5,19, and the error introduced in this

case is on the order df~* due to the second term of the > XpurYpu—XpuYpur =0.
commutator in Eq(20) above. p=0

Within the quasiboson approximation, solving the RPA |, order to construct an approximate eigenstate within the

equations is equivalent to diagonalizing the quasiboson refRpa  the ground state must first be known. Using the Thou-
resentation of the Hamiltoniahiz to second order imMA.  |ess theorenfi24], the RPA ground state can be related to the
Hg is defined by requiring that the matrix elements of theHartree-Fock ground state by

guasiboson representation operators be the same as the ma-

1 1
AtAa /\T ~ AtAa /\T A~
S (OEPALESE, & Sall O™~ - (W58 £ ol 05D

N
=(Dy[A, ,Ap,]|q>gF>: Sppr-

trix elements of the corresponding operators in the original |¢§PA>:Nei|q)gF>_
representatiof19]. Explicitly, the definitions needed for the
RPA are In this expression)is a normalization constant and

CDHFljl PHFy = CDHFlj' ®HF :EHF, -1 o

(@g [Hg|Pg ) =(Pg [H|Pg)=Eg ZZEE ZDD’AEA;"

A A A pp’ #0

(F[A, [Hg AL 1] @67 _ B o
with the coefficient matrixZ given by

1 “
AtAa ,\T ~
:N<(DEF|[CECD1[chp/00]]|q)g':>:Bpp’y Z*:Yx—lzzT_
~ ~ ~ AT' . .z
(‘DEFI[Ap,[HB,Apf]]ICDEF Thus, because a product of twd''s is present inZ, the

exponential ofZ will have only even powers oA’. It fol-
lows that the RPA ground state contains only even numbers
of particle excitations of the Hartree-Fock ground state. A
direct calculation of the RPA ground state would then pro-
with B, and C,,, defined by Eq.(15). The quasiboson vide a means of checking the validity of the quasiboson ap-
Hamiltonian is then written as proximation. If the coefficient\ of the Hartree-Fock ground
state in the expansion of the RPA ground state is near unity,
then replacing the RPA ground state by the Hartree-Fock
ground state is valid and the RPA ground state is a better
approximation to the physical condensate. Conversely/ if

1 ~pny . o~ is not nearly unity, the quasiboson RPA is not valid. In this
ts5 2 CopApAp +CopAp Ap. (220 case, a self-consistent RFA9] might be used instead. That

pp’#0 is, the RPA ground state calculated as described here could

be used directly in Eq(14) to derive new equations which
could then be solved for a new set Xfs andY’s. A new

1 ada A At
=N(@E‘Fl[cgcp,[H.Cgcp']:”q’g':):_Cpp"

He=Ef + X ByyAlAy
pp’#0

The terms linear inA and A" vanish identically by the

Hartree-Fock condition, Eq(6). Since it has a quadratic
f G be di lized b i¢at Boooli ground state could be calculated from these, and the proce-
orm, Hg can be diagonalized by a canonidar Bogoliu- ;e jterated until some convergence criterion is met.

bov)Atransformation from the set of operatoksto another Under the transformation E¢R3) and taking into account

setO. In other words, | transform from the set of boson he RpA equation$16), the HamiltoniarﬁB becomes

operatorsA for which the Hamiltonian is given by E¢22)

and which satis A apa
fy Hg=ERPA+ > 707070, . (24)

~ ~ v#0

Aol =0 and Alldg"=|d5)

. The total energy of the ground state in the RIEAT", can

to a setO such that be related to the Hartree-Fock ground-state energy@dpy

0,|®5™)=0 and Of|®5™)=|0F).
EGT=EQ — 2 A0l |Ypl? (25
The transformation which connects these two sets of opera- P
tors is given by The RPA ground-state energy is lower than the Hartree-Fock
energy, but as there is no variational bound on the RPA
Of= X Af—v A 1 O = X* A —Y* AT (23 result_, it can be lower than the_z true grou_nd_—state energy. In
v pZ'o prie TR v pZ'o P Youhp- (23 fact, it is not uncommon to find that this is the case for
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fermionic system$19]; it results from the fact that the RPA replaces the operatorg (¢}) by the ¢ numberNo, and

can overestimate ground-state correlations. collects the sum over excited states into a fluctuation opera-
| should point out that both the Hartree-Fock approxima-tor ¢(x) [¢'(x)],

tion and the RPA strictly conserve particle number. For the

Hartree-Fock approximation, this follows from the fact that N A

the number of particles is conserved in the Hartree-Fock ‘P(X):;O P a(X)Cq -

equation, Eq(7); and for the RPA, it can be seen that this is

the case from the quasiboson Hamiltonian in E2f). The  Physically, this operator annihilatésreatey a particle in a

