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Condensate fraction and critical temperature of a trapped interacting Bose gas
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By using a mean-field approach, based on the Popov approximation, we calculate the temperature depen-
dence of the condensate fraction of an interacting Bose gasatbms confined in an anisotropic harmonic
trap. For systems interacting with repulsive forces we find a significant decrease of the condensate fraction and
of the critical temperature with respect to the predictions of the noninteracting model with the same value of
N. An analytic result for the shift of the critical temperature holding to first order in the scattering length is also
derived.[S1050-294{@6)51212-§

PACS numbeps): 03.75.Fi, 02.70.Lq, 67.40.Db

The recent experiments on Bose-Einstein condensatioaillator frequencies, and for the temperature dependence of
(BEC) in magnetically trapped atomic vapdid have stimu-  the number of atoms in the condensate
lated a new interest in the theoretical study of inhomoge-
neous Bose gases. Although the atom clouds realized in
these experiments are very dilute, the effects due to the in-
teratomic forces are known to be important at low tempera- N
ture. In particular, the shape and the energy of the condensate
cloud[2,3] as well as the dispersion law of the elementary

excitations 4] are strongly affected by the interaction. In the proximation for the excited states and setting the chemical

\;ﬁ:jy I\Zlee(zsg;?);ﬁ%nter?ésmbgag/luer\évﬁ;;;?é t:_}J'nnei;)‘;ilér[](61]’exci_potential equal to zero at the transition. The first correction to

tation frequencies of the collective modes have been found tthe critical temperaturél) due to the finite number of atoms
) . j L the trap has recently been shopd#| to obey the law
be in good agreement with the theoretical predictions, P y ] y

thereby revealing important features of the trapped Bose

70 2

NO(T):l_( T)S.

Results(1) and (2) are obtained using the semiclassical ap-

condensed gases that are undoubtedly connected to the inter- 5T2 {2) o s w 1
particle interaction. The question of how two-body forces 0T T 27(3)7B SNTP=—0.73- N, (€)
[

affect the thermodynamic properties of these systems has
also been the object of several theoretical investigati8hs
The critical temperature of the BEC transition in a homoge-where v = (wy+ 0y + »,)/3 is the mean frequency. This re-
neous dilute gas has been recently calcul@8dusing the sult can be obtained by still employing the semiclassical de-
renormalization-group theory. The result is a shift towardsscription for the excited states, while keeping the quantum
higher temperatures, with respect to the prediction of thevalue u=3Aw/2 for the chemical potential at the transition.
ideal Bose gas. Similar results have also been obtained witlihe discretization of the excited energy levels gives rise to
path integral Monte Carlo simulatiof&0]; however, no de-  higher-order corrections t6T_
finitive conclusions have so far been drawn on the behavior In this Rapid Communication we present results for the
of the condensate fraction, nor of the critical temperature inemperature dependence of the condensate fraction and for
the presence of a confining potentjdll]. The first experi- the critical temperature of a dilute Bose gas interacting with
mental data on these relevant quantities are now becomingpulsive forces and confined in a harmonic potential. We
available[5,12]. use a mean-field approach and the semiclassical approxima-
Finite-size effects on the temperature dependence of thgon for the excited states. This approximation is expected to
condensate fraction and on the critical temperature in the accurate for temperatures significantly larger than the os-
presence of an external trap have recently been investigateliator temperaturé: w/kg . This condition is satisfied well
by several authors within the noninteracting mode3,14.  in a useful range of temperatures, providéds sufficiently
In the presence of an anisotropic harmonic potential of thgarge. In the presence of repulsive interactions we find that
form Veu=m(wix?+ w]y?+ w3z%)/2 this model predicts, in  the thermal depletion of the condensate is enhanced and the
the largeN limit, the well known result§8] for the critical  critical temperature is shifted towards lower temperatures.
temperature These results go in the opposite direction compared to the
homogeneous case, revealing an interesting behavior exhib-

o:ﬁ_‘” N 1/3:0 94@N1’3 0 ited by a co.nfined. que gas. o
¢ kg \ <4(3) kg ' Our starting point is the finite-temperature generalization

