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Creation of a persistent quantum bit using error correction
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The construction of large, coherent quantum systems necessary for quantum computation remains an en-
treating but elusive goal, due to the ubiquitous nature of decoherence. Recent progress in quantum error
correction schemes have given new hope to this field, but thus far, the codes presented in the literature assume
a restricted number of errors and error free encoding, decoding, and measurement. We investigate a specific
scenario without these assumptions; in particular, we evaluate a scheme to preserve a single quantum bit
against phase damping using a three-qubit encoding based on Shor, and study the effect of decoherence not
only during storage but also during processing. We derive an general upper limit on the allowable decoherence
per time step. Physically, our results suggest the feasibility of engineering artificial metastable states through
repeated error correctiohS1050-294®7)08101-9

PACS numbg(s): 03.65.Bz, 42.50.Ar, 89.88.h, 42.79.Ta

I. INTRODUCTION coherent, quantum systems may be possible despite decoher-
ence.
Technological progress has increasingly enabled us to However, an important issue thqt remains to be addressed
fabricate and manipulate small quantum-mechanical systenis the effect of errors which occuaiuring processmgequwed
in which coherence is preserved. For example, the develog2y the error correction scheme. All of the theoretical quan-
ment of cold atom and ion traps, and coherent quantum dd#im error correction results presented in the literature so far
devices, has inspired the possibility that soon, implementa@Ssume perfect operation of the coding, measurement, and
tion of “designer” quantum systems may be feasible. Thesdecoding circuits. As various studies of the effects of deco-
will be useful for fundamental investigations of physics, in N€€NCe on quantum computers have shoih-14, this is

particular, by addressing open questions such as the trand]Ot @ realistic assumption when the time scale for decoher-
tion from quantum to classical behavior. They may also alSnee 1s comparable to the coding and decoding time of the

low utilization of the superposition and nonlocality proper- circuit, as is the case in current experimental systems. To

. : . . . . address this issue, here we present a systematic analysis of
ties of quantum mechanics for information processing, as in

. he im f imperf r ing on a model ntum error
guantum cryptographyl] and computind 2]. E:oerrec‘t)igﬁtgysteﬁ ect processing on a model quantum erro
Quantum computation has recently attracted a great deal Specifically, we analyze a three-bit code which perfectly

of attention as a result of efficient algorithrf8]. This has  qrrects for any single qubit error due to a specific kind of
been accompanied by experimental res[#$] which give  gecoherence known as phase damping. We apply this code to
hopeful signs that it might indeed be possible in the future toy system in which periodic correction is applied to lengthen
rapidly factor large numbers using such machines. Howevethe Jifetime of an encoded qubit state artificially, which we
the present technology is still rather Crude, and even faCtorrefer to as a “persistent qubit_” We perform numerical simu-
ing @ number like 15 will be a tour de force. In an ion trap |ations which include the effects of decoherence during the
model it would take on the order of 25000 laser pulses tdogic operations, and calculate the fidelity of the persistent
achieve this task, and this assumes a perfect operation of thgibit a function of the decoherence per time step figure of
computer. Although the best way not to have to recover frommerit . Our results indicate the existence of an upper limit
errors is to avoid them, it seems unlikely that computation\ .;, which must be achieved in order to gain any advantage
with so many laser pulses can be error free. from error correction.

Classically, this problem is rectified by error correction These results are made possible in part by the develop-
schemes, but these techniques do not apply in general fent of a mathematical model based on linear operators
quantum bit (qubit) errors, because they do not preservewhich gives concise descriptions of the effects of decoher-
quantum coherence; direct measurement of a qubit will deence. From this theory, we construct operators for phase and
stroy its coherence. Furthermore, a quantum superpositioaAmplitude damping, and for noisy logic gates. This paper is
state is fundamentally difficult to maintain, due to unwantedthus organized as follows: Sec. Il, we present our theoretical
environmental interactions which lead tecoherencd6]. ~ model of decoherence. These results are applied to an analy-
What is needed is some way to correct a qubit state withougis of the persistent qubit model in Sec. Ill. We conclude
ever completely measuring it. Fortunately, such schemes fokith a discussion of experimental possibilities.
guantum error correction have recently been developed, and
they allow certain independent errors may be corrected. Nine
[7], seven(8], and five[9] qubit codes have been discovered
which perfectly correct single qubit errors of any kind. With  We begin by presenting an unusual mathematical theory
these successes comes the hope that construction of smdtlr describing decoherence, based on linear operators. His-

II. THEORY: Ay MODEL OF DECOHERENCE
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torically, the linear operator formalism has received little at-general description is given by interacting the system uni-
tention in the quantum optics and computation communitiesarily with some initial statele) of the environment then
[15-18, but it is particularly well suited for manipulating tracing over the environment to get the final state, i.e.,

the finite Hilbert spaces of quantum bits. Furthermore, it is

fundamentally equivalent to the usual density-matrix ap- pou=Trem[U (pin®€)(e)UT]. (2.7
proach, but motivates an alternative interpretation based on

the evolution of asingle wave functionWe find concise Mathematically, we may introduce a complete set of states
descriptions for decoherence operators of two kifpisase |« for the environment,

and amplitude dampingand also introduce the notion of a

noisy logic gate operatorThe results are used to calculate 2 | ) (il =1 2.9

the fidelity of noisy rotation and controlledsT operators. K '

A. Decoherence-density matrices such that we may express the final state of the system as

Decoherence occurs due to unwanted interactions be-
tween our quantum system and its environment. These inter- Pout™ E AkpinAIa (2.9
actions cause information to leak out of the system, and fluc- K
tuations to enter it. Typically, this process is described byW

density matrices; for example, the pure state hereA are linear operator§ot necessarily Hermitiarnin

the Hilbert space of the system, given by
|¥)=al|0)+b[1), (2.)

