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We study an elementary model of two tunneling Bose-Einstein condensates with an atom detector in one of
the traps. Stochastic simulations of atom detection in one trap show an oscillation of atom number between
traps even though the condensates are initially in equal number Fock states. The oscillation has a random
amplitude depending on the phase difference between the condensates, which coincides with that given by a
spontaneously broken symmetry argument.@S1050-2947~96!50612-8#

PACS number~s!: 03.75.Fi, 05.30.Jp, 03.65.Bz, 42.50.Ar

The recent experimental realization of Bose-Einstein con-
densation in a gas of alkali-metal atoms@1# has stimulated a
number of theoretical studies on the properties of these con-
densates. One question that has received much attention is
related to the phase of the condensate and how it is estab-
lished@2–7#. One recent approach to the determination of the
phase of a Bose-Einstein condensate is that of Javanainen
and Yoo@2#, who consider the interference of two conden-
sates by dropping the condensates onto a measurement appa-
ratus that measures the position of the atoms in space. Even
if both the condensates are initially in number states an in-
terference pattern is formed. A phase is established owing to
the lack of knowledge as to in which condensate the detected
atom originated. The interpretation is that a phase is created
by the measurement process. This conclusion has also been
reached by a number of other authors@3–6#.

In this Rapid Communication we consider two Bose-
Einstein condensates separated by a barrier that allows par-
ticles to tunnel between the two traps, analogous to the co-
herent tunneling of Cooper pairs in a Josephson junction. We
shall show that by introducing a measurement device that
continuously monitors the particle number in one of the
wells a macroscopic quantum coherence or quantum phase is
established between the two condensates that gives rise to
quantum tunneling. Thus the same results as those with
spontaneous symmetry-breaking arguments are obtained@8#
without the need to introduce a small injected signal. We
begin by briefly revising the usual spontaneous symmetry-
breaking arguments for tunneling between two wells.

We assume that the symmetric double-well potential ex-
perienced by the atoms has two closely spaced low-energy
states that are well separated from higher energy levels of the
potential. This allows us to treat the system as two interact-
ing modes@9–12#. In addition, we assume that the atoms in
each condensate are noninteracting~collisions have been
considered recently@6# in the interfering condensates case!.
The Hamiltonian,

Hsys5\v0~ar
†al1al

†ar !, ~1!

describes the tunneling between the two condensates, repre-
sented by the mode operatorsar and al for the right-hand
and left-hand condensates, respectively. The Heisenberg
equation of motion for the right-hand mode operator is

ar(t)5arcosv0t2ialsinv0t. The time variation of the expec-
tation value of the atom number in the right-hand trap can
then be written

^ar~ t !
†ar~ t !&5

N

2
~11acos2v0t1bsinfsin2v0t !, ~2!

whereN5^ar
†ar1al

†al& is the total number of atoms and we
have defineda5^ar

†ar2al
†al&/N. b andf are the modulus

and phase of the complex numberbeif52^ar
†al&/N.

Elementary spontaneously symmetry-breaking arguments
@8# imply that each Bose-Einstein condensate is described by
a coherent state with a distinct but random phase. We could
then write^aj&5ANje

2 if j for j5r ,l . Assuming we have the
same number of atoms in each condensate the oscillation due
to unequal numbers of atoms vanishes and we are left with
an oscillation due only to the interference term,

^ar
†~ t !ar~ t !&5

N

2
@11sin~f l2f r !sin2v0t#. ~3!

The phases ascribed to the condensates by the broken sym-
metry give rise to an oscillation.

