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Creation of a persistent quantum bit using error correction

Isaac L. Chuang and Y. Yamamoto
ERATO Quantum Fluctuation Project, Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305

~Received 26 April 1996!

The construction of large, coherent quantum systems necessary for quantum computation remains an en-
treating but elusive goal, due to the ubiquitous nature of decoherence. Recent progress in quantum error
correction schemes have given new hope to this field, but thus far, the codes presented in the literature assume
a restricted number of errors and error free encoding, decoding, and measurement. We investigate a specific
scenario without these assumptions; in particular, we evaluate a scheme to preserve a single quantum bit
against phase damping using a three-qubit encoding based on Shor, and study the effect of decoherence not
only during storage but also during processing. We derive an general upper limit on the allowable decoherence
per time step. Physically, our results suggest the feasibility of engineering artificial metastable states through
repeated error correction.@S1050-2947~97!08101-8#

PACS number~s!: 03.65.Bz, 42.50.Ar, 89.80.1h, 42.79.Ta
em
lo
d
nt
s
in
n
a
r-
s

de

t
v
to
p
t
f
om
io

n
l
ve
de
iti
e

o
f
a
in
ed
th
m

oher-

sed

n-
far
and
co-

er-
the
To
is of
rror

tly
of
e to
en
e
u-
the
ent
of
it
ge

lop-
tors
er-
and
r is
ical
aly-
de

ory
His-
I. INTRODUCTION

Technological progress has increasingly enabled us
fabricate and manipulate small quantum-mechanical syst
in which coherence is preserved. For example, the deve
ment of cold atom and ion traps, and coherent quantum
devices, has inspired the possibility that soon, impleme
tion of ‘‘designer’’ quantum systems may be feasible. The
will be useful for fundamental investigations of physics,
particular, by addressing open questions such as the tra
tion from quantum to classical behavior. They may also
low utilization of the superposition and nonlocality prope
ties of quantum mechanics for information processing, a
quantum cryptography@1# and computing@2#.

Quantum computation has recently attracted a great
of attention as a result of efficient algorithms@3#. This has
been accompanied by experimental results@4,5# which give
hopeful signs that it might indeed be possible in the future
rapidly factor large numbers using such machines. Howe
the present technology is still rather crude, and even fac
ing a number like 15 will be a tour de force. In an ion tra
model it would take on the order of 25 000 laser pulses
achieve this task, and this assumes a perfect operation o
computer. Although the best way not to have to recover fr
errors is to avoid them, it seems unlikely that computat
with so many laser pulses can be error free.

Classically, this problem is rectified by error correctio
schemes, but these techniques do not apply in genera
quantum bit ~qubit! errors, because they do not preser
quantum coherence; direct measurement of a qubit will
stroy its coherence. Furthermore, a quantum superpos
state is fundamentally difficult to maintain, due to unwant
environmental interactions which lead todecoherence@6#.
What is needed is some way to correct a qubit state with
ever completely measuring it. Fortunately, such schemes
quantum error correction have recently been developed,
they allow certain independent errors may be corrected. N
@7#, seven@8#, and five@9# qubit codes have been discover
which perfectly correct single qubit errors of any kind. Wi
these successes comes the hope that construction of s
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coherent, quantum systems may be possible despite dec
ence.

However, an important issue that remains to be addres
is the effect of errors which occurduring processingrequired
by the error correction scheme. All of the theoretical qua
tum error correction results presented in the literature so
assume perfect operation of the coding, measurement,
decoding circuits. As various studies of the effects of de
herence on quantum computers have shown@10–14#, this is
not a realistic assumption when the time scale for decoh
ence is comparable to the coding and decoding time of
circuit, as is the case in current experimental systems.
address this issue, here we present a systematic analys
the impact of imperfect processing on a model quantum e
correction system.

Specifically, we analyze a three-bit code which perfec
corrects for any single qubit error due to a specific kind
decoherence known as phase damping. We apply this cod
a system in which periodic correction is applied to length
the lifetime of an encoded qubit state artificially, which w
refer to as a ‘‘persistent qubit.’’ We perform numerical sim
lations which include the effects of decoherence during
logic operations, and calculate the fidelity of the persist
qubit a function of the decoherence per time step figure
merit l. Our results indicate the existence of an upper lim
lcrit , which must be achieved in order to gain any advanta
from error correction.

These results are made possible in part by the deve
ment of a mathematical model based on linear opera
which gives concise descriptions of the effects of decoh
ence. From this theory, we construct operators for phase
amplitude damping, and for noisy logic gates. This pape
thus organized as follows: Sec. II, we present our theoret
model of decoherence. These results are applied to an an
sis of the persistent qubit model in Sec. III. We conclu
with a discussion of experimental possibilities.

II. THEORY: AK MODEL OF DECOHERENCE

We begin by presenting an unusual mathematical the
for describing decoherence, based on linear operators.
114 © 1997 The American Physical Society
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55 115CREATION OF A PERSISTENT QUANTUM BIT USING . . .
torically, the linear operator formalism has received little
tention in the quantum optics and computation communi
@15–18#, but it is particularly well suited for manipulating
the finite Hilbert spaces of quantum bits. Furthermore, i
fundamentally equivalent to the usual density-matrix a
proach, but motivates an alternative interpretation based
the evolution of asingle wave function. We find concise
descriptions for decoherence operators of two kinds~phase
and amplitude damping!, and also introduce the notion of
noisy logic gate operator. The results are used to calcula
the fidelity of noisy rotation and controlled-NOT operators.

A. Decoherence–density matrices

Decoherence occurs due to unwanted interactions
tween our quantum system and its environment. These in
actions cause information to leak out of the system, and fl
tuations to enter it. Typically, this process is described
density matrices; for example, the pure state

uc&5au0&1bu1&, ~2.1!

written in the basis of energy eigenstates~which we shall use
as the ‘‘computational basis’’ later! has the density matrix

r in5F uau2 ab*

a* b ubu2 G , ~2.2!

where the diagonal elements give the probabilities of find
the system in the zero and 1 states, and the nonzero
diagonals connote the existence of some coherence. One
nature of loss of quantum coherence is decay of off-diago
elements,

rout5F uau2 ab* e2l

a* be2l ubu2 G . ~2.3!

For example, this process may occur when a single-pho
qubit is transmitted through a fiber whose length is random
modulated by acoustic waves, introducingphase damping—
the fluctuations cause uncertainty in the arrival time and t
destroy information in the variable conjugate to the amp
tude. The average effect after many phase kicks is a dam
process, whose net effect is a reduction in thefidelity F of
the received qubit,

F~c!5minc@^curoutuc&# ~2.4!

5mina,b@112uau2ubu2~e2l21!#
~2.5!

>
11e2l

2
'12

l

2
. ~2.6!

Note that~in the spirit of Schumacher@19#! we defineF as
the minimumvalue of the overlap between the initial an
final wave functions, because in general, a quantum c
puter may access all states in the Hilbert space ofuc&.

