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Hartree-Fock theory for Bose-Einstein condensates and the inclusion of correlation effects

B. D. Esry
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440

~Received 29 July 1996!

I specialize the Hartree-Fock, random-phase, and configuration-interaction approximations to a system of
interacting bosons in an external potential. This approach affords a more direct connection to the methods and
language of atomic-structure calculations. The derivations and equations parallel those found in atomic struc-
ture and are contrasted with the more commonly used Bogoliubov approach for bosons. I present a numerical
method for solving the Hartree-Fock and random-phase equations to obtain the low-lying excitation energies
for trapped alkali-metal atoms.@S1050-2947~97!02802-3#

PACS number~s!: 03.75.Fi, 05.30.Jp, 36.40.2c
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I. INTRODUCTION

The recent experimental observations of Bose-Eins
condensates@1–3# and the successful experiments@4,5# on
condensate properties have increased the desirability of
mulating a comprehensive theoretical description. Sev
groups@6–14# have made progress in this direction by ado
ing the standard Bogoliubov approach for many interact
bosons@15#. This is an approach which treats the condens
as a reservoir which can exchange both particles and en
with the rest of the system. This approximation, howev
does not inherently conserve the number of particles,
though the chemical potentialm can be introduced to enforc
this condition on average.

In order to connect to many-body approaches such
those used in atomic-structure calculations, I formulate
theory for trapped atoms using standard Schro¨dinger quan-
tum mechanics@16#. This, of course, automatically conserv
the number of interacting particles. In my methodology
pursue the analogy of atoms in a trap to electrons trappe
the Coulomb field of a nucleus. A fundamental differen
between these cases is, of course, the character of the
ticles: the atoms experimentally studied in such traps to d
are bosons, whose exchange properties differ profoun
from the fermionic electrons in an atom. This viewpoint a
lows me to discuss concepts such as quasiparticles in te
of configurationsandorbitals, thus permitting me to link the
language of condensed matter physics to that of atomic p
ics and nuclear physics. As I will show below, this formul
tion leads to results which arelargely equivalent to those
obtained in the Bogoliubov approach, aside from very min
differences that should be unimportant for current exp
mental conditions. A key byproduct of my viewpoint is th
it permits me to apply standard tools of atomic theory, su
as configuration interaction@17#, which transcend Hartree
Fock theory, in order to describe phenomena such
multiple-particle excitations which are not encompassed
Bogoliubov theory.

In Sec. II, I review the essentials of second quantizat
as they apply to bosons before deriving the Hartree-Fock
random-phase-approximation~RPA! equations. In addition, I
connect my approach to the Bogoliubov formulation for
system of interacting bosons and derive a configurati
interaction treatment. In Sec. III, I present a numeri
551050-2947/97/55~2!/1147~13!/$10.00
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method for solving the Hartree-Fock and RPA equations
in Sec. IV present results for the low-lying excitation fr
quencies of the JILA time orbiting potential trap@1,4#.

II. THEORY

A. Review of second quantization

The notation of second quantization@15# simplifies the
construction of properly symmetrized many-body sta
within the independent particle approximation. This simp
fication is especially useful for bosonic systems. A man
boson wave function is specified by the set of occupat
numbers$na% wherea represents all of the quantum num
bers needed to label a single-particle state from some sin
particle basis$ca(x)%. For instance,

uC&5un0,0, . . . ,0,ni ,0, . . .& ~1!

is a many-boson wave function withn0 bosons in the 0th
single-particle state,ni bosons in thei th single-particle state
and no bosons in any other single-particle state. The sum
occupation numbers necessarily equals the total numbe
particles, i.e.,( ini5N. The above wave function may als
be written as

uC&5
~ ĉ0

†!n0

An0!
~ ĉi

†!ni

Ani !
u0&.

Here, u0& is the state with no bosons present in any sing
particle state. The creation,ĉa

† , and annihilation,ĉa , opera-
tors create or annihilate a boson in theath single-particle
state in the following sense:

ĉa
† u . . . ,na , . . . &5Ana11u . . . ,na11, . . .&,

ĉau . . . ,na , . . . &5Anau . . . ,na21, . . .&.

Further, theĉ’s satisfy the boson commutation relations

@ ĉa ,ĉb
† #5dab , and @ ĉa

† ,ĉb
† #5@ ĉa ,ĉb#50.

Yet another way to write the wave function in Eq.~1! is
1147 © 1997 The American Physical Society
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Cn0•••ni•••
~x1 , . . . ,xN!

5S@c0~x1!•••c0~xn0!c i~xn011!•••c i~xN!# ,

whereS is the symmetrization operator. This form explicit
makes the connection to the configuration space viewp
more commonly adopted in the context of atomic-struct
calculations.

B. Hartree-Fock approximation

With the Hartree-Fock approximation, one seeks the b
independent particle wave function for a given set of oc
pation numbers. In the present case, I concentrate on
ground state of a system of bosons, i.e.,$ni%5$N,0, . . .%;
more general sets of occupation numbers can be used,
ever. Considerable freedom exists in the choice of a sin
particle basis set. I use this flexibility to derive an equat
for those single-particle states which minimize the total
ergy. Our derivation of the Hartree-Fock equation for boso
parallels standard Hartree-Fock derivations for fermio
@15,18,19#, so I outline only the essential steps. I begin w
the second-quantized Hamiltonian

Ĥ5(
a,b

ĉa
†^auH0ub&ĉb1

1

2 (
a,b,g,d

ĉa
† ĉb

†^abuVugd&ĉdĉg .

~2!

In this expression, all indices are summed over all sing
particle states and

^auH0ub&5E d3xca* ~x!H0~x!cb~x!

is the single-particle matrix element of

H0~x!52
\2

2m
¹21Vext~x!,

which includes any external trapping potential inVext(x). For
example, in the present caseVext(x) is a cylindrically sym-
metric harmonic trapping potential; in atomic-structure c
culations,Vext(x) is the electron-nucleus Coulomb intera
tion. The two-particle interaction matrix element in Eq.~2! is
given by

^abuVugd&5E d3xE d3x8ca* ~x!cb* ~x8!V~x2x8!

3cg~x!cd~x8!.

For atoms in a trapV(x) represents the interatomic potenti
while in atomic-structure calculationsV(x) describes the
electron-electron Coulomb interaction. Theca(x) in these
matrix elements are the~as yet undetermined! single-particle
orbitals which are orthonormal:

E d3xca* ~x!cb~x!5dab .

To the extent that the potential energy of the system
described completely by a pairwise sum of two-body int
actions and a sum of one-body trap potentials — which is
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assumption throughout this paper — the Hamiltonian can
represented exactly by Eq.~2! for any choice of single-
particle basis. Only when the composite nature of the p
ticles is taken into account do three- or more-particle int
actions enter. These multiparticle interactions, however,
typically weak and of much shorter range than the two-bo
interactions and are thus usually neglected.