A operators are defined to create single-particle excitationsingly excited state at positionand must be small, in some

with the same total number of particles and so cannot changgense, compared to the condensate wave function in order to

the total number of particles in any combination. This is injustify the expansion of the Hamiltonian only through qua-

contrast to the Bogoliubov approximation in which the non-dratic terms. This condition for the validity of the Bogoliu-

conservation of particle number leads to an overall shift ofbov effective Hamiltonian is the equivalent of the quasibo-

the absolute energies of the excitation spectf@in son approximation discussed for the RPA. The total field
operator is then just
D. Bogoliubov approximation :://(x)= \/N—o¢o(x)+ B(x). 27)

To better understand the differences and similarities be-
tween my formulation of the Hartree-Fock approximation The consequence of this replacement is that the number op-
and the RPA for bosons and the Bogoliubov approach morérator
commonly used for boson systems, | reproduce here the ba-
sics of the Bogoliubov derivation for a general two-body N:f d3x g (X) ()
interaction. The essence of the Bogoliubov approximation
lies in treating the condensatee., the ground statesepa-
rately from the rest of the system based on the relative oc- =Ng+ \/N_OJ d3x[ b () @(X) + T(X) o(X) ]
cupation of the condensate versus excited states. The as-
sumption is that the condensate has on the ordeiN of R R
particles while the excited states collectively have on the + f d*x@"(x) @(x)
order of 1 particle. Having made this approximation, an ef-
fective Hamiltonian is derived which has a quadratic depenno longer commutes with the Hamiltonian so that the number
dence on excitation — or fluctuation — operators just as irof particles is not conserved. This shortcoming can be ap-
the RPA. This quadratic form can be diagonalized througfproximately overcome by instead using the grand canonical
the use of a canonical transformatidd] as was used for the  Hamiltonian, K =H — uN [15]. In this expressiong is the

quasiboson HamiltoniaHg. | begin with the following  chemical potential which will be used at a later point to fix

form for the Hamiltoniar{15]: the average number of particles. Excitation energies can be
computed directly within this approach, but it has recently
A= f d3xpr(x)H0(x) fp(x) _been pointed OL[IQ_] the_lt the fact _that the number Qf particle_s
is not conserved implies the existence of a spurious solution

1 A A o of the normal-mode equations with a vanishing excitation
+—f d3xf d3x T () T (X IV (X—X") h(X) p(X). energy. With the field operator from E@Q7) substituted into
2 K and terms througld(¢?) retained K can be diagonalized
(26)  with the canonical transformatidr’,15]

This can be obtained from E¢) provided the field operator P(xX)=> ux(x),(ABAJrv’{(x),(Ai’I.
¥(X) [¥'(9)] is given by »

The B, (B]) are interpreted as annihilati¢oreation opera-
f//(x)=2 b, (X)C,, tors for quasiparticles. Diagonalizing in this approxima-
@ tion is thus equivalent to transforming to a system of non-
interacting quasiparticle§see Eg.(24)]. K can only be
where ¢ (¢') is as before andp,(x) is an undetermined diagonalized, however, provided the condensate wave func-
single-particle state that need not be from the {sgf(x)} tion ¢o(x) satisfies the self-consistent equation
used in the previous two sections. In fact, | will show that
they are similar but not identical to the Hartree-Fock orbitals.
The standard Bogoliubov approa¢h5] separates the con-

densate from the excited states in the field operénd its
adjoint), = pdo(X). (28

{Ho(XHNoJ d®’ ¢g (X )V(X=X") po(X") | ho(X)

This condition eliminates terms linear #(x) from K and is

) — - - known as the nonlinear Schlimger equation or the
X) = ¢o(X)Co+ X)Cy ) . . . . .