In general, decoherence may introduce effects other t
just decay of the off-diagonal terms. Relaxation proces
~otherwise known asamplitude damping! cause energy to be
lost from the system as well as phase information. The m
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general description is given by interacting the system u
tarily with some initial stateue& of the environment then
tracing over the environment to get the final state, i.e.,

rout5Trenv@U~r in^ ue&^eu!U†#. ~2.7!

Mathematically, we may introduce a complete set of sta
umk& for the environment,

(
k

umk&^mku5I , ~2.8!

such that we may express the final state of the system a

rout5(
k
Akr inAk

† , ~2.9!

whereAk are linear operators~not necessarily Hermitian! in
the Hilbert space of the system, given by

Ak5^mkuUue&. ~2.10!

Note that by unitarity ofU, we must have that(kAk
†Ak5I,

and, in this sense,Ak describes all possible processes whi
may happen to the system.

For example, the two operators

A05F1 0

0 e2lG , ~2.11!

A15F0 0

0 A12e22lG , ~2.12!

are often implicitly used in quantum optics to model t
effect of a nonreferred quantum-nondemolition measurem
of the photon number@20#. They give us

rout5(
k
AkF uau2 ab*

a* b ubu2 GAk
† ~2.13!

5F uau2 ab* e2l

a* be2l ubu2e22lG
1F0 0

0 ubu2~12e22l!
G ~2.14!

5F uau2 ab* e2l

a* be2l ubu2 G . ~2.15!

ThusA0 andA1 describe phase damping. At this point w
have simply pulled these expressions out of thin air; ho
ever, there is actually good physical motivation for the
choices—this is the subject of Sec. II B. Furthermore, it
interesting to note that this choice of operators is not uniq
there exist differentAk’s which also describe phase dampin
@mathematically, they correspond to a change of basis for
environment statesumk& in Eq. ~2.10!#. In addition, other
Ak’s may describe different forms of decoherence such
amplitude damping.
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116 55ISAAC L. CHUANG AND Y. YAMAMOTO
B. Single wave-function model

Although the description of decoherence using den
matrices, that is, Eq.~2.9!, is completely general, unfortu
nately some important information about the structure of
decoherence is hidden by the density-matrix formalism.
example, what is the minimum number of pure states wh
a mixturer can be decomposed into? In particular, the d
coherence process may turn an initially pure state into a m
ture. Mathematically, this occurs when we sum over ovek
to obtainrout, and, in this process, we discard informatio
about the way theAk as operators divide the Hilbert space
the final state into different partitions indexed byk.

This useful information can be preserved by withholdi
the sum overk performed in Eq.~2.9!, and keeping track of
the evolution of eachAkrAk

† separately. An equivalent tech
nique which simplifies the bookkeeping is thesingle-wave-
functionmodel, in which mixed states are written as dire
sums of pure states. For example, themixed state~denoted
by @•& to distinguish it from apure stateu•&)

@cout&5 %

k
ufk& ~2.16!

could result from a measurement ofuc in&, where
pk5^fkufk& is the probability of obtaining the observab
eigenstateufk&/Apk. Thus expectation values are defined

^cout#O@cout&5(
k

^fkuOufk&, ~2.17!

since the differentufk& ’s live in completely separate space
This equation defines the use of a tensor sum ‘‘% ’’ in Eq.
~2.16!, and indicates the essential property that compone
in a tensor sum do not interfere with each other. In t
language, Eq.~2.9! may be reexpressed as

@cout&5 %

k
Akuc in&, ~2.18!

because

rout5@cout&^cout#5(
k
Akuc in&^c inuAk

† . ~2.19!

For example, if we use theAk defined in Eqs.~2.11! and
~2.12!, we obtain, foruc in&5au0&1bu1&, the output mixed
state

@cout&5@au0&1be2lu1&] % @bA12e22lu1&] ~2.20!

Physically we may understand these two states as re
ing from an implicit ~‘‘nonreferred’’! indirect ~positive
operator-valued measure! measurement@20# of the system in
which the environment acts as a probe. It is implicit becau
in reality, no observer ever refers to the measurem
result—that is left unknown. In particular, the interactio
may be modeled as shown in Fig. 1, where the environm
is an interferometer containing one excitation, and cro
phase modulation via the Hamiltonian

HI5xa†aea
†ea , ~2.21!
y
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with our qubit~the system! for time t5(cos21e2l)/x causes
the interferometer to become partially unbalanced. The u
tary operator may be understood as transforming

u0&u01&→u0&u01&, ~2.22!

u1&u01&→e2lu1&u01&1A12e22lu1&u10&, ~2.23!

where the first label denotes the system, and the second
environment. An implicit measurement of the interferom
eter’s output occurs because the system leaves the env
ment behind—this measurement is equivalent to tracing o
the environment degrees of freedom. A measurement re
of u01& ~no unbalancing! corresponds to the first brackete
term in Eq.~2.20!, and a result ofu10& ~unbalanced! to the
second term. Note that the density matrix for Eq.~2.20! is
exactly the same as Eq.~2.15!, so that, for an ensemble o
states, the net effect is phase damping.

C. Phase damping operator

We shall now see how the single-wave-function model
decoherence can be useful. Suppose that before the env
ment is measured, a unitary transformU is performed as
shown in Fig. 2. In particular, let us choose the orthonorm
basis

um0&5Aau01&1A12au10&, ~2.24!

um1&5A12au01&2Aau10&, ~2.25!

where a5(11e2l)/2, such that the unitary transform o
Eqs.~2.22! and ~2.23! becomes

u0&ue&→Aau0&um0&1A12au0&um1&, ~2.26!

u1&ue&→Aau1&um0&2A12au1&um1&, ~2.27!

and

ue&5Aaum0&1A12aum1& ~2.28!

FIG. 1. Physical model of interaction with environment leadi
to phase damping. The two 50/50 beamsplitters are inverses of
other. The meters indicate an implicit measurement of the state

FIG. 2. Implicit measurement of the environment performed i
different basis.
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55 117CREATION OF A PERSISTENT QUANTUM BIT USING . . .
is the initial state of the environment. The two possible m
surement results now becomeum0& andum1&, so that the final
state of the system may be written as

@cout&5Aa@au0&1bu1&] %A12a@au0&2bu1&],
~2.29!

where the two terms result from obtainingum0& and um1&,
respectively. Sinceucout&^coutu gives the same density matri
as in Eq.~2.15!, this process is also a statistically valid sing
wave-function description of phase damping.