To proceed, I solve the Schro¨dinger equation variationally
using for a trial function the completely symmetric produ
wave function

F~x1 , . . . ,xN!5f~x1!•••f~xN!. ~3!

The orbital f(x) can, in turn, be expanded on a singl
particle basis,

f~x!5NFc0~x!1 (
pÞ0

`

apcp~x!G ,
with N an overall normalization constant. I will choose th
single-particle basis such thatc0(x) alone is sufficient to
minimize the total ground-state energy.

The first few terms in Eq.~3! are written in second quan
tization as

uF&5NNS 11 (
pÞ0

ap
ĉp
†ĉ0

AN

1 (
p,p8Þ0

apap8
ĉp
†ĉ0

AN21

ĉp8
† ĉ0

AN
1••• D uF0

HF&, ~4!

whereuF0
HF& is the Hartree-Fock ground state of the syste

uF0
HF&5

~ ĉ0
†!N

AN!
u0&5uN,0, . . .&

or

^x1 , . . . ,xNuF0
HF&5F0

HF~x1 , . . . ,xN!5c0~x1!•••c0~xN!.
~5!

Thus the trial function includes multiple excitations of th
Hartree-Fock ground state. Inasmuch as the ground en
eigenstate of the system of interacting bosons is the con
sate, one can regard the Hartree-Fock ground state as a
approximation to the condensate wave function. It is only
approximation, however, since the true ground state of
system is a linear combination of the Hartree-Fock grou
and excited states.

To determine the Hartree-Fock equation forc i(x), I re-
quire variations of the total energyE to be stationary with
respect to single-particle excitations, which is equivalent
minimizing E with respect to the coefficientsap ,

dE5
d

dap

^FuĤuF&

^FuF&
U
ap50

50.

This leads to the condition
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K F0
HFU ĉ0†ĉpAN

ĤUF0
HFL 5^Fp

HFuĤuF0
HF&50. ~6!

This condition ensures that the Hartree-Fock basis is cho
so that the Hamiltonian cannot produce single-particle e
tations ofuF0

HF&. Also, uF0
HF& is variationally the best com

pletely symmetric, single configuration, independent part
wave function just as the Hartree-Fock ground state for
atom is the best single Slater determinant wave function
fact, an alternative method for deriving the Hartree-Fo
equation for the ground state is to minimize the total ene
with respect toc0(x). Equation~6! leads to the more genera
Hartree-Fock equation for the single-particle orbitals

H0~x!c i~x!1
N21

2 F E d3x8c0* ~x8!V~x2x8!c0~x8!c i~x!

1E d3x8c0* ~x8!V~x2x8!c i~x8!c0~x!G5« ic i~x!,

which holds fori including both the condensate and the e
cited orbitals. The first term in the square brackets is
direct contribution to the interaction energy and behaves
local potential arising from the mean field due to the cond
sate, and the second term is the nonlocal exchange cont
tion to the interaction energy. Further, for a system of o
one boson this reduces to the appropriate Schro¨dinger equa-
tion. For i50 it simplifies such that the ground-state orbi
c0(x) satisfies the analog of the nonlinear Schro¨dinger equa-
tion for the condensate wave function@see Refs.@15,20,21#
and Eq.~28! below#

FH0~x!1~N21!E d3x8c0* ~x8!V~x2x8!c0~x8!Gc0~x!

5«0c0~x!. ~7!

The overall normalization of the Hartree-Fock ground st
is ensured by normalizingc0(x) to unity.

The total energy of the condensateE0
HF is not N«0 as

might be expected but rather

E0
HF5^F0

HFuĤuF0
HF&5N«02

N~N21!

2
^00uVu00&. ~8!

The ‘‘additional’’ term can be understood as eliminating t
double counting of pairs of particles included inN«0. In
other words,N«0 includes the energy for each particle inte
acting with every other particle and so counts the contri
tion from a given pair twice as is familiar from electrostati
@22#. Similarly, the excitation energy in the Hartree-Fo
approximation is not the difference of Hartree-Fock sing
particle energies«p2«0, but rather

Ep
HF2E0

HF5^Fp
HFuĤuFp

HF&2^F0
HFuĤuF0

HF& ~9!

5~«p2«0!1
N21

2
^p0uV̄up0&. ~10!

In this expression, I have used the shorthand notation

^q0uV̄up0&5^q0uVup0&1^q0uVu0p& ~11!
en
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for the direct and exchange contributions to the interpart
interaction matrix element. Note that the plus sign in th
expression results from the requirement of symmetry up
permutation of the identical bosons~the requirement of anti-
symmetry for fermions yields a minus sign instead!.

C. Random-phase approximation

I showed in Eq.~6! that the Hartree-Fock approximatio
accounts for single-particle excitations in the ground sta
This approximation can be improved by including two-
more-particle excitations in the trial wave function. One a
proach that includes some of the physics of two-particle
citations is the random-phase approximation@15,18,19#. This
method amounts to replacing the Hamiltonian, Eq.~2!, by an
effective Hamiltonian which accounts for up to two-partic
excitations of the ground state.~The full Hamiltonian allows
for single and double excitations of excited states as we!
The RPA equations or their equivalent can be derived i
number of ways. I will present a derivation based on t
time-independent Schro¨dinger equation which makes th
connection to the Bogoliubov approach most transparen
could equivalently start from the time-dependent Sch¨-
dinger equation@18,19#, or I could apply random-phase a
guments@23# to linearize the interaction term in the Hami
tonian.

I begin with the exact solutions to the time-independe
many-body Schro¨dinger equation,

Ĥun&5Enun&,

and define operatorsQ̂n such that

Q̂nu0&50 and Q̂n
†u0&5un&,

whereu0& is the exact many-body ground state. The ene
of the nth excited state is written as

En5
^nuĤun&

^nun&

or, using the properties ofQ̂n , as

En2E05
^0u†Q̂n ,@Ĥ,Q̂n

†#‡u0&

^0u@Q̂n ,Q̂n
†#u0&

. ~12!

This is an equation for the energy difference—which is t
experimentally measurable quantity—between the ex
many-body excited state and the exact many-body gro
state. One must, however, approximate the solution to
~12!. One approximation is the RPA@15,18,19#, which con-
sists of restrictingQ̂ to single-particle excitations,

Q̂n
†5

1

AN (
pÞ0

Xpnĉp
†ĉ02Ypnĉ0

†ĉp , ~13!

wherep refers to the Hartree-Fock single-particle basis. T
first term removes a particle from the lowest Hartree-Fo
orbital and places it in an excited orbital while the seco
term does the opposite. To consistently treat Eq.~12! in this
approximation, both the eigenstates and eigenenergies
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be approximated by their RPA equivalent. In particular,
Q̂ defined by Eq.~13! I define the RPA ground state by

Q̂nuF0
RPA&50

and the RPA excited states by

uFn
RPA&5Q̂n

†uF0
RPA&.