Ax=(mdUle). (2.10
written in the basis of energy eigenstateich we shall use

as the “computational basis” latehas the density matrix ~ Note that by unitarity olJ, we must have thak AfA=Z,
and, in this sensé&), describes all possible processes which

la]? ab* may happen to the system.
Pin=| oxp Ib|2]’ (2.2 For example, the two operators
where the diagonal elements give the probabilities of finding A — 10 2.19)
the system in the zero and 1 states, and the nonzero off- o e M ’
diagonals connote the existence of some coherence. One sig-
nature of loss of quantum coherence is decay of off-diagonal 0 0
elements, A= m , (2.12

la]> ab*e™* o _ _
- Ib|? (2.3y  are often implicitly used in quantum optics to model the
effect of a nonreferred quantum-nondemolition measurement

Rf the photon numbei20]. They give us

Pout=

For example, this process may occur when a single-photo

qubit is transmitted through a fiber whose length is randomly a2 ab*

modulated by acoustic waves, introduciplgase damping- Pout= 2 Al (2.13
. . . k . out K| 4% b b 27k .

the fluctuations cause uncertainty in the arrival time and thus |b]

destroy information in the variable conjugate to the ampli-
tude. The average effect after many phase kicks is a damping
process, whose net effect is a reduction in tidelity F of

the received qubit,

la]> ab*e™*
a*be ™ |b|2e” 2"

0 0

=min, ,[1+2|al?|bl?(e -1

ol 1+ 20affole D) a2 apre

' = e 2 (2.15
a*be |b]
1+e? A

= ~1—. (2.6 ; ; ; ;

2 2 Thus Ay and A; describe phase damping. At this point we

have simply pulled these expressions out of thin air; how-

Note that(in the spirit of Schumachdi9]) we defineF as  ever, there is actually good physical motivation for these
the minimumvalue of the overlap between the initial and choices—this is the subject of Sec. Il B. Furthermore, it is
final wave functions, because in general, a quantum comnteresting to note that this choice of operators is not unique;
puter may access all states in the Hilbert spacp/of there exist differenf\,’s which also describe phase damping

In general, decoherence may introduce effects other thafmathematically, they correspond to a change of basis for the
just decay of the off-diagonal terms. Relaxation processesnvironment state$u,) in Eq. (2.10]. In addition, other
(otherwise known aamplitude dampingcause energy to be A,’s may describe different forms of decoherence such as
lost from the system as well as phase information. The mosamplitude damping.
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B. Single wave-function model

|in) ——— lout)
1w //3(,5“”5;

Although the description of decoherence using density
matrices, that is, Eq(2.9), is completely general, unfortu-
nately some important information about the structure of the
decoherence is hidden by the density-matrix formalism. For 10)
example, what is the minimum number of pure states which
a mixturep can be decomposed into? In particular, the de- FIG. 1. Physical model of interaction with environment leading
coherence process may turn an initially pure state into a mixto phase damping. The two 50/50 beamsplitters are inverses of each
ture. Mathematically, this occurs when we sum over dwver other. The meters indicate an implicit measurement of the state.
to obtainpy,, and, in this process, we discard information
about the way thé\, as operators divide the Hilbert space of With our qubit(the systemfor time 7= (cos ‘e™")/x causes
the final state into different partitions indexed ky the interferometer to become partially unbalan_ced. The uni-

This useful information can be preserved by withholdingt@ry operator may be understood as transforming
the sum ovek performed in Eq(2.9), and keeping track of

the evolution of each\kpAl separately. An equivalent tech- 0)|01)—[0)[01), (2.22
nigue which simplifies the bookkeeping is temgle-wave-
function model, in which mixed states are written as direct |1)]0D) —e M1)|01)+ y1—e 21)|10), (2.23
sums of pure states. For example, thixed stategdenoted
by [-) to distinguish it from gpure state]- )) where the first label denotes the system, and the second the
environment. An implicit measurement of the interferom-
[¢ou9:f|¢k> (2.16 eter’s output occurs because the system leaves the environ-

ment behind—this measurement is equivalent to tracing over
the environment degrees of freedom. A measurement result
of |01) (no unbalancing corresponds to the first bracketed
term in Eq.(2.20, and a result of10) (unbalanceglto the
second term. Note that the density matrix for E2.20 is
exactly the same as EqR.15, so that, for an ensemble of
<¢out]o[¢out>:§ (/O i), (2.17  states, the net effect is phase damping.

could result from a measurement ofy;,), Where
p={ ¢y ¢\) is the probability of obtaining the observable
eigenstatd ¢, )/ Vpy. Thus expectation values are defined as

since the different¢,)’s live in completely separate spaces. C. Phase damping operator

This equation defines the use of a tensor sua”*in Eq. We shall now see how the single-wave-function model of
(2.16, and indicates the essential property that componentdecoherence can be useful. Suppose that before the environ-
in a tensor sum do not interfere with each other. In thisment is measured, a unitary transfotthis performed as

language, Eq(2.9) may be reexpressed as shown in Fig. 2. In particular, let us choose the orthonormal
basis
[Youw = EBAk| lr/jiﬂ>’ (2.18
k | o) = Va|01)+ V1—|10), (2.24
because
|1)=V1-a|01)~ Va|10), (2.29

Pou=[ Youd Youl = X Ad i) inlAL. (219  where a=(1+e /2, such that the unitary transform of
K Egs.(2.22 and(2.23 becomes

For example, if we use tha, defined in Egs(2.11) and —
(2.12, we obtain, for|¢;,)=a|0)+b|1), the output mixed |0)€)— Va|0)| o) + V1= al0)| my), (2.26

State
|1)|e)—Veall)|uo)—Vi-all)|p),  (2.27
[Yod=[2al0)+be *1)]@[byl—e 21)] (2.20 |
an

Physically we may understand these two states as result-
ing from an implicit (“nonreferred”) indirect (positive le)=\a|mo)+ V1—a|ui) (2.28
operator-valued measymneasuremen20] of the system in
which the environment acts as a probe. It is implicit because,

in reality, no observer ever refers to the measurement |in>—7x/gl\//|/ out)
result—that is left unknown. In particular, the interaction 1) ,/// //

may be modeled as shown in Fig. 1, where the environment : . U

is an interferometer containing one excitation, and cross- |0) _E

phase modulation via the Hamiltonian

fo ot FIG. 2. Implicit measurement of the environment performed in a
Hi=xa'aeye,, (22D gifferent basis.
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is the initial state of the environment. The two possible measuch that we may say phase damping causes bit flip errors
surement results now becorye,) and|u4), so that the final  when the Bell basis is used as the representdtioricom-
state of the system may be written as putational”) basis for a qubit. Note that the probability that
the single bit is flipped is + «. In terms of Eq.(2.18), the
[ fou) = Va[a]0)+b|1)] ® V1—afa|0)—b|1)], projection operators are
(2.29

10
where the two terms result from obtaining,) and|u,), Af'= \/;{0 1}, (2.39
respectively. Sincéyouw{ Yol gives the same density matrix
as in Eq.(2.19), this process is also a statistically valid single
wave-function description of phase damping. Agd: \/1—4
Of course, in real distributed decoherence processes in-
volving many modes of the environment, there will be no

basis rotationU or implicit measurement ofw) or |u1). L : :
L : spin flip (in the {|0), |1)} basis we would have, instead.
Rather, the point is that Eq$2.26 and (2.27) give an From this viewpoint, the bit-flip interpretation of phase

equivalent modehich can be used to describe all phase Lo '
damping is manifestly clear.

damping processes occurring to a single qubit. Because ex- : . .
perimental observations of quantum systems are always sto- Let us extend this analysis to a system of two qubds (

chastic, there is no observational difference between thignd b) mteractmg_wnh m_depende_nt r(_aservowea(and e.b)' .
model and any other model of phase damping. However, or example, the interaction Hamiltonian could be written in
simple model which distills the essence of the process can peP!" notation as

a powerful tool for understanding the physics. In particular, ¥ Y

the value of this model is the elegance of the following math- H 1, 5(1_ ad) a§a+ 5(1— a?)ajb, (2.38
ematical conclusionin the single-wave-function picture, we

may say that phase damping either leaves the bit alone,
causes the phase of the bit to be flipp@ée shall see in Sec.
[Il A how this helps in devising a scheme for correcting er-
rors due to decoherence.

