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This paper is primarily concerned with the development and application of quantum bounds on mutual
information, although some of the methods developed can be applied to any figure of merit indicating degree
of correlation, such as coincidence rate. Three basic techniques for obtaining bounds are described: mappings
between joint-measurement and communication correlation contexts; a duality relation for quantum ensembles
and quantum measurements; and an information exclusion prirjdiplé. W. Hall, Phys. Rev. Let74, 3307
(19959]. Results include a proof of Holevo’'s communication bound from a joint-measurement inequality; a
measurement-dependent dual to Holevo’s bound; lower bounds for mutual information under ensemble and
measurement constraints; information exclusion relations for measurements described by probability-operator
measures; a proof that Glauber coherent states are optimal signal states for quantum communication based on
(noisy) optical heterodyne detection; and an information inequality for quantum eavesdropping. Relations
between the three techniques are used to further obtain upper bounds for quantum information, and to extend
the information exclusion principle to a joint-measurement con{&&050-294P7)04701-X]

PACS numbg(s): 03.65.Bz, 42.50.Ar, 42.50.Dv, 89.70c

[. INTRODUCTION square represents a symbol or a code word.
For quantum systems, complementarity immediately
The prediction of correlations between physical systemglaces rather strong constraints on mutual information. A
is a fundamental role of physical theories, and of quantunsimple semiclassical example is provided by a “quantum
mechanics in particular. Such correlations may be, for exchessboard,” corresponding to some ardaof a two-
ample, between the outputs of two detectors, between thdimensional phase space. The Heisenberg uncertainty prin-
transmitter and receiver of a communication channel, or beCiple implies that a quantum systeffchess piece’) occu-
tween a scatterer and a scattered probe signal. It is often ®f€s a regior{“square”) in A with area of at least/2(so that
interest to optimize these correlatiofes.g., for secure key the product of its position and momentum half-widths is
distribution, maximum information transfer, or efficient esti- greater thart:/2). Hence the maximum number of nonover-
mation of scattering parametgrsvith respect to some figure lapping regions available to the systemA#4, implying
of merit such as coincidence rate, mutual information, maxithat the amount of error-free data which can be gained per
mum likelihood, etc. It is also of fundamental interest to Measurement about the phase space location of the system is
explore and understand the effects of quantum mechanics dipunded by
such correlations.
The natural figure of merit for the degree of correlation | max=1002(A/2%). @
between two statistical sources is tt@hannohn mutual in- ) )
formation, which quantifies the average amount of error-fred 0r example, the maximum energy constraint
data which can be obtained about a sequence of outputs from

one source, given the corresponding sequence of outputs p%(2m)+V(x)<E (29)
from the other sourcgl,2]. This amount is generally ex- . o _
pressed in terms of the number of binary digibits) re-  implies the semiclassical information bound

quired to represent the data. It is maximized when the
sources are perfectly correlated, minimized when they are
completely uncorrelated, i@inlike entropy invariant under
continuous reparametrizations of the source outputs(amd

like coincidence rates and maximum likelihgodoes not (where integration is over all real values of the integpand
rely on any mapping connecting the output ranges of the tw&@imilar heuristic bounds for bosonic channels are given in
sources. [3].

A simple classical example is the random placement of a For classicalsystems, where states can occupy arbitrarily
chess piece on some square of a chessboard as the first steall regions of phase space, there is no fundamental finite
tistical source, and the subsequent result of measurement bbund on information analogous to E@). The derivation of
which square is occupied as tferfectly correlatedsecond Eq. (1) is, of course, heuristic in nature; however, this in-
source. Clearly the error-free data gained per output of thequality has a rigorous counterpart known as Holevo's theo-
second source, concerning the output of the first source, iem [3-5] (see also beloy Other rigorous demonstrations
log, 64=6 bits of information. Note that such information of differences between quantum and classical information
could be used for communication purposes, where eachave been given in the areas of entangled s{éegjuantum

I max=109

f dx[2m(E— V)1V (2b)
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computing[7], quantum cryptograph{8,9], quantum mea- quences of measurement results for some fixed sequence of
suremen{10], and complementary observabldd,12,. identical input statege.g., a singlet stajd15].

This paper is primarily concerned with the development In either context lefP;; denote the joint probability that
and application of quantum bounds on mutual informationiwo sourcesX andY, generate the correlated pair of outputs
however, the methods developed in Sec. Il and Il can bdX;,Y;). Defining the marginal probabilities
applied toany figure of merit for the degree of correlation
between two sources. The determination of information P=> Pij ijE Pij (3)
bounds is not only important for exploring quantum limits on i i

correlations, but also because little progress has been made . . .
on exact results in quantum information thedgy notable  cO'"esponding, respectively, to outpytbeing generated by

exception is a paper by Davigs3], which significantly lim- X and outputy; being generated by, the Shannon mutual

its the possible measurements which must be considered |Hformat|on is defined by1,2]

determining maximum information gain for a given en-

semble of statgs I(Pyj) =2, Pijlog,Pi;/(PiP;). (4)
The necessary elements of quantum information theory L]

are briefly reviewed in Sec. Il, and a general correspondenc

between joint-measurement and communication correlatio

contexts is noted which allows results derived in one contex

to be mapped to results for the other context. An interestin :
orresponding sequence of outputs from the other source

example is a proof of Holevo's theoref8-5] (which . )
bounds the information which can be gained by measure{-l’z]' Note that it reduces to zero in the completely uncorre-

ment on a given ensemble of quantum states in a commun ated casé;; = P;P; , and becomes equivalent to the entropy

cation context, from a joint-measurement inequality. An ap- of either source,~Z;Pilog,P;, In the perfectly correlated
pendix to this section outlines the context-independen aseP;; =P, §; . Further, summation i) may be replaced
interpretation of mutual information. y integration in the case of continuously valued outputs,

In Sec. Il a “source duality” property of mutual infor- and is invariant under reparametrizations of such outputs

mation (first noted in a quantum communication context in[l’_ll_i]'e uantum form of.- differs markedlv in the commu-
[14]), which formally transforms signal states into measure- q ij y

ment outcomes and vice versa, is exploited to deriv{éi?ggzhagstj0&“?:33?;;?;”;5(;%222?; \/I\zt:]hsomrems?rn?ln-
measurement-dependent correlation bounds from meas: PUX; 9

urement-independent bounds. In particular a measuremerit.aiePi ON a Hilbert spacét, which is transmitted with some

dependent dual to Holevo’s theorem is obtained and disprior probabil_ity p; . Further, each outpu; of sourceY is
cussed in Sec. IlI B. Source duality further provides aassomated with a result of some measurerderin general

- . A can be represented by a probability-operator measure
method for obtaining lower bounds for quantum correlations, . "
which is applied to mutual information in Sec. Il C. (PQM) onH [3’17].’ 1.€., by a set of positive operatofa} o
In Sec. IV a recent “information exclusion principle” which sum to the identity operator, such that the probability

[12], which bounds the sum of information gains correspond—Of mgasurement resp}ti .for statep is given by trpA;].
ing to measurements of complementary observables, is heJ-h“S in the communication context one has
ristically motivated and applied to generalized measure- T A A
; : . PI] pltr[pIAJ]! (5a)
ments, single-mode field quadratures, heterodyne detection,
and quantum eavesdropping. Upper bounds for mutual inforand the corresponding mutual information will be denoted by
mation are obtained which are stronger than those provided
by Holevo's theorem. Results from Secs. Il and Il are used I(Pij)EI(A|E), (5h)
to extend the information exclusion principle to a joint-
measurement context, and to obtain bounds on the sum #fhere€ denotes the ensemble of signal stdtes p;}.