of the Gross-Pitaevskii equation within the Popov approxi-
wherew = (w,wy0,)*®is the geometrical average of the os- mation[15,16]
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2y2 de
~ m PO+ [Vex(r) = ut9(no(r) +2n1(r)]P(r) =0, F(p,r)=— ﬂ) f(p,r), )
@) k
and where the partial derivative is taken at constant condensate
densityng. The noncondensate density is then obtained by
9P (r,t) h2V? integratingF (p,r) in momentum space
if - om D(r,t)+[Vexdr)— 1

d%p
+2gn(r)]®’ (r,1)+gng(r®'*(r,1). ”T(f)—fWF(p,r), ©)

(5 and the total number of atoms out of the condensate is given

The first equation describes the space variations of the cor?—y
densate wave functio®(r)=(y(r)) at statistical equilib- 3

rium, wherey(r) is the particle field operator. The second NTZJ d*rng(r). (10)
one is the equation for the fluctuations of the condensate

@' (r,t)=(y(r,t))—d(r), which give the elementary exci- In the above equations the chemical potentiais fixed by
tations of the system. In Eq&%) and(5), Vex: iszthe external the normalization condition

potential, u is the chemical potentiag=4=#A“a/m is the _

interaction coupling constant fixed by tlsewave scattering N=No(T)+Nr, (1)

length @, no is the equilibrium condensate density \yhereNy(T)=fd3rny(r) is the number of atoms in the con-
no(r)=|®(r)|% n(r)=(¢'(r)¢(r)) is the particle density, gensate, witiy(r) fixed by the solution of Eq(4).

and finallyny is the density of the thermally excited particles  \ye have solved Eq94)—(11) in a self-consistent way
n(r)=n(r)—ny(r). Equations(4) and (5) are obtained employing the following procedure:

from the equation (_)f motion for the_z par_ticle fie_ld operator  (j) Equation(4) is solved, using the method described in
‘ﬂ(r,r’t)' by treating the cubic interaction term Ref [3] for the condensate density(r) and the chemical
gy (r,) ¢(r,)) ¢(r,t) in the mean-field scheme. The Popov potential ., by keeping fixed the numbedy(T) of particles

approximation consists in neglegting the_anoma!ous density, the condensate and the density(r) of thermally excited
mr(r)=((r)¥(r))—>(r)? entering the interaction term. ztoms.

As discussed in Ref16] this approximation is expected to jj) The condensate density and chemical potential found
be good for high temperatures wheng<ny and also inthe i step(i) are used to calculate the excitation energies from
low-temperature regime .W'helrer and m; are of the same  Eq.(6). A new densityny is then obtained from Ed9), and

order but both are negligible. The present mean-field appew values for the number of atoms out of the condensate,

proach is expected to provide correctly the thermodynamigy. and in the condensat®ly(T), are derived from Egs.
properties of the system, apart from the critical behavior neay1 ) and (11).

T where the mean-field approach is known to fail. ~(iii) Steps(i) and stepii) are repeated until convergence
The energies of the elementary excitations can be explicy reached.
ily obtained from Eq/(5) using the semiclassical WKB ap- |t js worth noting that the present method accounts for

in the form ®'(r,t)=Aexdie(r,t) ]+ Bexgd —ie(r,t)]. In  for the order parameter and of the corresponding value of the
the WKB approximation the coupled equations ff(r,t)  chemical potential. In particular, in the absence of interac-

and®"*(r,t), given by Eq.(5) and its complex conjugate, tions, it reproduces resul8) for the shift of the critical tem-
can be solved in an explicit way, yielding the semiclassicaberature.