Y(xX)=do(X)Co 2 PalX)Ca Ginzburg-Pitaevskii-Gross equatif®0]. Given the interpre-



55 HARTREE-FOCK THEORY FOR BOSE-EINSTEIN ... 1153

tation of ¢(x), it is evident that this condition builds single- states than would be neededuf(x) andv,(x) were ex-
particle excitations into the condensate wave function in bapanded in terms of a harmonic oscillator basis. Writing the
sically the same way as the Hartree-Fock condition buildexpansions as
them into the Hartree-Fock ground state. It is thus the
equivalent of the Hartree-Fock equation, Ef), obtained in
Sec. I B. Further, just as the RPA included only single and ux(x)=‘;0 Unp®p(X),
double excitations, keeping terms througt{¢?) in K al-
lows only single and double excitations of the condensate
wave function. v (X)= 2, V) pbp(X)
The grand canonical Hamiltonian takes the simple form p#0

. o and assuming the;(x) to be real, | have
K=Eo—uNo— X %), J d®xu} (NvA(x) + X 10,816,
N N - N
(29 5 2 [Unp(@0IVIPO)+Vyp(apIVI0O)] +(q— ) Usg

providedu, (x) andv, (x) satisfy the normal-mode equations =10,\U,q,
— 3y’ ’ ! ’ NO — J—
Ho(X)—p+ NoJ d*X" g (X )V(X=X") do(X") U\ (X) 7;;0 [U,p{ap|V|00)+V, ,(a0|V|pO) ]+ (€g— 1)V, q

+N0f d3x’ @& (X )V(x—X")Ur(X") dho(X) =—h{,)V)q. (32)
These equations are very similar to the RPA equations; the

+N0f d3x’ (X )V(X— X0, (X") do(X) only difference in form is the presence bl rather than
N—1. For largeN and low-lying excitations, this difference

=10, U, (X), (30) is negligible considering the ord& ! errors already intro-

duced at various points in each approximation. However,
there is also a more subtle difference. Where the Hartree-
{Ho(x)—,uﬂL Nof d3x’ @ (X IV(X—X") po(X") [ (X) Fock single-particle basis functions strictly conserve particle
number, the single-particle basis functions to which the la-
bels refer in Eq.(32) have built into them the ordeX !
+N0f d3x’ (X IV (X=X )v,(X") b5 (X) error present in the nonlinear Schiger equation, E(28).
The most significant difference, then, between the Bogoliu-

bov approximation and the RPA is the exclusion of terms of
3y 4% ’ ! ’ *
+N0J’ d°x" g (X )V(X=X)ur(X") g (X) orderN~1! from the self-consistent ground state in the Bogo-
liubov approximation and the consequent loss of particle
=—hu\(X). 31 number conservation. In the RPA, both the quasiboson and

_ _ o the exact(within the RPA ground state conserve particle
In these equations;(), is the excitation energy, and the number.
solutionsu, (x) andv,(x) are normalized as The shift in the ground-state energy from Eg9) when
written in the{¢;(x)} representation has the same form as

f d3xuy (X)Uy (X) = v}, ()0 A (X) = 1y - Eq. (29,

3y, * — 2
In order to relate the Bogoliubov normal-mode equations ; hQXJ d Xv*(x)vx(x)_; hﬂxgo Viol®. (33
to the RPA equations, | expang(x) andv,(x) on the set of
single-particle states which satisfy the equation The spurious mode of Lewenstein and Y] leads to an
additional shift of the ground state. Since this shift results

Ng 3t ke , ) from particle nonconservation in the condensate wave func-
Ho(X) ¢i(x)+ = f d°x" g (X)V(X=X') o(X") $i(X) tion, the total shift of the ground-state energy — E83)
plus the spurious mode shift — should be equal to the RPA
ground-state energy shift EQR5) since the number of par-
ticles is strictly conserved in the Hartree-Fock ground state
giving no spurious mode solution to the RPA equations.
whereey,=u. Note that this equation is chosen in analogy toWith Eq. (33) substituted, the grand canonical Hamiltonian
the Hartree-Fock equation rather than derived within the BoEd. (29) looks very much like the RPA effective Hamil-
goliubov approximation. However, this basis is physicallytonian Eq.(24). In the RPA effective Hamiltonian there is, of
sensible as it includes the mean-field effects of the condertourse, no chemical potential term, and the RPA equivalent
sate. Using such a basis to solve the normal-mode equationd the quasiparticle operatoyd are theO operators in Eq.
would most likely require fewer — possibly far fewer — (23).

