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Quantum information and correlation bounds
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This paper is primarily concerned with the development and application of quantum bounds on mutual
information, although some of the methods developed can be applied to any figure of merit indicating degree
of correlation, such as coincidence rate. Three basic techniques for obtaining bounds are described: mappings
between joint-measurement and communication correlation contexts; a duality relation for quantum ensembles
and quantum measurements; and an information exclusion principle@M. J. W. Hall, Phys. Rev. Lett.74, 3307
~1995!#. Results include a proof of Holevo’s communication bound from a joint-measurement inequality; a
measurement-dependent dual to Holevo’s bound; lower bounds for mutual information under ensemble and
measurement constraints; information exclusion relations for measurements described by probability-operator
measures; a proof that Glauber coherent states are optimal signal states for quantum communication based on
~noisy! optical heterodyne detection; and an information inequality for quantum eavesdropping. Relations
between the three techniques are used to further obtain upper bounds for quantum information, and to extend
the information exclusion principle to a joint-measurement context.@S1050-2947~97!04701-X#

PACS number~s!: 03.65.Bz, 42.50.Ar, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

The prediction of correlations between physical syste
is a fundamental role of physical theories, and of quant
mechanics in particular. Such correlations may be, for
ample, between the outputs of two detectors, between
transmitter and receiver of a communication channel, or
tween a scatterer and a scattered probe signal. It is ofte
interest to optimize these correlations~e.g., for secure key
distribution, maximum information transfer, or efficient es
mation of scattering parameters!, with respect to some figure
of merit such as coincidence rate, mutual information, ma
mum likelihood, etc. It is also of fundamental interest
explore and understand the effects of quantum mechanic
such correlations.

The natural figure of merit for the degree of correlati
between two statistical sources is the~Shannon! mutual in-
formation, which quantifies the average amount of error-f
data which can be obtained about a sequence of outputs
one source, given the corresponding sequence of out
from the other source@1,2#. This amount is generally ex
pressed in terms of the number of binary digits~bits! re-
quired to represent the data. It is maximized when
sources are perfectly correlated, minimized when they
completely uncorrelated, is~unlike entropy! invariant under
continuous reparametrizations of the source outputs, and~un-
like coincidence rates and maximum likelihood! does not
rely on any mapping connecting the output ranges of the
sources.

A simple classical example is the random placement o
chess piece on some square of a chessboard as the firs
tistical source, and the subsequent result of measureme
which square is occupied as the~perfectly correlated! second
source. Clearly the error-free data gained per output of
second source, concerning the output of the first source
log2 6456 bits of information. Note that such informatio
could be used for communication purposes, where e
551050-2947/97/55~1!/100~14!/$10.00
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square represents a symbol or a code word.
For quantum systems, complementarity immediate

places rather strong constraints on mutual information.
simple semiclassical example is provided by a ‘‘quantu
chessboard,’’ corresponding to some areaA of a two-
dimensional phase space. The Heisenberg uncertainty p
ciple implies that a quantum system~‘‘chess piece’’! occu-
pies a region~‘‘square’’! in A with area of at least 2\ ~so that
the product of its position and momentum half-widths
greater than\/2!. Hence the maximum number of nonove
lapping regions available to the system isA/2\, implying
that the amount of error-free data which can be gained
measurement about the phase space location of the syst
bounded by

Imax' log2~A/2\!. ~1!

For example, the maximum energy constraint

p2/~2m!1V~x!<E ~2a!

implies the semiclassical information bound

Imax' log2S E dx@2m~E2V!#1/2/\ D ~2b!

~where integration is over all real values of the integran!.
Similar heuristic bounds for bosonic channels are given
@3#.

For classicalsystems, where states can occupy arbitra
small regions of phase space, there is no fundamental fi
bound on information analogous to Eq.~1!. The derivation of
Eq. ~1! is, of course, heuristic in nature; however, this i
equality has a rigorous counterpart known as Holevo’s th
rem @3–5# ~see also below!. Other rigorous demonstration
of differences between quantum and classical informat
have been given in the areas of entangled states@6#, quantum
100 © 1997 The American Physical Society
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55 101QUANTUM INFORMATION AND CORRELATION BOUNDS
computing@7#, quantum cryptography@8,9#, quantum mea-
surement@10#, and complementary observables@11,12#.

This paper is primarily concerned with the developme
and application of quantum bounds on mutual informati
however, the methods developed in Sec. II and III can
applied toany figure of merit for the degree of correlatio
between two sources. The determination of informat
bounds is not only important for exploring quantum limits
correlations, but also because little progress has been m
on exact results in quantum information theory~a notable
exception is a paper by Davies@13#, which significantly lim-
its the possible measurements which must be considere
determining maximum information gain for a given e
semble of states!.

The necessary elements of quantum information the
are briefly reviewed in Sec. II, and a general corresponde
between joint-measurement and communication correla
contexts is noted which allows results derived in one con
to be mapped to results for the other context. An interes
example is a proof of Holevo’s theorem@3–5# ~which
bounds the information which can be gained by measu
ment on a given ensemble of quantum states in a comm
cation context!, from a joint-measurement inequality. An a
pendix to this section outlines the context-independ
interpretation of mutual information.

In Sec. III a ‘‘source duality’’ property of mutual infor-
mation ~first noted in a quantum communication context
@14#!, which formally transforms signal states into measu
ment outcomes and vice versa, is exploited to der
measurement-dependent correlation bounds from m
urement-independent bounds. In particular a measurem
dependent dual to Holevo’s theorem is obtained and
cussed in Sec. III B. Source duality further provides
method for obtaining lower bounds for quantum correlatio
which is applied to mutual information in Sec. III C.

In Sec. IV a recent ‘‘information exclusion principle’
@12#, which bounds the sum of information gains correspo
ing to measurements of complementary observables, is
ristically motivated and applied to generalized measu
ments, single-mode field quadratures, heterodyne detec
and quantum eavesdropping. Upper bounds for mutual in
mation are obtained which are stronger than those prov
by Holevo’s theorem. Results from Secs. II and III are us
to extend the information exclusion principle to a join
measurement context, and to obtain bounds on the sum
information gains corresponding to a given measuremen
two different ensembles.

Results are discussed in Sec. V.

II. QUANTUM INFORMATION

A. Formalism

As mentioned in the Introduction, information theory
concerned with correlations between the output sequence
statistical sources. In acommunication contextthese sources
comprise a ‘‘transmitter,’’ which outputs a sequence of s
nals, and a ‘‘receiver,’’ which outputs a sequence of m
surement results~one for each received signal!. In a joint-
measurement contextthe sources comprise two detecto
~e.g., polarization detectors! which generate correlated se
t
;
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quences of measurement results for some fixed sequen
identical input states~e.g., a singlet state! @15#.

In either context letPi j denote the joint probability tha
two sources,X andY, generate the correlated pair of outpu
(xi ,yj ). Defining the marginal probabilities

Pi5(
j
Pi j , Pj5(

i
Pi j ~3!

corresponding, respectively, to outputxi being generated by
X and outputyj being generated byY, the Shannon mutua
information is defined by@1,2#

I ~Pi j !5(
i , j

Pi j log2Pi j /~PiPj !. ~4!

As outlined in the Appendix, this quantity isthe average
amount of error-free data which can be gained per mem
of a long sequence of outputs from one source, about
corresponding sequence of outputs from the other sou
@1,2#. Note that it reduces to zero in the completely uncor
lated casePi j5PiPj , and becomes equivalent to the entro
of either source,2( iPi log2Pi , in the perfectly correlated
casePi j5Pid i j . Further, summation in~5! may be replaced
by integration in the case of continuously valued outpu
and is invariant under reparametrizations of such outp
@1,16#.