With these definitions, the RPA version of Eq.~13! is written
as

En
RPA2E0

RPA5
^F0

RPAu†Q̂n ,@Ĥ,Q̂n
†#‡uF0

RPA&

^F0
RPAu@Q̂n ,Q̂n

†#uF0
RPA&

. ~14!

This expression, like Eq.~12!, would be an exact statemen
for the RPA quantities had it not been necessary to make
approximation ĤuFn

RPA&5En
RPAuFn

RPA&. Further, since the
RPA ground state remains unknown, I make the approxim
tion of replacinguF0

RPA& by uF0
HF& in order to evaluate the

matrix elements in Eq.~14!. With this replacement, the nu
merator of the right-hand side of Eq.~14! can be written as

^F0
HFu†Q̂n ,@Ĥ,Q̂n

†#‡uF0
HF&

5 (
pp8Þ0

Xpn* @Xp8nBpp81Yp8nCpp8#

1Ypn* @Xp8nCpp8
* 1Yp8nBpp8

* #,

where

Bpp85
N21

2
^p0uV̄up80&1~«p2«0!dpp8,

Cpp85
N21

2
^pp8uV̄u00&. ~15!

Similarly, the denominator of the right-hand side of Eq.~14!
can be written as

^F0
HFu@Q̂n ,Q̂n

†#uF0
HF&5 (

pÞ0
Xpn* Xpn2Ypn* Ypn .

Minimizing En
RPA in Eq. ~14! with respect toXqn* and

Yqn* yields the RPA equations

(
pÞ0

@XpnBqp1YpnCqp#5\vn
RPAXqn,

(
pÞ0

@XpnCqp* 1YpnBqp* #52\vn
RPAYqn, ~16!

where \vq05«q2«0 and \vn
RPA5En

RPA2E0
RPA. I should

emphasize that the RPA isnot a variational approximation
In other words, the energies computed from Eq.~16! are not
upper bounds to the true energies of the system. This p
erty was lost when the matrix elements in Eq.~14! were
evaluated only approximately. In addition, because of
minus sign in the second of the RPA equations, the exc
tion energies are not guaranteed to be real. It can be sh
r

he
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e
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wn

@18,19# that a complex energy indicates an instability of t
Hartree-Fock solution. The stability of a condensate
negative scattering lengths could, for instance, be studied
searching for complex excitation energies asN is increased.
The only differences between Eq.~16! and the RPA equa-
tions for fermions@15,18,19# are the factor of (N21)/2 and
the plus sign noted in Eq.~11! above.

The normalization of the eigenvectors of the RPA equ
tions is determined by requiring the excited states to be
thonormal,

^n8un&5^F0
RPAu@Q̂n8,Q̂n

†#uF0
RPA&5dn8n . ~17!

But, approximating the RPA ground state by the Hartre
Fock ground stateuF0

HF& gives

^F0
RPAu@Q̂n8,Q̂n

†#uF0
RPA&

'^F0
HFu@Q̂n8,Q̂n

†#uF0
HF&

5 (
pp8Þ0

~Xn8p
* Xnp82Yn8p

* Ynp8!dpp8. ~18!

Combined with Eq.~17! this gives the normalization condi
tion

(
pÞ0

~Xpn8
* Xpn2Ypn8

* Ypn!5dn8n . ~19!

The substitution of the Hartree-Fock ground state for
RPA ground state is known as the quasiboson approxima
@15,19#. It has been studied as an approximation to the in
acting boson model in the study of nuclear structure@19#. In
the nuclear structure problem, the interacting boson mo
replaces the pair of fermion operators which create a sin
particle excitation of the ground state by an expansion
boson operators; the quasiboson approximation truncates
expansion to the first term. In the present problem, the qu
boson approximation replaces the pair of boson opera
which create a single-particle excitation of the ground st
by a single operator which also obeys boson commuta
relations. That is, the quasiboson approximation effects
replacement

ĉp
†ĉ0

AN
→Âp

† .

The exact commutator is

F ĉ0†ĉpAN
,
ĉp8
† ĉ0

AN G5
ĉ0
†ĉ0
N

dpp82
ĉp8
† ĉp
N

, ~20!

but the quasiboson approximation gives

@Âp ,Âp8
†

#5dpp8. ~21!

The relation of this replacement to the approximation of
RPA ground state by the Hartree-Fock ground state is m
more clear by comparing the matrix elements of Eq.~20! and
Eq. ~21!:
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1

N
^F0

RPAu@ ĉ0
†ĉp ,ĉp8

† ĉ0#uF0
RPA&'

1

N
^F0

HFu@ ĉ0
†ĉp ,ĉp8

† ĉ0#uF0
HF&

5^F0
HFu@Âp ,Âp8

†
#uF0

HF&5dpp8.

The quasiboson approximation is thus valid only when
occupation of the Hartree-Fock excited states in the R
ground state is small@15,19#, and the error introduced in thi
case is on the order ofN21 due to the second term of th
commutator in Eq.~20! above.

Within the quasiboson approximation, solving the RP
equations is equivalent to diagonalizing the quasiboson
resentation of the HamiltonianĤB to second order inÂ.
ĤB is defined by requiring that the matrix elements of t
quasiboson representation operators be the same as the
trix elements of the corresponding operators in the origi
representation@19#. Explicitly, the definitions needed for th
RPA are

^F0
HFuĤBuF0

HF&5^F0
HFuĤuF0

HF&5E0
HF,

^F0
HFu†Âp ,@ĤB ,Âp8

†
#‡uF0

HF&

5
1

N
^F0

HFu†ĉ0
†ĉp ,@Ĥ,ĉp8

† ĉ0#‡uF0
HF&5Bpp8,

^F0
HFu†Âp ,@ĤB ,Âp8#‡uF0

HF&

5
1

N
^F0

HFu†ĉ0
†ĉp ,@Ĥ,ĉ0

†ĉp8#‡uF0
HF&52Cpp8,

with Bpp8 and Cpp8 defined by Eq.~15!. The quasiboson
Hamiltonian is then written as

ĤB5E0
HF1 (

pp8Þ0

Bpp8Âp
†Âp8

1
1

2 (
pp8Þ0

Cpp8Âp
†Âp8

†
1Cpp8

* Âp8Âp . ~22!

The terms linear inÂ and Â† vanish identically by the
Hartree-Fock condition, Eq.~6!. Since it has a quadrati
form, ĤB can be diagonalized by a canonical~or Bogoliu-
bov! transformation from the set of operatorsÂ to another
set Ô. In other words, I transform from the set of boso
operatorsÂ for which the Hamiltonian is given by Eq.~22!
and which satisfy

ÂpuF0
HF&50 and Âp

†uF0
HF&5uFp

HF&

to a setÔ such that

ÔnuF0
RPA&50 and Ôn

†uF0
RPA&5uFn

RPA&.