+J d% g5 (X IV (x=X") $i(X") ho(X) | = € bi(X),
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E. Configuration interaction The Hamiltonian matrix in this truncated space can then

A connection to standard atomic-structure methods can b€ Partitioned into submatrices according to the states that
made by applying configuration interacti¢6l) [17] to the ~ &'€ coupled: the ground sta@, singly excited states, or
system of bosons. The term configuration in this contexfoubly excited stateB. Explicitly,
means a given set of occupation numblerg corresponding H H H
to the set of single-particle orbita{sy;(x)} defined in Sec. Ge TGS TIeD
I B. Configuration interaction, then, is the variational ap- H=| Hsg Hss Hsp
proach in which the trial wave function is expanded on a
complete basis of many-body wave functions — or configu-

rations — including the condensate and singly to multiply o example, the submatrbtgs=H £ contains the coupling
excited configurations. Since this is a complete many-body,eteen the ground state and singly excited states. For
basis, the exact, time-independent, many-body energy eigefy,ree-Fock single-particle orbitals, all of the elements of

states can in principle be calculated. In practice, of coursgnis submatrix are identically zero by the Hartree-Fock con-
one must limit the expansion to a finite number of basisyjtion Eq. (6). The full CI matrix equation is then

functions.

HDG HDS HDD

Explicitly, | assume a trial wave function of the form Hees O Hgp) /ac ag
0 Hss Hsp|| as| =E,| as| , (35
P)=ap/N,0, ... )+ a,|N—1,0,...,01,0, ...
[¥)=2d ) EO : b ) Hpe Hps Hop bo/ , bo/ ,

+ > bppIN=2,0,...,0,4.0,...,03.,0,...) m'th E, the total energy of theth state. In order to connect
p.p %0 is set of equations as closely as possible to the RPA and
Bogoliubov equations, recall that in both the RPA and Bo-
oo (34 goliubov approaches only those matrix elements coupling
single-particle excitations to single-particle excitations and
where the notation [ indicates that thepth Hartree-Fock two-particle excitations to the ground state are retained.
orbital is occupied by one boson. This trial function includesKeeping only these matrix elements in the CI matrix, or
the same basis functions as E4), the trial function used to equivalently keeping terms proportional & and N while
derive the Hartree-Fock equation, but it is not constrained tmeglecting terms proportional tgN and 1 results in setting
be a product form. Specifically, the coefficients for multiple Hgp andH g to zero and approximating pp by Hpp . The
excitations do not factor into products as they did in ).  RPA-like approximation to Cl reads
This wave function is thus the most general completely sym-

metric wave function as opposed to the most general com- Hee O Hegp ag ag
pletely symmetricproductwave function. Upon truncation, 0 H 0 a _ a
the variational principle for the total energy yields the matrix SS ) s E,las| - (39
eigenvalue problem Hps 0 Hpp/ \bp/ | bo/ |
HV =E, W, In this approximation, single excitations are decoupled from

double excitations as well as from the ground state. Because
the submatrices decouple, | can permute the rows and col-
whereV , is the vector of expansion coefficients. Since nei-umns to bringH to block diagonal form and diagonalize
ther the RPA nor the Bogoliubov equations are variationalwithin the subspace of single-particle excitations separately
approximations, one cannot expect to “derive” them fromto find the low-lying excited state energies,
Cl. To obtain a similar approximation, however, it is only
necessary to include up to doubly excited configurations Hs@s=E,ag. (37)
[that is, truncate the trial functignP’) to those terms explic-
itly written in Eq. (34)]. It is possible to go beyond the RPA Diagonalizing the remainder of the matrix gives corrections
and the Bogoliubov approximation within the CI framework to the ground state and higher-lying excited stakéss can
with the inclusion of triple and higher excitations. In fact, the be evaluated explicitly:
inclusion of all double excitation matrix elements, i.e., those
that involve one- and two-particle excitations ekcited (Hs9qp=E§ dqptBap.
states as well as the ground state, improves upon both the
RPA and the Bogoliubov approximations. This improvementwith B, from Eq. (15). Substituted in Eq(37), this gives
stems from the fact that Cl is a variational approximationafter rearranging
based upon an expansion on a complete set of states, and the
inclusion of higher and more varied excitations not included Ba§=ﬁwIDAa§-
in the RPA or the Bogoliubov approximation must yield bet-
ter approximations to the exact energy eigenstates. Physfhis is a special case of the RPA equations Wit} set to
cally, this improvement can be described as incorporatingero andX,, replaced byag. It is, in fact, the Tamm-
correlations beyond both the RPA and the Bogoliubov apDancoff approximatiofTDA) [15,18,19 which, unlike the
proximation. RPA, is variational(with the constraint that the ground state
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is the Hartree-Fock ground stat&@his is readily understood body collision energies different from zero, | could use for
since it is just a more severely truncatdg,{; =0) Cl expan-  the interparticle interaction the configuration space scattering
sion. T matrix instead of & function[18]. However, the energy
So, while | have evaluated the Cl Hamiltonian in E86) dependence of th€ matrix over the energy range of impor-
to the same order iN as the RPA, the RPA-like Cl spectrum tance should be negligible. Physically, replacig by a.
is presumably less accurate than the RPA spectrum since tlaecounts for multiple interactions between two particles and
coupling between single and double excitations is neglecteds critical in cases where the interaction potential has a
However, with the further modificationsap—1 and  strongly repulsive corgl5,25. | have also assumed that the
by —apay, the Cl equation(36) becomes qualitatively average interparticle spacing is much larger tagnso that
more like the RPA equations: the submatry g drops out; the effects of other particles can be neglected in obtaining the
Heo, Hss, andHpg become coupled; andpp is neglected  effective two-body interaction. This assumption is typically
as it is then of ordeag (in other words, it includes terms like stated ama’.<1 wheren is a characteristic number density
two-particle excitations of excited states which are neglecteih the trap. The use of E¢38) has also been justified from
in the RPA. This approach dod48,19, in fact, lead to a set the viewpoint that it is the first term of a pseudopotential
of equations much like the RPA equations, Etp). These expansion[18,26 which is constructed so as to reproduce
are usually derived in the context of stability analysis for thethe low-energys-wave scattering phase shift.
Hartree-Fock ground state. This interpretation comes from With a d-function interaction and a harmonic trapping
the fact that the equations describe the quadratic behavior gtential, the Hartree-Fock equation, Ed), simplifies to
the multidimensional energy surface ira, space” near a