The quantum form ofPi j differs markedly in the commu-
nication and joint-measurement contexts. In the former c
text each outputxi of sourceX is associated with some signa
stater i on a Hilbert spaceH, which is transmitted with some
prior probability pi . Further, each outputyj of sourceY is
associated with a result of some measurementA. In general
A can be represented by a probability-operator meas
~POM! on H @3,17#, i.e., by a set of positive operators$Aj%
which sum to the identity operator, such that the probabi
of measurement resultyj for stater is given by tr[rAj ].
Thus in the communication context one has

Pi j5pi tr@r iAj #, ~5a!

and the corresponding mutual information will be denoted

I ~Pi j ![I ~AuE!, ~5b!

whereE denotes the ensemble of signal states$r i ;pi%.
In contrast, in the joint-measurement context each sou

X and Y is associated with~compatible! measurementsM
and N, respectively, with corresponding~commuting!
POM’s $Mi% and$Nj%, and the measurements are made o
fixed input stater. Thus one has in this context

Pi j5tr@rMiNj #, ~6a!

and the corresponding mutual information will be denoted

I ~Pi j ![I ~M ,Nur!. ~6b!

An interesting example of mutual information in the join
measurement context arises from noisy quantum crypto
phy. In particular, ifuc& denotes the singlet state of two spi
1/2 particles, define the rotationally symmetric ‘‘noisy
singlet stateWF by @18#
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102 55MICHAEL J. W. HALL
WF5Fuc&^cu1@~12F !/3#1T , ~7a!

where 0<F<1 and 1T denotes the unit operator on the tri
let subspace. If two observers respectively measure the
of the particles in a fixed directiona, the corresponding mu
tual information may be calculated from Eqs.~3!, ~4!, and~6!
as

I ~s~1!
•a,s~2!

•auWF!5 log222H~@112F#/3!, ~7b!

where H(x) denotes the entropy function2x log2x2(1
2x)log2(12x). This quantity is related to the number o
binary digits per joint measurement which can be used
establish a cryptographic key between the observers@8# ~see
also Appendix!. It is maximized forF51 ~perfect correla-
tion!, corresponding to generating 1 binary digit per me
surement, and minimized forF51/4 ~zero correlation!. The
observers should, of course, be able to do better by ma
measurements on product statesWF^ • • •^WF ~studied in
@18# in the context of state purification!.

B. Context mappings

Here formal connections between Eqs.~5a! and ~6a! will
be demonstrated, which allow results obtained in one con
to be transformed into results for the other context. In p
ticular, for pi , r i , and Aj as in Eq.~5a!, let $uc i&% be a
complete orthonormal basis in an ancillary Hilbert spaceH8.
Then the corresponding joint-measurement context defi
by

Mi5uc i&^c i u, Nj5Aj ,
~8!

r5(
i
pi uc i&^c i u ^ r i

yields, via Eq.~6a!, an equivalent joint distributionPi j , and
thusI (M ,Nur)5I (AuE!. Conversely, forMi , Nj , andr as in
Eq. ~6a!, the corresponding communication context defin
by

pi5tr@rMi #, r i5~Mi !
1/2r~Mi !

1/2/tr@rMi #,
~9!

Aj5Nj

yields, via Eq.~5a!, an equivalent joint distributionPi j , and
henceI (AuE!5I (M ,Nur).

As a useful example of such mappings between conte
consider the information bound@19,20#

I ~M ,Nur!<S~r1!1S~r2!2S~r! ~10!

in the joint-measurement context, which holds for the c
whereM andN refer to observables of two subsystems 1 a
2 of a quantum system@21#. Herer1, r2 denote the reduced
density operators tr2@r#,tr1@r# corresponding to subsystems
and 2, respectively, andS(s) denotes the quantum entrop
2tr@s log2s# of states.

Substituting ~8! in ~10! one finds, noting
r15( i pi uc i&^c i u andr25( i pir i , that

I ~AuE!<SS (
i
pir i D 2(

i
piS~r i ! ~11!
in
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in the communication context. This is just Holevo’s theore
@3–5# ~see also Sec. III!, and its ~rather simple! derivation
here demonstrates a direct connection with the jo
measurement bound~10!.

For the case of measurements on two subsystems
above,r i in the correspondence mapping~9! can be replaced
by its partial trace over subsystem 1 without destroying
correspondence. Substituting~9! ~with this replacement! in
~11! gives the result

I ~M ,Nur!<S~r2!2(
i
tr@rMi #S~ tr1@rMi #/tr@rMi # !

~12a!

for the joint-measurement context. Interchanging the labe
of the subsystems in~12a! further gives

I ~M ,Nur!<S~r1!2(
j
tr@rNj #S~ tr2@rNj #/tr@rNj # !.

~12b!

Note that addition of these two inequalities implies imme
ately that

I ~M ,Nur!<@S~r1!1S~r2!#/2, ~13!

previously proved for the case ofpure r @19,20#.
Application of Eq. ~8! to inequality ~12a! simply yields

Holevo’s theorem~11! once more, while the application o
Eq. ~8! to inequality ~12b! gives the trivial result
I (AuE!<I (AuE!. Thus Holevo’s theorem is equivalent to in
equality ~12a!, and no stronger than inequality~10!.

The correspondence mappings~8! and ~9! between the
two contexts can, of course, be applied to other circu
stances, such as informationlower bounds@22,23#, or even
to other measures of correlation such as coincidence rate~see
Sec. V!. Finally, it should be noted that the mapping~8! is
only well-defined for countable numbers of signal states,
only in this case do appropriateuc i& exist. It would be of
interest to generalize Eq.~8! to arbitrary distributions of sig-
nal states.

III. BOUNDS FROM SOURCE DUALITY

A. Source duality

Holevo’s theorem~11! provides a finite quantum boun
for mutual information in the communication context. Th
theorem was proved by Holevo in the case of a fini
dimensional Hilbert space and finite numbers of signal sta
and measurement outcomes@4#, and generalized by Yuen
and Ozawa@5# ~see also@3,23,24#!. The upper bound is a
function of the signal ensembleE, and in particular is inde-
pendent of the measurementA made at the receiver. It pro
vides, for example, a rigorous basis for the result that
optimal information rate which can be transmitted per u
time by a wideband bosonic channel with transmiss
powerP is (pP/3\)1/2/ln2 @3,5#.

In practice, the class of measurements available at
receiver is likely to be more restricted in scope than the cl
of signal ensembles which can be generated at the transm
@25#. It would therefore be useful to have an upper bou
analogous to Eq.~11!, which depends upon the actual me
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55 103QUANTUM INFORMATION AND CORRELATION BOUNDS
surement to be made at the receiver. Such a bound is
tained in Sec. III B below, based on a source-duality pr
erty of mutual information. This property is further exploite
to obtain lower bounds for mutual information in Sec. III C

Now, it is clear from definitions~3! and ~4! that mutual
information is invariant under the interchanging of sourceX
andY. This invariance is indeed expected for any measur
correlation between the sources, and for mutual informa
reflects the property that the data obtainable aboutX outputs
from Y outputs is equivalent to the data obtainable abouY
outputs fromX outputs ~see also Appendix!. In the joint-
measurement context of Eqs.~6a! and ~6b! such an inter-
change corresponds to swapping the labelsM andN of the
measured observables, and is formally trivial.

In contrast, for the communication context of Eqs.~5a!
and~5b! such an interchange reverses the fundamentally
ferent roles of the signal ensembleE and the receiver mea
surementA: signal states in some sense become meas
ment outcomes, and vice versa. The multiplicative form
Pi j in Eq. ~5a! immediately suggests a formal modeling
this reversal, via the duality transformation

E→E8, A→A8, pi→pj8 , r i→r j8 , Aj→Ai8 ,
~14!

where

pj85tr@rEAj #, ~15a!

r j85rE
1/2AjrE

1/2/tr@rEAj #, ~15b!

Ai85pirE
21/2r irE

1/2, ~15c!

and where

rE5(
i
pir i5(

j
pj8r j85rE8 . ~16!

Relations~15a!–~15c! are chosen to ensure that

Pji8 5pj8tr@r j8Ai8#5pi tr@r iAj #5Pi j , ~17!

and thus from Eq.~4! one has in particular

I ~A8uE8!5I ~AuE!. ~18!