0 1

1 ol (2.37

Aﬁd is proportional to the Pauli matrix,, which performs a

%ising Pauli matricegwhen a has spin-down(-up), then
(1—0%)/2 evaluates to zer€l)]. Because only a single ex-
citation is contained in the interferometer of Fig. 1, we may
model phase damping ascantrolled rotationof one envi-
_ ronmental mode by each qubit.
D. Decoherence olN qubits Unitary evolution via

We now show how simple operators can be constructed . 1
which describe the effect of phase damping on a sel of U=exp{l cos (2a—1) H, (2.39
qubits. The essential idea is that by assuming that the envi- X 2
ronment acts independently on each qubit, we may find a ] ] i i
product form for the phase damping operatqr. First, note entanglgs the qu_blts with the_ en_vwonment, gnd_ tracing out
that the unitary transform which entangles a single qubit andh€ environment in theu;) basis gives the projection opera-
the environment given in Eq$2.26 and (2.27 can be re- tors, calculated from Eq2.10:
written using a different basis for the qubit. Suppose we

choose the one-particle “Bell basis” states Ag=a(l®l), (2.40
|0)+]1) Ar=\a(l-a)(18ay), (2.4
)= 2.30 )
2 Ay=Va(l—a)(ox@1), (2.42
- 10)—[1) 230 As=(1—a)(0,®@0y), (2.43

)= ,
2 . .
V2 where the two operators on either side @fact ona and
then we have that b, respectively. Generalizing from this, it may be shown that
the projection operators for phase damping\o§ubits is

|+)le)—a| +)|uo)+V1—al—)ui),  (2.32

_ N-1
A= \a TR (1— )P @ (g )@ (244

|=)le)— Vel =) mo)+V1-al+)|us), (233 n=0
so that an initial state whereh(k) is the number of 1's in the binary bit-string form
of k (i.e., the Hamming weight and/\ is the boolean and
|yiy=al+)+b|—) (2.34  operatork ranges from 0 to 2— 1. The effect of the expo-
nenth(2"/\Kk) is to select eithet or o, for the nth qubit
decoheres into the final mixed state based on whether thath bit in k is zero or 1. The

aN "R (1 — )"K' prefactor gives the probability of each
(4! )=\a[a]+)+b| =)@ V1—ala|—)+b|+)], projection, from which it is evident that multiple bit flips are
(2.395 less likely than few flips. From this calculation, we conclude
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that, with no approximationthe effect of phase damping on for a single qubit. Equivalently, we may write that
a set ofN qubits can be described by projections intt 2

possible states in which different bits are flipped, and the 0)]01)— y1—p|0)|01)+ Vp[1)[00),  (2.50
probability of havingm bits flipped is
11)|02)—V1—q|1)|0)+ g|0)|11), (25D
N
Prot(m)z( )aNm(l_a)m_ (2.45  wherep=1—e 0 andg=1—e "1 are the probabilities of
m upward and downward transitions, respectively. He® is

N a convenient choice for the initial state of the environment.
Note that=,_oProbm)=1, as expected. Furthermore, the when y,=0 we have the usual case of damping to a reser-
mixed state resulting from phase damping of any sf#e  voir at T=0, which describes, for example, the scattering of

can be immediately calculated using the above resulthlet photons out of a single mode fiber. For nonzegpand y;,
denote the bit String formed byN QUbitS, ie., we have the Stationary state

|by=|by_1---bibg). If the input state is

1 [q 0} 252
)= colb), (2.49 Pralo e
which describes the system after it has come into equilibrium
then the mixture resulting from phase damping is with a reservoir at temperature
~ AE
[Youd = B A ¥in) (2.47) kgT= i (2.53
k
In—
p
=@\/aN7h(k)(1—a)h(k)2b: Cplb XOR K), (2.48 assuming a Boltzmann distribution of energies, and an en-
k

ergy difference between tH&) and|0) states ofAE. From
Egs. (2.50 and (2.51), we may immediately read off the

whereb xoRrR k denotes the binary exclusive-or of the two- amplitude damping operators

bit strings. This demonstrates explicitly that the effect of ad_
phase damping oN qubits is the creation of a mixed state A= Vpl1)(0l, 2.54
which may be described as a direct sum of states in which

4 AB=\T=ploy0|+ VI-al1)(1], (259

bits are flipped according to a Bernoulli process with prob-
ability 1— «. This result provides us with an efficient com- ad__
putational tool for calculating the effects of decoherence on a An= JE|0><1I. (2.56
register ofN qubits, and will be useful in analyzing an im-

perfect quantum memory in Sec. il C. These may be verified immediately by noting that

> AHAY gives the same result as E.49. Thus, in
general, amplitude damping of an initially pure state qubit
E. Amplitude damping will result in a mixed state composed of three pure states,
Physically, the effect of phase damping may be underdescribed by the threA2 operators above. In fact, at least
stood to be an analog of theT,” spin depolarization effects threeA, operators are needed to describe the process of Eq.
observed in nuclear-magnetic-resonance spectroscopy. ©2.49.
course, one must be careful to distinguish ensemble time- An interesting analogy can be made between the phase
scales from what we are interested in here, the dephasing 8amping and amplitude damping cases in the following case.
a single spin or two spins relative to each ottser that, more  Consider the amplitude damping to a reservoif &0 of the
precisely, only thél's component off, reflects a fundamen- State
tally decoherence process relevant to quantum computing
The analog of T,” spin-lattice effects, in which energy is
lost from a single spin to the environment, @nplitude
damping This also describes relaxation processes such
spontaneous emission.

|)=al01)+b|10). (2.57

This describes the two-mode output of an optical beamsplit-
Rr of angle tan'(a/b) with a single photon incident into
one input port and vacuum into the other. Equal amplitude

A simple operator description of the amplitude dampingdamping ofboththe output modes by results in the mixed-
of a single qubit may also be derived, just as was done abov&ate output

for phase damping. The effect of energy loss to the environ-
ment (relaxation is usually described by a master equation —aY a2y