minimum. The surface is quadratic in this approximation be- h? , 1 2 2. 2.5
cause the highest excitations allowed are two-particle excita- N WV + EM(‘”pP +w;Z)
tions of the ground state which are proportionalaﬁ)[see

Eqg. (4)]. The condition for locating the minimum in this 4mrh%ag

S —— — 2 .
space is just the Hartree-Fock condition itself. However, the * M (N=D)lvo(p, 62" |#i(p.4.2)

minimum thus found is almost certainly not a global mini-

mum (except in the unlikely event that the Hartree-Fock so- =&ii(p,$,2). (39
lution is the exact solution but rather a constrained mini- ) . )

mum. Thus negative eigenvalues of these equationkass_ume that the S|r_19Ie-part|c_Ie orbltalfs_ have the same sym-
correspond to a negative curvature of the energy surface ofjetries as the trapping potential. Specifically, | take them to
equivalently, an unstable equilibrium. The Hartree-Fock soP€ €igenstates df, andII, which are the projection of or-
lution in this case is only an extremum in the energy, not &ital angular momentum on the axis and the parity with

minimum, and so does not describe the ground state of thieSpect to thexy plane, respectively. Each single-particle
system. orbital is thus labeled by an energy quantum numband

the quantum numbers and, for L, andIl,, respectively.

Il NUMERICAL METHOD These symmetry considerations lead to the following choice

for ¢;(x):
For an arbitrary interparticle potential, it is necessary to
solve the Hartree-Fock and RPA equations numerically. | gime
turn now to a numerical method for solving these equations. l/fi(Pyti’,Z):,B*S/ZX,Tﬁn‘(f,ﬂ)E-

Consider a system of atoms trapped by a cylindrically sym-

metric harmonic potential; this is the applicable symmetry, . . . .

for the traps at JILA[1,4], at Rice[2], and at MIT[3,5]. Ir)lltrzls e>f<|:]2re55|on,8 is the length scale for a harmonic os-
Since | am interested in the ground state and in Iow—lyingCI ator ot Irequencyw,

excited states for which the de Broglie wavelengths are much 7
larger than the range of the interparticle poteriigk—x'), | B= 1 [
assume that it can be approximated as Mo
. 4rrhlag, , The scaled coordinates and » are related to the physical
V(x=x') = —g— d(x=x'), (38 coordinates by
with ag. thes-wave scattering length ar the atomic mass. p=p¢ and z=p7.