A restricted form of this duality property is noted in Sec. 3
of @14#. Note that the duality mapping relation~14! is well-
defined even when the measurementA is continuously val-
ued.

It is convenient to define a ‘‘signal subspace,’’HE , by the
linear span of the eigenvectors corresponding to nonzero
genvalues ofrE . As the symmetry of~17! suggests, one ha
E95E andA95A onHE . Strictly speaking, the POM$Ai8% in
Eq. ~15c! must in general be supplemented by a project
A` onto the subspace orthogonal toHE ~corresponding to the
zero eigenvalues ofrE!, to ensure that( iAi851. Applications
of source duality to mutual information are given in Se
III B and III C below. Noting property~17!, analogous appli-
cations may, of course, be made to any figure of merit wh
is a symmetric function ofPi j ~see Sec. V!.
b-
-

of
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B. Dual to Holevo’s theorem

Substitution of Eqs.~15a!, ~15b!, ~16!, and ~18! into in-
equality~11! immediately yields themeasurement-depende
dual to Holevo’s theorem:

I ~AuE!<S~rE!2(
j
tr@rEAj #S~rE

1/2AjrE
1/2/tr@rEAj # !,

~19!

whererE is the ensemble density operator in Eq.~16!. This
may be compared to the measurement-dependent lower
upper bounds for mutual information given by Scutaru a
by Schumacheret al., respectively@24#, which are also re-
lated to Holevo’s theorem.

Unfortunately, while this bound depends upon the
ceiver measurement as desired, it is not amenable to stra
forward exploitation. For example, if the measurement
complete~i.e., Aj[uf j&^f j u for suitable kets$uf j&%), then
eachr j8 in Eq. ~15b! is pure and the summation term i
relationship~19! vanishes, leaving a weaker bound in gene
than relationship~11!. The bound is therefore directly appl
cable only to incomplete measurements~e.g., measuring only
the sign of a position observable, inefficient photodetectio!,
and in general must be numerically evaluated. The amoun
work required depends on the size of the signal subspaceHE .
For example, if communication is via two pure states th
HE is two-dimensional, and the entropies in relationship~19!
can be determined by diagonalizing 232 matrices.

It is worth remarking on the cases in which the du
bound~19! can actually be achieved via some suitable sig
ensembleE. Now, Holevo’s bound~11! can be achieved only
when the signal states all commute@4#. Thus for the dual
bound~19! to be achieved ther j8 in Eq. ~15b! must commute
~on the signal subspaceHE spanned byrE!, i.e.,

AjrEAk[AkrEAj ~on HE!. ~20a!

Summing overk in this relation further yields

@Aj ,rE#[0 ~on HE!, ~20b!

which from Eq.~20a! implies the$Aj% must mutually com-
mute on HE . It follows that the bound~19! cannot be
achieved~except for the trivial case of purerE! for complete
measurements$uf j&^f j u% with nonorthogonalkets, such as
canonical phase detection@26#, and ideal heterodyne detec
tion ~see Sec. IV D!.

It is interesting to note that bound~19! cannot be achieved
even in some cases where the$Aj% do commute. For ex-
ample, suppose that onHE one has a continuous POM
$ux&^xu% with non-normalizable orthogonal ketsux&. Then
there isno density operatorrE satisfying Eq.~20b! above
~noting the constraint tr@rE#51!. This result reflects a basi
asymmetry between states and measurements in stan
quantum mechanics, in that ‘‘state’’ kets must be norma
able whereas as ‘‘measurement’’ kets need not be.

An example of this asymmetry is provided by optical h
modyne detection of a single-mode optical field~or equiva-
lently, a position measurement on a harmonic oscillator!, for
the case whererE spans the whole Hilbert space. Choosing
particularrE to be a thermal state, with number-state expa
sion
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104 55MICHAEL J. W. HALL
rE5~ns11!21(
n

~111/ns!
2nun&^nu ~21!

and average photon numberns.0, the upper bound

I ~XuE!<S~rE!5 log2~ns11!1nslog2~111/ns! ~22!

following from relationship~19! is notachievable. Indeed, a
shown in@12# using the information exclusion principle, th
stronger upper bound log2(112ns) holds for this case.

C. Lower bounds

Source duality does not only provide dual bounds
known bounds. The dual observableA8 and dual ensemble
E8 can themselves be used as estimates for optimal obs
ables and ensembles, respectively, to obtain useful~although
generally nonoptimal! lower bounds. To demonstrate this, l
Imax~E! denote the maximum information which can be o
tained by measurement on a signal ensembleE, i.e.,

Imax~E!5supA$I ~AuE!%. ~23!

Then one immediately has the lower bound

Imax~E!>L~E!:5I ~A8uE!5(
i , j

pipjXi j log2Xi j ~24!

from Eqs.~4!, ~5!, and~15b!, where

Xi j5tr@r irE
21/2r jrE

21/2#. ~25!

The lower bound~24! is in fact optimal in the case tha
the signal statesr i are orthogonal~i.e., r jr j50 for iÞ j !, as
it reduces to the Holevo upper bound~11! ~with correspond-
ing mutual information2( i pi log2pi!. Its degree of useful-
ness is variable, however, with best results apparently for
case of signal states with equal prior probabilities.

In Fig. 1 the boundL~E! is plotted as a function ofp for

FIG. 1. The ‘‘dual’’ lower boundL in Eq. ~24!, the ‘‘suben-
tropy’’ lower boundQ in @22#, the ‘‘binary-channel’’ lower bound
M in @23#, and the Holevo upper bound in relation~11!; plotted as
a function ofp for a signal ensembleE corresponding to transmis
sion of two pure statesuf&, uc& with prior probabilitiesp, 12p and
overlapz^cuf&z51/2. These quantities bound the maximum inform
tion which may be obtained per signal at the receiver. Equation~26!
implies thatL andM are equal for any overlap in the casep51/2.
rv-

-

e

binary communication based on the transmission of two p
statesuc&, uf& with prior probabilitiesp and 12p, respec-
tively, and with a significant overlapz^cuf&z51/2. Also plot-
ted is the corresponding ‘‘subentropy’’ lower boundQ from
@22#, and the ‘‘binary-channel’’ lower boundM from @23#, as
well as the Holevo upper boundH from relationship~11!
above. It is seen thatL outperformsQ for most values ofp,
but only reachesM for the casep512p51/2.

Algebraic calculation shows that in factL andM areal-
waysequal for the case of two pure statesuc&, uf& transmitted
with equal prior probabilities of 1/2, with

L~E!5M ~E!5~x1log2x11x2log2x2!/2, ~26!

wherex6516~12z^cuf&z2!1/2.
In Fig. 2 L~E! is plotted as a function ofu for the trans-

mission of three pure statesu0&, cosuu1&1sinuu0&, cosuu21&
2sinuu0& with equal prior probabilities 1/3, 1/3, 1/3, wher
u0&, u1&, u21& are mutually orthogonal.Q andH are again
plotted ~there isno corresponding boundM @23#!. It is seen
that L~E! places a relatively tight bound onImax~E!, and is
optimal when the signal states are orthogonal~u50!.

As an infinite-dimensional example, consider the case
single-mode optical communication where a Gaussian
semble of Glauber coherent states is transmitted, i.e.,
coherent state

ua&5exp~2uau2/2!(
n

~n! !21/2anun& ~27!

is transmitted with probability

p~a!5~pns!
21exp~2uau2/ns!, ~28!

wherens denotes the average photon number per signal@3#.
In this caserE is given by Eq.~21! above, andL~E! may be
calculated from Eqs.~24!, ~25!, ~27!, and~28! as

-

FIG. 2. The ‘‘dual’’ lower boundL in Eq. ~24!, the ‘‘suben-
tropy’’ lower boundQ in @22#, and the Holevo upper boundH in
relation ~11!; plotted as a function ofu for the signal ensemble
corresponding to transmission of the three statesu0&, cosuu1&
1sinuu0&, cosuu21&2sinuu0& with equal prior probabilities of 1/3;
where u0&, u1&, u21& are mutually orthogonal. Note thatL andH
constrain the maximum information which can be gained per sig
to within a range of at most 0.3 bits.
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55 105QUANTUM INFORMATION AND CORRELATION BOUNDS
L~E!5 log2~ns11!. ~29!