information gains corresponding to a given measurement on N contrast, in the joint-measurement context each source
two different ensembles. X andY is associated witicompatibl¢ measurements/

Results are discussed in Sec. V. and N, respectively, with correspondingcommuting
POM’'s {M;} and{N;}, and the measurements are made on a
fixed input statep. Thus one has in this context

s outlined in the Appendix, this quantity ihe average
mount of error-free data which can be gained per member
f a long sequence of outputs from one source, about the

Il. QUANTUM INFORMATION P, =t pM;N] (63)
ij iNj1

A. Formalism . . . .
) ) _ ) ) ~and the corresponding mutual information will be denoted by
As mentioned in the Introduction, information theory is

concerned with correlations between the output sequences of L(Pij)=I(M N|p). (6b)
statistical sources. In @@mmunication contexhese sources

comprise a “transmitter,” which outputs a sequence of sig- An interesting example of mutual information in the joint-
nals, and a “receiver,” which outputs a sequence of meaimeasurement context arises from noisy quantum cryptogra-
surement resultéone for each received signaln a joint- phy. In particular, ifl) denotes the singlet state of two spin-
measurement contexhe sources comprise two detectors1/2 particles, define the rotationally symmetric “noisy”
(e.g., polarization detectorsvhich generate correlated se- singlet stateVg by [18]
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We=F|y){(¢|+[(1—F)/3]1r, (78 in the communication context. This is just Holevo’s theorem
[3-5] (see also Sec. lIJ and its(rather simplg derivation
where O0<F=1 and % denotes the unit operator on the trip- here demonstrates a direct connection with the joint-
let subspace. If two observers respectively measure the spineasurement bound0).

of the particles in a fixed directioa, the corresponding mu- For the case of measurements on two subsystems as
tual information may be calculated from E@3), (4), and(6) above,p; in the correspondence mappif® can be replaced
as by its partial trace over subsystem 1 without destroying the

1 5 correspondence. Substitutir{g) (with this replacementin
I(o'V-a,0'?-aWp)=log,2—H([1+2F1/3), (7b)  (11) gives the result

where H(x) denotes the entropy functionx log,x—(1
—x)log,(1—x). This quantity is related to the number of  (M,N|p)<S(py)— > tpM;1S(tra[ pM;1/tr[ pM;])

binary digits per joint measurement which can be used to ' (123
establish a cryptographic key between the obsef&résee

also Appendix It is maximized forF=1 (perfect correla-  for the joint-measurement context. Interchanging the labeling

tion), corresponding to generating 1 binary digit per mea-of the subsystems ifi.29 further gives
surement, and minimized fd¥=1/4 (zero correlation The

observers should, of course, be able to do better by making

measurements on product stal¥s® - - - @ Wi (studied in |(M'N|P)$S(P1)_; trL pN;IS(tro[ PN )/ N ]).
[18] in the context of state purificatipn (12b)
B. Context mappings Note that addition of these two inequalities implies immedi-
ately that

Here formal connections between E¢sa) and (63 will
be demonstrated, which allow results obtained in one context I[(M,N|p)<[S(p1)+S(p2)1/2, (13)
to be transformed into results for the other context. In par-
ticular, for p;, p;, andA; as in Eq.(5a), let {|¢;)} be a previously proved for the case plire p [19,20.

complete orthonormal basis in an ancillary Hilbert speice Application of Eq.(8) to inequality (128 simply yields
Then the corresponding joint-measurement context definedlolevo’s theorem(11) once more, while the application of

by Eq. (8) to inequality (12b) gives the trivial result
[(Al&)<I(A|€). Thus Holevo’s theorem is equivalent to in-

Mi=loiXwil,  Nj=A;, equality (129, and no stronger than inequali¥0).
8 The correspondence mappin¢® and (9) between the
PIE pil i) (i ® p; two contexts can, of course, be applied to other circum-
I

stances, such as informatidower bounds[22,23, or even

to other measures of correlation such as coincidencdsate
yields, via Eq.(6a), an equivalent joint distributio®;;, and  gec. \j. Finally, it should be noted that the mappi(®) is
thusl (M,N|p) =1 (A[€). Conversely, foM;, N;, andpasin  only well-defined for countable numbers of signal states, as
Eq. (6a), the corresponding communication context definedonly in this case do appropriates;) exist. It would be of

by interest to generalize E@B) to arbitrary distributions of sig-
nal states.
pi=tlpM;],  pi=(M)¥2p(MpMtr pM;],
A =N ©) [ll. BOUNDS FROM SOURCE DUALITY
i— N
. . . - o A. Source duality
yields, via Eq.(5a), an equivalent joint d|str|but|oﬁ>ij , and _ .
hencel (A[€)=1(M,N|p). Holevo’s theorem(11) provides a finite quantum bound
As a useful example of such mappings between contextd0r mutual information in the communication context. The
consider the information bour{d9,20 theorem was proved by Holevo in the case of a finite-
dimensional Hilbert space and finite numbers of signal states
[(M,N|p)<S(p1)+S(ps)—S(p) (10 and measurement outcomp$|, and generalized by Yuen

and Ozawd5] (see alsd3,23,24). The upper bound is a
in the joint-measurement context, which holds for the cas@unction of the signal ensemblg and in particular is inde-
whereM andN refer to observables of two subsystems 1 andhendent of the measuremehtmade at the receiver. It pro-

2 of a quantum systerf21]. Herep,, p, denote the reduced vides, for example, a rigorous basis for the result that the
density operators fip],try[ p] corresponding to subsystems 1 optimal information rate which can be transmitted per unit
and 2, respectively, anfi(o) denotes the quantum entropy time by a wideband bosonic channel with transmission

—trlo log,o] of stateo. . ~ powerP is (wP/3%)"%In2 [3,5].
Substituting (8) in  (10) one finds, noting In practice, the class of measurements available at the
p1=2ipil )¢l andp,==p;p;, that receiver is likely to be more restricted in scope than the class

of signal ensembles which can be generated at the transmitter

[(AlS)<S o= S 11 [25]. It would therefore be useful to have an upper bound,
(A1©) (2.: p.p.) 2.: Pis(p) @ analogous to Eq(11), which depends upon the actual mea-
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surement to be made at the receiver. Such a bound is ob- B. Dual to Holevo's theorem

tained in Sec. Il B below, based on a source-duality prop- g pstitution of Eqs(15a, (15b), (16), and (18) into in-

erty of mutual information. This property is further exploited equality(11) immediately yields theneasurement-dependent
to obtain lower bounds for mutual information in Sec. Il C. dual to Holevo's theorem:

Now, it is clear from definitiong3) and (4) that mutual
information is invariant under the interchanging of sourkes on 12
andY. This invariance is indeed expected for any measure of  (Al&)<S(pg)— 2 L pAIS(pEAipE It peA D),
correlation between the sources, and for mutual information . (19)
reflects the property that the data obtainable aboatitputs
from Y outputs is equivalent to the data obtainable abbut wherep, is the ensemble density operator in Efj6). This
outputs fromX outputs (see also Appendjx In the joint- may be compared to the measurement-dependent lower and
measurement context of Eq&a) and (6b) such an inter- upper bounds for mutual information given by Scutaru and
change corresponds to swapping the labélsndN of the by Schumacheet al, respectively[24], which are also re-
measured observables, and is formally trivial. lated to Holevo's theorem.