[21] which, in the Born-Markov approximation, results in the [Yow=€""1al0)Fb[10)]&(v1=e™[00). (258
density-matrix evolution Physically, this occurs because only one photon ever exists;

b ~Yoat (1—e- be- (Yot 7012 if it is lost, the final state must be the vacuum. Otherwise,
a | (1-e ™c € because of the balanced arrangement of the loss, the initial
b* ¢ b* e~ (vt 72 (1—e ")a+e "¢ state is left unchanged. We may also describe this by the
(2.49 transformations
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|01)|00)— \e~7|01)|00) + 1—e~?|00)|01) (2.59 The effect of simultaneous decoherence and logic may be
modeled by introducing additional interactions with extra qu-

110)|00)— e 7 7110)|00) + l—e 7 7100)|10). (2.60 bits which model the environment. In general the true Hamil-
tonian is
Notice that thg01) and|10) final states of the environment

: . Hroisy= 9 Hiogic+ NoHenv: 2.6
leave the system in the same stHi8) with the same prob- noisy™~ I Flogic™ A0Menv (2.69

ability amplitude. This equivalence means thai=A10, SO whereg and\, are coupling constants for the logic interac-
they may be combined. Lettingo=Aq and A;=A1g, We  tion and decoherence, respectively. Conditional dynamics
find that the damping of theual-rail qubit state[22] of Eq.  occurs due to unitary evolution according to

(2.57 may be described by the twd, operators

AS'=e 7, (2.61)
wherer is selected such that eiigrHqgic] gives the desired

A =/1—e~7[|00)(01]+|00)(10]]. (2.62  interaction. During this same time period, unwanted environ-
mental interactions due td ., cause the system to become
This result is the basis for an optical quantum bit regeneraéntangled with the environment; this leadsdecoherence
tion Schemdzg], which uses a kind of quantum nondemoli- because information from the SyStem is left behind in the
tion measurement to detect the jump into the vacuum stat@nvironment. The decoherence experienced during a single
described byA,. time step7 is Ag/g, which we define to be the parameter
Comparing Eqs(2.61) and (2.62 with the operator de- M, known as thedecoherence per time stdigure of merit
scription of the phase damping of a single qubit, Egs36  [25]-
and (2.37), we find an interesting similarity: in both cases, ~Now, the coupling of the system to the environment is
one of the operators is proportional to the identity. Thus welypically through many modes; in other words, the Hamil-
may interpret the decoherence process for these cases t@gian takes the formilen,==qsy€, . Because the environ-
sometimesompletely leaving the wave function unchanged ment contains a large number of modes, no Jaynes-
However, such a conclusion does not seem possible for tHeummings type revival ever occutand information, once
amplitude damping of ainglequbit—no linear combination lost to the environment, never spontaneously comes back to
of Egs. (2.54—(2.56 give the identity operator. In other the system However, we have shown in the previous sec-
words, noB,’s exist which are linear combinations 8£9, tions how a single-mode environment can be used to model
such that we may use E@2.9) and have one of thé, the effects of d.ecoherence on a smgle qubit. Thus, we shall
operators be proportional to the identity. This suggests that §5€ anHen, Similar to that employed in Eq2.38, namely,
more complex circuit may be required for correction of er-
rors due to amplitude damping, as compared to those due to _X 4 a e
) o ? Henv=%5(1-0%)0 (2.65
phase damping. This is physically reasonable, because the 2 y
amplitude damping process affects tliagonalterms of the
density matrix as well as the off-diagonals; it is a combina-for a single qubita. Note that because our model of the
tion of the effects of “pure” dephasing and relaxation. In €nvironment is a single mode, Rabi oscillations will occur on
this sense, it is harder to retrieve from the environment in2 time scale determined by the coupling constenso, in

formation required to reconstruct a state damaged by amplPrder to properly model decoherence, we must take care to
tude damping than by phase damping. limit ourselves to the first cycle. Thus, the decoherence per

time step parameter is given by

U= eiH noisy” (264)

F. Noisy logic gate operators A= —In|cosy| (2.66

So far, we have constructed a mathematical description of
the decoherence of “idle” qubits—other than the coupling This single-mode environment model is an approximation of
to the environment, each qubit is assumed to be interactintgality which shall be utilized in the remainder of the paper.
with nothing. Of great concern is what happens when decolntuitively, it is acceptable because since, after all, the sys-
herence occurs duringonditional dynamicg24], that is, tem contains only a single qubit worth of information which
while two or more qubits are interacting. With what prob- can be lost. The detailed relationship between our model and
ability will the correct result be obtained? Will the impact of other specific microscopic environmental interactions will be
these errors be more significant than “memory” errors?  described elsewhere.

Using a theory of continuous measurement, Pellizzari The effect of phase damping on a logic gate can be mod-
et al. [14] performed simulations to address this issue for aeled as shown by the following example. The Hamiltonian
ion-trap quantum computer. They calculated the fidelity of afor the 7w/4 rotation gatéuseful for transforming between the
controllednoT (CN) gate with simultaneous spontaneouscomputational and one-particle Bell stgt@sting on mode
emission (amplitude dampingand cavity decay. Here we a may be written using spin notation as
present an alternative approach which uses the linear opera-
tor and single-wave-function theory described above. We
constructnoisy logic operatorsvhich describe the operation
of imperfect quantum logic gates, and use these to evaluate
the fidelity of the rotation and CN gates. where the first term gives the desired rotation

w X
HR=ZG§+§(1—U§)U§E", (2.67)
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giving the “noisy” CN gate operators described by the in-
, (2.69  teraction operators

R— T 1)1
B I I
and the second term describes phase damping. The unitary . _ .
evolutionU = exp(Hg) simultaneously performs the desired for k={00,01,10,1}. Using this formalism, we calculate the
rotation while entangling the qubit with the environment. To fidelity of a CN gate with simultaneous phase damping to be
obtain the final state of the qukit the environment is traced
out, leavinga in a mixed state. This is exactly the same as in Fen~1-0.86: (2.76
Eq. (2.7), as described in Sec. Il A. .
. to lowest order in\.
h The operator_i\lk n E? EZ.lO)_mf?deI the effect of deco-_t Similarly, the effect of amplitude damping of a single
erence on an idie qubit. In a similar manner, we may wri equbit may be modeled using the interaction Hamiltonian
operatorsR, which describe the simultaneous effect of rota-
tion and phase damping. It is convenient to take the initial