In the language of many-body perturbation theory, using the N .
true scattering lengthg. rather than the Born approximation The specific form ofy;(x) is chosen so that
to the scattering length,

M f §d§fdnlxi(§,n)|2=l
agzmj d3XV(X),
gives
is effectively the same as summing the ladder diagrams

which can, in turn, be thought of as summing the Born series 2
for the scattering amplitude. In order to account for two- f Pdpf dzf de|i(p,z,¢)|*=1.
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The rescaled Hartree-Fock equation fgr(&,7) now 100000 :
reads
s @
1 0( o 1&2+m2+1 2,2, 2.2 £ 50000 [ ]
25 ag g(?é 2 {97]2 2&-2 2(w§§ wr]ﬂ ) :l:mo
0 L
+20[|X0(§,77)|2 Xi(gvﬂ)zsi)(i(&??)a (40) 12.0 T
s (b)
where the dimensionless trap fregencies arg=ow,/w, < 6ol b
w,=w,/w, the scaled single-particle energyds=e¢;/fw, &
and the dimensionless nonlinear parameter that characterizes
the interaction strength is 00, 5000 T0000

N

FIG. 1. For®Rb atoms and the JILA TOP trap parameters, the
(a) total Hartree-Fock ground-state energjf" and (b) Hartree-
From Eq.(40) one can show that all energies with>0 are  Fock ground-state orbital energy as a function of particle number
doubly degenerate. For the ground state, @) is a self- scaled by the frequenay=w,, .
consistent equation which | solve iterativéll7] using two-
dimensional(2D) finite elementd27]. That is, | solve Eg. B - N 2
(40) using a guess for the mean-field contribution to the po- Vp’p‘f fdff d77Xn'|m|(§’ ) xod & 7)] Xn[m|(§:7)-
tential and iterate until the energy has converged to within
some tolerance. In the present case, | require the relativid the same notation,
tolerance from one iteration to the next to be no more than
10~8. The guess for théth iteration is given by Vorp.00= Om,—m' O, Viprp-

(N 1) aSC
a=(N-1)—.
B

(42

Xio(g, 7)=(1- V)Xif 2(¢,)+ 7Xiff Ye ), The only difference betyvee_n the matrjx eIemenFs in E4%).
and (42) — the § function in m — arises physically from

with 0.05< y=<0.5. This iteration can stall for a few to sev- conservation of totdl,. Thus only states with the same total
eral steps without converging further, or can fail altogethemprojection M| are coupled. The parity function is also
to converge fory too large. This difficulty is overcome by readily understood since both matrix elements are integrated
making an adaptive reduction ¢fas the solution is iterated. over allz and containy3, which is an even function . The
For small values of the nonlinear parameter | use the RPA equations then reduce to
harmonic oscillator ground state as the initial guess and be-

gin the iteration with larger values of, while for large B C\(X} _[I 0}|(X
values ofa | use the Thomas-Fermi soluti¢g@8] and begin g 5/lv/=%0 —i/ly) (43)

with smaller values ofy. One advantage of the iterative ap-

proaCh over other teChniqueS of SOIVing the Self'ConSiSter\R’herea’)V/w is the rescaled excitation frequency and
equation[7,21] is that the solution for a giver is obtained

directly without the need to renormalize. Having obtained §qp=2avq0'p0+5q05qp,
the self-consistent ground state, it becomes straightforward _
to solve for the excited orbitals, since the equation is then a Cqp=2aVqp 0o

linear Schrdinger equation with a static potential comprised
of the trapping potential plus the mean-field contribution ofare the rescaled matrices from Ed5).
the condensate. The resulting set of single-particle orbitals The & functions in the expressions for the integrals reduce
thus forms a complete, orthonormal basis. the computational burden of solving the RPA equations sig-

Now that a set of single-particle orbitals has been deternificantly. Specifically, the RPA equations can be diagonal-
mined, | can set up and solve the RPA equations. To do thidzed separately for each, and|m|. Moreover, the structure
| first need the interaction matrix elements. As in E8P), of the RPA matrix yields automatically that all excitation
for s-function interactions the direct and exchange contribu-€energies for each positive are degenerate with the excita-
tions to the potential matrix elements are indentical. In othetion energies for—m.
words,(q0|V|p0)=(q0|V|0p). With p={n,m, =},

IV. RESULTS AND DISCUSSION

2h%a
(p'0|V|p0)= M—,B; p’0p0 | have solved the Hartree-Fock and RPA equations for
parameters appropriate to the JILA experimemt,=
with the dimensionless matrix element defined by v,/\/8=133 Hz[1,4] anday=110 a.u[29]. Note that in all
of my numerical calculations | choose the frequency seale
Vor0p0= Om,m Oz, m!Vprp. (41)  tobew,. | show in Fig. 1 the Hartree-Fock energies for the

ground state as a function of the numbeof trapped atoms.
where In Fig. 1(a), | plot the total Hartree-Fock ground-state energy
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EgF from Eq.(8); and in Fig. 1b), the Hartree-Fock ground- TABLE I. The convergence of the RPA spectrum with respect
state orbital energy,. TheN dependence of the two is quite to the size of the Hartree-Fock single-particle orbital basis for
different as is, of course, their physical interpretation. The =5000/Rb atoms and the JILA trap parameters. The frequencies
total energy in Fig. (8) sets the absolute scale for the exci- @ &€ the scaled frequenciag /w.