In contrast, for the communication context of E¢Sa) Unfortunately, while this bound depends upon the re-
and(5b) such an interchange reverses the fundamentally difeeiver measurement as desired, it is not amenable to straight-
ferent roles of the signal ensemifieand the receiver mea- forward exploitation. For example, if the measurement is
surementA: signal states in some sense become measureomplete(i.e., Aj=|;)(¢;| for suitable kets{|¢;)}), then
ment outcomes, and vice versa. The multiplicative form ofeach Pj' in Eq. (15b) is pure and the summation term in
P;; in Eq. (58 immediately suggests a formal modeling of relationship(19) vanishes, leaving a weaker bound in general
this reversal, via the duality transformation than relationshig11). The bound is therefore directly appli-
cable only to incomplete measuremetggy., measuring only
the sign of a position observable, inefficient photodetegtion
and in general must be numerically evaluated. The amount of
work required depends on the size of the signal subsHace
For example, if communication is via two pure states then
H¢ is two-dimensional, and the entropies in relationgHi®)
can be determined by diagonalizingk2 matrices.

It is worth remarking on the cases in which the dual
bound(19) can actually be achieved via some suitable signal
, e ensemblef. Now, Holevo's bound11) can be achieved only

A =pips " pips", (150  when the signal states all commui4]. Thus for the dual
bound(19) to be achieved thpj’ in Eq. (15b must commute
and where (on the signal subspadé, spanned by,), i.e.,

=&, A=A, pi—pl, pi—p ASA,
(14)

where
pj =trlpeA;l, (153

p| = peAipg It peA ], (15b)

pe=2 Pipi=2 Pjp|=pe - (16) AiPAS= APy (N He). e
[ ]

Summing ovel in this relation further yields

Relations(159—(15¢) are chosen to ensure that [A;.pe]=0 (on Hy) (20b)

Pii=pitlpj Al T=pitr piA1=Pj; , (17 which from Eq.(20a implies the{A;} must mutually com-
mute on Hg. It follows that the bound(19) cannot be
and thus from Eq(4) one has in particular achieved(except for the trivial case of puyg) for complete
measurement§| ¢;)(¢;|} with nonorthogonalkets, such as
L(A'[E)=1(A]E). (18 canonical phase detecti@6], and ideal heterodyne detec-
tion (see Sec. IV .
A restricted form of this duality property is noted in Sec. 3.1 |t s interesting to note that bour{@9) cannot be achieved

of [14]. Note that the duality mapping relatidi4) is well-  even in some cases where tha;} do commute. For ex-
defined even when the measurem@nis continuously val-  ample, suppose that ohl; one has a continuous POM
ued. {|x){x|} with non-normalizable orthogonal ke{g). Then

Itis convenient to define a “signal subspace{;, by the  there isno density operatop, satisfying Eq.(20b) above
linear span of the eigenvectors corresponding to nonzero ejnoting the constraint fip.]=1). This result reflects a basic
genvalues op;. As the symmetry of17) suggests, one has asymmetry between states and measurements in standard
&"=€andA”"=A onH;. Strictly speaking, the PONIA/} i quantum mechanics, in that “state” kets must be normaliz-
Eqg. (150 must in general be supplemented by a projectiorable whereas as “measurement” kets need not be.

A, onto the subspace orthogonalHg (corresponding to the An example of this asymmetry is provided by optical ho-
zero eigenvalues gfy), to ensure thak;A{ = 1. Applications modyne detection of a single-mode optical fi¢tdt equiva-

of source duality to mutual information are given in Secs.lently, a position measurement on a harmonic osciljafor

[1l B and IIl C below. Noting property17), analogous appli- the case wherp; spans the whole Hilbert space. Choosing in
cations may, of course, be made to any figure of merit whichparticularp, to be a thermal state, with number-state expan-
is a symmetric function oP;; (see Sec. Y. sion
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FIG. 1. The “dual” lower boundL in Eg. (24), the “suben-
tropy” lower boundQ in [22], the “binary-channel” lower bound
M in [23], and the Holevo upper bound in relati¢hl); plotted as

a_function ofp for a signal ens_emblg correspo_n_ding to transmis- corresponding to transmission of the three sta®s cos|1)
sion of two pure stateg), |y)) with prior probabilitiesp, 1—p and  5ing0), cossl—1)—singl0) with equal prior probabilities of 1/3;
overlap|{y{¢)|=1/2. These quantities bound the maximum informa- where [0), |1), |~1) are mutually orthogonal. Note that and H

tion which may be obtained per signal at the receiver. EQU&B6N  qnsirain the maximum information which can be gained per signal
implies thatL andM are equal for any overlap in the cage 1/2. to within a range of at most 0.3 bits.

FIG. 2. The “dual” lower boundL in Eq. (24), the “suben-
tropy” lower boundQ in [22], and the Holevo upper bourtd in
relation (11); plotted as a function o# for the signal ensemble

_ -1 -n binary communication based on the transmission of two pure
pe=(Nst1) ; (1+Lng)~|m)(n| 21) states|), |¢) with prior probabilitiesp and 1-p, respec-
tively, and with a significant overlalgy{¢)|=1/2. Also plot-
and average photon numbes>0, the upper bound ted is the corresponding “subentropy” lower bou@dfrom
[22], and the “binary-channel” lower bounkll from [23], as
well as the Holevo upper bounid from relationship(11)
above. It is seen that outperformsQ for most values op,
but only reache® for the casgp=1—p=1/2.
Algebraic calculation shows that in factandM are al-
waysequal for the case of two pure statés, |¢) transmitted
with equal prior probabilities of 1/2, with

1(X|E)<S(pg) =logy(ng+ 1) +nglogy(1+1/ng) (22

following from relationship(19) is notachievable. Indeed, as
shown in[12] using the information exclusion principle, the
stronger upper bound lg@l+2n,) holds for this case.

C. Lower bounds

Source duality does not only provide dual bounds to L(E)=M(&E) = (X4 logxx, +x_logyx_)/2, (26)
known bounds. The dual observal#¢ and dual ensemble
&' can themselves be used as estimates for optimal obserwherex.. =1+(1—Kyi¢)
ables and ensembles, respectively, to obtain ugeftiough In Fig. 2 L(€) is plotted as a function of for the trans-
generally nonoptimallower bounds. To demonstrate this, let mission ofthree pure stateg0), cosf|1)+sing|0), coss|—1)
| ma(€) denote the maximum information which can be ob-—sin|0) with equal prior probabilities 1/3, 1/3, 1/3, where

|2)1/2.

tained by measurement on a signal ensendbliee., |0), |1), |[-1) are mutually orthogonalQ andH are again
plotted (there isno corresponding bouni [23]). It is seen
I max €) =SUm{I (A|E)}. (23 thatL(€) places a relatively tight bound diy,.,(£), and is

optimal when the signal states are orthogd(tat0).

As an infinite-dimensional example, consider the case of
single-mode optical communication where a Gaussian en-
|max(5)>L(5)i=|(A'|5)=E pip;XijlogX;;  (24) semble of Glauber coherent states is transmitted, i.e., the

i coherent state

Then one immediately has the lower bound

from Egs.(4), (5), and(15b), where

12— lay=exp(—[a|?2) > (n1)”Y2a"|n) 27)
Xij=tlpips "pjpe "l (25) n

The lower bound24) is in fact optimal in the case that is transmitted with probability
the signal statep; are orthogonali.e., p;p;=0 fori#j), as
it reduces to the Holevo upper boufitl) (with correspond- p(a)=(mng) ~texp —|al?/ny), (28)
ing mutual information— X, p;log,p;). Its degree of useful-
ness is variable, however, with best results apparently for theshereng denotes the average photon number per sifial
case of signal states with equal prior probabilities. In this casep; is given by Eq.(21) above, and_(£) may be
In Fig. 1 the bound.(£) is plotted as a function gb for  calculated from Eqs(24), (25), (27), and(28) as
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L(&)=log,(ng+1). (29

This is close to theipperboundS(p,) in Eqg. (22) [following
from relationshipg11) and(21)], and thus provides an ex-
cellent lower bound. The dual measuremahin this case is
just a rescaled heterodyne measurenteaé Sec. IY. Note
that the corresponding subentropy lower bou@dcannot
exceed 0.609 95 bhit22], and so is far less restrictive than
Eq. (29 in general. Equation&6) and(29) and Fig. 2 sug-
gest thatL is most useful when the entropy pf is as large
as possiblge.g., equal prior probabilities, orthogonal signal
states.