This is close to theupperboundS~rE! in Eq. ~22! @following
from relationships~11! and ~21!#, and thus provides an ex
cellent lower bound. The dual measurementA8 in this case is
just a rescaled heterodyne measurement~see Sec. IV!. Note
that the corresponding subentropy lower boundQ cannot
exceed 0.609 95 bits@22#, and so is far less restrictive tha
Eq. ~29! in general. Equations~26! and ~29! and Fig. 2 sug-
gest thatL is most useful when the entropy ofrE is as large
as possible~e.g., equal prior probabilities, orthogonal sign
states!.

Finally, ameasurement-dependentlower bound may also
be derived from source duality. In particular, letImax* (A,r)
denote the maximum information which may be gained
measurementA, on the class of signal ensembles with e
semble density operatorr. Thus

Imax* ~A,r!5supE:rE5r$I ~AuE!%. ~30!

One then has, using relationships~4!, ~5!, and~15!, the lower
bound

Imax* ~A,r!>L* ~A,r!:5I ~AuE8!

522(
j
tr@rAj # log2tr@rAj #1(

i , j
Yi j log2Yi j ,

~31!

whereYi j is the joint probability distribution,

Yi j5tr@r1/2Air
1/2Aj #. ~32!

As an example, letA represent ideal heterodyne detecti
of a single-mode optical field@3,27#, with corresponding
POM $p21ua&^au%, whereua& is the Glauber coherent state
Eq. ~27! anda ranges over the complex plane. Ifr is chosen
to be the thermal state in Eq.~21!, one finds the lower bound

L* ~A,r!5 log2~ns11! ~33!

from Eqs.~31! and ~32!. This is, in fact, theoptimal bound
@corresponding to transmission of a Gaussian distribution
coherent states as per Eqs.~27! and ~28! above#, i.e.,
L* (A,r)5Imax* (A,r), as will be shown in Sec. IV D.

IV. INFORMATION EXCLUSION

A. Motivation

One intuitively expects that the better some quantum
servable is at extracting information in a given scenario,
worse a complementary observable will perform in that s
nario. In particular, it should be possible to increase the
formation gain corresponding to measurement of the fi
observable only at the expense of decreasing the informa
gain corresponding to the second observable, and vice v
This idea has recently been formulated as a rigorous ‘‘inf
mation exclusion’’ principle for quantum observables@12#,
which will be further generalized and exploited here to o
tain strong bounds on mutual information in the commu
cation and joint-measurement contexts.
l
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As a semiclassical example of information exclusion
the communication context, consider a ‘‘quantum che
board’’ as discussed in the Introduction, corresponding t
rectangular region of a two-dimensional phase space w
position and momentum half-widthsDX andDP ~see Fig.
3!. If the region is divided intoN1 columns andN2 rows as
per Fig. 3, and signals are generated by placing a syste
random in one of theN1N2 ‘‘squares’’ formed thereby, then
the information gains corresponding to measurements of
sition and momentum, respectively, are given by

I ~XuE!5 log2N1 , I ~PuE!5 log2N2 . ~34!

But from the uncertainty principle each signal must occu
an area of at least 2\, implying the constraint
2\N1N2<4DXDP. Combining this constraint with relation
~34! gives theinformation exclusion relation

I ~XuE!1I ~PuE!< log22DXDP/\. ~35!

Thus for a fixed phase space area the position informa
can be increased only at the expense of the momentum
formation and vice versa.

Surprisingly, inequality~35! for position and momentum
information can in fact be rigorously derived forall signal
ensemblesE, providing thatDX andDP are interpreted as
the root-mean-square position and momentum uncertain
of the ensemble density operatorrE in Eq. ~16! @12# ~see also
Sec. IV C below!. Since information is non-negative the rig
orous inequality immediately implies~and hence is stronge
than! the Heisenberg uncertainty relation forX andP. Fur-
ther, it is sufficiently strong to obtain thetight bound,
log2(112ns), on the information which may be gained b
homodyne detection on an ensemble of single-mode fie
with average photon numberns @12# ~see also Sec. IV C
below!.

The strategy used in@12# to obtain information exclusion
relations from entropic uncertainty relations will be us
here also. In particular, if the entropiesS(Aur), S(Bur) of
the measurement distributions ofA and B for any stater
satisfy

FIG. 3. A semiclassical ‘‘quantum chessboard’’ as discussed
Sec. IV A, corresponding to a rectangular region of phase sp
with position and momentum half-widthsDX andDP, and divided
into N158 columns andN258 rows. The minimum ‘‘square’’ size
a system can occupy is 2\ from the uncertainty principle, and henc
the sum of the position and momentum information gains, co
sponding, respectively, to measurements of which column and
is occupied, is bounded as per Eq.~35! of the text.
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L<S~Aur!1S~Bur!<U~r!, ~36a!

then one has a corresponding exclusion relation

I ~AuE!1I ~BuE!<U~rE!2L. ~36b!

In the following subsections the information exclusio
principle will be generalized and applied in a number
ways, including a tight bound for the information which ca
be gained via~noisy! heterodyne detection, and new upp
bounds for mutual information. Results will typically be pr
sented in the communication context, in the form

I ~AuE!1I ~BuE!<J~A,B,rE!. ~37!

However, in Sec. IV F below extensions are given to
joint-measurement context~via context mappings!; bounds
on the sum of information gains for a single observable a
two different ensembles~via source duality!; and to an in-
equality for quantum eavesdropping.

B. Discrete observables

It was shown in@12# that two observablesA andB cor-
responding to~possibly degenerate! Hermitian operatorson
an N-dimensional Hilbert space satisfy the information e
clusion relation

I ~AuE!1I ~BuE!<2 log2Nc, ~38!

wherec denotes the maximum overlapz^aub& z of eigenstates
of A and B. For A5B one hasc51, and hence tha
I (AuE!<log2N @this also follows trivially from the Holevo
bound ~11!, noting S~rE!<log2N#. In contrast, forcomple-
mentary AandB ~where the distribution ofB is uniform for
each eigenstate ofA and vice versa@28#!, one hasc5N21/2

and hence the strong boundI (AuE!1I (BuE!<log2N.
Thus I (AuE! canonly reach its maximum of log2N when

the complementary observableB carriesno information. For
nondegenerateA this maximum is obviously attained b
transmitting eigenstates ofA with equal prior probabilities
1/N. However, it is not so obvious what the optimal sign
states are ifA has only non-normalizable eigenkets~e.g.,
position and momentum!, and/or does not correspond to
Hermitian operator~e.g., canonical phase detection and h
erodyne detection!. The information exclusion principle wil
be shown sufficiently strong to provide solutions in som
instances, in Secs. IV C and IV D.

Relation~38! will be generalized here to

I ~AuE!1I ~BuE!< log2S (
j
d~Aj !(

k
d~Bk!KABD ~39!

for observablesA andB corresponding to POM’s$Aj% and
$Bk%, respectively, whered(E) is defined to be the ‘‘degen
eracy’’ of probability operatorE, i.e., the number of nonzer
eigenvalues ofE, and

KAB5minˆmaxj ,k,r ,s$ z^ajr ubks& z2%‰, ~40!

where the minimum is taken over all$uajr &% and$ubks&% such
that ( r uajr &^ajr u5Aj and (subks&^bksu5Bk are orthogonal
decompositions of operatorsAj andBk , respectively. Note
f

r

e

d

-

l

-

that for nondegenerate Hermitian operators on
N-dimensional Hilbert space the$Aj% and $Bk% correspond
to sets of one-dimensional orthogonal projections which s
to the identity operator, and hence relation~39! reduces to
relation ~38!, with ( jd(Aj )5(kd(Bk)5N andKAB5c2.