Cy=(k|Uc\|00) (2.79

X
state of the environment to B8) (spin-down, such that Hzﬂv=§[aioia+ o? o], 2.77
0 ™ whereo .. = o,*ioy, are spin raising and lowering operators.
1 4 This is similar to the usual quantum-optical beamsplitter
Ro=(0|Ug|0)= | ex - +H.c. Hamiltonian Hgs= x(a'b+b'a), and results in the same
-3 i x kind of coupling for our purposes. Following the same pro-
269 cedure as above, we find the amplitude damped rotation and
(2.69 CN gates to have fidelities
and FR—1-1.80, (.79
o = F8=1-2.20. (2.79
1 4
Ri=(1|Ul0)=5-| expt —Hc. ). In Sec. 111 D we will find that these results are useful—they
-7 i x may be composed to establish an upper bound on the fidelity
2.70 of an entire circuit with multipleR and CN gates.
Thus[ ¢ou = @Ry ¥) is the output of a rotation gate with ll. EXTENDING QUBIT LIFETIMES
phase damping parametrized lyy Note that wheny=0, We now apply the theories developed in Sec. Il of this

Ro=R, andR, =0, which gives the expected result for the naner 10 describe the process of quantum error correction,
ideal case, with no decoherence. The fidelity of the rotatior,ng how it may be utilized to artificially extend the length of
operator is found to be time for which a qubit can be maintained in a coherent su-
perposition, despite the effects of decoherence. The general
—mi t 2.01_ idea which we present is general, and can be applied to cor-
Fr mm‘”; (ARRAY)I*~1-0400 27D recting any kind of error, by utilizing the appropriate error
correction code. However, for simplicity and to give a con-

to lowest order in\. crete example, we concentrate on correcting the errors due to
A similar result can be derived for the CN gate with si- phase damping, and present a detailed analysis of a three-bit
multaneous phase damping, using the Hamiltonian circuit which can perfectly correct a single error. We calcu-

late the fidelity of the perfect circuit, then apply our theory of
0 X e X by e noisy logic operators to calculate the fidelity of a circuit with
Hon=Hent 5(1-03)o+ 5(1-03)0,” (272 imperfect logic gates.
We show that despite the imperfections, in a certain re-
where the transform it) o= exdiHcy], the ideal gate has 9ime, aneffective decoherence ragmaller than the actual

the Hamiltonian decoherence rate can be achieved for the encoded “persistent
qubit.” Combining simulation results with theoretical pre-
- dictions for the fidelities of noisy gates, we construct a gen-
H%N=5(1— o) (o —1), (2.73  eral error model which predicts an upper limit on the accept-

able decoherence per timestep figure of marg,, which is
a function of the theoretical effectiveness of the error correc-

and the ideal operation is tion code, and the complexity of the circuit required.

A. Quantum error correction

C=exfiH2\]= , (2.79 An important conclusion from Sec. Il C was that the ef-
fects of phase damping on a quantum superposition state

between|0) and|1) can be understood as a classical, sto-

o O O -
o O -, O
= O O O
O »r O O
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a TABLE I. Syndromes for the eight three-qubit states.
|0) |0
1-a Input Syndrome Action
——— +++ 00 no error
44— 01 flip first bit
l-a . .
—4+— +— 10 flip second bit
11) o 11) o — 4t 11 flip third bit

FIG. 3. Binary symmetric channel, with crossover error prob-
ability 1— a. The input is on the left. or three bits are flipped, in decreasing order of probability.
Let us concentrate on the first two groups, which have the

chastic bit-flipping process. This realization immediately es-highest probability.
tablishes a connection to classical coding theory, as was first In classical error correction, a syndrome is calculated for
recognized by Shof7]. For example, we may use Egs. €ach received word which identifies the er(drany). For
(2.36 and(2.37) to interpret the errors introduced by phasequantum error correction, two orthogonal states must have
damping in terms of a binary symmetric channel, as showihe same syndrome_, such that the calculation Ieaves_ some
in Fig. 3. In the classical modgl), and|1) are independent quantum coherence intact. Here we calculate the two-bit syn-
signals, and crossover errors in the noisy channel cause ti§gome given in Table | for which bit complements are de-
signals to be interchanged. The quantum case is more subti@enerate(e.g., both+++ and ——— have the same syn-
because information is kept in the coherence betw@n drome, 00). The result tells us how the error may be
and |1) and this will be lost by classical error correction corrected, as long as only one bit flip has occurred. Such a
schemedsee[8] for more discussion scheme to detect and correct errors is depicted schematically
Decoherence is a quantum process which leads to destrut Fig. 4. Physically, we may consider the two additional
tion of quantum information. Although we have an analogydubits introduced in Eq3.1) as “probes™ which allow us to
between noisy quantum processes and classical informatid#etect what the environment does to our original single qu-
theory, it is incomplete—we cannot naively utilize classicalbit: This is made possible by initially correlating the probes
codes to preserve quantum information. This is possible only¥ith our system, and then measuring the probes in the cor-
if codes are devised which leave a portion of the Hilbertr€Ct basis after decoherence. Assuming that only one error
space untouched. In other words, the codes must have a deccurs, the measurement indicates which of the effects of
generacy. Fortunately, a solution using codes and their duaBds- (2.11 and (2.12 has occurred, allowing us to correct
has now been worked out in great detail by Shor, Steane, arfie state of our qubit. .
others. Here we present an example using three qubits, and !N reality, two- and three-bit errors may occur; when these

discuss the physics in detail. probabilities are taken into account, we find that the output
Suppose that we start with the state qubit has imperfect fidelity; specifically, after correcting for
single-bit errors, we obtain the output
) =al == =) +b|+++), 3.1
[fou=Va®+ a®(1=a)[a]— = =) +b[+++)]
which results from encoding the qubit of E&.1) using two @ Va(l—a)2+(1—a)ia|+ ++)+b|— — —)],
CN gates and three single-bit rotations. Note that this is a
single qubit of informatiorencoded using three physical qu- (3.3

bits. Using Eq.(2.44), we find that phase damping causes us |, . L
to obtain the mixed-state output which has the fidelity

s F=minlC o v (3.9
[%m):a [al———>+b|+++)], a N )
1 e 3e” 3\
a|__+>+b|++_> BE— 2 + 2 %l—T—FO()\?’). (35)
®a\l—al al—+—)+b[+—+)
al+——)+b|—++) This may be compared with the result for no-error correction,
Eq. (2.6), in which F decreases as instead of as\?. The
al—++)+b[+—--) improvement granted by this error correction scheme prom-
eVa(l—a)| al+—+)+b[—+—)
al++—)+b|——+) —]
R — oo Fin [— S8
69(1—a)3/2[a|+++>+b|———>] (32) 1 Pne galgulate
yndrome
scrats:hpad 1 Measure
The vertically grouped terms should be understood to each bits —

be separate terms with the same prefactor; they have been
placed together for emphasis of the following point: there are FIG. 4. Scheme for detecting and correcting single-bit-flip errors
four distinct possibilities. Either no error occurs, or one, two,occurring to the stata|—)+b|+ + +).
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In the first step the qubits are decoded:

Decoherence

| 1) =a| 100+ b|011), (3.6

al0p+b11,)

sinceR simply rotates single bits from the Bell basis. After
Error the second time step we have

oy —»—— Correction —»— |?) |y, =a|111)+b|011). (3.7

FIG. 5. Schematic of a system for preserving a quantum bitf he two CN gates cause the syndrome to be calculated and
using periodic quantum error correctid, ) and|1, ) are multiple-  l€ft in the second and third qubits. This clever “in-place”
qubit states which encode logical zero and 1. The lower wire carrie€alculation originally appeared {8]. Note how the first qu-
scratchpad qubits which are discarden reset after the calcula-  bit is left unentangled with the syndrome bits. The measure-
tion. ment in the third time step thus leaves us with

ises the possibility for extending the period for which a qubit a|1)+b|0), (3.9

can be preserved with high fidelity. We study this in detail
next. which is the inverse of the original state, Eg.1). In fact,

the syndrome measurement result 11 tells us that the third bit
B. Three-bit circuit (from the right; the “most significant bit” in the stringis
O{Iipped, so that in the we may correct the error by applying a

Frequent error correction ensures that the probability X .
ndx operation, and arrive at

uncorrectable errors occurring remains small, and thus o
might hope that a single qubit could thus be stored indefi- | 5)=a/000) + b|100). (3.9
nitely with high fidelity. For example, a loop could be used
to store an encoded qubit which circulates periodicallyNext, coding is performed by the reverse process: the three
through a circuit which detects and corrects errgig. 5). bits are entangled by the two CN gates, giving
Ancillary scratchpad qubits prepared in a definite initial state
would be used for the syndrome calculation and then dis- |14)=2/000 +b[111), (3.10
carded, and in this manner a constant entropy flow can b
maintained(order flows in through the ancilla, and out into
the environment via dephasing of the stored qubit |gs)=al— — —=)+b|+++), (3.11)

For example, a circuit which implements the three-bit
scheme described previously is shown in Fig. 6. Five timegiving a perfect qubit.
steps are required, in which as many operations are per- Here we have seen how the syndrome calculation and
formed simultaneously as possible. Broadly speaking, duringneasurement leaves the quantum coherence of the encoded
the first two time steps, the qubit is decodéy converting — qubit intact. Furthermore, knowledge of the syndrome result
from the Bell basis back into the computational basisd  indicates if the qubit is intact, or if any one of three single-bit
the syndrome is calculated. The syndrome result is measurefrors has occurred. When only one bit error occurs, the out-
in the third time step, and a classical computer corrects anput will always bea|— ——)+b|+ ++), but if more than
detected error by performing a single-bit flip. During the one bit error occurs, we obtaaj+ + +)+b[———), which
final two time steps, the qubit is re-encoded. is the wrong result. However, this occurs with smaller prob-

An example will serve to explain the ideal operation of ability. The result is that by virtue of the error correction, the
this machine: suppose that a single-bit error due to phaskdelity of a single (pure statg qubit encoded as specified
damping occurs, transforming the qubit of Eg.1) into the  will not be ~1—6\/2, after one cycle through the circuit,
state|yp)=a|+ — — ) +b|—++) which is input to the cir-  but, rather, - 3\?/4. Because this encoded qubit effectively
cuit. decoheres slowethan a single isolated qubit, we refer to it

as apersistent qubitPhysically, it may be envisioned as a

&nd finally, rotations put the qubits into Bell states,

metastable collective state which has a lifetime that is kept
- I * lf’.él ¢ I [RI—> artificially long by an active measurement and correction
B O o SR Proeess
PC
—P-—E G E o+ Rl C. Processing errors
f T=1 4 T2, T=3 g T4y T=5 Unfortunately, our quantum-bit memory does not operate
o) i) i) ) %) s} ideally, due to errors which occur during the finite time re-

quired for decoding, error detection, correction, and recoding
FIG. 6. Quantum circuit for performing error correction for a Of the persistent qubit. For example, energy could be lost
three-bit codeR is a /2 rotation which flips between the compu- from the system during operation of the logic gates, the syn-
tational and the Bell basis, arRlis the inverse operation. Vertical drome bits could be imperfectly measured, or phase random-
lines denote a controlleloT, with the control line distinguished by ization could occur. This is a serious issue, because it is not
the solid dot and the signal by a cross. Meters denote ideal me#&lear that the gains achieved by error correction may be re-
surements in thg|0),|1)} basis. PC is a classical computer, and alized in view of the additional errors incurred during the
o, is the Pauli spin matrix operator. required processing.
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The key figure of merit is the amount of decoherence per
time step\, because this determines how much error occurs

during processing. For example, suppose that we have the

Hamiltonian
H=g[c'c(a’b+b'a)]+ 1 [afa(el+e,) +bTb(el +ey)
(3.12

where the first bracketed term is the Hamiltonian for a logic

+cle(el+eg)l,

Fidelity F

123

0.9r

0.8

single

N

lumped

- continuous

\
\

. ideal

gate(the quantum optical Fredkin gatend the second term
describes coupling with the environmefithase damping
After time 7= /g the logic gate completely switches, but .l .
simultaneously, decoherence of amoNrt A7 occurs. This ' N
causes errors in the switching, which lead to imperfect error Rl m " o SN
correction. Current experimental quantum computer realiza- , ,
tions suffer from large\x; how critically will this limit the 10° 10° 107 10
feasibility of using quantum error correction to provide long-
term qubit storage? o ) ] ]
To better understand this issue, we performed extensive FIG. 7. Fidelity cyq Of the persistent qubit after a single cycle
numerical simulations of the three-qubit circuit presented irf"ugh the imperfect error correction apparatssiid line—with

. . L ‘lumped” and continuous phase damping. For comparisBige
Sec. Il. The input is chosen to be a superposition state (dashed ling and Fiye, (dotted ling are also shown. For small
(3.13

1—Feyae=5.50 (lumped and 1- F¢qe~3.924 (continuoug, as
shown in the insetM =8.
It fed into theT=4 step of animperfectversion of the circuit _ _ o .
in Fig. 6, which, after two time steps produces an imperfectlydespite the errors, we find that the fidelity of the persistent
coded qubit described by the density maipix,, which is ~ qubit is better than for a single qubit, i.€%cycie> Fsingie-
calculated by applying two CN and thrée gates to the However, although this naive “lumped decoherence”
input. p,q is stored forM time steps during which phase model,'ln WhICh. phase damplng is art|f|C|aIIy msgrted after
damping occurs, calculated using Eq2.48, with the logic operation in each time step, is a practlgal way to
a=(1+e M)/2. This resultp/, is then fed into the decod- €valuate the qualitative effect of decoherence, it unfortu-
ing circuit, stepsT=1-3 of fﬁe circuit, giving the output nately does not necessarily reflect reality. True decoherence

pouts calculated by applying threR and two CN gates to  ©OCCUrS simultaneouslywith the logic operation, and can