Finally, ameasurement-dependdatver bound may also FIG. 3. A semiclassical “quantum chessboard” as discussed in

be derived from source duality. In particular, IEMA,/J) Sec. IV A, corresponding to a rectangular region of phase space

denote the maximum information which may be gained Viawith position and momentum half-widthsX andAP, and divided

measuremen#, on the class of signal ensembles with en-nto Ny =8 columns an,=8 rows. The minimum “square" size
semble densit); operater Thus a system can occupy igidrom the uncertainty principle, and hence

the sum of the position and momentum information gains, corre-
sponding, respectively, to measurements of which column and row
is occupied, is bounded as per Eg5) of the text.

«— 2AX ——*

el Ap) =SUR:, {1 (Al)}. (30)

One then has, using relationshi@s, (5), and(15), the lower

bound As a semiclassical example of information exclusion in
un

the communication context, consider a “quantum chess-
board” as discussed in the Introduction, corresponding to a
rectangular region of a two-dimensional phase space with
position and momentum half-width§X and AP (see Fig.
=—2 2 trpAjllog,tr pA1+ X, Y;jlog,Y); 3). If the region is divided intd\; columns andN, rows as
] " per Fig. 3, and signals are generated by placing a system at
(31)  random in one of th&;N, “squares” formed thereby, then
the information gains corresponding to measurements of po-
whereY;; is the joint probability distribution, sition and momentum, respectively, are given by

%l Ap)=L* (Ap): =1 (AE)

Yii =t p*2Aip™2A 1. (32 1(X|&)=log,Ny, 1(P|&)=log,N,. (34)

As an example, leA represent ideal heterodyne detectionBut from the uncertainty principle each signal must occupy
of a smglle—mode optical field[3,27], with corresponding_ an area of at least A2 implying the constraint
POM {7 *a){af}, where|a) is the Glauber coherent state in 2%N,N,<4AXAP. Combining this constraint with relations
Eq. (27) anda ranges over the complex plane plfs chosen  (34) gives theinformation exclusion relation
to be the thermal state in E(R1), one finds the lower bound

I(X|E)+1(P|&)<log,2AXAP/#. (35
L*(A,p)=logy(ns+1) (33
Thus for a fixed phase space area the position information

from Eqgs.(31) and(32). This is, in fact, theoptimalbound  c3p pe increased only at the expense of the momentum in-
[corresponding to transmission of a Gaussian distribution ofy;mation and vice versa.

coherent states as per Eq®7) and (28) abovd, ie., Surprisingly, inequality(35) for position and momentum
L*(A,p) =15a{Ap), as will be shown in Sec. IV D. information can in fact be rigorously derived fatl signal
ensembles, providing thatAX and AP are interpreted as
IV. INFORMATION EXCLUSION the root-mean-square position and momentum uncertainties

of the ensemble density operajgrin Eq. (16) [12] (see also
Sec. IV C below. Since information is non-negative the rig-
One intuitively expects that the better some quantum oberous inequality immediately implig@nd hence is stronger
servable is at extracting information in a given scenario, théhan the Heisenberg uncertainty relation férand P. Fur-
worse a complementary observable will perform in that scether, it is sufficiently strong to obtain th&éght bound,
nario. In particular, it should be possible to increase the inlog,(1+2ng), on the information which may be gained by
formation gain corresponding to measurement of the firshomodyne detection on an ensemble of single-mode fields
observable only at the expense of decreasing the informatiowith average photon numbers [12] (see also Sec. IV C
gain corresponding to the second observable, and vice versaelow).
This idea has recently been formulated as a rigorous “infor- The strategy used ifiL2] to obtain information exclusion
mation exclusion” principle for quantum observables?], relations from entropic uncertainty relations will be used
which will be further generalized and exploited here to ob-here also. In particular, if the entropi€&A|p), S(B|p) of
tain strong bounds on mutual information in the communi-the measurement distributions #f and B for any statep
cation and joint-measurement contexts. satisfy

A. Motivation
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A<S(Alp)+S(B|p)<U(p), (363 that for nondegenerate Hermitian operators on an
N-dimensional Hilbert space thgA;} and{B,} correspond
then one has a corresponding exclusion relation to sets of one-dimensional orthogonal projections which sum
to the identity operator, and hence relati(@9) reduces to
L(A[E)+1(B]E)<U(ps) —A. (36b)  relation (38), with =;d(A)=3,d(B,)=N andK ,z=Cc?.

) ) ) ] ) To prove relation(39) suppose first that the POM{#;}
In the following subsections the information exclusion and{B,} are completei.e.,Ajzlaj)(ajl andB,=|b,)(b,|.

princip.le wiII. be ggneralized and ap_plied in. a number 0fAIthough{|aj)} and{|b,)} are not necessarily orthonormal
ways, including a tight bound for the information which can sets, the entropic uncertainty relation

be gained vianoisy) heterodyne detection, and new upper
bounds for mutual information. Results will typically be pre-  S(A|[#)(]) + S(B||¢){#])= — 2 logomax; {|(a;|bi)[}

sented in the communication context, in the form _ .
may be derived from Riesz’s theorem exactly as per(Ep.

[(AIE)+1(B|E)<I(A,B,py). (37)  of [29] for an arbitrary pure statgy)(i{, whereS(A|p) de-
notes the entropy of the measurement distributiorAdbr
However, in Sec. IV F below extensions are given to thestatep. SinceS(A|p) is concave with respect {©[2] one has
joint-measurement contexvia context mappings bounds  for generalp, noting definition(40), that
on the sum of information gains for a single observable and
two different ensembleévia source duality and to an in- S(A|p)+S(B|p)=—logK ap - (41)

equality for quantum eavesdropping.
a yiorq pping Moreover, the maximum entropy of a distribution ovwdr
: outcomes is trivially bounded by lgd/. Hence, since
B. Discrete observables d(A;)=d(By) =1 for complete observables, one has

It was shown in[12] that two observables andB cor-

responding tqpossibly degeneratéHermitian operatorson .

an N-dimensional Hilbert space satisfy the information ex- S(A|P)+S(B|P)$|092$ d(/-\,)+|0922k d(By).

clusion relation (42)
I(A[E)+1(B|&)<2log;Nc, (38)  The exclusion relation(39) immediately follows for com-

plete observables from relatiorid1) and (42), using rela-

wherec denotes the maximum overlgfa|b)| of eigenstates  tions (363 and (36h).
of A and B. For A=B one hasc=1, and hence that For the case oincompleteobservable#\ andB one may
I(Al&)<log,N [this also follows trivially from the Holevo define corresponding complete observabds and B* by
bound (11), noting S(pg)=<Ilog,N]. In contrast, forcomple-  the POM's{|a; )(a;, |} and{|bys){b,d} which achieve the
mentary AandB (where the distribution oB is uniform for  minimum in Eq.(40). Thus the probability distributionp; ,
each eigenstate af and vice vers28]), one hac=N""? g of A andB for some state may be obtained by summing
and hence the strong bouh@A|&)+1(B|€)<log,N. over the “degeneracy” indices ands of the distributions