tation spectrum while the orbital energy is the energy neces- — —~ —~ ~ —~

basis w3 w2 w3 Wy Wsg
sary to remove one atom completely from the condensate
For N=5000, | have also calculated the RPA shift in the 10 1.87193 3.29129 4.77010 5.50449 6.21153
ground-state energhEq,=|EX""—ELT| to be 162.16w. 20 1.86003 3.26675 4.71695 5.15355 5.98377
This lowers the Hartree-Fock ground-state energy of40 1.85963 3.26573 4.71530 5.14483 5.97368
33492 w by only 0.5% which is a good indication that the 60 1.85958 3.26562 4.71512 5.14438 5.97331
guasiboson approximation, replacing the RPA ground statgp 1.85958 3.26562 4.71510 5.14432 5.97322

by the Hartree-Fock ground state, is valid.
From the expression for the RPA ground-state energy, Eqg.
(25), the excitation spectrum and transformation coefficientgequire about twice as many oscillator states aqfer0. In
for all m and r, must in principle be calculated in order to addition, as the nonlinear parameteincreases, the number
evaluate the ground-state energy shift. To approximatelyf oscillator states needed to achieve a given level of con-
compute the energy shift, however, | solved the RPA equavergence increases whereas the number of Hartree-Fock or-
tions for m=10 and bothz parities, constructed the scaled bitals remains essentially constant.
sum In order to better understand whether excited-state and
ground-state correlations make significant contributions to
A'Emﬂ'zzz B.|Y 2 the excitation spectrum,_ I hav_e calculated the spectrum in
0 v mm e three of the approximations discussed above: the Hartree-
Fock approximation, the Tamm-Dancoff approximation, and
and extrapolatedxﬁg"”z to m—o using the empirical ex- the random-phase approximation. The Hartree-Fock approxi-
pression mation includes no correlation beyond those implied by
identical particle statistics. All of the Hartree-Fock many-
AES‘”Z:'EW @ Onm body states are thus simply symmetrized product states, or
z single configurations. The TDA is based upon an expansion

This form fit the calculated points quite well over an order ofon Hartree-Fock single-particle orbitals and allows correla-

magnitude decrease .mEomﬁZ betweenm=0 andm=10 for  tons only among the smgly excited Hartr_ee—Fock states. In
i . . other words, the TDA excited states are linear combinations
both parities. Including the degeneracynim) the full ground-

tate shift is th of the Hartree-Fock singly excited states. The ground state in
state shitt1s then the TDA, however, is just the Hartree-Fock ground state.

10 % The RPA improves upon TDA by allowing correlations in
AE0= E AE%"z4 2 E AE™ 24 2% E e Oxm| the ground state as well as the excited states. So, in the RPA
T 0 m=1 "ri=11 both the ground state and the excited states will be linear

combinations of the Hartree-Fock ground and excited states.

The last sum ovem involves a geometric series and is thus | show in Figs. 2—4 the results of these calculations for
easily evaluated. | find that when summed over both paritiegoth z parities andm=0, 1, and 2. | expect that the RPA
it contributes approximately 14% to the total energy shift. ltspectrum should be the most accurate of the three approxi-
follows that the errors introduced through the empirical fitmations as it includes the most correlation among the
will lead to only small errors in the total energy shift. Hartree-Fock states. Given this expectation, one sees from

To solve the RPA equations, it is only necessary to in-Figs. 2a)-2(c) that the Hartree-Fock excitation spectrum
clude a small number of Hartree-Fock single-particle orbital§calculated fromﬁw';”::EEF_ ENF and Eq.(10)] is in rea-
in order to obtain few percent accuracies in the low-lying
excitation energies. For example, with=5000 atoms and
m=0, a basis set of ten Hartree-Fock orbitals gives the low-
est excitation energy to an accuracy of 0.7% compared to the
converged result. In Table I, | show the convergence behav-
ior for the lowest five excitation energies for=5000 and S
m=0. When 60 orbitals are used, for instance, the lowest "z
excitation energy is converged to six significant figures. For  ,,
comparison, | can estimate the number of harmonic oscillator
states necessary to obtain the same convergence by expand- oo