To prove relation~39! suppose first that the POM’s$Aj%
and $Bk% are complete, i.e., Aj[uaj&^aj u andBk[ubk&^bku.
Although $uaj&% and $ubk&% are not necessarily orthonorma
sets, the entropic uncertainty relation

S~Auuc&^cu!1S~Buuc&^cu!>22 log2maxj ,k$ z^aj ubk& z%

may be derived from Riesz’s theorem exactly as per Eq.~6!
of @29# for an arbitrary pure stateuc&^cu, whereS(Aur) de-
notes the entropy of the measurement distribution ofA for
stater. SinceS(Aur) is concave with respect tor @2# one has
for generalr, noting definition~40!, that

S~Aur!1S~Bur!>2 log2KAB . ~41!

Moreover, the maximum entropy of a distribution overM
outcomes is trivially bounded by log2M . Hence, since
d(Aj )5d(Bk)51 for complete observables, one has

S~Aur!1S~Bur!< log2(
j
d~Aj !1 log2(

k
d~Bk!.

~42!

The exclusion relation~39! immediately follows for com-
plete observables from relations~41! and ~42!, using rela-
tions ~36a! and ~36b!.

For the case ofincompleteobservablesA andB one may
define corresponding complete observablesA* and B* by
the POM’s $uajr &^ajr u% and $ubks&^bksu% which achieve the
minimum in Eq.~40!. Thus the probability distributionspj ,
qk of A andB for some state may be obtained by summi
over the ‘‘degeneracy’’ indicesr and s of the distributions
pjr , qks of A* andB* , respectively. Hence measurement
A or B cannot yield more information than measurement
A* or B* , respectively~Lemma 2 in@13#!, and one has

I ~AuE!1I ~BuE!<I ~A* uE!1I ~B* uE!

< log2S (
j ,r

d~ uajr &^ajr u!

3(
k,s

d~bks&^bksu!KA* B* D .
But d(Aj )5( rd(uajr &^ajr u), d(Bk)5(sd(ubks&^bksu), and
KA* B*5KAB by construction, and the exclusion relation~39!
follows.

It should be possible to improve significantly on the e
tropic uncertainty relation~41! for the case of non-Hermitian
observables, and hence upon the corresponding informa
exclusion relation~39!. For example, consider a ‘‘tetrahe
dral’’ measurementM on a spin-1/2 particle, with POM
$1/2umj &^mj u%, where theumj & are eigenstates of spin-up i
four unit directionsmj which form the vertices of a regula
tetrahedron. ChoosingA5B5M in relations~39! and ~40!
yieldsKMM51/4 and hence the trivial resultI (M uE!<log22.
However, a variational calculation over pure states sho
thatS(M ur)>log23 @thus improving on relation~41! which
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55 107QUANTUM INFORMATION AND CORRELATION BOUNDS
only givesS(M ur)>log22#, and hence via relations~36a!,
~36b!, and~42! one finds the stronger result

I ~M uE!< log24/3. ~43!

Note that the bound in inequality~43! is optimal, being
achieved by transmission of the four signal statesu2mj & with
equal prior probabilities@13#.

C. Position and momentum

If X andP are n-vectors denoting the position and m
mentum observables of a quantum system, then one ha
corresponding information exclusion relations@12#

I ~XuE!1I ~PuE!< 1
2 log2 det@cov~X!cov~P!/~\/2!2#

~44a!

<(
m

log2 2~DXm!E~DPm!E /\,

~44b!

where

cov~V!:5tr@rEVV
T#2tr@rEV#tr@rEV

T#

5Š~V2^V&E!~V
T2^VT&E!‹E ~45!

denotes the covariance matrix ofn-vector V, and (DVm)E
denotes the root-mean-square uncertainty of componenVm
of V with respect to staterE . The two middle inequalities in
this chain were noted without proof in@12# and will be de-
rived further below.

Inequalities~44a! and ~44b! collapse to the exclusion re
lation ~35! for the casen51. It is of interest to note that this
case may immediately be generalized to give an exclus
relation for two arbitrary quadratures of a single-mode op
cal field. In particular, for a harmonic oscillator with ann
hation operatora define the quadrature operator@3#

Xu :5~aeiu1a†e2 iu!/2. ~46!

Then [Xu ,Xf]5( i /2)sin~u2f! and soXu and Xf are for-
mally related exactly as per position and momentum, ide
fying \ with usin~u2f!u/2. Thus the generalized exclusio
relation

I ~XuuE!1I ~XfuE!< log2@4~DXu!E~DXf!E /usin~u2f!u#
~47!

follows directly from relation~44b! with n51.
For an average photon number per signal ofns5tr@rEa

†a#
one has

~DXu!E~DXf!E<~^Xu
2&^Xf

2 &!1/2<^Xu
21Xf

2 &/2

5^Xa
21Xb

2&/21cos~u2f!^Xa
22Xb

2&/2

<@11ucos~u2f!u#^Xa
21Xb

2&/2

5@11ucos~u2f!u#~2ns11!/4,

wherea5~u1f!/2 andb5~u1f1p!/2, and hence from Eq
~47! that
the

n
-

i-

I ~XuuE!1I ~XfuE!< log2$~2ns11!ucot@~u2f!/2#u%.
~48!

Choosingu2f5p/2 in relation~48!, one recovers the resu
that the information gain from homodyne detection has
strong bound log2(2ns11) @12#, which may be compared
with the weaker bound~22! following from Holevo’s theo-
rem. A similar bound for heterodyne detection will be o
tained in Sec. IV D from then52 case.

To prove inequality~44a!, note from~45! that cov~V! is a
real symmetric positive-semidefiniten3n matrix, and hence
may be diagonalized by somen3n rotation matrixR with
RTR5I and det(R)51. Defining the observableW5RV one
then hasR cov~V!RT5cov~W! where cov~W! is diagonal,
and hence that

det@cov~V!#5det@cov~W!#5varE~W1!•••varE~Wn!,
~49!

where varE denotes variance with respect torE . Moreover,
the entropy ofV is invariant under rotation@16#, and hence
via Eq. ~20! of @12# one has

S~VurE!5S~WurE!<~n/2!log22pe1~1/2!(
m

log2varE~Wm!

5~n/2!log22pe1~1/2!log2det@cov~V!#. ~50!

Summing the inequalities obtained from~50! with V5X and
V5P, and noting the entropic uncertainty relation@30#

S~Xur!1S~Pur!>n log2pe\, ~51!

the exclusion relation~44a! follows using relations~36a! and
~36b!.

Finally, to obtain inequality~44b! note that the determi-
nant of a non-negative real symmetric matrix is no grea
than the product of its diagonal terms@31#. Hence

det@cov~V!#<varE~V1!•••varE~Vn!, ~52!

and relation~44b! follows immediately from relation~44a!.

D. Heterodyne detection

It has been shown that under ideal conditions, optical h
erodyne detection measures the~commuting! real and imagi-
nary parts of the operatora1b†, wherea andb represent the
annihilation operators for the signal and image-band fie
respectively@3,27#. Heterodyne detection thus estimates t
complex amplitude of the signal fielda, subject to image-
band noise. The effect of the latter noise is minimized
choosing the image-bound field to be in a vacuum state,
for this case the measurement statistics are given by thQ
function of the signal stater @3,27#,

Q~aur!5p21^aurua&, ~53!

wherea ranges over the complex plane andua& is defined in
~27!.
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108 55MICHAEL J. W. HALL
To bound the information which may be gained by h
erodyne detection, letXu , Yu denote the quadrature obser
ables corresponding toa andb, respectively@see Eq.~46!#,
and introduce the observables

X5X01Y0 , P5Xp/21Yp/2 , X85Xp/22Yp/2 ,

P85X02Y0 . ~54!

Thus [X,P]5[X8,P8]5 i , with all other commutators van
ishing, and so from relation~44b! one has, withn52 and
\[1,

I ~X,X8uE!1I ~P,P8uE!<~1/2!log2@4 varE~X!varE~P!#

1~1/2!log2@4 varE~X8!varE~P8!#.