Thus|(A[€) canonly reach its maximum of log when  p, . q,; of A* andB*, respectively. Hence measurement of
the complementary observatiecarriesno information. For A or B cannot yield more information than measurement of

nondegeneraté\ this maximum is obviously attained by A* or B*, respectivelyLemma 2 in[13]), and one has
transmitting eigenstates @& with equal prior probabilities

1/N. However, it is not so obvious what the optimal signal [(A|E)+1(B|E)<I(A*|E)+1(B*|&)
states are ifA has only non-normalizable eigenke(s.g.,
position and momentumand/or does not correspond to a <log, ; d(|a;)(a )

Hermitian operatofe.g., canonical phase detection and het-
erodyne detection The information exclusion principle will
be shown sufficiently strong to provide solutions in some
instances, in Secs. Iil/ C anc? \% DIO X;s 40 (bl Kaver |-
Relation(38) will be generalized here to
EUt d(A;'():Ebrduajr)(ajrl)a d(Bé)EESd(Lbk§><ka||), gg;j
*px = construction, and the exclusion relati
[(AIE)+1(Bl&)=logs| 2 d(A)Z d(BYKag| (39 foher A8 DY

. It should be possible to improve significantly on the en-
for observablesi andB corresponding to POM'$A,} and tropic uncertainty relatio41) for the case of non-Hermitian
{B,}, respectively, where(E) is defined to be the “degen- Observables, and hence upon the corresponding information
eracy” of probability operatoE, i.e., the number of nonzero €Xclusion relation(39). For example, consider a “tetrahe-

eigenvalues of, and dral” measurementM on a spin-1/2 particle, with POM
{1/2m;Xm;[}, where the|m;) are eigenstates of spin-up in
K ag=min{max , . [l [bks) 1?3, (40)  four unit directionsm; which form the vertices of a regular

tetrahedron. Choosing=B=M in relations(39) and (40)
where the minimum is taken over 4lig;,)} and{|b,¢)} such  yieldsKyy=1/4 and hence the trivial resul{M|)<log,2.
that 2 |a;, )(a; |=A; and Z4b,s) (b =By are orthogonal However, a variational calculation over pure states shows
decompositions of operators; and By, respectively. Note that S(M|p)=log,3 [thus improving on relatiori41) which
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only gives S(M|p)=log,2], and hence via relation&36a, I(X0|£)~I—I(X¢|€)Slogz{(2ns+ 1)|cof (6— ¢)/2]|}.
(36b), and(42) one finds the stronger result (48)

I(M]&)<log,4/3. (43 Choosingf— ¢=/2 in relation(48), one recovers the result
that the information gain from homodyne detection has the
strong bound log(2n¢+1) [12], which may be compared
with the weaker bound22) following from Holevo's theo-
rem. A similar bound for heterodyne detection will be ob-
tained in Sec. IV D from thex=2 case.
C. Position and momentum To prove inequality44a), note from(45) that co\V) is a

If X andP are n-vectors denoting the position and mo- réal symmetric positive-semidefinite<n matrix, and hence

mentum observables of a quantum system, then one has tRe2y be diagonalized by sonrexn rotation matrixR with

Note that the bound in inequalit43) is optimal, being
achieved by transmission of the four signal stéptelslj) with
equal prior probabilitie$13].

corresponding information exclusion relatiofi<] R'R=1 and detR)=1. Defining the observablé/=RV one
then hasR covV)R'=covW) where co¢W) is diagonal,
1(X|E)+1(P|E)<3 log, defcov X)com P)/(#/2)?] and hence that
(443

defcov(V)]=defcovW)]=varg W) --varg(W,),

<3 10g; 2AAXm)e( AP/, (49
(44b  where var denotes variance with respect pg. Moreover,
the entropy ofV is invariant under rotatiof16], and hence

where via Eq. (20) of [12] one has
cov(V): =t p WV =t p VIt peVT]
(V= (V) (VT— (VT ) s S(VIp)=S(Wipe)=(n/2)logp2me+ (1/2) 2, logzvars(Wr)
denotes the covariance matrix ofvectorV, and AV,)¢ =(n/2)log,2me+ (1/2)log,def cov(V)]. (50

denotes the root-mean-square uncertainty of compovignt

of V with respect to statp.. The two middle inequalities in  Summing the inequalities obtained fraf®0) with V=X and

this chain were noted without proof {12] and will be de- v=P, and noting the entropic uncertainty relati80]
rived further below.

Inequalities(44a and (44b) collapse to the exclusion re- S(X|p) +S(P|p)=n log,mefi (51)
lation (35) for the casen=1. It is of interest to note that this ’

case may immediately be generalized to give an exclusio . . . .
relation for two arbitrary quadratures of a single-mode opti_?;(éb?xclusmn relatiof443 follows using relation369 and

cal field. In particular, for a harmonic oscillator with anni- ’ - . .
hation operatos define the quadrature operaf@ Finally, to obtain !nequallty(44b) no_te that'th'e determi-
nant of a non-negative real symmetric matrix is no greater
X,:=(ad’+a’e1%/2. (46) than the product of its diagonal terrfi31]. Hence

Then [X,,X,] =(i/2)sin(6—¢) and soX, and X, are for- defcovV)]svarg(Vy)---varg(Vy), (52
mally related exactly as per position and momentum, identi-

fying A with |sin(6—¢)|/2. Thus the generalized exclusion and relation(44b) follows immediately from relatiori44a).
relation

L(X|€)+1(X 4| €) <I0g[ 4(AX )l AX ) e/ |SIN( 6— )] ] D. Heterodyne detection

(47) It has been shown that under ideal conditions, optical het-
_ _ _ erodyne detection measures feemmuting real and imagi-
follows directly from relation(44b) with n=1. ) nary parts of the operatar+ b, wherea andb represent the
For an average photon number per signahgftr[p.a'a] annihilation operators for the signal and image-band fields,
one has respectively] 3,27]. Heterodyne detection thus estimates the
12 s oo complex amplitude of the signal field, subject to image-
(AXg) (AX ) e=((XG{XG) =X+ X5) /2 band noise. The effect of the latter noise is minimized by
2 w2 _ 2 2 choosing the image-bound field to be in a vacuum state, and
=(Xa+ Xp)2+cod 60— ¢) (X~ Xp)/2 for this case the measurement statistics are given bythe
<[1+]|cog 6— ¢)|]<X§+X§)/2 function of the signal statg [3,27],
=[1+]|cog 6— ¢)|](2ns+1)/4, Q(alp)=m"Xalp|a), (53

wherea=(6+ ¢)/2 andB=(6+ ¢+ m)/2, and hence from Eq. wherea ranges over the complex plane dafl is defined in