The transformation which connects these two sets of op
tors is given by

Ôn
†5 (

pÞ0
XpnÂp

†2YpnÂp, Ôn5 (
pÞ0

Xpn* Âp2Ypn* Âp
† . ~23!
e
A

p-

ma-
l

a-

The operatorsÔ are the quasiboson approximations to t
Q̂ operators defined in Eq.~13!. Further, for the transforma
tion to be canonical, theÔ’s must satisfy boson commutatio
relations just as theÂ’s do. This requirement leads directly t
the normalization condition Eq.~19! and places an additiona
constraint on the coefficientsX andY:

(
pÞ0

Xpn8Ypn2XpnYpn850.

In order to construct an approximate eigenstate within
RPA, the ground state must first be known. Using the Th
less theorem@24#, the RPA ground state can be related to t
Hartree-Fock ground state by

uF0
RPA&5NeẐuF0

HF&.

In this expression,N is a normalization constant and

Ẑ5
1

2 (
pp8Þ0

Zpp8Âp
†Âp8

† ,

with the coefficient matrixZ given by

Z*5YX215Z†.

Thus, because a product of twoÂ†’s is present inẐ, the
exponential ofẐ will have only even powers ofÂ†. It fol-
lows that the RPA ground state contains only even numb
of particle excitations of the Hartree-Fock ground state.
direct calculation of the RPA ground state would then p
vide a means of checking the validity of the quasiboson
proximation. If the coefficientN of the Hartree-Fock ground
state in the expansion of the RPA ground state is near un
then replacing the RPA ground state by the Hartree-F
ground state is valid and the RPA ground state is a be
approximation to the physical condensate. Conversely, iN
is not nearly unity, the quasiboson RPA is not valid. In th
case, a self-consistent RPA@19# might be used instead. Tha
is, the RPA ground state calculated as described here c
be used directly in Eq.~14! to derive new equations which
could then be solved for a new set ofX’s andY’s. A new
ground state could be calculated from these, and the pr
dure iterated until some convergence criterion is met.

Under the transformation Eq.~23! and taking into accoun
the RPA equations~16!, the HamiltonianĤB becomes

ĤB5E0
RPA1 (

nÞ0
\vn

RPAÔn
†Ôn . ~24!

The total energy of the ground state in the RPA,E0
RPA, can

be related to the Hartree-Fock ground-state energy Eq.~8! by

E0
RPA5E0

HF2(
n

\vn
RPA(

pÞ0
uYpnu2. ~25!

The RPA ground-state energy is lower than the Hartree-F
energy, but as there is no variational bound on the R
result, it can be lower than the true ground-state energy
fact, it is not uncommon to find that this is the case f
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fermionic systems@19#; it results from the fact that the RPA
can overestimate ground-state correlations.

I should point out that both the Hartree-Fock approxim
tion and the RPA strictly conserve particle number. For
Hartree-Fock approximation, this follows from the fact th
the number of particles is conserved in the Hartree-F
equation, Eq.~7!; and for the RPA, it can be seen that this
the case from the quasiboson Hamiltonian in Eq.~24!. The
Â operators are defined to create single-particle excitat
with the same total number of particles and so cannot cha
the total number of particles in any combination. This is
contrast to the Bogoliubov approximation in which the no
conservation of particle number leads to an overall shift
the absolute energies of the excitation spectrum@9#.

D. Bogoliubov approximation

To better understand the differences and similarities
tween my formulation of the Hartree-Fock approximati
and the RPA for bosons and the Bogoliubov approach m
commonly used for boson systems, I reproduce here the
sics of the Bogoliubov derivation for a general two-bo
interaction. The essence of the Bogoliubov approximat
lies in treating the condensate~i.e., the ground state! sepa-
rately from the rest of the system based on the relative
cupation of the condensate versus excited states. The
sumption is that the condensate has on the order oN
particles while the excited states collectively have on
order of 1 particle. Having made this approximation, an
fective Hamiltonian is derived which has a quadratic dep
dence on excitation — or fluctuation — operators just as
the RPA. This quadratic form can be diagonalized throu
the use of a canonical transformation@15# as was used for the
quasiboson HamiltonianĤB . I begin with the following
form for the Hamiltonian@15#:

Ĥ5E d3xĉ†~x!H0~x!ĉ~x!

1
1

2E d3xE d3x8ĉ†~x!ĉ†~x8!V~x2x8!ĉ~x!ĉ~x8!.

~26!

This can be obtained from Eq.~2! provided the field operato
ĉ(x) @ĉ†(x)# is given by

ĉ~x!5(
a

fa~x!ĉa ,

where ĉ ( ĉ†) is as before andfa(x) is an undetermined
single-particle state that need not be from the set$ca(x)%
used in the previous two sections. In fact, I will show th
they are similar but not identical to the Hartree-Fock orbita
The standard Bogoliubov approach@15# separates the con
densate from the excited states in the field operator~and its
adjoint!,

ĉ~x!5f0~x!ĉ01 (
aÞ0

fa~x!ĉa ,
-
e
t
k

s
ge

-
f

-

re
a-

n

c-
as-

e
-
-
n
h

t
.

replaces the operatorsĉ0 ( ĉ0
†) by the c numberAN0, and

collects the sum over excited states into a fluctuation op
tor ŵ(x) @ŵ†(x)#,

ŵ~x!5 (
aÞ0

fa~x!ĉa .

Physically, this operator annihilates~creates! a particle in a
singly excited state at positionx and must be small, in som
sense, compared to the condensate wave function in ord
justify the expansion of the Hamiltonian only through qu
dratic terms. This condition for the validity of the Bogoliu
bov effective Hamiltonian is the equivalent of the quasib
son approximation discussed for the RPA. The total fi
operator is then just

ĉ~x!5AN0f0~x!1ŵ~x!. ~27!

The consequence of this replacement is that the number
erator

N̂5E d3xĉ†~x!ĉ~x!

5N01AN0E d3x@f0* ~x!ŵ~x!1ŵ†~x!f0~x!#

1E d3xŵ†~x!ŵ~x!

no longer commutes with the Hamiltonian so that the num
of particles is not conserved. This shortcoming can be
proximately overcome by instead using the grand canon
Hamiltonian,K̂5Ĥ2mN̂ @15#. In this expression,m is the
chemical potential which will be used at a later point to
the average number of particles. Excitation energies can
computed directly within this approach, but it has recen
been pointed out@9# that the fact that the number of particle
is not conserved implies the existence of a spurious solu
of the normal-mode equations with a vanishing excitat
energy. With the field operator from Eq.~27! substituted into
K̂ and terms throughO(ŵ2) retained,K̂ can be diagonalized
with the canonical transformation@7,15#

ŵ~x!5(
l

ul~x!b̂l1vl* ~x!b̂l
† .

The b̂l (b̂l
†) are interpreted as annihilation~creation! opera-

tors for quasiparticles. DiagonalizingK̂ in this approxima-
tion is thus equivalent to transforming to a system of no
interacting quasiparticles@see Eq. ~24!#. K̂ can only be
diagonalized, however, provided the condensate wave fu
tion f0(x) satisfies the self-consistent equation

FH0~x!1N0E d3x8f0* ~x8!V~x2x8!f0~x8!Gf0~x!