~55!

For a vacuum image-band field the ensemble density op
tor has the formrE^u0&^0u, which substituted into relation
~55! yields

I ~X,X8uE!1I ~P,P8uE!< log2$4@varE~X0!11/4#

3@varE~Xp/2!11/4#%.

Under the constraintns5tr@rEa
†a# the argument of the loga

rithm is maximized by the choice varE(X0)5varE(Xp/2)
5(2ns11)/4 @cf. the derivation of relation~48!#, and hence

I ~X,X8uE!1I ~P,P8uE!<2 log2~ns11!. ~56!

Now, from relations~46! and ~54!, X1 iX85a1b†, and
so the first term in relation~56! is in fact the information
gained by heterodyne detection,I ~hetuE!, say. Moreover, ifU
denotes the antiunitary transformation on the image-b
field which mapsb to 2b, then the joint distribution ofP
and P8 for any signal stater^u0&^0u must be invariant
under P→UPU†5X8, P8→UP8U†5X, r ^ u0&^0u→Uur
^ u0&^0uU†5r ^ u0&^0u. Hence, for a vacuum image-ban
field, a joint measurement ofP and P8 is equivalent to a
joint measurement ofX andX8, implying the second term in
relation ~56! is also equal toI ~hetuE!. Thus relation~56! re-
duces to the bound

I ~hetuE!< log2~11ns!. ~57!

It follows immediately from the lower bound~33! that
inequality ~57! is strong, i.e., the best possible bound d
pending on the average photon number per signal.
bound is achieved by transmission of a Gaussian ensemb
Glauber coherent states, as per Eqs.~27! and ~28! @3#. In
contrast, the Holevo bounds~11! and ~19! only yield the
weaker boundS~rE! in relation ~22!.

Inequality ~57! may be generalized to the strong bound

I ~hetuE,ng!< log2@11ns /~ng11!# ~58!

when Gaussian noise of varianceng is added to the signa
states. This bound is also achieved by transmission
Glauber states as per Eqs.~27! and ~28! @32#. An analogous
bound for noisy homodyne detection is given in@12# ~it is
not known if the latter is strong forng.0!.
-

a-

d

-
e
of

of

Gaussian noise models the effects of thermal noise@32#,
linear amplification and/or attenuation noise@33#, and ineffi-
cient photodetection@34# on the statistics of heterodyne de
tection; with corresponding noise variances

ng
thermal5@exp~\v/kT!21#21, ~59a!

ng
amp./att.5$12exp@22A~N22N1!#%/~12N1 /N2!,

~59b!

ng
ineff. det.5~12h!/h, ~59c!

respectively, wherek, v, andT are Boltzmann’s constant
frequency, and absolute temperature;N1 (N2) the number of
excited ~unexcited! amplifier atoms, andA is an amplifica-
tion constant@33#; andh denotes detector inefficiency@34#.

Equations~59! are obtained by studying the effects of th
respective noise processes on the measurement statistics~53!
for heterodyne detection. These effects break down int
rescaling of the statistics, which does not affect informat
gain @16#, and an effective Gaussian noise term as per eit
Eqs.~13! or ~26b! of @32# ~general effects of Gaussian nois
on quantum optical communication are studied in@32#!.

To derive bound~58!, suppose that Gaussian noise
varianceng is present. The corresponding measurement
tistics for stater are then given by theQ function @Eq. ~26a!
of @32##

Q~aur,ng!5Q„auG~r!…5p21^auG~r!ua&, ~60!

where

G~r!5~png!21E d2b e2ubu2/ngeba†2b* areb* a2ba†

~61!

and integration is over the complex plane. Moreover, fro
relations~36a! and ~36b! with A5B5het one has

I ~hetuE,ng!<Smax„hetuG~rE!…2Smin„hetuG~r!… ~62!

where the maximum will be evaluated over all signal e
sembles with average photon numberns5tr@rEa

†a#, and the
minimum over all statesr.

Now, from Eq.~60!

S„hetuG~r!…52E d2a Q„auG~r!…log2Q„auG~r!…,

~63!

E d2auau2Q„auG~r!…5trS G~r!ap21E d2aua&^aua†D
5tr@G~r!aa†#5tr@ra†a#1ng11,

~64!

where the relationaua&5aua& has been used, and the la
equality follows from Eq.~12! of @32#. Hence the first term
on the right-hand-side of relation~62! is equivalent to maxi-
mizing the entropy~63! of a two-dimensional probability
distributionQ„auG~rE!…, subject to the quadratic constrain
~64!. This is a well known variational problem in classic
information theory@2#, with solution
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Smax„hetuG~rE!…5 log2pe~ns1ng11!. ~65!

Further, to evaluate the last term in~62!, note that
concavity of the entropy functional@2# implies that only
pure states uc&^cu need be considered. DefiningK
5S~hetuG„uc&^cu!…1l^cuc&, wherel is a Lagrange multiplier
constraining the normalization ofuc&, and noting from~61!
@see Eq.~19c! of @32## that

^auG~ uc&^cu!ua&5^cuG~ ua&^au!uc&,

the variational equation]K/]^cu50 can be written as

S p21E d2aG~ ua&^au!log2Q(auG~ uc&^cu! D uc&5luc&,

~66!

which is satisfied by the Glauber coherent states in Eq.~27!.
In particular, if uc& is the vacuum state then from Eq

~60! and ~61! @or Eq. ~27! of @32##,

Q~auG~ u0&^0u!5p21~ng11!21exp@2uau2/~ng11!#,
~67!

and the integral in Eq.~66! has the form

GS p21E d2aua&^au@C11C2uau2# D
5C1G~1!1C2G~aa†!5C11C2~a

†a1ng11!

~68!

whereC1 , C2 are constants and the last equality follow
from Eqs.~12! and ~19c! of @32#. Thus Eq.~66! is satisfied,
with l5C11C2(ng11), and from Eqs.~63! and ~67! one
finds

Smin„hetuG~r!…5 log2pe~ng11!. ~69!

The upper bound~58! follows immediately from Eqs.~62!,
~65!, and~69!.

E. Upper bounds

It will be now be shown how the information exclusio
principle may be combined with source duality to obta
general upper bounds for quantum information, which
related to the lower boundsL~E! andL* (A,r) in Sec. III C.

First, for an exclusion relation of the general form giv
in relation~37!, chooseB to be the dual observableA8 in Eq.
~15c!. Then relation~37! may be rewritten in the form

I ~AuE!<J~A,A8,rE!2L~E!, ~70!

whereL~E! is defined by Eqs.~24! and~25!. Second, choos
ing B again to beA8, and replacingE by the dual ensemble
E8 defined in Eqs.~15a! and~15b!, one has from relation~37!
that

I ~AuE!<J~A,A8,rE!2L* ~A,rE!, ~71!

whereL* (A,r) is defined by Eqs.~31! and ~32!, and the
duality relations~16! and ~18! have been used.

Upper bounds~70! and ~71! are typically stronger than
those provided by Holevo’s theorem~11! and its dual~19!.
e

For example, letA correspond to some complete PO
$uaj&^aj u% andE to a mixture$uc i&^c i u,pi% of pure states. If
NE andNA denote the number of signal states and poss
measurement outcomes, respectively, then, using relat
~24!, ~25!, ~31!, ~32!, ~39!, and~40!, the bounds

I ~AuE!< log2@NANEmaxi , j$pi z^aj urE
21/2uc i& z2%#

1(
i ,i 8

pipi 8h~ z^c i urE
21/2uc i 8& z2!; ~72!

I ~AuE!< log2@NANEmaxi , j$pi z^aj urE
21/2uc i& z2%#

1(
j , j 8

h~ z^aj urE
1/2uaj& z2!22(

j
h~^aj urEuaj&!

~73!

follow from relations ~70! and ~71!, respectively, where
h(x):52x log2x.