(47) that (27).
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To bound the information which may be gained by het- Gaussian noise models the effects of thermal niz28,
erodyne detection, leX,, Y, denote the quadrature observ- linear amplification and/or attenuation no{83], and ineffi-
ables corresponding @ andb, respectively{see Eq.(46)], cient photodetectiofi34] on the statistics of heterodyne de-

and introduce the observables tection; with corresponding noise variances
X=Xo+Yo, P=X,pt Y., X' =X.p—=Y.p, Yoo [exp(iw/kT) — 1172, (593
P’ =Xo— Y. (54) n3mP/at= {1 —exg — 2A(N,— Nl)]}/(l—NllNz),(5gb)
Thus [X,P]=[X",P'] =i, with all other commutators van- _
ishing, and so from relatiot44b) one has, withn=2 and nneft- det— 1 — )/ 9, (590

h=1, 7

respectively, wher&k, o, and T are Boltzmann’s constant,
[(X,X'|E)+1(P,P'|E)<(1/2)log,[ 4 varg(X)varg( P)] frequency, and absolute temperatuxg;(N,) the number of
, , excited (unexcited amplifier atoms, and\ is an amplifica-
+(1/2)logl 4 var(X")var(P") 1. ion constan{33]; and » denotes detector inefficiend4].
(55) Equationg59) are obtained by studying the effects of the
respective noise processes on the measurement statigics
For a vacuum image-band field the ensemble density operder heterodyne detection. These effects break down into a
tor has the formp®|0)0|, which substituted into relation rescaling of the statistics, which does not affect information

(55) yields gain[16], and an effective Gaussian noise term as per either
Egs.(13) or (26b) of [32] (general effects of Gaussian noise
L(X,X"|E)+1(P,P'[&)<logy{4[ var«(X,) + 1/4] on quantum optical communication are studied3@]).

To derive bound(58), suppose that Gaussian noise of
variancen,, is present. The corresponding measurement sta-
tistics for statep are then given by th® function[Eqg. (263

X[ varg X ) + 1/4]}.

Under the constraims=tr[p5aTa] the argument of the loga-

rithm is maximized by the choice vd&Xy)=var(X,p) of [32]]
=(2n4+1)/4 [cf. the derivation of relatiort48)], and hence Q(a|p,ny)=Q(a|F(p))=77*1<a|1“(p)|a), (60)
L(X,X'|E)+1(P,P'|E)<2 logy(ng+1). (56)  \where
Now, from relations(46) and (54), X+iX'=a+b', and ) - . :
so the first term in relatior§56) is in fact the information F(P)=(Trny)’lf d2pB e |Al7Inygha’—p*a,op"a~pa
gained by heterodyne detectidithe{), say. Moreover, itJ (61)

denotes the antiunitary transformation on the image-band
field which mapsb to —b, then the joint distribution oP  and integration is over the complex plane. Moreover, from
and P’ for any signal statep®|0)0] must be invariant relations(36a and(36b) with A=B=het one has
under P—UPUT=X’, P’—UP'UT=X, p®|0)(0|]—U|p
®]0)(0|UT=p®|0)(0|. Hence, for a vacuum image-band I (he{&,n,) <Sma(hell (pe)) — Smin(heil'(p)) (62
field, a joint measurement d® and P’ is equivalent to a , ) ,
joint measurement ok andX’, implying the second term in where the.maX|mum will be evaluated over;r all signal en-
relation (56) is also equal td (hel&). Thus relation(56) re- ~ Sembles with average photon numbgr-tr{p.a‘a], and the
duces to the bound minimum over all stateg.

Now, from Eq.(60)

I(het&)<logy(1+ny). (57

— 2
It follows immediately from the lower boun¢33) that S(hell(p))= Jd @ Qla|l'(p))logaQ(alT (p)),

inequality (57) is strong, i.e., the best possible bound de- (63
pending on the average photon number per signal. The
bound is achieved by transmission of a Gaussian ensemble of[ > 2 _ —1[ 42 +
Glauber coherent states, as per E@Y) and (28) [3]. In d*eaf Q(a|r(p))—tr(r(p)a77 fd ala)ala
contrast, the Holevo boundd1) and (19) only yield the
weaker bounds(p;) in relation (22).

Inequality (57) may be generalized to the strong bound (64

=t[['(p)aa’]=trpa’a]+n,+1,

I(hef&,n,)<log[1+ns/(n,+1)] (58)  where the relatiora| )= a|a) has been used, and the last
equality follows from Eq.12) of [32]. Hence the first term
when Gaussian noise of varianog is added to the signal on the right-hand-side of relatiai$2) is equivalent to maxi-
states. This bound is also achieved by transmission afizing the entropy(63) of a two-dimensional probability
Glauber states as per Eq&7) and(28) [32]. An analogous distribution Q(a|T'(pg)), subject to the quadratic constraint
bound for noisy homodyne detection is given[it2] (it is  (64). This is a well known variational problem in classical
not known if the latter is strong fan,>0). information theory[2], with solution
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Smaxheil'(pg))=log,me(ng+n,+1). (65  For example, letA correspond to some complete POM
{la;)(a;|} and& to a mixture{|y;)(¥;|,p;} of pure states. If
Further, to evaluate the last term %2, note that N, andN, denote the number of signal states and possible
concavity of the entropy functiongl2] implies that only measurement outcomes, respectively, then, using relations
pure states |¢)y¥{ need be considered. DefininKk  (24), (25), (31), (32), (39), and(40), the bounds
=S(hetT'(|)(H1))+ N\ ), where is a Lagrange multiplier

constraining the normalization ¢#), and noting from(61) 1(A|&)<log,[ NaNemax ;{pil(a;|pz Vi) |2
[see Eq.(199 of [32]] that
5., 10212 M2):
(T () (o) = (UIT (| a)aD] ) * & peehlez ™ 2
the variational equationK/d(#|=0 can be written as I (A|€)<log,[ NsNgmax j{pi|(aj|p§l/2| NG
(wlf dzaF(|a><a|)long(alF(|t/f><l/f|)>|¢>=>\|<!f>, +> h(Kayp¥%a)P)~ 2, h((aj|pela;))
(66) i’ !

73
which is satisfied by the Glauber coherent states in(Eg. 73

In particular, if |) is the vacuum state then from Egs. follow from relations (70) and (71), respectively, where

(60) and(61) [or Eq.(27) of [32]], h(x):= —x logyx.
4 4 5 For the particular case of a#-dimensional Hilbert space,
Q(all'([0)(0))= 7" (n,+1)""exd —|a|%/(n,+1)], with A Hermitian (i.e., (a;|a,) = &;,); equal prior probabili-
67 fies (i.e., pi=1/Ng); and ps=(1/N)1; the upper bound73)
and the integral in Eq(66) has the form reduces to
I(A[€)=<log,[N max ;{K(ay|)[*}], (74)
o7 [ Pala)(allCy+ Clal? T
reminiscent of inequality38). This may be compared to the
—C.[(1)+C.I'(aah=C.+C.(ata+n.+1 weaker bound logN following from Holevo’s theoren{11)
(1) +Cal(aa) =Cat Col L and its dua19).
(68)
where C;, C, are constants and the last equality follows F. Other applications
from Eqgs.(12) and(19¢ of [32]. Thus Eq.(66) is satisfied, Information exclusion relations for two observabfesnd
with A\=C,+Cy(n,+1), and from Eqs(63) and (67) one B in the communication context have the general form of
finds relation(37). Here it will be briefly indicated how this form
can be manipulated to obtain information inequalities for
Smin(he{l'(p))=log,me(n, +1). (69) joint measurements; measurement of a given observable on

two different ensembles; and quantum eavesdropping.

First, if each of two observabléd, andM, can be mea-
sured jointly with some observablé, then the information
bound

The upper bound58) follows immediately from Eqs(62),
(65), and(69).