5mf0~x!. ~28!

This condition eliminates terms linear inŵ(x) from K̂ and is
known as the nonlinear Schro¨dinger equation or the
Ginzburg-Pitaevskii-Gross equation@20#. Given the interpre-
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tation of ŵ(x), it is evident that this condition builds single
particle excitations into the condensate wave function in
sically the same way as the Hartree-Fock condition bu
them into the Hartree-Fock ground state. It is thus
equivalent of the Hartree-Fock equation, Eq.~7!, obtained in
Sec. II B. Further, just as the RPA included only single a
double excitations, keeping terms throughO(ŵ2) in K̂ al-
lows only single and double excitations of the condens
wave function.

The grand canonical Hamiltonian takes the simple for

K̂5E02mN02(
l

\VlE d3xvl* ~x!vl~x!1(
l

\Vlb̂l
†b̂l

~29!

providedul(x) andvl(x) satisfy the normal-mode equation

FH0~x!2m1N0E d3x8f0* ~x8!V~x2x8!f0~x8!Gul~x!

1N0E d3x8f0* ~x8!V~x2x8!ul~x8!f0~x!

1N0E d3x8f0~x8!V~x2x8!vl~x8!f0~x!

5\Vlul~x!, ~30!

FH0~x!2m1N0E d3x8f0* ~x8!V~x2x8!f0~x8!Gvl~x!

1N0E d3x8f0~x8!V~x2x8!vl~x8!f0* ~x!

1N0E d3x8f0* ~x8!V~x2x8!ul~x8!f0* ~x!

52\Vlvl~x!. ~31!

In these equations,\Vl is the excitation energy, and th
solutionsul(x) andvl(x) are normalized as

E d3xul8
* ~x!ul~x!2vl8

* ~x!vl~x!5dl8l .

In order to relate the Bogoliubov normal-mode equatio
to the RPA equations, I expandul(x) andvl(x) on the set of
single-particle states which satisfy the equation

H0~x!f i~x!1
N0

2 F E d3x8f0* ~x8!V~x2x8!f0~x8!f i~x!

1E d3x8f0* ~x8!V~x2x8!f i~x8!f0~x!G5e if i~x!,

wheree05m. Note that this equation is chosen in analogy
the Hartree-Fock equation rather than derived within the
goliubov approximation. However, this basis is physica
sensible as it includes the mean-field effects of the cond
sate. Using such a basis to solve the normal-mode equa
would most likely require fewer — possibly far fewer —
-
s
e

d

te

s

-

n-
ns

states than would be needed iful(x) and vl(x) were ex-
panded in terms of a harmonic oscillator basis. Writing t
expansions as

ul~x!5 (
pÞ0

Ulpfp~x!,

vl~x!5 (
pÞ0

Vlpfp~x!

and assuming thef i(x) to be real, I have

N0

2 (
pÞ0

@Ulp^q0uV̄up0&1Vlp^qpuV̄u00&#1~eq2m!Ulq

5\VlUlq ,

N0

2 (
pÞ0

@Ulp^qpuV̄u00&1Vlp^q0uV̄up0&#1~eq2m!Vlq

52\VlVlq . ~32!

These equations are very similar to the RPA equations;
only difference in form is the presence ofN0 rather than
N21. For largeN and low-lying excitations, this difference
is negligible considering the orderN21 errors already intro-
duced at various points in each approximation. Howev
there is also a more subtle difference. Where the Hartr
Fock single-particle basis functions strictly conserve parti
number, the single-particle basis functions to which the
bels refer in Eq.~32! have built into them the orderN21

error present in the nonlinear Schro¨dinger equation, Eq.~28!.
The most significant difference, then, between the Bogo
bov approximation and the RPA is the exclusion of terms
orderN21 from the self-consistent ground state in the Bog
liubov approximation and the consequent loss of parti
number conservation. In the RPA, both the quasiboson
the exact~within the RPA! ground state conserve partic
number.

The shift in the ground-state energy from Eq.~29! when
written in the $f i(x)% representation has the same form
Eq. ~25!,

(
l

\VlE d3xvl* ~x!vl~x!5(
l

\Vl (
pÞ0

uVlpu2. ~33!

The spurious mode of Lewenstein and You@9# leads to an
additional shift of the ground state. Since this shift resu
from particle nonconservation in the condensate wave fu
tion, the total shift of the ground-state energy — Eq.~33!
plus the spurious mode shift — should be equal to the R
ground-state energy shift Eq.~25! since the number of par
ticles is strictly conserved in the Hartree-Fock ground st
giving no spurious mode solution to the RPA equatio
With Eq. ~33! substituted, the grand canonical Hamiltonia
Eq. ~29! looks very much like the RPA effective Hamil
tonian Eq.~24!. In the RPA effective Hamiltonian there is, o
course, no chemical potential term, and the RPA equiva
of the quasiparticle operatorsb̂ are theÔ operators in Eq.
~23!.
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E. Configuration interaction

A connection to standard atomic-structure methods can
made by applying configuration interaction~CI! @17# to the
system of bosons. The term configuration in this cont
means a given set of occupation numbers$ni% corresponding
to the set of single-particle orbitals$c i(x)% defined in Sec.
II B. Configuration interaction, then, is the variational a
proach in which the trial wave function is expanded on
complete basis of many-body wave functions — or config
rations — including the condensate and singly to multip
excited configurations. Since this is a complete many-b
basis, the exact, time-independent, many-body energy ei
states can in principle be calculated. In practice, of cou
one must limit the expansion to a finite number of ba
functions.

Explicitly, I assume a trial wave function of the form

uC&5a0uN,0, . . .&1 (
pÞ0

apuN21,0, . . . ,0,1p,0, . . .&

1 (
p,p8Þ0

bpp8uN22,0, . . . ,0,1p,0, . . . ,0,1p8,0, . . .&

1•••, ~34!

where the notation 1p indicates that thepth Hartree-Fock
orbital is occupied by one boson. This trial function includ
the same basis functions as Eq.~4!, the trial function used to
derive the Hartree-Fock equation, but it is not constrained
be a product form. Specifically, the coefficients for multip
excitations do not factor into products as they did in Eq.~4!.
This wave function is thus the most general completely sy
metric wave function as opposed to the most general c
pletely symmetricproductwave function. Upon truncation
the variational principle for the total energy yields the mat
eigenvalue problem