excitation spectrum In Fig. 1 we present our results for the temperature de-
p2 2 pendence of the condensate fractidg{T)/N for a system of
e(p,r)= \/ %jtvext(r)—,ﬂr 2gn(r) | —g?na(r), 5000 Rb atoms interacting with scattering lengtk 1108y,

whereay is the Bohr radius, which is trapped in a deformed
®  harmonic potential fixed by, o= (%/mw)t?=7.92x10"°
wherep=%V ¢ and e= —#dglat are, respectively, the im- €M With the deformation parametex = w,/w,=w,/w,
pulse and the energy of the excitation. For a homogeneo@dua toy/8, according to the experimental conditions of Ref.
system at low temperatures, where can be neglected, the [6]. We _have also considered the case o_f a sphe_rlcal_ trap
above excitations coincide with the usual Bogoliubov spec{dotted lineg. As clearly emerges from the figure, finite-size
trum. The quasiparticles with energie@,r) are distributed effects are not negligible for this value ¥, however, inter-

according to the Bose distribution function action effects are more important and result in a sizable
guenching of the condensate fraction. Contrarily the effects

1 of the deformation of the trap are always very small. The
f(p.r)= exd e(p,r)/kgT]—1’ () sizable enhancement of the thermal depletion predicted by

our calculation follows from the fact that in the presence of
whereas the particle distribution function can be obtainedhe harmonic trap the overlap between the condensed and
from the Bogoliubov canonical transformations and is givennoncondensed densities is small. As a consequence it is en-
by ergetically favorable for the atoms to leave the condensate
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FIG. 1. Temperature dependence of the condensate fraction for g 2. Temperature dependence of the condensate fraction for

a system of 5000 Rb atoms in a deformed harmonic trapnteracting Na atoms. The solid line correspondshte 107, the
(A=1/8). The solid line is the result for the interacting case, theqashed line corresponds thl=1C°, and the dotted line to

dashed line is the exact result for the noninteracting case, and thg¢=10°. The dot-dashed line is the result for the noninteracting case
dot-dashed line corresponds to the noninteracting case in the thej the thermodynamic limifEq. (2)].

modynamic limit [Eq. (2)]. The dotted lines correspond to the

spherical caseN=1) for the same number of atoms. on°

N=N%(n) - 2g f dr—tnd(r ), (13

where the density is higher and the effects of repulsion are ®

stronger. This bghavior differs from Fhe one e>.<hibited by awhere we have used Eqg)—(10) with (p,r) given by Eq.

homogeneous dilute Bose gas at fixed density where the o) The quantityNd(.) is the integral of the noncondensed

same _mean_-ﬂeld approach pred|ch a reduction of_the thermal’-}nsityng(r,u) given by the noninteracting model

depletion with respect to the prediction of the noninteracting

model. N7(r ) =1 gap(exp — [Vex(r) — ullkgT}), (14)
When the number of atoms in the trap increases, the ef- _

fects due to the interaction become more and more impor¥here \r=7%(2m/mksT)"? is the thermal wavelength and

tant, as explicitly shown in Fig. 2, where we report resultsga/2(X) == _ 1 x"/n%2,

for No(T) corresponding to three values &f (N=10, Bose-Einstein condensation starts at the temperdiues

10°, 10°). The calculations of Fig. 2 have been carried outwhich the chemical potential reaches the energy of the low-

using the value 2.5810°° for the ratio a/ayo and  est solution of the Schdinger equation corresponding to the

\=18/320. This choice corresponds to the experimental situtlamiltonian (12). To the lowest order irg and for large

ation of Ref.[5] for Na atoms. We have checked that for values ofN one finds

such large values dfl the results folNy(T) are practically 3w

indistinguishable from the ones with a spherical trap n= T+Zg n$(r=0, u=0). (15

(A=1) and the same value dd/a,p. Notice that the

guenching effects shown in Fig. 2 are quantitatively similarBy expanding the right-hand sidehs) of Eq. (13) around

to the ones of Fig. 1, despite the much larger valuedl of =0 andT=T?, we obtain the following relationship for
contained in the trap. This is due to the fact that in the trap oﬁ']e shift 5T =TC—T° of the critical temperature:
Cc Cc Cc "