E. Upper bounds

It will be now be shown how the information exclusion 12 \1/2
principle may be combined with source duality to obtain (M1 ,N|p)+1(M2,N|p)=<J Ml:MZa; N;“pN;
general upper bounds for quantum information, which are (75
related to the lower bounds(€) andL* (A,p) in Sec. Il C. . )

First, for an exclusion relation of the general form givenfor_ the joint-measurement context follows directly from re-
in relation(37), chooseB to be the dual observable in Eq.  lation (37) and the relations I(My,N[p)=1(M4]é),

(150). Then relation(37) may be rewritten in the form I(M32,N[p)=1(M;|¢), where€ is the ensemble given by the
context mapping

pi=tpN;T,  pj=(N)Yp(N)Y7tr[pN;]  (76)
whereL () is defined by Eqs(24) and(25). Second, choos- ) ) N
ing B again to beA\’, and rep|acin¢ by the dual ensemble analogous to Eqsg) The exclusion I‘elatIOI(]75) quantIerS

&' defined in Eqs(153 and(15b), one has from relatiot87) the notion that the more strongly an observaldlg is corre-
that lated with N, the less strongly a complementary observable

M, will be correlated withN.
[(A|E)<I(AA",pg) —L*(A,pg), (71 For example, ifM,; andM, correspond to measurements
of spin in two orthogonal directions, on one of two spin-1/2
where L*(A,p) is defined by Eqs(31) and (32), and the particles, andN corresponds to a spin measurement on the
duality relations(16) and (18) have been used. other particle, then from relation88) and(75) one has
Upper boundg70) and (71) are typically stronger than
those provided by Holevo's theoretil) and its dual(19). I(M{,N|p)+1(M,,N|p)<log,2. (77

[(AIE)<J(AA',pg)—L(E), (70)
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Hence the maximum correlation of lgybetweerM; andN

is possible only if there igerocorrelation betweeM , and C(AIE)=2 pi tipiATl,  C(M,N|p)=2 tfpM;N;]
N. Noting Eq.(9) of [12] an even stronger inequality holds, ' '

with 1(M3,N|p) added to the left-hand side of relati¢r?),

whereM ; corresponds to a measurement of spin along the, yhe communication and joint-measurement contexts, re-

remainin% o_rfthogoraal axis. ianal bl it th spectively. Thus for a boun@(A|€)<B(A,€) in the former
Second, if€, and &, are two signal ensembles with the context, the boun€(M,N|p)<B(A|€) in the latter context
same ensemble density operatorthen one can use source immediately follows withA and& given by the context map-

duality (Sec. Il A) and relation37) to derive an information ping (8). Moreover, the dual boun@(AJ&)<B(A’,) im-

inequality of the form mediately follows from the source duality relati¢h?), with
A’ and £ given by Egs.(15a—(15¢. Some results for
C(Al&) are given in[36].

The use of source duality to estimate lower bouf@i$
and (31) for mutual information under transmitter and re-
ceiver constraints may be similarly applied to other measures
of correlation. For example, the coincidence r&iéA|s)
when maximized with respect # and&, respectively(with
fixed pg), has respective lower boun@A’|£) andC(A[E).

An important feature of the information exclusion prin-
ciple (Sec. IV is its use for deriving tight bounds for infor-
mation gain, exemplified for homodyne detection by relation
S(48) (with 8—¢$=90°) [12], and for heterodyne detection by
dropper makes a measurement of an observabten the relations(57) and(58). These bounds cannot be derived from

signal states before they reach the receiver, thus obtainin ther H(_)Ievo’s the_orerﬁll) or its dual(19), suggesting that
1(Z|€) bits of data per signal. Assuming that the eavesdro MNformation exclusion relgtlons focomplementanobser- ,
: o : -tgbles can generally provide stronger bounds than Holevo's
theorem. Indeed, from the perspective of the ‘“quantum
chessboard,” Egs(l) and (35) (corresponding to Holevo's
theorem and information exclusion, respectiyelyield the
same upper bound for boti{X|&) and 1 (X|&)+1(P|E). This
P, =pitr {(pi) A 1= pitr pi 0 (A, (79 suggests for complementary observaleandB in general

that one can findJ(A,B,ps) as in relation (37) with

where is a completely positive map or “nonselective op- J(AB.pg)=~S(pe). o _
eration,” with dualZ* [17]. Thus from Egs(5a and(5b) the Whlle |_nformat|on exclusion is strong enough to yield the
maximum information available at the receiver is given byoptimal signal states for homodyne afubisy) heterodyne
1(Z*(A)[€), where* (A) denotes the observable with POM detection, the information exclusion relatidi39) is not

{£*(A})}. From relation(37) one then has the exclusion re- strong enough to derive tight bounds for non-Hermitian dis-
lation crete observables such as the “tetrahedral” measurement in

relation (43). However, it should be possible to strengthen
1(ZIE)+1(Z* (A)|E)<IZ,*(A),py), (80) this relation for such observables by improving the corre-
sponding entropic uncertainty relatigdl). This would also
which quantifies the notion that the eavesdropper in generamprove the related upper boundg2)—(74) for mutual in-
can gain information only at the expense of decreasing th&rmation.
information at the receivdi35]. Finally, it should be noted that the paper has dealt with
classical “bits” rather quantum ‘“qubits’[37] or “ebits”
[38]. The latter cases involve correlations between sources
which generate quantum states as outputs. However, given
This paper has in part been an exploration of the symmethat the correlations between two sources can be exploited
tries of quantum correlation&ontext mappings and source only by (eventually making measurements on their outputs,
duality), and their use as basic tools in obtaining new boundshis is not regarded as a physically significant restriction on
from old ones. Thus the dual Holevo boufiP) was ob- the results of the paper.
tained via source duality from the original Holevo bound Indeed, the qubit and ebit formalisms appear to be more
(11), which was in turn obtained via a context mapping fromconcerned with mapping given states onto particular target
the joint-measurement bourf@0). Similarly, the new upper states, under various mapping constraints, rather than with
bounds(70)—(74) for mutual information were obtained via source correlations per se. For example, Schumak3igr
source duality from the information exclusion relatid33)  considers generation of the product staie® p;,® -+ ® p;,
and (39). at some sourceX, with respective prior probability
It is worth emphasising that these tools can also be app;;pi,---pi. (WhereZ;p;=1), and subsequent generation of
plied to other measures of correlation. For example, if thecorresponding statesh(p;1®p;j»®---®p; ) at sourceY
output ranges of source¥ and Y are identical, then the where ¢ represents some physical operation.gifis con-
coincidence rat€(P;;) =%;P;; has the forms strained to include mapping the states into some Hilbert

(A€ +1(A|£)<I(D(£1),D(&2).p) (79

for any observablé\, whereD(£) denotes the dual observ-
able for ensemble defined in Eq.(15¢. Thus the more
strongly correlated an observable is with some ensetiple
the less strongly correlated it will be with a “complemen-
tary” ensemble&,. The upper bound71) corresponds to
choosingé, to be the dual ensemble defined by E(kba
and(15b), with £=¢&;. An analogous bound can be obtained
by choosing&, to be the “Scrooge ensemble” defined in
[22].