" We evaluate the output of this single processing cyclé@use mu_ch more §ubtle errors by r_edgcing not only the fi-
g;‘)/qcalculat\i/ngu utpu 15 SINGIe Processing Yl elity of single qubits but also the fidelity of the entangle-

ment between qubitsl8]. We evaluated the effect of phase
—mi ) _ damping during the logic operations by replacing the ideal
F min . 3.1
cycle ol (Yol oud fin)] (319 R and CN operators in the circuit with the noisy rotation
Feyele May be compared against two benchmarks: the fidelitypPerators of Eqs2.69 and(2.70, and the noisy CN opera-

of an isolated single qubit after the same elapsed time usingrs of Eq.(2.79. For example, the output of the first CN
Eq. (2.6), gate in the fourth time step is given by

Decoherence per time step A

|in)=2[0)+b|1),

1+e (M+5M

Fsingle= % CipaCl,

(3.15 Paa (3.17

k={00,01,10,1}1
and the qubit fidelity after one cycle of an ideal circuit, where the density matrices describe the state of the three
qubits used in the circuit.

Theoretically, this calculation is equivalent to a full den-
sity matrix calculation including all environmental degrees
of freedom. However, in practice, such a calculation would
from replacingh with M\ in Eq. (3.5). involve 64X 64-sized matricegusing one additional qubit to

As a first attempt to evaluate the impact of possible proimodel the environment for each qubit in the perfect
cessing errors qualitatively, we assume that each bit indeperircuit)—and for larger systems this becomes impractical.
dently undergoes phase damping of an ameuntafter the  Use of the noisy operator formalism allowed us to use only
logic operation in each time step. This is calculated by ap8X8 matrices in the entire calculation, with the cost of two
plying Eq.(2.48, with a=(1+e *)/2. We assume that the extra matrix multiplications for th&® gate, and four for the
decoherence rafgoupling strength to the environmemtur-  CN gate. The result is shown in Fig. 7; a similar result for
ing processing is the same as during storage. This is na@mplitude damping during processing is shown in Fig. 8.
necessarily true, of course, but we shall amend this problem We find that for this particular circuit, the lumped deco-
in Sec. Il D. The results from this naive model, shown in herence model actually overestimates the error, and, despite
Fig. 7, are promising in that there exists a regime, in whichthe processing error, regimes exist for which the persistent

2—e 3MA 3g™MA
4 b

Fidea™ (3.16
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FIG. 8. Fidelity Fc Of the persistent qubit after a single cycle
through the imperfect error correction apparatsslid line—with
continuousamplitudedamping andvl = 80. Fjngc (dashed lingand

Fideal (dotted ling are also shown. For small, 1— F¢,e~13.5.

qubit outperforms the single qubit. Furthermore, errors du
to amplitude damping during processing result in a wors
Feyce than for phase damping. As discussed in Sec. Il E, this
may be because amplitude damping affects the diagonal
well as off-diagonal elements of the density matrix. Thus
contrary to popular belief, relaxation may actually be more
damaging to quantum computing than phase damping ev
when they are of the same magnitude. Clearly, further worl

must be done to clarify this issue.

Results from both of these simulations seem to indicat
that the fidelity of the persistent qubit is only marginally
better than for a single qubit. However, it must be kept in
mind that this is true only after a single cycle through the
circuit. The great advantage of error correction arises from
its effect in limiting theaccumulationof errors. Due to de-

€

en

55
that is, the logarithm of the error probability after a single
correction step. For small timeand decoherence, we find
that the persistent qubit has fidelity

3M2)\?2

quubil(t)wl_ mt (3.2)

when errors occur only during storage, and not during pro-

cessing. This model agrees quite well with our numerical

simulation of a perfect circuit; however, as can be seen from
Figs. 7 and 8, this expression must be modified when errors
occur during processing. We shall next see how processing
errors cause the fidelity of the persistent qubit to decrease not
as\?, but rather, at best, as>2

D. General error model

Generally speaking, a persistent qubit is created by using
a quantum error correction scheme to encode a single qubit
of information using multiple qubits. The effects of decoher-
ence during storage imposed by unwanted interactions of this
many-body state with the environment can be detected and
émdone by the decoding circuit, as long as the error is not too
Severe. Furthermore, it is important not to introduce too
many additional errors during coding and decoding. These
égquirements can be modeled in a general way, giving a re-
Sult which is applicable for an arbitrary scheme, as we show
‘here.
Two competing processes happen to a persistent qubit: on
lEhe one hand, as the storage tideis increased, the prob-
ability of unrecoverablgmultiple-bit) errors happening in-
Sreases, which is bad. However, Msincreases, the fraction
of time spent out of the noisy circuit decreases, which is
good. Thus an optimal value for the qubit storage time
M gt EXiSts.
We may calculateM,, using the following general
model, good for small decoherenke Motivated by the re-

coherence, the fidelity of a qubit decreases muItipIicativer,SUIt in Eq. (3.16, let us assume that a generalizhiebit

such that a small amount of error grows exponentially with
time. Thus, after time¢, an isolated single qubit with no error

correction has fidelity

1+e M
Fsingd ) = ———~1—

In contrast, with error correction, the error growth rate i
slowed by correcting a fraction of error in each pass throug
the apparatus. We may model the fidelity of the result as

1+e heilt
Foqubidt) = —

where theeffective decoherence rate; for the persistent

qubit is

N VRS

=t

2

In[2~7:ideal_ 1],

(3.18

(3.19

(3.20

S

coded persistent qubit has fidelity

Fstorage= 1— aM?\2, (3.22
where « is the probability of an uncorrectable error occur-
ring despite having an ideal circuit. This is proportional to
A2, because we assume that only single-bit errors are cor-
rected for; for a better scheme, the exponent afhould be
increased. Note that we do not assume what kind of error the

I;.:ircuit corrects for—it may be phase damping, or even any

single-bit error. The fidelity of the circuit is modeled as

Feireuit=1— BN+ B,)\Z (3.23

after theN time steps required for the circuit to operaggeis

thus the probability of an error occurring in an imperfect
circuit. Phenomenologically, any systematic error, for ex-
ample, errors in physical implementation of the computing
system, including possible measurement errors, could also be
included in this parameter. For completeness, we also in-
clude a higher-order terrg’, but this will not be relevant to

the first-order solutions we obtain below.
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simulation
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FIG. 9. N\ as a function of storage tim, simulation(solid)
and theoreticaldashedl results, calculated for our three-bit circuit

model, and\=3X 10-%. The circle is at Moot Aopd- FIG. 10. Fidelity F.,qt) of the three-bit persistent qubit as a

function of time, simulation result assuming processing errors due
to continuous phase dampirigolid); theoretical optimum?-‘[,pt(t)