Of course, in real distributed decoherence processes
volving many modes of the environment, there will be
basis rotationU or implicit measurement ofum0& or um1&.
Rather, the point is that Eqs.~2.26! and ~2.27! give an
equivalent modelwhich can be used to describe all pha
damping processes occurring to a single qubit. Because
perimental observations of quantum systems are always
chastic, there is no observational difference between
model and any other model of phase damping. Howeve
simple model which distills the essence of the process ca
a powerful tool for understanding the physics. In particul
the value of this model is the elegance of the following ma
ematical conclusion:in the single-wave-function picture, w
may say that phase damping either leaves the bit alone
causes the phase of the bit to be flipped. We shall see in Sec
III A how this helps in devising a scheme for correcting e
rors due to decoherence.

D. Decoherence ofN qubits

We now show how simple operators can be construc
which describe the effect of phase damping on a set oN
qubits. The essential idea is that by assuming that the e
ronment acts independently on each qubit, we may fin
product form for the phase damping operatorAk . First, note
that the unitary transform which entangles a single qubit
the environment given in Eqs.~2.26! and ~2.27! can be re-
written using a different basis for the qubit. Suppose
choose the one-particle ‘‘Bell basis’’ states

u1&5
u0&1u1&

A2
, ~2.30!

u2&5
u0&2u1&

A2
, ~2.31!

then we have that

u1&ue&→Aau1&um0&1A12au2&um1&, ~2.32!

u2&ue&→Aau2&um0&1A12au1&um1&, ~2.33!

so that an initial state

uc in8 &5au1&1bu2& ~2.34!

decoheres into the final mixed state

@cout8 &5Aa@au1&1bu2&] %A12a@au2&1bu1&],
~2.35!
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such that we may say phase damping causes bit flip er
when the Bell basis is used as the representation~or ‘‘com-
putational’’! basis for a qubit. Note that the probability th
the single bit is flipped is 12a. In terms of Eq.~2.18!, the
projection operators are

A0
pd5AaF1 0

0 1G , ~2.36!

A1
pd5A12aF0 1

1 0G . ~2.37!

A1
pd is proportional to the Pauli matrixsx , which performs a

spin flip ~in the $u0&, u1&% basis we would havesz instead!.
From this viewpoint, the bit-flip interpretation of phas
damping is manifestly clear.

Let us extend this analysis to a system of two qubitsa
andb) interacting with independent reservoirs (ea andeb).
For example, the interaction Hamiltonian could be written
spin notation as

HI2
5

x

2
~12sz

a!sy
ea1

x

2
~12sz

b!sy
eb, ~2.38!

using Pauli matrices@when a has spin-down~-up!, then
(12sz

a)/2 evaluates to zero~1!#. Because only a single ex
citation is contained in the interferometer of Fig. 1, we m
model phase damping as acontrolled rotationof one envi-
ronmental mode by each qubit.

Unitary evolution via

U5expF i cos21~2a21!

x
HI2G ~2.39!

entangles the qubits with the environment, and tracing
the environment in theum i& basis gives the projection opera
tors, calculated from Eq.~2.10!:

Ã05a~ I ^ I !, ~2.40!

Ã15Aa~12a!~ I ^ sx!, ~2.41!

Ã25Aa~12a!~sx^ I !, ~2.42!

Ã35~12a!~sx^ sx!, ~2.43!

where the two operators on either side of^ act ona and
b, respectively. Generalizing from this, it may be shown th
the projection operators for phase damping ofN qubits is

Ãk5AaN2h~k!~12a!h~k!
^

n50

N21

~sx!
h~2n`k!, ~2.44!

whereh(k) is the number of 1’s in the binary bit-string form
of k ~i.e., the Hamming weight!, and` is the boolean and
operator.k ranges from 0 to 2N21. The effect of the expo-
nent h(2n`k) is to select eitherI or sx for the nth qubit
based on whether thenth bit in k is zero or 1. The
aN2h(k)(12a)h(k) prefactor gives the probability of eac
projection, from which it is evident that multiple bit flips ar
less likely than few flips. From this calculation, we conclu
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118 55ISAAC L. CHUANG AND Y. YAMAMOTO
that,with no approximation, the effect of phase damping o
a set ofN qubits can be described by projections intoN

possible states in which different bits are flipped, and
probability of havingm bits flipped is

Prob~m!5S NmDaN2m~12a!m. ~2.45!

Note that(m50
N Prob(m)51, as expected. Furthermore, th

mixed state resulting from phase damping of any stateuc&
can be immediately calculated using the above result; leb
denote the bit string formed byN qubits, i.e.,
ub&5ubN21•••b1b0&. If the input state is

uc in&5(
b

cbub&, ~2.46!

then the mixture resulting from phase damping is

@cout&5 %

k
Ãkuc in& ~2.47!

5 %

k

AaN2h~k!~12a!h~k!(
b

cbub XOR k&, ~2.48!

whereb XOR k denotes the binary exclusive-or of the tw
bit strings. This demonstrates explicitly that the effect
phase damping onN qubits is the creation of a mixed sta
which may be described as a direct sum of states in wh
bits are flipped according to a Bernoulli process with pro
ability 12a. This result provides us with an efficient com
putational tool for calculating the effects of decoherence o
register ofN qubits, and will be useful in analyzing an im
perfect quantum memory in Sec. III C.

E. Amplitude damping

Physically, the effect of phase damping may be und
stood to be an analog of the ‘‘T2’’ spin depolarization effects
observed in nuclear-magnetic-resonance spectroscopy
course, one must be careful to distinguish ensemble ti
scales from what we are interested in here, the dephasin
a single spin or two spins relative to each other~so that, more
precisely, only theT2* component ofT2 reflects a fundamen
tally decoherence process relevant to quantum computi!.
The analog of ‘‘T1’’ spin-lattice effects, in which energy is
lost from a single spin to the environment, isamplitude
damping. This also describes relaxation processes such
spontaneous emission.

A simple operator description of the amplitude dampi
of a single qubit may also be derived, just as was done ab
for phase damping. The effect of energy loss to the envir
ment ~relaxation! is usually described by a master equati
@21# which, in the Born-Markov approximation, results in th
density-matrix evolution

F a b

b* cG→Fe2g0a1~12e2g1!c be2~g01g1!/2

b* e2~g01g1!/2 ~12e2g0!a1e2g1cG
~2.49!
e
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for a single qubit. Equivalently, we may write that

u0&u01&→A12pu0&u01&1Apu1&u00&, ~2.50!

u1&u01&→A12qu1&u01&1Aqu0&u11&, ~2.51!

wherep512e2g0 andq512e2g1 are the probabilities of
upward and downward transitions, respectively. Hereu01& is
a convenient choice for the initial state of the environme
Wheng050 we have the usual case of damping to a res
voir at T50, which describes, for example, the scattering
photons out of a single mode fiber. For nonzerog0 andg1,
we have the stationary state

1

p1q Fq 0

0 pG , ~2.52!

which describes the system after it has come into equilibri
with a reservoir at temperature

kBT5
DE

ln
q

p

, ~2.53!

assuming a Boltzmann distribution of energies, and an
ergy difference between theu1& and u0& states ofDE. From
Eqs. ~2.50! and ~2.51!, we may immediately read off the
amplitude damping operators

A00
ad5Apu1&^0u, ~2.54!