Third, consider a communication channel where an eave

ted, then the joint probability;; of transmitting signalp;
and receiving a measurement result corresponding; thas
the form

V. DISCUSSION
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spaceH, and thep; to be pure, then it is shown that for implies that nearly all sequencés,B) are “typical” [1,2];
sufficiently largeL the “average fidelity” i.e., any given pair X;,y;) will occur approximatelyL P;;
times for most sequences, and the remaining “nontypical”
sequences may be ignored as having a vanishingly small

F= 2 PP Pu total probability of occurrence. The probability of a given

P10, i

typical sequence follows as
XU pi1®pi2® - - - ®piLP(pi1®pi2® - - - @pjp)]
can be made arbitrarily close to unity, providing that P(a,B)~H (Pij)LPii:const,
1]

log,dim(H:) is greater thanLS(Z;p;p;). The quantity
log,dim(H ) is referred to as the number of qubits available,
and the result shows th&(Z;p;p;) qubits per component
statep; are necessary for high-fidelity transmission.
Similarly, in [38] products of L two-particle states
p®- - -®p on Hilbert spacéd;®H, are generated at a source
X, whereH; (H,) is the Hilbert space corresponding to the
L subsystem 1subsystem Pparticles. Operationg are then
sought such that the statégp®- - - ®p) generated at output
Y are orthogonal mixtures of maximally entangled pure
states. Under the constraints tipéds pure andp is composed Ny~ 2 H(P) Ny ~2LH(P), (A2)
of operations which act oH, andH, separately, it is shown
that for L sufficiently large the average “entanglement” of whereH(P;) andH(P;) denote the entropies of the marginal
the states in the mixture(p®- - -®p) can be made arbi- djstributions defined in Eq(3).
trarily close tol E(p), where for any pure stateonH;®H, Now if the sources are completely uncorrelated, with
one defines the entanglement in ebits to be P;;=P;P;, then Nyy~NyNy from Egs. (A1) and (A2).
B _ More generally, the correlation between the soureeices
E(o)=S(t[o])=S(trol o). the number of typical outputs, frolyNy to Ny . Thus the
Thus an average of up tB(p) ebits per two-particle state number of binary digits needed _to label the outp_qu IS Te-
can be obtained. duced from_ IogNXNy_ to !ogszy, i.e., the data residing in
Hence, while the qubit and ebit formalisms share somdhe correlation itself is given by
formal similarities with the communication and joint- N -
measurement contexts, respectivgtf. Egs.(11) and (13), logo[ NxNy /Nxy]~LI(Pj;), (A3)
respectively, they are primarily directed at mappings of wherel (P;) is defined in Eq(4) of the text.
given states onto target states rather than at correlations be- \y/ije ng. (A3) indicates that mutual information repre-
tween statistical sources as dlscussed_m this paper. Indeeds|(§mS an average amount of data per output pair residing in
two sour(_:esx and.Y generate.t_he pair of quantum statesq correlation, and so may be taken as a measure of the
(pi,0;) with asspc_lateq .probab|l|.tl?ij e.g., withP;; =p; 3 strength of the correlation, it has minimal physical content. It
and o;= ¢(p;)], it is difficult to find a general measure of does not show, for example, holP;;) is related to data

correlation with physical significance. This is perhaps be-htainable about one source from the other source, nor how

cause physics ultimately relies on measurements, and no OQUch data may be exploited
vious measurements are available in the general case. Second, defineNy; to bé the number of typical se-

guences a,B) with a fixed componeng. The total number
ACKNOWLEDGMENT of sequences can then be written as

| thank Robyn Hall for partial financial support.

and hence the total number of typical joint sequences of
lengthL may be estimated as

NXY% 1/P(Ol,ﬁ):2LH<Pij), (Al)

where H(P;;) denotes the entropy of the joint distribution
Pi; . Similarly, the numbers of typical sequences outpuby
andY, respectively, may be estimated as

Nyy=> Nxs - (A4)
APPENDIX B

Here the context-independent interpretation of mutual inMoreover, the number of binary digits required to represent
formation, and its physical significance as a measure of cothe possible output sequencasof X, given knowledge of
relation between statistical sources, are briefly outlinedoutput sequencg of Y, is reduced from logNy to log,Ny s -
Three roles of mutual information are distinguished, and thel herefore the amount of data gained about an unknown se-
relevance of Shannon’s coding theorg¢i?Z2] to the joint- quence of outputs of X, given the corresponding sequence

measurement context is discussed. of outputsg of Y, is (measured in binary digits
First, for two statistical sourceX andY as discussed in
Sec. Il A, consider a sequence of joint outputs of length 1(X[B)=10gNx /Ny - (AS5)

L:{(xil,yjl),(xiz,yjz),. . .,(xiL,ij)}. It is convenient to de-
note such a sequence by,8), wherea and 8 are the cor-
responding sequences of outputs{xil,xiz,. . "XiL}'
{yi, Vi, -y} of XandY, respectively.

For sufficiently largeL, the strong law of large numbers I(X|B)~LI(P”-). (AB)

If Nx|z is aconstani then it follows from Eq(A4) that it
has the valudNy,/Ny, and hence from Eq$A3) and (A5)
that
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thus justifying the interpretation of mutual information given Finally, if less tharl (P;;) bits of data per output of is to be
in Sec. Il A. ButNy|z is indeed(approximately constant. In  recovered per coding sequence, i.e.,Mg-L [I(P;;)—J]
particular, any typical sequengg of outputs ofY may be with §>0, then using EqsA1)—(A3) one has
decomposed into subsequengks B, Bs,. . ., whereg; con-
sists of(approximately L P; occurrences of outpy; . Each
subsequence has some corresponding numibef possible
typical subsequences; of outputs ofX, of corresponding
lengthLP; . By constructiorN; is independent of the parent
sequences [indeed one may estimats;~2-"i"(Fi’Pi) in
analogy to Eq(A2)], and thus one hally ;= II;N;=const

Probno errop~[1—27"/(Nyy/Ny)]Nxv/Nv
—exg—2—1 asL—ox. (A7)

Thus, for L sufficiently large, there are codings which
allow recovery of up tol(Pj;) bits of data per output per
coding sequence with arbitrarily small error. Clearly such a

as required. . . . o
. . . . coding may be exploited in the communication context by
Equation(A6) establishes the connection of mutual infor- using the sequences;, a,,. . ..ay as an alphabet for mes-

Qﬁgcr)rs]ovzlrtgethseh:ﬁns'gt?;n dailrt:Igetg:;]{ d]cég]eoi?l?r:gg Sglzl\j\f ansages, ar_1d_ restricting transmission to thes_e sequences.
further demo.nstrates that in principle this data is not difficult In th_e joint-measurement context there is no co_ntrol over
to exploit, in both the communication and joint-measuremengansmlssmn’ e., over the outputs Xt However if, for
contexts., xample, an observer Atgroups the outputs into sequences

; . of length L, and notes thgmutually agreef coding se-
Third then, suppose thaMl typical sequences of outputs _
of lengthL from X are chosen at randoray, .. . ..cry guencesy;, a,,...,ay as they appear, then the latter gen

say, to code foM distinct symbols. For an observer tto erate a random cryptographic key which can be recovered by

cr . an observer a¥ with an arbitrarily small error. From Eq.
distinguish without error between these sequences and N hi ;
thus obtain logM bits of error-free data, each possible typi- (A7) up toL 1 (Py) bits of key can be generated per coding

sequence a®l approaches 2(Pi)); hence, since the prob-
cal sequenced generated a¥ must correspond to at most _ .. .
. ; ability of a coding sequence M /Ny per group ofL outputs,
one coding sequence;, a,,...,ay . But if 8 does corre-

spond to some coding sequence, then the probability that a the average number of bits generated per output is bounded

particular one of the remaininyy ;—1 possible sequences
corresponding to 8 is also a coding sequence is
g=(M—1)/(Nx—1). The probability thanoneof these is
also a coding sequence is therefore

R<I(P;;)2"'Pi)/Ny~1(P;;)2~ HHPI=IP] - (AB)

where EqQ.(A2) has been used. Thus, in general, a balance
must be struck between a low error ratarge L) and a
reasonable value oR (low L), e.g., via error-correcting
codes[2,38].

Prok(no erroj=(1—q)Nx6~ 1~ (1—M/Ny)Nxis
=(1—M/Ny)Nxv/Ny,
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