For the particular case of anN-dimensional Hilbert space
with A Hermitian ~i.e., ^aj uak&5d jk!; equal prior probabili-
ties ~i.e., pi51/NE!; and rE5(1/N)1; the upper bound~73!
reduces to

I ~AuE!< log2@N maxi , j$ z^aj uc i& z2%#, ~74!

reminiscent of inequality~38!. This may be compared to th
weaker bound log2N following from Holevo’s theorem~11!
and its dual~19!.

F. Other applications

Information exclusion relations for two observablesA and
B in the communication context have the general form
relation~37!. Here it will be briefly indicated how this form
can be manipulated to obtain information inequalities
joint measurements; measurement of a given observabl
two different ensembles; and quantum eavesdropping.

First, if each of two observablesM1 andM2 can be mea-
sured jointly with some observableN, then the information
bound

I ~M1 ,Nur!1I ~M2 ,Nur!<JSM1 ,M2 ,(
j
Nj
1/2rNj

1/2D
~75!

for the joint-measurement context follows directly from r
lation ~37! and the relations I (M1 ,Nur)5I (M1uE!,
I (M2 ,Nur)5I (M2uE!, whereE is the ensemble given by th
context mapping

pj5tr@rNj #, r j5~Nj !
1/2r~Nj !

1/2/tr@rNj # ~76!

analogous to Eqs.~9!. The exclusion relation~75! quantifies
the notion that the more strongly an observableM1 is corre-
lated withN, the less strongly a complementary observa
M2 will be correlated withN.

For example, ifM1 andM2 correspond to measuremen
of spin in two orthogonal directions, on one of two spin-1
particles, andN corresponds to a spin measurement on
other particle, then from relations~38! and ~75! one has

I ~M1 ,Nur!1I ~M2 ,Nur!< log22. ~77!
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Hence the maximum correlation of log22 betweenM1 andN
is possible only if there iszerocorrelation betweenM2 and
N. Noting Eq.~9! of @12# an even stronger inequality hold
with I (M3 ,Nur) added to the left-hand side of relation~77!,
whereM3 corresponds to a measurement of spin along
remaining orthogonal axis.

Second, ifE1 and E2 are two signal ensembles with th
same ensemble density operatorr, then one can use sourc
duality ~Sec. III A! and relation~37! to derive an information
inequality of the form

I ~AuE1!1I ~AuE2!<J„D~E1!,D~E2!,r… ~78!

for any observableA, whereD~E! denotes the dual observ
able for ensembleE defined in Eq.~15c!. Thus the more
strongly correlated an observable is with some ensembleE1,
the less strongly correlated it will be with a ‘‘compleme
tary’’ ensembleE2. The upper bound~71! corresponds to
choosingE2 to be the dual ensemble defined by Eqs.~15a!
and~15b!, with E5E1. An analogous bound can be obtain
by choosingE2 to be the ‘‘Scrooge ensemble’’ defined
@22#.

Third, consider a communication channel where an eav
dropper makes a measurement of an observableZ on the
signal states before they reach the receiver, thus obtai
I (ZuE! bits of data per signal. Assuming that the eavesdr
ping process is independent of the particular signal trans
ted, then the joint probabilityPi j of transmitting signalr i
and receiving a measurement result corresponding toAj has
the form

Pi j5pi tr@z~r i !Aj #5pi tr@r iz* ~Aj !#, ~79!

wherez is a completely positive map or ‘‘nonselective o
eration,’’ with dualz* @17#. Thus from Eqs.~5a! and~5b! the
maximum information available at the receiver is given
I „z* (A) uE…, wherez* (A) denotes the observable with PO
$z* (Aj )%. From relation~37! one then has the exclusion re
lation

I ~ZuE!1I „z* ~A!uE…<J„Z,z* ~A!,rE…, ~80!

which quantifies the notion that the eavesdropper in gen
can gain information only at the expense of decreasing
information at the receiver@35#.

V. DISCUSSION

This paper has in part been an exploration of the sym
tries of quantum correlations~context mappings and sourc
duality!, and their use as basic tools in obtaining new bou
from old ones. Thus the dual Holevo bound~19! was ob-
tained via source duality from the original Holevo bou
~11!, which was in turn obtained via a context mapping fro
the joint-measurement bound~10!. Similarly, the new upper
bounds~70!–~74! for mutual information were obtained vi
source duality from the information exclusion relations~37!
and ~39!.

It is worth emphasising that these tools can also be
plied to other measures of correlation. For example, if
output ranges of sourcesX and Y are identical, then the
coincidence rateC(Pi j )5( iPii has the forms
e

s-
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e-

s

p-
e

C~AuE!5(
i
pi tr@r iAi #, C~M ,Nur!5(

i
tr@rMiNi #

in the communication and joint-measurement contexts,
spectively. Thus for a boundC(AuE!<B(A,E! in the former
context, the boundC(M ,Nur)<B(AuE! in the latter context
immediately follows withA andE given by the context map
ping ~8!. Moreover, the dual boundC(AuE!<B(A8,E8! im-
mediately follows from the source duality relation~17!, with
A8 and E8 given by Eqs.~15a!–~15c!. Some results for
C(AuE! are given in@36#.

The use of source duality to estimate lower bounds~24!
and ~31! for mutual information under transmitter and r
ceiver constraints may be similarly applied to other measu
of correlation. For example, the coincidence rateC(AuE!
when maximized with respect toA andE, respectively~with
fixed rE!, has respective lower boundsC(A8uE! andC(AuE8!.

An important feature of the information exclusion prin
ciple ~Sec. IV! is its use for deriving tight bounds for infor
mation gain, exemplified for homodyne detection by relati
~48! ~with u2f590°! @12#, and for heterodyne detection b
relations~57! and~58!. These bounds cannot be derived fro
either Holevo’s theorem~11! or its dual~19!, suggesting that
information exclusion relations forcomplementaryobserv-
ables can generally provide stronger bounds than Holev
theorem. Indeed, from the perspective of the ‘‘quantu
chessboard,’’ Eqs.~1! and ~35! ~corresponding to Holevo’s
theorem and information exclusion, respectively!, yield the
same upper bound for bothI (XuE! and I (XuE!1I (PuE!. This
suggests for complementary observablesA andB in general
that one can findJ(A,B,rE! as in relation ~37! with
J(A,B,rE!'S~rE!.

While information exclusion is strong enough to yield th
optimal signal states for homodyne and~noisy! heterodyne
detection, the information exclusion relation~39! is not
strong enough to derive tight bounds for non-Hermitian d
crete observables such as the ‘‘tetrahedral’’ measuremen
relation ~43!. However, it should be possible to strength
this relation for such observables by improving the cor
sponding entropic uncertainty relation~41!. This would also
improve the related upper bounds~72!–~74! for mutual in-
formation.

Finally, it should be noted that the paper has dealt w
classical ‘‘bits’’ rather quantum ‘‘qubits’’@37# or ‘‘ebits’’
@38#. The latter cases involve correlations between sour
which generate quantum states as outputs. However, g
that the correlations between two sources can be explo
only by ~eventually! making measurements on their outpu
this is not regarded as a physically significant restriction
the results of the paper.

Indeed, the qubit and ebit formalisms appear to be m
concerned with mapping given states onto particular tar
states, under various mapping constraints, rather than
source correlations per se. For example, Schumacher@37#
considers generation of the product stater i1^ r i2^ ••• ^ r iL
at some sourceX, with respective prior probability
pi1pi2•••piL ~where( i pi51!, and subsequent generation
corresponding statesf(r i1^ r i2^ ••• ^ r iL) at sourceY
wheref represents some physical operation. Iff is con-
strained to include mapping the states into some Hilb
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spaceHC , and ther i to be pure, then it is shown that fo
sufficiently largeL the ‘‘average fidelity’’

F5 (
i1 ,i2 ,. . .,i L

pi1pi2• • •piL

3tr@r i1^ r i2^ • • •^ r iLf~r i1^ r i2^ • • •^ r iL !#

can be made arbitrarily close to unity, providing th
log2dim(HC) is greater thanLS(( i pir i). The quantity
log2dim(HC) is referred to as the number of qubits availab
and the result shows thatS(( i pir i) qubits per componen
stater i are necessary for high-fidelity transmission.