A01
ad5A12pu0&^0u1A12qu1&^1u, ~2.55!

A11
ad5Aqu0&^1u. ~2.56!

These may be verified immediately by noting th
(kAk

adrAk
ad† gives the same result as Eq.~2.49!. Thus, in

general, amplitude damping of an initially pure state qu
will result in a mixed state composed of three pure sta
described by the threeAk

ad operators above. In fact, at lea
threeAk operators are needed to describe the process of
~2.49!.

An interesting analogy can be made between the ph
damping and amplitude damping cases in the following ca
Consider the amplitude damping to a reservoir atT50 of the
state

uc&5au01&1bu10&. ~2.57!

This describes the two-mode output of an optical beamsp
ter of angle tan21(a/b) with a single photon incident into
one input port and vacuum into the other. Equal amplitu
damping ofboth the output modes byg results in the mixed-
state output

@cout&5e2g@au01&1bu10&] % ~A12e22g!u00&. ~2.58!

Physically, this occurs because only one photon ever ex
if it is lost, the final state must be the vacuum. Otherwi
because of the balanced arrangement of the loss, the in
state is left unchanged. We may also describe this by
transformations
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u01&u00&→Ae2gu01&u00&1A12e2gu00&u01& ~2.59!

u10&u00&→Ae2gu10&u00&1A12e2gu00&u10&. ~2.60!

Notice that theu01& and u10& final states of the environmen
leave the system in the same stateu00& with the same prob-
ability amplitude. This equivalence means thatA015A10, so
they may be combined. LettingA05A00 andA15A10, we
find that the damping of thedual-rail qubit state@22# of Eq.
~2.57! may be described by the twoAk operators

A0
dr5Ae2gI , ~2.61!

A1
dr5A12e2g@ u00&^01u1u00&^10u#. ~2.62!

This result is the basis for an optical quantum bit regene
tion scheme@23#, which uses a kind of quantum nondemo
tion measurement to detect the jump into the vacuum s
described byA1.

Comparing Eqs.~2.61! and ~2.62! with the operator de-
scription of the phase damping of a single qubit, Eqs.~2.36!
and ~2.37!, we find an interesting similarity: in both case
one of the operators is proportional to the identity. Thus
may interpret the decoherence process for these case
sometimescompletely leaving the wave function unchang.
However, such a conclusion does not seem possible for
amplitude damping of asinglequbit—no linear combination
of Eqs. ~2.54!–~2.56! give the identity operator. In othe
words, noBk’s exist which are linear combinations ofAk

ad,
such that we may use Eq.~2.9! and have one of theBk
operators be proportional to the identity. This suggests th
more complex circuit may be required for correction of e
rors due to amplitude damping, as compared to those du
phase damping. This is physically reasonable, because
amplitude damping process affects thediagonalterms of the
density matrix as well as the off-diagonals; it is a combin
tion of the effects of ‘‘pure’’ dephasing and relaxation.
this sense, it is harder to retrieve from the environment
formation required to reconstruct a state damaged by am
tude damping than by phase damping.

F. Noisy logic gate operators

So far, we have constructed a mathematical descriptio
the decoherence of ‘‘idle’’ qubits—other than the coupli
to the environment, each qubit is assumed to be interac
with nothing. Of great concern is what happens when de
herence occurs duringconditional dynamics@24#, that is,
while two or more qubits are interacting. With what pro
ability will the correct result be obtained? Will the impact
these errors be more significant than ‘‘memory’’ errors?

Using a theory of continuous measurement, Pellizz
et al. @14# performed simulations to address this issue fo
ion-trap quantum computer. They calculated the fidelity o
controlled-NOT ~CN! gate with simultaneous spontaneo
emission~amplitude damping! and cavity decay. Here we
present an alternative approach which uses the linear op
tor and single-wave-function theory described above.
constructnoisy logic operatorswhich describe the operatio
of imperfect quantum logic gates, and use these to eval
the fidelity of the rotation and CN gates.
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The effect of simultaneous decoherence and logic may
modeled by introducing additional interactions with extra q
bits which model the environment. In general the true Ham
tonian is

Hnoisy5gHlogic1l0Henv, ~2.63!

whereg andl0 are coupling constants for the logic intera
tion and decoherence, respectively. Conditional dynam
occurs due to unitary evolution according to

U5eiHnoisyt, ~2.64!

wheret is selected such that exp@igtHlogic# gives the desired
interaction. During this same time period, unwanted envir
mental interactions due toHenv cause the system to becom
entangled with the environment; this leads todecoherence,
because information from the system is left behind in
environment. The decoherence experienced during a si
time stept is l0 /g, which we define to be the paramet
l, known as thedecoherence per time stepfigure of merit
@25#.

Now, the coupling of the system to the environment
typically through many modes; in other words, the Ham
tonian takes the formHenv5(nqsysen . Because the environ
ment contains a large number of modes, no Jayn
Cummings type revival ever occurs~and information, once
lost to the environment, never spontaneously comes bac
the system!. However, we have shown in the previous se
tions how a single-mode environment can be used to mo
the effects of decoherence on a single qubit. Thus, we s
use anHenv similar to that employed in Eq.~2.38!, namely,

Henv5
x

2
~12sz

a!sy
ea ~2.65!

for a single qubita. Note that because our model of th
environment is a single mode, Rabi oscillations will occur
a time scale determined by the coupling constantx, so, in
order to properly model decoherence, we must take car
limit ourselves to the first cycle. Thus, the decoherence
time step parameter is given by

l52 lnucosxu. ~2.66!

This single-mode environment model is an approximation
reality which shall be utilized in the remainder of the pap
Intuitively, it is acceptable because since, after all, the s
tem contains only a single qubit worth of information whic
can be lost. The detailed relationship between our model
other specific microscopic environmental interactions will
described elsewhere.

The effect of phase damping on a logic gate can be m
eled as shown by the following example. The Hamiltoni
for thep/4 rotation gate~useful for transforming between th
computational and one-particle Bell states! acting on mode
a may be written using spin notation as

HR5
p

4
sy
a1

x

2
~12sz

a!sy
ea , ~2.67!

where the first term gives the desired rotation
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R5expF ip4 sy
aG5

1

A2
F 1 1

21 1G , ~2.68!

and the second term describes phase damping. The un
evolutionUR5exp(iHR) simultaneously performs the desire
rotation while entangling the qubit with the environment. T
obtain the final state of the qubita, the environment is traced
out, leavinga in a mixed state. This is exactly the same as
Eq. ~2.7!, as described in Sec. II A.