HCn5EnCn ,

whereCn is the vector of expansion coefficients. Since n
ther the RPA nor the Bogoliubov equations are variatio
approximations, one cannot expect to ‘‘derive’’ them fro
CI. To obtain a similar approximation, however, it is on
necessary to include up to doubly excited configuratio
@that is, truncate the trial functionuC& to those terms explic-
itly written in Eq. ~34!#. It is possible to go beyond the RP
and the Bogoliubov approximation within the CI framewo
with the inclusion of triple and higher excitations. In fact, t
inclusion of all double excitation matrix elements, i.e., tho
that involve one- and two-particle excitations ofexcited
states as well as the ground state, improves upon both
RPA and the Bogoliubov approximations. This improveme
stems from the fact that CI is a variational approximati
based upon an expansion on a complete set of states, an
inclusion of higher and more varied excitations not includ
in the RPA or the Bogoliubov approximation must yield be
ter approximations to the exact energy eigenstates. Ph
cally, this improvement can be described as incorpora
correlations beyond both the RPA and the Bogoliubov
proximation.
e

t

-

y
n-
e,
s

s

to

-
-

-
l

s

e

he
t

the
d

si-
g
-

The Hamiltonian matrix in this truncated space can th
be partitioned into submatrices according to the states
are coupled: the ground stateG, singly excited statesS, or
doubly excited statesD. Explicitly,

H5S HGG HGS HGD

HSG HSS HSD

HDG HDS HDD

D .
For example, the submatrixHGS5HSG

T contains the coupling
between the ground state and singly excited states.
Hartree-Fock single-particle orbitals, all of the elements
this submatrix are identically zero by the Hartree-Fock co
dition, Eq. ~6!. The full CI matrix equation is then

S HGG 0 HGD

0 HSS HSD

HDG HDS HDD

D S aGaS
bD
D

n

5EnS aGaS
bD
D

n

, ~35!

with En the total energy of thenth state. In order to connec
this set of equations as closely as possible to the RPA
Bogoliubov equations, recall that in both the RPA and B
goliubov approaches only those matrix elements coup
single-particle excitations to single-particle excitations a
two-particle excitations to the ground state are retain
Keeping only these matrix elements in the CI matrix,
equivalently keeping terms proportional toN2 andN while
neglecting terms proportional toAN and 1 results in setting
HSD andHDS to zero and approximatingHDD by HDD8 . The
RPA-like approximation to CI reads

S HGG 0 HGD

0 HSS 0

HDS 0 HDD8
D S aG

aS

bD
D

n

5EnS aG

aS

bD
D

n

. ~36!

In this approximation, single excitations are decoupled fr
double excitations as well as from the ground state. Beca
the submatrices decouple, I can permute the rows and
umns to bringH to block diagonal form and diagonaliz
within the subspace of single-particle excitations separa
to find the low-lying excited state energies,

HSSaS
n5EnaS

n . ~37!

Diagonalizing the remainder of the matrix gives correctio
to the ground state and higher-lying excited states.HSS can
be evaluated explicitly:

~HSS!qp5E0
HFdqp1Bqp ,

with Bqp from Eq. ~15!. Substituted in Eq.~37!, this gives
after rearranging

BaS
n5\vn

TDAaS
n .

This is a special case of the RPA equations withYqn set to
zero andXqn replaced byaS

n . It is, in fact, the Tamm-
Dancoff approximation~TDA! @15,18,19# which, unlike the
RPA, is variational~with the constraint that the ground sta
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is the Hartree-Fock ground state!. This is readily understood
since it is just a more severely truncated (bpp850! CI expan-
sion.

So, while I have evaluated the CI Hamiltonian in Eq.~36!
to the same order inN as the RPA, the RPA-like CI spectrum
is presumably less accurate than the RPA spectrum sinc
coupling between single and double excitations is neglec
However, with the further modificationsa0→1 and
bpp8→apap8, the CI equation~36! becomes qualitatively
more like the RPA equations: the submatrixHGG drops out;
HGD , HSS, andHDG become coupled; andHDD is neglected
as it is then of orderap

4 ~in other words, it includes terms like
two-particle excitations of excited states which are neglec
in the RPA!. This approach does@18,19#, in fact, lead to a se
of equations much like the RPA equations, Eq.~16!. These
are usually derived in the context of stability analysis for t
Hartree-Fock ground state. This interpretation comes fr
the fact that the equations describe the quadratic behavio
the multidimensional energy surface in ‘‘ap space’’ near a
minimum. The surface is quadratic in this approximation b
cause the highest excitations allowed are two-particle exc
tions of the ground state which are proportional toap

2 @see
Eq. ~4!#. The condition for locating the minimum in thi
space is just the Hartree-Fock condition itself. However,
minimum thus found is almost certainly not a global min
mum ~except in the unlikely event that the Hartree-Fock s
lution is the exact solution!, but rather a constrained min
mum. Thus negative eigenvalues of these equati
correspond to a negative curvature of the energy surface
equivalently, an unstable equilibrium. The Hartree-Fock
lution in this case is only an extremum in the energy, no
minimum, and so does not describe the ground state of
system.

III. NUMERICAL METHOD

For an arbitrary interparticle potential, it is necessary
solve the Hartree-Fock and RPA equations numerically
turn now to a numerical method for solving these equatio
Consider a system of atoms trapped by a cylindrically sy
metric harmonic potential; this is the applicable symme
for the traps at JILA@1,4#, at Rice @2#, and at MIT @3,5#.
Since I am interested in the ground state and in low-ly
excited states for which the de Broglie wavelengths are m
larger than the range of the interparticle potentialV(x2x8), I
assume that it can be approximated as

V~x2x8!5
4p\2asc

M
d~x2x8!, ~38!

with asc thes-wave scattering length andM the atomic mass
In the language of many-body perturbation theory, using
true scattering lengthasc rather than the Born approximatio
to the scattering length,

aB5
M

4p\2E d3xV~x!,

is effectively the same as summing the ladder diagra
which can, in turn, be thought of as summing the Born se
for the scattering amplitude. In order to account for tw
the
d.
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body collision energies different from zero, I could use f
the interparticle interaction the configuration space scatte
T matrix instead of ad function @18#. However, the energy
dependence of theT matrix over the energy range of impo
tance should be negligible. Physically, replacingaB by asc
accounts for multiple interactions between two particles a
is critical in cases where the interaction potential has
strongly repulsive core@15,25#. I have also assumed that th
average interparticle spacing is much larger thanasc so that
the effects of other particles can be neglected in obtaining
effective two-body interaction. This assumption is typica
stated asnasc

3 !1 wheren is a characteristic number densi
in the trap. The use of Eq.~38! has also been justified from
the viewpoint that it is the first term of a pseudopotent
expansion@18,26# which is constructed so as to reprodu
the low-energys-wave scattering phase shift.

With a d-function interaction and a harmonic trappin
potential, the Hartree-Fock equation, Eq.~7!, simplifies to

F2
\2

2M
¹21

1

2
M ~vr

2r21vz
2z2!

1
4p\2asc

M
~N21!uc0~r,f,z!u2Gc i~r,f,z!

5« ic i~r,f,z!. ~39!

I assume that the single-particle orbitals have the same s
metries as the trapping potential. Specifically, I take them
be eigenstates ofLz andPz which are the projection of or-
bital angular momentum on thez axis and the parity with
respect to thexy plane, respectively. Each single-partic
orbital is thus labeled by an energy quantum numbern and
the quantum numbersm andpz for Lz andPz , respectively.
These symmetry considerations lead to the following cho
for c i(x):

c i~r,f,z!5b23/2xnumu
pz ~j,h!

eimf

A2p
.