Fig. 2(MIT-type trap the ratioa/a, is a factor of 3 smaller
than in the trap of Fig. 1JILA-type trap. 3 on ho [ , ond
The shift 5T, in the critical temperature can be estimated 5TcJ dr—s=-——|d i
analytically to the lowest order in the coupling constgrity
studying the behavior of the trapped gas for temperatures 3 an$ 0 0
T=T,.. In this case the order parametk(r) vanishes and _ng d rm[”T(rzo)—”T(f)], (16)
the dispersion of the elementary excitations takes the simple
Hartree-Fock form where, for simplicity, we have dropped the argumgnt 0
from the n? functions, evaluated here @=T.. The shift
p? oT. of the critical temperature is hence the sum of two dis-
€(P.1)= 50 VexdN) +290:(r) — . (12 tinct effects given by the two terms on the rhs of E&).
The first contribution is due to the finite number of particles
present in the trap and after a straightforward integration
To the lowest order iy the total number of particles above gives exactly resultiii) for the shift 5T2/T2. The second
T, can be written, as a function of the chemical potential, incontribution arises instead from interaction effects and takes
the following form: the form
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s 0 0 0 change in the central density produced by the interparticle

STiNt 29 j d°rang/du[n7(r=0)—nz(r)] forces and differs from the one exhibited by an interacting

g =—= homogeneous gas at fixed density. The prediction
Te Te J' d3ron%/aT 6T= 6T+ 6T, obtained from Eqs(3) and (18), agrees

well with the numerical values obtained in the self-consistent

-~ calculation discussed above and reported in Figs. 1 and 2.
__ iNuez §(3/2)5(2)( ) 17) The relative importance of the two effects depends on the
ayo 3w (3)™6 value of N. Notice however that the interaction effects de-
pend very weakly o and scale abl*®a/a, . This behav-
where  S=37 . (Un*m33[1/(n+m)3?]/¢(3/2)¢(2)  ior should be compared with the effects of the interactions on
=0.281. By evaluating explicitly the numerical factors onethe low-temperature properties of the systény., the size

gets the relevant result and the energy of the condensatehich instead scalg8] as
int Na/aHo_. _ _ o
c __ 1 331N1’6 (18) We finally note that according to the Ginzburg criterion
Tg ano ' critical fluctuations violate the mean-field result in the region
) 0 o ) ) msngoz
The shift 6T originating from finite-size effects is always Su=|u—wl< c 19
. c OTd . >t . p=lp= pels —5—, (19)
negative and vanishes in the laryelimit. For an axially

deformed trap it depends on the deformation parameter . . . -
\=w;/wg=w,lw, through the ratiowlw=(\ + 2)/3\ 13 wherep. is the value of the chemical potential at the critical

20X . i . .. point. These fluctuations can affect the shift in the chemical
and is minimum for an isotropic trap. Contrarily, the shift tential at the critical point only to orde?. It means that
STM due to interact be eith i ivePOtential at the critical point only to ordes’. It means tha
d c dtfe oin Eraq 'O”;C.af‘ € either n?%a |vdedor POSIIVE e mean-field approach can provide a reliable prediction of
dependlng or;]t ((ejsflgn , lincreases aNb an | 0es ?]Ot the shift of the critical temperature up to terms linear in the
epend on the deformation paramelerbut only on the  ge4taring length. Higher-order effects should be investigated
geometrical average. Furthermore it vanishes for a homo-  ging - aiternative methods, such as renormalization-group
geneous systerfsee Eq(17)]. This result is due to the fact yheory[9] or numerical simulationgL0]. A more systematic
that, according to Eq(12), in a homogeneous system the giscssion of the thermodynamic behavior of a trapped Bose
effects of the interaction abovk, consist of a simple renor- gas, including the temperature dependence of the density

malization of the chemical potential. It is also important 0 5 sfiles; the specific heat, and the superfluid density will be
note that in the present mean-field approach the relationshig, object of a future paper.

between the critical temperature and the corresponding value
of the density in the center of the trap is unaffected by the Useful discussions with Franco Dalfovo are acknowl-
interaction. The shift18) is hence always associated with a edged.
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