The operatorsAk in Eq. ~2.10! model the effect of deco
herence on an idle qubit. In a similar manner, we may w
operatorsRk which describe the simultaneous effect of ro
tion and phase damping. It is convenient to take the ini
state of the environment to beu0& ~spin-down!, such that

R05^0uURu0&5
1

2SexpF 0
p

4

2
p

4
ix
G1H.c.D

~2.69!

and

R15^1uURu0&5
1

2i SexpF 0
p

4

2
p

4
ix
G2H.c.D .

~2.70!

Thus @cout&5 % kRkuc& is the output of a rotation gate wit
phase damping parametrized byx. Note that whenx50,
R05R, andR150, which gives the expected result for th
ideal case, with no decoherence. The fidelity of the rotat
operator is found to be

FR5minc(
k

u^cuR†Rkuc&u2'120.40l ~2.71!

to lowest order inl.
A similar result can be derived for the CN gate with s

multaneous phase damping, using the Hamiltonian

HCN5HCN
0 1

x

2
~12sz

a!sy
ea1

x

2
~12sz

b!sy
eb, ~2.72!

where the transform isUCN5exp@iHCN#, the ideal gate has
the Hamiltonian

HCN
0 5

p

2
~12sz

a!~sx
b21!, ~2.73!

and the ideal operation is

C5exp@ iHCN
0 #5F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G , ~2.74!
ary

e
-
l

n

giving the ‘‘noisy’’ CN gate operators described by the i
teraction operators

Ck5^kuUCNu00& ~2.75!

for k5$00,01,10,11%. Using this formalism, we calculate th
fidelity of a CN gate with simultaneous phase damping to

FCN'120.86l ~2.76!

to lowest order inl.
Similarly, the effect of amplitude damping of a sing

qubit may be modeled using the interaction Hamiltonian

Henv
ad 5

x

2
@s2

a s
1

ea1s1
a s

2

ea#, ~2.77!

wheres65sx6 isy are spin raising and lowering operator
This is similar to the usual quantum-optical beamsplit
Hamiltonian HBS5x(a†b1b†a), and results in the sam
kind of coupling for our purposes. Following the same pr
cedure as above, we find the amplitude damped rotation
CN gates to have fidelities

FRad5121.80l, ~2.78!

FCNad 5122.20l. ~2.79!

In Sec. III D we will find that these results are useful—th
may be composed to establish an upper bound on the fid
of an entire circuit with multipleR and CN gates.

III. EXTENDING QUBIT LIFETIMES

We now apply the theories developed in Sec. II of th
paper to describe the process of quantum error correct
and how it may be utilized to artificially extend the length
time for which a qubit can be maintained in a coherent
perposition, despite the effects of decoherence. The gen
idea which we present is general, and can be applied to
recting any kind of error, by utilizing the appropriate err
correction code. However, for simplicity and to give a co
crete example, we concentrate on correcting the errors du
phase damping, and present a detailed analysis of a thre
circuit which can perfectly correct a single error. We calc
late the fidelity of the perfect circuit, then apply our theory
noisy logic operators to calculate the fidelity of a circuit wi
imperfect logic gates.

We show that despite the imperfections, in a certain
gime, aneffective decoherence ratesmaller than the actua
decoherence rate can be achieved for the encoded ‘‘persi
qubit.’’ Combining simulation results with theoretical pre
dictions for the fidelities of noisy gates, we construct a ge
eral error model which predicts an upper limit on the acce
able decoherence per timestep figure of merit,lcrit , which is
a function of the theoretical effectiveness of the error corr
tion code, and the complexity of the circuit required.

A. Quantum error correction

An important conclusion from Sec. II C was that the e
fects of phase damping on a quantum superposition s
betweenu0& and u1& can be understood as a classical, s
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chastic bit-flipping process. This realization immediately
tablishes a connection to classical coding theory, as was
recognized by Shor@7#. For example, we may use Eq
~2.36! and ~2.37! to interpret the errors introduced by pha
damping in terms of a binary symmetric channel, as sho
in Fig. 3. In the classical model,u0&, andu1& are independen
signals, and crossover errors in the noisy channel cause
signals to be interchanged. The quantum case is more su
because information is kept in the coherence betweenu0&
and u1& and this will be lost by classical error correctio
schemes~see@8# for more discussion!.

Decoherence is a quantum process which leads to des
tion of quantum information. Although we have an analo
between noisy quantum processes and classical informa
theory, it is incomplete—we cannot naively utilize classic
codes to preserve quantum information. This is possible o
if codes are devised which leave a portion of the Hilb
space untouched. In other words, the codes must have a
generacy. Fortunately, a solution using codes and their d
has now been worked out in great detail by Shor, Steane,
others. Here we present an example using three qubits,
discuss the physics in detail.

Suppose that we start with the state

uc in&5au222&1bu111&, ~3.1!

which results from encoding the qubit of Eq.~2.1! using two
CN gates and three single-bit rotations. Note that this i
single qubit of informationencoded using three physical q
bits. Using Eq.~2.44!, we find that phase damping causes
to obtain the mixed-state output

@cout&5a3/2@au222&1bu111&],

% aA12aF au221&1bu112&

au212&1bu121&

au122&1bu211&
G

%Aa~12a!F au211&1bu122&

au121&1bu212&

au112&1bu221&
G

% ~12a!3/2@au111&1bu222&]. ~3.2!

The vertically grouped terms should be understood to e
be separate terms with the same prefactor; they have
placed together for emphasis of the following point: there
four distinct possibilities. Either no error occurs, or one, tw

FIG. 3. Binary symmetric channel, with crossover error pro
ability 12a. The input is on the left.
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or three bits are flipped, in decreasing order of probabil
Let us concentrate on the first two groups, which have
highest probability.

In classical error correction, a syndrome is calculated
each received word which identifies the error~if any!. For
quantum error correction, two orthogonal states must h
the same syndrome, such that the calculation leaves s
quantum coherence intact. Here we calculate the two-bit s
drome given in Table I for which bit complements are d
generate~e.g., both111 and 222 have the same syn
drome, 00). The result tells us how the error may
corrected, as long as only one bit flip has occurred. Suc
scheme to detect and correct errors is depicted schemati
in Fig. 4. Physically, we may consider the two addition
qubits introduced in Eq.~3.1! as ‘‘probes’’ which allow us to
detect what the environment does to our original single
bit. This is made possible by initially correlating the prob
with our system, and then measuring the probes in the
rect basis after decoherence. Assuming that only one e
occurs, the measurement indicates which of the effects
Eqs. ~2.11! and ~2.12! has occurred, allowing us to correc
the state of our qubit.

In reality, two- and three-bit errors may occur; when the
probabilities are taken into account, we find that the out
qubit has imperfect fidelity; specifically, after correcting f
single-bit errors, we obtain the output

@cout8 &5Aa31a2~12a!@au222&1bu111&]

%Aa~12a!21~12a!3@au111&1bu222&],

~3.3!

which has the fidelity

F5minu^c inucout8 &u2 ~3.4!