In this expression,b is the length scale for a harmonic o
cillator of frequencyv,

b5A \

Mv
.

The scaled coordinatesj andh are related to the physica
coordinates by

r5bj and z5bh.

The specific form ofc i(x) is chosen so that

E jdjE dhux i~j,h!u251

gives

E rdrE dzE dfuc i~r,z,f!u251.
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The rescaled Hartree-Fock equation forx i(j,h) now
reads

F2
1

2j

]

]j S j
]

]j D2
1

2

]2

]h2 1
m2

2j2
1
1

2
~vj

2j21vh
2h2!

12aux0~j,h!u2Gx i~j,h!5 «̃ ix i~j,h!, ~40!

where the dimensionless trap freqencies arevj5vr /v,
vh5vz /v, the scaled single-particle energy is«̃ i5« i /\v,
and the dimensionless nonlinear parameter that characte
the interaction strength is

a5~N21!
asc
b
.

From Eq.~40! one can show that all energies withm.0 are
doubly degenerate. For the ground state, Eq.~40! is a self-
consistent equation which I solve iteratively@17# using two-
dimensional~2D! finite elements@27#. That is, I solve Eq.
~40! using a guess for the mean-field contribution to the
tential and iterate until the energy has converged to wit
some tolerance. In the present case, I require the rela
tolerance from one iteration to the next to be no more th
1028. The guess for thei th iteration is given by

x0
i ~j,h!5~12g!x0

i22~j,h!1gx0
i21~j,h!,

with 0.05<g<0.5. This iteration can stall for a few to sev
eral steps without converging further, or can fail altogeth
to converge forg too large. This difficulty is overcome by
making an adaptive reduction ofg as the solution is iterated
For small values of the nonlinear parametera, I use the
harmonic oscillator ground state as the initial guess and
gin the iteration with larger values ofg, while for large
values ofa I use the Thomas-Fermi solution@28# and begin
with smaller values ofg. One advantage of the iterative a
proach over other techniques of solving the self-consis
equation@7,21# is that the solution for a givena is obtained
directly without the need to renormalize. Having obtain
the self-consistent ground state, it becomes straightforw
to solve for the excited orbitals, since the equation is the
linear Schro¨dinger equation with a static potential compris
of the trapping potential plus the mean-field contribution
the condensate. The resulting set of single-particle orbi
thus forms a complete, orthonormal basis.

Now that a set of single-particle orbitals has been de
mined, I can set up and solve the RPA equations. To do t
I first need the interaction matrix elements. As in Eq.~39!,
for d-function interactions the direct and exchange contri
tions to the potential matrix elements are indentical. In ot
words,^q0uVup0&5^q0uVu0p&. With p[$n,m,pz%,

^p80uVup0&5
2\2asc
Mb3 Vp80,p0 ,

with the dimensionless matrix element defined by

Vp80,p05dm,m8dpz ,pz8
Vp8p , ~41!

where
zes

-
n
ve
n

r
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r-
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-
r

Vp8p5E jdjE dhx
n8umu
pz ~j,h!ux00

1 ~j,h!u2xnumu
pz ~j,h!.

In the same notation,

Vp8p,005dm,2m8dpz ,pz8
Vp8p . ~42!

The only difference between the matrix elements in Eqs.~41!
and ~42! — the d function inm — arises physically from
conservation of totalLz . Thus only states with the same tot
projectionML are coupled. The parityd function is also
readily understood since both matrix elements are integra
over allz and containx0

2, which is an even function ofz. The
RPA equations then reduce to

S B̃ C̃

C̃ B̃
D S XYD 5ṽS I 0

0 2I D S XYD , ~43!

whereṽn /v is the rescaled excitation frequency and

B̃qp52aVq0,p01ṽq0dqp ,

C̃qp52aVqp,00

are the rescaled matrices from Eq.~15!.
Thed functions in the expressions for the integrals redu

the computational burden of solving the RPA equations s
nificantly. Specifically, the RPA equations can be diagon
ized separately for eachpz and umu. Moreover, the structure
of the RPA matrix yields automatically that all excitatio
energies for each positivem are degenerate with the excita
tion energies for2m.

IV. RESULTS AND DISCUSSION

I have solved the Hartree-Fock and RPA equations
parameters appropriate to the JILA experiment,nr5
nz /A85133 Hz@1,4# andasc5110 a.u.@29#. Note that in all
of my numerical calculations I choose the frequency scalv
to bevr . I show in Fig. 1 the Hartree-Fock energies for t
ground state as a function of the numberN of trapped atoms.
In Fig. 1~a!, I plot the total Hartree-Fock ground-state ener

FIG. 1. For 87Rb atoms and the JILA TOP trap parameters, t
~a! total Hartree-Fock ground-state energyE0

HF and ~b! Hartree-
Fock ground-state orbital energy«0 as a function of particle numbe
scaled by the frequencyv5vr .
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E0
HF from Eq.~8!; and in Fig. 1~b!, the Hartree-Fock ground

state orbital energy«0. TheN dependence of the two is quit
different as is, of course, their physical interpretation. T
total energy in Fig. 1~a! sets the absolute scale for the ex
tation spectrum while the orbital energy is the energy nec
sary to remove one atom completely from the condens
For N55000, I have also calculated the RPA shift in t
ground-state energyDE05uE0

RPA2E0
HFu to be 162.10\v.

This lowers the Hartree-Fock ground-state energy
33 492\v by only 0.5% which is a good indication that th
quasiboson approximation, replacing the RPA ground s
by the Hartree-Fock ground state, is valid.

From the expression for the RPA ground-state energy,
~25!, the excitation spectrum and transformation coefficie
for all m andpz must in principle be calculated in order t
evaluate the ground-state energy shift. To approxima
compute the energy shift, however, I solved the RPA eq
tions form<10 and bothz parities, constructed the scale
sum

DẼ0
mpz5(

n
ṽnuYmpzn

u2,

and extrapolatedDẼ0
mpz to m→` using the empirical ex-

pression

DẼ0
mpz5 ẽpz

e2dpz
m.

This form fit the calculated points quite well over an order
magnitude decrease inDẼ0

mpz betweenm50 andm510 for
both parities. Including the degeneracy inm, the full ground-
state shift is then

DẼ05(
pz

S DẼ0
0pz12(

m51

10

DẼ0
mpz12ẽpz (m511

`

e2dpz
mD .

The last sum overm involves a geometric series and is th
easily evaluated. I find that when summed over both pari
it contributes approximately 14% to the total energy shift
follows that the errors introduced through the empirical
will lead to only small errors in the total energy shift.