Similarly, in @38# products of L two-particle states
r^• • •^r on Hilbert spaceH1^H2 are generated at a sourc
X, whereH1 (H2) is the Hilbert space corresponding to th
L subsystem 1~subsystem 2! particles. Operationsf are then
sought such that the statesf~r^• • •^r! generated at outpu
Y are orthogonal mixtures of maximally entangled pu
states. Under the constraints thatr is pure andf is composed
of operations which act onH1 andH2 separately, it is shown
that for L sufficiently large the average ‘‘entanglement’’ o
the states in the mixturef~r^• • •^r! can be made arbi
trarily close toLE(r), where for any pure states onH1^H2
one defines the entanglement in ebits to be

E~s!5S~ tr1@s#!5S~ tr2@s#!.

Thus an average of up toE(r) ebits per two-particle state
can be obtained.

Hence, while the qubit and ebit formalisms share so
formal similarities with the communication and join
measurement contexts, respectively@cf. Eqs. ~11! and ~13!,
respectively#, they are primarily directed at mappings
given states onto target states rather than at correlations
tween statistical sources as discussed in this paper. Inde
two sourcesX and Y generate the pair of quantum stat
(r i ,s j ) with associated probabilityPi j @e.g., withPi j5pid i j
ands i5f(r i)#, it is difficult to find a general measure o
correlation with physical significance. This is perhaps b
cause physics ultimately relies on measurements, and no
vious measurements are available in the general case.
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APPENDIX

Here the context-independent interpretation of mutual
formation, and its physical significance as a measure of
relation between statistical sources, are briefly outlin
Three roles of mutual information are distinguished, and
relevance of Shannon’s coding theorem@1,2# to the joint-
measurement context is discussed.

First, for two statistical sourcesX andY as discussed in
Sec. II A, consider a sequence of joint outputs of len
L:$(xi1,yj 1),(xi2,yj 2),. . .,(xiL,yj L)%. It is convenient to de-
note such a sequence by~a,b!, wherea andb are the cor-
responding sequences of outputs$xi1,xi2,. . .,xiL%,

$yj 1,yj 2,. . .,yj L% of X andY, respectively.
For sufficiently largeL, the strong law of large number
t

,

e

e-
, if

-
b-

-
r-
.
e

h

implies that nearly all sequences~a,b! are ‘‘typical’’ @1,2#;
i.e., any given pair (xi ,yj ) will occur approximatelyLPi j
times for most sequences, and the remaining ‘‘nontypic
sequences may be ignored as having a vanishingly s
total probability of occurrence. The probability of a give
typical sequence follows as

P~a,b!')
i , j

~Pi j !
LPi j5const,

and hence the total number of typical joint sequences
lengthL may be estimated as

NXY'1/P~a,b!52LH~Pi j !, ~A1!

whereH(Pi j ) denotes the entropy of the joint distributio
Pi j . Similarly, the numbers of typical sequences output byX
andY, respectively, may be estimated as

NX'2LH~Pi !, NY'2LH~Pj !, ~A2!

whereH(Pi) andH(Pj ) denote the entropies of the margin
distributions defined in Eq.~3!.

Now if the sources are completely uncorrelated, w
Pi j5PiPj , then NXY'NXNY from Eqs. ~A1! and ~A2!.
More generally, the correlation between the sourcesreduces
the number of typical outputs, fromNXNY to NXY . Thus the
number of binary digits needed to label the outputs is
duced from log2NXNY to log2NXY , i.e., the data residing in
the correlation itself is given by

log2@NXNY /NXY#'LI ~Pi j !, ~A3!

whereI (Pi j ) is defined in Eq.~4! of the text.
While Eq. ~A3! indicates that mutual information repre

sents an average amount of data per output pair residin
the correlation, and so may be taken as a measure of
strength of the correlation, it has minimal physical content
does not show, for example, howI (Pi j ) is related to data
obtainable about one source from the other source, nor
such data may be exploited.

Second, defineNXub to be the number of typical se
quences~a,b! with a fixed componentb. The total number
of sequences can then be written as

NXY5(
b

NXub . ~A4!

Moreover, the number of binary digits required to repres
the possible output sequencesa of X, given knowledge of
output sequenceb of Y, is reduced from log2NX to log2NXub .
Therefore the amount of data gained about an unknown
quence of outputsa of X, given the corresponding sequen
of outputsb of Y, is ~measured in binary digits!

I ~Xub!5 log2NX /NXub . ~A5!

If NXub is aconstant, then it follows from Eq.~A4! that it
has the valueNXY/NY , and hence from Eqs.~A3! and ~A5!
that

I ~Xub!'LI ~Pi j !, ~A6!
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thus justifying the interpretation of mutual information give
in Sec. II A. ButNXub is indeed~approximately! constant. In
particular, any typical sequenceb of outputs ofY may be
decomposed into subsequencesb1, b2, b3,. . ., whereb j con-
sists of~approximately! LPj occurrences of outputyj . Each
subsequence has some corresponding numberNj of possible
typical subsequencesa j of outputs ofX, of corresponding
lengthLPj . By constructionNj is independent of the paren
sequenceb @indeed one may estimateNj'2LPjH(Pi j /Pj ) in
analogy to Eq.~A2!#, and thus one hasNXub5P jNj5const
as required.

Equation~A6! establishes the connection of mutual info
mation with the data obtainable from one source about
other source. Shannon’s coding theorem@1,2# outlined below
further demonstrates that in principle this data is not diffic
to exploit, in both the communication and joint-measurem
contexts.

Third then, suppose thatM typical sequences of output
of lengthL from X are chosen at random,a1, a2 ,. . .,aM ,
say, to code forM distinct symbols. For an observer atY to
distinguish without error between these sequences atX, and
thus obtain log2M bits of error-free data, each possible typ
cal sequenceb generated atY must correspond to at mos
one coding sequencea1, a2 ,. . .,aM . But if b does corre-
spond to some coding sequence, then the probability that
particular one of the remainingNXub21 possible sequence
corresponding to b is also a coding sequence
q5(M21)/(NX21). The probability thatnoneof these is
also a coding sequence is therefore

Prob~no error!5~12q!NXub21'~12M /NX!NXub

5~12M /NX!NXY /NY.
-

i-

ev

. A
n-

t
t

ny

Finally, if less thanI (Pi j ) bits of data per output ofY is to be
recovered per coding sequence, i.e., log2M5L [ I (Pi j )2d]
with d.0, then using Eqs.~A1!–~A3! one has

Prob~no error!'@1222Ld/~NXY /NY!#NXY /NY

→exp@222Ld#→1 as L→`. ~A7!

Thus, for L sufficiently large, there are codings whic
allow recovery of up toI (Pi j ) bits of data per output pe
coding sequence with arbitrarily small error. Clearly such
coding may be exploited in the communication context
using the sequencesa1, a2 ,. . .,aM as an alphabet for mes
sages, and restricting transmission to these sequences.

In the joint-measurement context there is no control o
transmission, i.e., over the outputs ofX. However if, for
example, an observer atX groups the outputs into sequenc
of length L, and notes the~mutually agreed! coding se-
quencesa1, a2 ,. . .,aM as they appear, then the latter ge
erate a random cryptographic key which can be recovered
an observer atY with an arbitrarily small error. From Eq
~A7! up to LI (Pi j ) bits of key can be generated per codin
sequence asM approaches 2LI (Pi j ); hence, since the prob
ability of a coding sequence isM /NX per group ofL outputs,
the average number of bits generated per output is boun
by

R<I ~Pi j !2
LI ~Pi j !/NX'I ~Pi j !2

2L@H~Pi !2I ~Pi j !#, ~A8!

where Eq.~A2! has been used. Thus, in general, a bala
must be struck between a low error rate~large L! and a
reasonable value ofR ~low L!, e.g., via error-correcting
codes@2,38#.
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