>
1

2
2
e23l

4
1
3e2l

4
'12

3l2

4
1O~l3!. ~3.5!

This may be compared with the result for no-error correcti
Eq. ~2.6!, in which F decreases asl instead of asl2. The
improvement granted by this error correction scheme pro

-

TABLE I. Syndromes for the eight three-qubit states.

Input Syndrome Action

222 111 00 no error
221 112 01 flip first bit
212 121 10 flip second bit
122 211 11 flip third bit

FIG. 4. Scheme for detecting and correcting single-bit-flip err
occurring to the stateau—&1bu111&.
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122 55ISAAC L. CHUANG AND Y. YAMAMOTO
ises the possibility for extending the period for which a qu
can be preserved with high fidelity. We study this in det
next.

B. Three-bit circuit

Frequent error correction ensures that the probability
uncorrectable errors occurring remains small, and thus
might hope that a single qubit could thus be stored ind
nitely with high fidelity. For example, a loop could be us
to store an encoded qubit which circulates periodica
through a circuit which detects and corrects errors~Fig. 5!.
Ancillary scratchpad qubits prepared in a definite initial st
would be used for the syndrome calculation and then
carded, and in this manner a constant entropy flow can
maintained~order flows in through the ancilla, and out in
the environment via dephasing of the stored qubit!.

For example, a circuit which implements the three-
scheme described previously is shown in Fig. 6. Five ti
steps are required, in which as many operations are
formed simultaneously as possible. Broadly speaking, du
the first two time steps, the qubit is decoded~by converting
from the Bell basis back into the computational basis! and
the syndrome is calculated. The syndrome result is meas
in the third time step, and a classical computer corrects
detected error by performing a single-bit flip. During th
final two time steps, the qubit is re-encoded.

An example will serve to explain the ideal operation
this machine: suppose that a single-bit error due to ph
damping occurs, transforming the qubit of Eq.~3.1! into the
stateuc0&5au122&1bu211& which is input to the cir-
cuit.

FIG. 5. Schematic of a system for preserving a quantum
using periodic quantum error correction.u0L& andu1L& are multiple-
qubit states which encode logical zero and 1. The lower wire car
scratchpad qubits which are discarded~or reset! after the calcula-
tion.

FIG. 6. Quantum circuit for performing error correction for
three-bit code.R is ap/2 rotation which flips between the compu
tational and the Bell basis, andR̄ is the inverse operation. Vertica
lines denote a controlled-NOT, with the control line distinguished by
the solid dot and the signal by a cross. Meters denote ideal m
surements in the$u0&,u1&% basis. PC is a classical computer, a
sx is the Pauli spin matrix operator.
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In the first step the qubits are decoded:

uc1&5au100&1bu011&, ~3.6!

sinceR simply rotates single bits from the Bell basis. Afte
the second time step we have

uc2&5au111&1bu011&. ~3.7!

The two CN gates cause the syndrome to be calculated
left in the second and third qubits. This clever ‘‘in-place
calculation originally appeared in@8#. Note how the first qu-
bit is left unentangled with the syndrome bits. The measu
ment in the third time step thus leaves us with

au1&1bu0&, ~3.8!

which is the inverse of the original state, Eq.~2.1!. In fact,
the syndrome measurement result 11 tells us that the third
~from the right; the ‘‘most significant bit’’ in the string! is
flipped, so that in the we may correct the error by applyin
sx operation, and arrive at

uc3&5au000&1bu100&. ~3.9!

Next, coding is performed by the reverse process: the th
bits are entangled by the two CN gates, giving

uc4&5au000&1bu111&, ~3.10!

and finally, rotations put the qubits into Bell states,

uc5&5au222&1bu111&, ~3.11!

giving a perfect qubit.
Here we have seen how the syndrome calculation

measurement leaves the quantum coherence of the enc
qubit intact. Furthermore, knowledge of the syndrome res
indicates if the qubit is intact, or if any one of three single-
errors has occurred. When only one bit error occurs, the
put will always beau222&1bu111&, but if more than
one bit error occurs, we obtainau111&1bu222&, which
is the wrong result. However, this occurs with smaller pro
ability. The result is that by virtue of the error correction, t
fidelity of a single ~pure state! qubit encoded as specifie
will not be '126l/2, after one cycle through the circui
but, rather, 123l2/4. Because this encoded qubit effective
decoheres slowerthan a single isolated qubit, we refer to
as apersistent qubit. Physically, it may be envisioned as
metastable collective state which has a lifetime that is k
artificially long by an active measurement and correct
process.

C. Processing errors

Unfortunately, our quantum-bit memory does not oper
ideally, due to errors which occur during the finite time r
quired for decoding, error detection, correction, and recod
of the persistent qubit. For example, energy could be
from the system during operation of the logic gates, the s
drome bits could be imperfectly measured, or phase rand
ization could occur. This is a serious issue, because it is
clear that the gains achieved by error correction may be
alized in view of the additional errors incurred during th
required processing.
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The key figure of merit is the amount of decoherence
time stepl, because this determines how much error occ
during processing. For example, suppose that we have
Hamiltonian

H5g@c†c~a†b1b†a!#1l0@a
†a~ea

†1ea!1b†b~eb
†1eb!

1c†c~ec
†1ec!#, ~3.12!

where the first bracketed term is the Hamiltonian for a lo
gate~the quantum optical Fredkin gate!, and the second term
describes coupling with the environment~phase damping!.
After time t5p/g the logic gate completely switches, b
simultaneously, decoherence of amountl5l0t occurs. This
causes errors in the switching, which lead to imperfect e
correction. Current experimental quantum computer real
tions suffer from largel; how critically will this limit the
feasibility of using quantum error correction to provide lon
term qubit storage?

To better understand this issue, we performed exten
numerical simulations of the three-qubit circuit presented
Sec. II. The input is chosen to be a superposition state

uc in&5au0&1bu1&, ~3.13!

It fed into theT54 step of animperfectversion of the circuit
in Fig. 6, which, after two time steps produces an imperfec
coded qubit described by the density matrixrpq , which is
calculated by applying two CN and threeR gates to the
input. rpq is stored forM time steps during which phas
damping occurs, calculated using Eq.~2.48!, with
a5(11e2Ml)/2. This resultrpq8 is then fed into the decod
ing circuit, stepsT51–3 of the circuit, giving the outpu
rout, calculated by applying threeR and two CN gates to
rpq8 . We evaluate the output of this single processing cy
by calculating

Fcycle5mina,b@^c inuroutuc in&#. ~3.14!