In our system, the q_Ub't is stored fbf time steps, then (dotted; and single-bit caseFngdt) (dasheg, all calculated for
processed by the circuit. Each of these cycles leaves a qubit_ 15-3 gnqm =72.1
op 1.

with fidelity

This result describes the fidelity of a persistent qubit with
decoherence during processing, and should be compared
with Eq. (3.21). For small \, this is still better than
Fsinge™ 1= O(\)t, but is worse thatFyquir~1— O(N?)t be-
cause of the noisy circuit.
Numerically, we find in our specific three-bit circuit that
— = IN[2F e 1]. (3.2 the multiplicative accumulation of errors due to periodic cor-
M+N rection results in a minimum effective decoherence rate
Aot Which is a factor of 2 smaller thah for small \.

m;ﬁ'%%égﬁe?:;’cge;:%dJzaz;fé;tpgonp%:goggr;m\e E:ne Taking this into account, we find that for the parameter val-
' P ge Mn ues of «=0.75, 8=3.92, andN=5, our simulation results

The numerical result, shown in Fig. 9, indicates the existence N ;o 302
of an optimal valueM o at which ¢ is minimal, as ex- '€ WeN” mod;zled byMOpt~?'28./\/X’ Nop =347, and
pected. As an aside, it is interesting to note that the inpufop{(t)~1.71\""1, as shown in Fig. 10.

state for which the fidelity is minimum iﬂ@>+|1>)/\/§ for _ At some point, the effective decoherence rate of the per-
M <M p;, and|0) for M>M . This is because, in the first sistent qubit is no longer less than the decoherence rate of an

regime, the decoherence of the imperfect circuit dominates'fo'ated §|ngle qubit, i.eAef~A. This happen; when the
while in the second case the decoherence during stora rcuit noise completely overwhelms the effectiveness of the

dominates. This switch is part of the reason why the transicode In correcting for errors. Analytically an order-of-
tion appears to be so abrupt magnitude estimate for an upper bound »nis given by

}-cycle~ ]:circuitfstorage (3-24)

Since each cycle requirdd + N time steps, we may define
an effective decoherence rate

Nef=

simulation
The minimum)\ . is obtained when

Nerir= 1148 \Ja (to lowest order inx). Herea is the probabil-

ity that an uncorrectable error occurs; by improving the cod-
ing scheme, this can be reduced. However, doing so may
increase the complexity of the circuit, and thus incregse

1/2
M opt= ( ﬁ) —N, (3.2  the probability of a processing error occurring. At wogstis
ak proportional to the total number of gates in the circuit; this is
. . likely to be the case for persistent qubit circuits, in which
to lowest order. I\ AS B—>O,.then NO processing errors entanglement probably involves all qubits. From an algorith-
oceur, anq we find that the op'tlmal storage tiMg,—0 as mic standpoint, there are undoubtedly optimal configura-
expected(it cannot be negatiye Note that Moy~ 1/‘/X_- tions, but that is beyond the scope of this paper.
Plugging back inta\, we find that the minimum achiev- e formalism presented in this section may be applied to
able effective decoherence rate is theoretically any general quantum-bit memory system. In fact, the noisy
gate fidelities derived in Sec. Il F may be used immediately
)\opt~4m)\3/21 (8.27  to place an upper bound on the performance of an arbitrary
circuit. For example, if we assume that phase damping oc-
and the corresponding optimal persistent qubit fidelity is  curs during the processing of our three-bit circuit, we may
estimate thatB3<6x0.40+4x0.86=5.84, from counting
Fopft)~1-2 \/a_,B)\3’2t. (3.28 six R gates and four CN’s in the circuit. This differs from the
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B=3.92 arrived at from the simulation because the statg@rocessing, when the decoherence per time step is smaller
which minimizes the fidelity of the circuit is different from than A, the circuit can still be effective. We studied a
that for just the single gate, and also because not all gatespecific circuit which corrects phase damping errors, but the
must work perfectly for the circuit to behave correctly. How- technique we outline may incorporate any error correction
ever, in general, ther, B8 model is useful in that the end code. The general result of our model is to predict that for a
result of various physical effects may be estimated immedieircuit with error probabilityB\ due to decoherence during
ately. For example, different decoherence rates during stoprocessing, andvA? due to the imperfection of the algo-
age and processing can be accounted for by adjusting thesithm, a persistent qubit can be constructed with fidelity
parameters. 1—2\apB\%%. Physically, the persistent qubit may be un-
Thus knowledge of the circuit structure and the individualderstood to be a metastable collective state whose lifetime is
gate fidelities can be used to bound the performance of artificially prolonged by repeated decoding, measurement,
persistent qubit circuit. Fromr and g3, a critical value which  and encoding.
establishes a minimum required decoherence per time step A persistent qubit would be much simpler to implement
threshold can be estimated. If the decoherence in the expetihan any of the elementary quantum algorithms proposed
mental system is worse thax;, then the circuit will be thus far, and in particular, much easier to accomplish than
only marginally viable. On the other hand, M¥<\. is  factoring. Furthermore, it would be a useful step toward an
achieved, then good results can be expected. The example e¥entual goal of indefinite storage of quantum information.
Fig. 10 shows that for a circuit with decoherence occurringExtension of our analysis to storage of physically separated,
during processing, the lifetim@lefined as the time until the entangled qubits is straightforward, and would be relevant
fidelity falls below 0.95) of a persistent qubit can be an orderfor realizations of concepts such as guantum money and

of magnitude longer than for a single isolated qubit. guantum teleportatiof26]. We thus suggest as an alternative
and, we believe, more practical first step—the utilization of
IV. CONCLUSION guantum error correction techniques to implement a long

. . lifetime single-qubit memory.

We have presented a useful formalism for modeling the  pggsiple physical implementations include single-photon
decoherence of quantum bits, based a general linear operaigfiantum hit§22,5] or single ions in an electromagnetic trap
description of quantum mechanics. From this, we deriveq27 4. For the latter case, our analysis could be extended to
simple matrix operators to model phase damping, Equationgy|cylate noisy counterparts to Cirac and Zolldgsand V
(2.39 and (2.37) and (2.44, and the amplitude damping, gperators, in a manner similar [@4]. Together with a real-
Egs. (2.54—(2.56), of idle “memory” qubits. We also de- igtic estimate of systematic errors expected in an experimen-
rived “noisy logic gate operators” for qubits undergoing a | implementation, this should result inand 8 parameters

/4 rotation, Equation&.69 and(2.70, and the conditional  \yhich may be used to evaluate the performance of an ion-
dynamics of a controlledioT, Eq. (2.795. These operators trap persistent qubit.

allow an immediate evaluation of logic gate fidelities, and
because they act only in the Hilbert space of the system, they
also allow a S|mulat|0|j of decoherence without including ACKNOWLEDGMENTS
extra states for the environment.
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