1 1 1
5000 10000 0 5000 10000 0 5000 10000

ing the highest-energy Hartree-Fock orbital in terms of har- 0 N N N
monic oscillator states. Restricting the harmonic oscillator
expansion using botm and,, i.e., including onlyn,=n, FIG. 2. The lowest frequencies of the Hartree-Fock approxima-

and evemn,, | find that it takes approximately 80 oscillator tion to the excitation spectrum f&7Rb atoms in the JILA TOP trap
states to represent the 60th Hartree-Fock orbital. | shouldcaled by the frequencw=w,. (& m=0, (b) m=1, and (c)

point out, however, that the comparison for=0 is the most  m=2. In each graph solid lines are everparity and dashed lines
favorable to the oscillator expansion since nonzerawill are oddz parity.
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FIG. 3. The lowest frequencies of the Tamm-Dancoff approxi-
mation to the excitation spectrum f8fRb atoms in the JILA TOP FIG. 5. Comparison of the lowesn=0 (solid line) and m=2

trap scaled by the frequenay=w, . (@ m=0, (b)) m=1, and(c)  (dashed ling random-phase-approximation excitation frequencies
m=2. In each graph solid lines are evemparity and dashed lines \ith the JILA experimental measurements.

are oddz parity.

sonable agreement with the RPA energies only for theéMallN. However, for largeN the TDA spectrum is quite a
higher-lying states foN less than a few hundred to a thou- !arge improvement over the Hartree-Fock spectrum. | con-
sand. This agreement suggests that the excitation is aglude that excited-state correlations are important, but that
equately described by the simple picture of a single particléhe ground_—state correlations mclqded in th(_a RPA ce_llculatlon
being excited out of the ground state to a higher-lyingare essential for accuratg e_x0|tat|on energies. In_F|ga).—4
Hartree-Fock state. Arguing on the basis of the nodal strucH¢) | show the RPA excitation spectrum along with the ex-
ture of the single-particle orbitals and EG.0), the agree- Perimental points from the recent JILA measurempHt

ment for higher-lying excitations and odd parity seems The agreement of the experimental points with the RPA

reasonable since the mean field due to the condensate h3Rectrum—and disagreement with the other two spectra—

less overlap with higher-lying excited states which have arP®2rs out the expectation that the RPA is the more accurate
increasing number of nodes in the region of the mean field@PProximation. However, the agreement is not perfect as |

Since the difference in Hartree-Fock single-particle orbitalSNOW in Fig. 5. Further, as shown in Re4], the agreement
energiesz ,— &, decreases ds increases due to the flatten- of the RPA spectrum with the excitation spectrum obtained

ing and widening of the bottom of the harmonic trapping by Edwardset al.[6] from the Bogoliubov approximation is

potential by the mean field, the overlap of the single-particléiUiteé good over the range &f they computed.
orbital and the mean field must be responsible for the in-
crease in the Hartree-Fock excitation energies with increas-
ing N [see Eq.(10)]. By a similar argument, odd-parity
states will have less overlap with the condensate mean field | have modified the Hartree-Fock, random-phase, and
than evenz-parity states with a similar energy since they configuration-interaction approximations for use with sys-
have a node a=0 rather than an antinode. This is also thetems of interacting bosons and have shown that they can be
reason that the Hartree-Fock spectrum for aehrity states  treated accurately and efficiently within particle number con-
is qualitatively closer to the RPA spectrum for lardéthan  serving approximations. In fact, | make approximations
the evenz-parity states. which are remarkably similar to those made in the standard
The TDA spectrum in Figs.(@-3(c) is an improvement  Bogoliubov approach and derive largely the same equations
on the Hartree-Fock spectrum although the close agreememthile maintaining particle number conservation. | have also
with the RPA spectrum is over essentially the same region o§hown that systems of interacting bosons can be treated in a
manner analogous to that used to describe the electronic

V. SUMMARY

8.0 e ===t | . states of atoms. This allows me to adapt the knowledge and
e R ~ N ~— . e . .
‘\\5 . N intuition gained from the atomic-structure problem to under-
6.0 R e S &‘ . 1 A = stand the quantum mechanical states of interacting, trapped
3 s S= atoms.
< 40 R {1 T = B 1
£, Nmmmeemd b Nmm— o
g b1 R —
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