Fcyclemay be compared against two benchmarks: the fide
of an isolated single qubit after the same elapsed time u
Eq. ~2.6!,

Fsingle5
11e2~M15!l

2
, ~3.15!

and the qubit fidelity after one cycle of an ideal circuit,

Fideal5
22e23Ml13e2Ml

4
, ~3.16!

from replacingl with Ml in Eq. ~3.5!.
As a first attempt to evaluate the impact of possible p

cessing errors qualitatively, we assume that each bit inde
dently undergoes phase damping of an amounte2l after the
logic operation in each time step. This is calculated by
plying Eq. ~2.48!, with a5(11e2l)/2. We assume that th
decoherence rate~coupling strength to the environment! dur-
ing processing is the same as during storage. This is
necessarily true, of course, but we shall amend this prob
in Sec. III D. The results from this naive model, shown
Fig. 7, are promising in that there exists a regime, in wh
r
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despite the errors, we find that the fidelity of the persiste
qubit is better than for a single qubit, i.e.,Fcycle.Fsingle.

However, although this naive ‘‘lumped decoherence
model, in which phase damping is artificially inserted aft
the logic operation in each time step, is a practical way
evaluate the qualitative effect of decoherence, it unfor
nately does not necessarily reflect reality. True decohere
occurs simultaneouslywith the logic operation, and can
cause much more subtle errors by reducing not only the
delity of single qubits but also the fidelity of the entangle
ment between qubits@18#. We evaluated the effect of phas
damping during the logic operations by replacing the ide
R and CN operators in the circuit with the noisy rotatio
operators of Eqs.~2.69! and~2.70!, and the noisy CN opera-
tors of Eq.~2.75!. For example, the output of the first CN
gate in the fourth time step is given by

r4a5 (
k5$00,01,10,11%

Ckr3Ck
† , ~3.17!

where the density matrices describe the state of the th
qubits used in the circuit.

Theoretically, this calculation is equivalent to a full den
sity matrix calculation including all environmental degree
of freedom. However, in practice, such a calculation wou
involve 64364-sized matrices~using one additional qubit to
model the environment for each qubit in the perfe
circuit!—and for larger systems this becomes impractic
Use of the noisy operator formalism allowed us to use on
838 matrices in the entire calculation, with the cost of tw
extra matrix multiplications for theR gate, and four for the
CN gate. The result is shown in Fig. 7; a similar result f
amplitude damping during processing is shown in Fig. 8.

We find that for this particular circuit, the lumped deco
herence model actually overestimates the error, and, des
the processing error, regimes exist for which the persist

FIG. 7. FidelityFcycle of the persistent qubit after a single cycl
through the imperfect error correction apparatus~solid line!—with
‘‘lumped’’ and continuous phase damping. For comparison,Fsingle
~dashed line! andFideal ~dotted line! are also shown. For smalll,
12Fcycle'5.50l ~lumped! and 12Fcycle'3.92l ~continuous!, as
shown in the inset.M58.
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124 55ISAAC L. CHUANG AND Y. YAMAMOTO
qubit outperforms the single qubit. Furthermore, errors d
to amplitude damping during processing result in a wo
Fcycle than for phase damping. As discussed in Sec. II E,
may be because amplitude damping affects the diagona
well as off-diagonal elements of the density matrix. Th
contrary to popular belief, relaxation may actually be mo
damaging to quantum computing than phase damping e
when they are of the same magnitude. Clearly, further w
must be done to clarify this issue.

Results from both of these simulations seem to indic
that the fidelity of the persistent qubit is only margina
better than for a single qubit. However, it must be kept
mind that this is true only after a single cycle through t
circuit. The great advantage of error correction arises fr
its effect in limiting theaccumulationof errors. Due to de-
coherence, the fidelity of a qubit decreases multiplicative
such that a small amount of error grows exponentially w
time. Thus, after timet, an isolated single qubit with no erro
correction has fidelity

Fsingle~ t !5
11e2lt

2
'12

l

2
t ~3.18!

In contrast, with error correction, the error growth rate
slowed by correcting a fraction of error in each pass throu
the apparatus. We may model the fidelity of the result as

Fpqubit~ t !5
11e2lefft

2
, ~3.19!

where theeffective decoherence rateleff for the persistent
qubit is

leff52
1

M15
ln@2Fideal21#, ~3.20!

FIG. 8. FidelityFcycle of the persistent qubit after a single cyc
through the imperfect error correction apparatus~solid line!—with
continuousamplitudedamping andM580.Fsingle ~dashed line! and
Fideal ~dotted line! are also shown. For smalll, 12Fcycle'13.5l.
e
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h

that is, the logarithm of the error probability after a sing
correction step. For small timet and decoherencel, we find
that the persistent qubit has fidelity

Fpqubit~ t !'12
3M2l2

4~M15!
t ~3.21!

when errors occur only during storage, and not during p
cessing. This model agrees quite well with our numeri
simulation of a perfect circuit; however, as can be seen fr
Figs. 7 and 8, this expression must be modified when er
occur during processing. We shall next see how proces
errors cause the fidelity of the persistent qubit to decrease
asl2, but rather, at best, asl3/2.

D. General error model

Generally speaking, a persistent qubit is created by us
a quantum error correction scheme to encode a single q
of information using multiple qubits. The effects of decohe
ence during storage imposed by unwanted interactions of
many-body state with the environment can be detected
undone by the decoding circuit, as long as the error is not
severe. Furthermore, it is important not to introduce t
many additional errors during coding and decoding. Th
requirements can be modeled in a general way, giving a
sult which is applicable for an arbitrary scheme, as we sh
here.

Two competing processes happen to a persistent qubi
the one hand, as the storage timeM is increased, the prob
ability of unrecoverable~multiple-bit! errors happening in-
creases, which is bad. However, asM increases, the fraction
of time spent out of the noisy circuit decreases, which
good. Thus an optimal value for the qubit storage tim
Mopt exists.

We may calculateMopt using the following genera
model, good for small decoherencel. Motivated by the re-
sult in Eq. ~3.16!, let us assume that a generalizedN-bit
coded persistent qubit has fidelity

Fstorage512aM2l2, ~3.22!

wherea is the probability of an uncorrectable error occu
ring despite having an ideal circuit. This is proportional
l2, because we assume that only single-bit errors are
rected for; for a better scheme, the exponent ofl should be
increased. Note that we do not assume what kind of error
circuit corrects for—it may be phase damping, or even a
single-bit error. The fidelity of the circuit is modeled as

Fcircuit512bl1b8l2 ~3.23!

after theN time steps required for the circuit to operate.b is
thus the probability of an error occurring in an imperfe
circuit. Phenomenologically, any systematic error, for e
ample, errors in physical implementation of the computi
system, including possible measurement errors, could als
included in this parameter. For completeness, we also
clude a higher-order termb8, but this will not be relevant to
the first-order solutions we obtain below.
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In our system, the qubit is stored forM time steps, then
processed by the circuit. Each of these cycles leaves a q
with fidelity

Fcycle'FcircuitFstorage. ~3.24!

Since each cycle requiresM1N time steps, we may defin
an effective decoherence rate

leff52
1

M1N
ln@2Fcycle21#. ~3.25!