To solve the RPA equations, it is only necessary to
clude a small number of Hartree-Fock single-particle orbit
in order to obtain few percent accuracies in the low-lyi
excitation energies. For example, withN55000 atoms and
m50, a basis set of ten Hartree-Fock orbitals gives the lo
est excitation energy to an accuracy of 0.7% compared to
converged result. In Table I, I show the convergence beh
ior for the lowest five excitation energies forN55000 and
m50. When 60 orbitals are used, for instance, the low
excitation energy is converged to six significant figures. F
comparison, I can estimate the number of harmonic oscilla
states necessary to obtain the same convergence by ex
ing the highest-energy Hartree-Fock orbital in terms of h
monic oscillator states. Restricting the harmonic oscilla
expansion using bothm andpz , i.e., including onlynx5ny
and evennz , I find that it takes approximately 80 oscillato
states to represent the 60th Hartree-Fock orbital. I sho
point out, however, that the comparison form50 is the most
favorable to the oscillator expansion since nonzerom will
e

s-
e.

f

te
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s
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f

s
t
t

-
s

-
he
v-

st
r
or
nd-
-
r

ld

require about twice as many oscillator states as form50. In
addition, as the nonlinear parametera increases, the number
of oscillator states needed to achieve a given level of co
vergence increases whereas the number of Hartree-Fock
bitals remains essentially constant.

In order to better understand whether excited-state a
ground-state correlations make significant contributions
the excitation spectrum, I have calculated the spectrum
three of the approximations discussed above: the Hartr
Fock approximation, the Tamm-Dancoff approximation, an
the random-phase approximation. The Hartree-Fock appro
mation includes no correlation beyond those implied b
identical particle statistics. All of the Hartree-Fock many
body states are thus simply symmetrized product states
single configurations. The TDA is based upon an expans
on Hartree-Fock single-particle orbitals and allows correl
tions only among the singly excited Hartree-Fock states.
other words, the TDA excited states are linear combinatio
of the Hartree-Fock singly excited states. The ground state
the TDA, however, is just the Hartree-Fock ground sta
The RPA improves upon TDA by allowing correlations in
the ground state as well as the excited states. So, in the R
both the ground state and the excited states will be line
combinations of the Hartree-Fock ground and excited stat

I show in Figs. 2–4 the results of these calculations f
both z parities andm50, 1, and 2. I expect that the RPA
spectrum should be the most accurate of the three appro
mations as it includes the most correlation among t
Hartree-Fock states. Given this expectation, one sees fr
Figs. 2~a!–2~c! that the Hartree-Fock excitation spectrum
@calculated from\vn

HF5Ep
HF2E0

HF and Eq.~10!# is in rea-

TABLE I. The convergence of the RPA spectrum with respe
to the size of the Hartree-Fock single-particle orbital basis f
N5500087Rb atoms and the JILA trap parameters. The frequenc
ṽn are the scaled frequenciesvn /v.

Nbasis ṽ1 ṽ2 ṽ3 ṽ4 ṽ5

10 1.87193 3.29129 4.77010 5.50449 6.21153
20 1.86003 3.26675 4.71695 5.15355 5.98377
40 1.85963 3.26573 4.71530 5.14483 5.97368
60 1.85958 3.26562 4.71512 5.14438 5.97331
80 1.85958 3.26562 4.71510 5.14432 5.97322

FIG. 2. The lowest frequencies of the Hartree-Fock approxim
tion to the excitation spectrum for87Rb atoms in the JILA TOP trap
scaled by the frequencyv5vr . ~a! m50, ~b! m51, and ~c!
m52. In each graph solid lines are evenz parity and dashed lines
are oddz parity.
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sonable agreement with the RPA energies only for t
higher-lying states forN less than a few hundred to a thou
sand. This agreement suggests that the excitation is
equately described by the simple picture of a single partic
being excited out of the ground state to a higher-lyin
Hartree-Fock state. Arguing on the basis of the nodal stru
ture of the single-particle orbitals and Eq.~10!, the agree-
ment for higher-lying excitations and oddz parity seems
reasonable since the mean field due to the condensate
less overlap with higher-lying excited states which have
increasing number of nodes in the region of the mean fie
Since the difference in Hartree-Fock single-particle orbit
energies,«p2«0, decreases asN increases due to the flatten
ing and widening of the bottom of the harmonic trappin
potential by the mean field, the overlap of the single-partic
orbital and the mean field must be responsible for the
crease in the Hartree-Fock excitation energies with incre
ing N @see Eq.~10!#. By a similar argument, oddz-parity
states will have less overlap with the condensate mean fi
than evenz-parity states with a similar energy since the
have a node atz50 rather than an antinode. This is also th
reason that the Hartree-Fock spectrum for oddz-parity states
is qualitatively closer to the RPA spectrum for largerN than
the evenz-parity states.

The TDA spectrum in Figs. 3~a!–3~c! is an improvement
on the Hartree-Fock spectrum although the close agreem
with the RPA spectrum is over essentially the same region

FIG. 3. The lowest frequencies of the Tamm-Dancoff approx
mation to the excitation spectrum for87Rb atoms in the JILA TOP
trap scaled by the frequencyv5vr . ~a! m50, ~b! m51, and~c!
m52. In each graph solid lines are evenz parity and dashed lines
are oddz parity.

FIG. 4. The lowest frequencies of the random-phase approxim
tion to the excitation spectrum for87Rb atoms in the JILA TOP trap
scaled by the frequencyv5vr . ~a! m50, ~b! m51, and ~c!
m52. In each graph, solid lines are evenz parity and dashed lines
are oddz parity. Also shown are the JILA experimental measure
ments.
e
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smallN. However, for largerN the TDA spectrum is quite a
large improvement over the Hartree-Fock spectrum. I c
clude that excited-state correlations are important, but
the ground-state correlations included in the RPA calculat
are essential for accurate excitation energies. In Figs. 4~a!–
4~c! I show the RPA excitation spectrum along with the e
perimental points from the recent JILA measurement@4#.
The agreement of the experimental points with the R
spectrum—and disagreement with the other two spectr
bears out the expectation that the RPA is the more accu
approximation. However, the agreement is not perfect a
show in Fig. 5. Further, as shown in Ref.@4#, the agreement
of the RPA spectrum with the excitation spectrum obtain
by Edwardset al. @6# from the Bogoliubov approximation is
quite good over the range ofN they computed.

V. SUMMARY

I have modified the Hartree-Fock, random-phase, a
configuration-interaction approximations for use with sy
tems of interacting bosons and have shown that they ca
treated accurately and efficiently within particle number co
serving approximations. In fact, I make approximatio
which are remarkably similar to those made in the stand
Bogoliubov approach and derive largely the same equat
while maintaining particle number conservation. I have a
shown that systems of interacting bosons can be treated
manner analogous to that used to describe the electr
states of atoms. This allows me to adapt the knowledge
intuition gained from the atomic-structure problem to und
stand the quantum mechanical states of interacting, trap
atoms.
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FIG. 5. Comparison of the lowestm50 ~solid line! andm52
~dashed line! random-phase-approximation excitation frequenc
with the JILA experimental measurements.
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