Working this out, we find thatleff is proportional tol for
small decoherence, and dependent on the storage timeM .
The numerical result, shown in Fig. 9, indicates the existe
of an optimal valueMopt at which leff is minimal, as ex-
pected. As an aside, it is interesting to note that the in
state for which the fidelity is minimum is (u0&1u1&)/A2 for
M,Mopt, andu0& for M.Mopt. This is because, in the firs
regime, the decoherence of the imperfect circuit domina
while in the second case the decoherence during sto
dominates. This switch is part of the reason why the tran
tion appears to be so abrupt.

simulation
The minimumleff is obtained when

Mopt'S b

al D 1/22N, ~3.26!

to lowest order inl. As b→0, then no processing error
occur, and we find that the optimal storage timeMopt→0 as
expected~it cannot be negative!. Note thatMopt;1/Al.
Plugging back intoleff , we find that the minimum achiev
able effective decoherence rate is theoretically

lopt'4Aabl3/2, ~3.27!

and the corresponding optimal persistent qubit fidelity is

Fopt~ t !'122Aabl3/2t. ~3.28!

FIG. 9. leff as a function of storage timeM , simulation~solid!
and theoretical~dashed! results, calculated for our three-bit circu
model, andl5331024. The circle is at (Mopt ,lopt).
bit

e

t

s,
ge
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This result describes the fidelity of a persistent qubit w
decoherence during processing, and should be comp
with Eq. ~3.21!. For small l, this is still better than
Fsingle;12O(l)t, but is worse thanFpqubit;12O(l2)t be-
cause of the noisy circuit.

Numerically, we find in our specific three-bit circuit tha
the multiplicative accumulation of errors due to periodic co
rection results in a minimum effective decoherence r
lopt8 which is a factor of 2 smaller thanlopt for small l.
Taking this into account, we find that for the parameter v
ues ofa50.75,b53.92, andN55, our simulation results
are well modeled byMopt'2.28/Al, lopt8 '3.43l3/2, and
Fopt8 (t)'1.71l3/2t, as shown in Fig. 10.

At some point, the effective decoherence rate of the p
sistent qubit is no longer less than the decoherence rate o
isolated single qubit, i.e.,leff'l. This happens when the
circuit noise completely overwhelms the effectiveness of
code in correcting for errors. Analytically an order-o
magnitude estimate for an upper bound onl is given by
lcrit'1/4bAa ~to lowest order ina). Herea is the probabil-
ity that an uncorrectable error occurs; by improving the co
ing scheme, this can be reduced. However, doing so m
increase the complexity of the circuit, and thus increaseb,
the probability of a processing error occurring. At worst,b is
proportional to the total number of gates in the circuit; this
likely to be the case for persistent qubit circuits, in whi
entanglement probably involves all qubits. From an algori
mic standpoint, there are undoubtedly optimal configu
tions, but that is beyond the scope of this paper.

The formalism presented in this section may be applied
any general quantum-bit memory system. In fact, the no
gate fidelities derived in Sec. II F may be used immediat
to place an upper bound on the performance of an arbit
circuit. For example, if we assume that phase damping
curs during the processing of our three-bit circuit, we m
estimate thatb,630.401430.8655.84, from counting
sixR gates and four CN’s in the circuit. This differs from th

FIG. 10. FidelityFcycle(t) of the three-bit persistent qubit as
function of time, simulation result assuming processing errors
to continuous phase damping~solid!; theoretical optimumFopt8 (t)
~dotted!; and single-bit caseFsingle(t) ~dashed!, all calculated for
l51023 andMopt572.1.
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b53.92 arrived at from the simulation because the st
which minimizes the fidelity of the circuit is different from
that for just the single gate, and also because not all g
must work perfectly for the circuit to behave correctly. How
ever, in general, thea, b model is useful in that the en
result of various physical effects may be estimated imme
ately. For example, different decoherence rates during s
age and processing can be accounted for by adjusting t
parameters.

Thus knowledge of the circuit structure and the individu
gate fidelities can be used to bound the performance
persistent qubit circuit. Froma andb, a critical value which
establishes a minimum required decoherence per time
threshold can be estimated. If the decoherence in the ex
mental system is worse thanlcrit , then the circuit will be
only marginally viable. On the other hand, ifl,lcrit is
achieved, then good results can be expected. The examp
Fig. 10 shows that for a circuit with decoherence occurr
during processing, the lifetime~defined as the time until the
fidelity falls below 0.95) of a persistent qubit can be an ord
of magnitude longer than for a single isolated qubit.

IV. CONCLUSION

We have presented a useful formalism for modeling
decoherence of quantum bits, based a general linear ope
description of quantum mechanics. From this, we deriv
simple matrix operators to model phase damping, Equat
~2.36! and ~2.37! and ~2.44!, and the amplitude damping
Eqs. ~2.54!–~2.56!, of idle ‘‘memory’’ qubits. We also de-
rived ‘‘noisy logic gate operators’’ for qubits undergoing
p/4 rotation, Equations~2.69! and~2.70!, and the conditional
dynamics of a controlled-NOT, Eq. ~2.75!. These operators
allow an immediate evaluation of logic gate fidelities, a
because they act only in the Hilbert space of the system,
also allow a simulation of decoherence without includi
extra states for the environment.

Our application of these results to study a quantum e
correction system indicate that despite decoherence du
as
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e
tor
d
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ng

processing, when the decoherence per time step is sm
than lcrit , the circuit can still be effective. We studied
specific circuit which corrects phase damping errors, but
technique we outline may incorporate any error correct
code. The general result of our model is to predict that fo
circuit with error probabilitybl due to decoherence durin
processing, andal2 due to the imperfection of the algo
rithm, a persistent qubit can be constructed with fidel
122Aabl3/2t. Physically, the persistent qubit may be u
derstood to be a metastable collective state whose lifetim
artificially prolonged by repeated decoding, measurem
and encoding.

A persistent qubit would be much simpler to impleme
than any of the elementary quantum algorithms propo
thus far, and in particular, much easier to accomplish th
factoring. Furthermore, it would be a useful step toward
eventual goal of indefinite storage of quantum informatio
Extension of our analysis to storage of physically separa
entangled qubits is straightforward, and would be relev
for realizations of concepts such as quantum money
quantum teleportation@26#. We thus suggest as an alternati
and, we believe, more practical first step—the utilization
quantum error correction techniques to implement a lo
lifetime single-qubit memory.

Possible physical implementations include single-pho
quantum bits@22,5# or single ions in an electromagnetic tra
@27,4#. For the latter case, our analysis could be extende
calculate noisy counterparts to Cirac and Zoller’sU andV
operators, in a manner similar to@14#. Together with a real-
istic estimate of systematic errors expected in an experim
tal implementation, this should result ina andb parameters
which may be used to evaluate the performance of an
trap persistent qubit.
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