Spontaneous symmetry breaking in a Bose-Einstein con-
densate assumes that the ground state is degenerate, the
states being coherent states all of the same energy but differ-
ing in phase. The ground state is invariant under a gauge
transformation that changes a coherent state to a coherent
state with a different phase. The general argument goes that,
because the particle number is very large, the ground state
cannot exist in a superposition of coherent states; it must
pick only one, breaking the gauge invariance of the system
and giving the condensate a definite phase. The spontane-
ously broken symmetry argument relies on taking the ther-
modynamic limit, which here means approximating the atom
number by infinity,N→` ~the system then becomes essen-
tially classical!. However, in recent experiments@1# Bose-
Einstein condensates have been formed with from 103 to
108 atoms, much smaller than this classical limit. The state
of the condensate can of course be described as a statistical
mixture of Fock states. If the condensates are in number
states where there is no phase information at all, then
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beif5^Nl ,Nr ual
†ar uNr ,Nl&50 and no oscillation occurs at

all, a result incompatible with spontaneous symmetry break-
ing.

However, in the case of two interfering condensates, it
has been shown@2# that, if an explicit measuring apparatus is
assumed at every point in space, then an interference pattern
is observed. For the case of tunneling between two Bose-
Einstein condensates we consider an analogous situation
where an atom detector is continuously measuring the atom
number~measuring the atom number in the same sense as
the photon number is measured by a photodetector! in the
right-hand trap. In our atom detector each atom is removed
from the trap upon detection, in analogy with photon detec-
tion.

By investigating a model similar to Javanainen and Yoo’s
but in the time domain, we are able to align this work with
an increasing body of knowledge surrounding theunraveling
of the master equation into stochastic trajectories for state
vectors@13,14#. All these methods depend explicitly on the
fact that the quantum state of the system is conditioned on
the outcome of a measurement, i.e., on the value of a sto-
chastic classical variable. In our case the system of two tun-
neling condensates interacting with a bath is conditioned on
whether or not an atom is measured in the output of the
system. One quantum trajectory~one set ofm detections!
will yield an oscillation, whereas a master equation treatment
consists of an average over the times of the detections so that
the oscillations will average to zero.

We wish to study the dynamics of the two coupled con-
densates conditioned on the measurement of the output of
one of the condensates. The evolution of the state of the
system and bath~assuming the rotating-wave approximation!
in the interaction picture is given by@15#

d

dt
uc~ t !&5$2 iH sys/\1Ag~bt

†ar2ar
†bt!%uc~ t !&,

wherebt is the bath operator in the Markov approximation,
defined bybt5*2`

` b(v,t)dv, which satisfies the commuta-
tion relation@bt ,bt8

†
#5d(t2t8). Hsys is given by Eq.~1! and

g is the coupling constant between the bath and the conden-
sate. Thebt

†a coupling describes the escape of an atom from
the trap into the bath, where it is then detected. As we are
continuously monitoring the output, in any infinitesimal in-
terval dt there is a possibility that an atom is detected and
also that an atom is not detected. The system evolution is
thus conditioned on the outcome of the measurement. The
probability of each outcome is governed by a classical prob-
ability density and will be given below. The unnormalized
state of the system when a detection occurs is given by@15#

uc̃sys~ t1dt!&5Agar ucsys~ t !&. ~4!

The wave function experiences a ‘‘jump’’ and one atom is
removed from the condensate. When no atom is detected, the
state is governed by an evolution equation of the form

uc̃sys~ t1dt!&5e2~ i /\!Heffdtucsys~ t !&, ~5!

whereHeff5Hsys2 i\gar
†ar /2. This is a nonunitary evolution

and arises because the output is being continuously moni-

tored by the detector, so that even if a detection does not
occur we still gain information about the state of the system
@13,16#.

To complete this scheme we need to find the probability
that an atom is emitted during the time intervaldt. The prob-
ability of a detection occurring is from Eq.~4!,
p(1)5^csys(t)ugar

†ar ucsys(t)&dt; and for no detection,
p(0)512p(1).

We are interested in a number of detectionsm over a
finite period of timeT; in practice we evaluate this with an
iterative process for each detection@14#. We first evolve the
system via Eq.~5! for a finite time stepDt5dt, calculating
p(1) each time. Asp(1) is a classical probability we simply
compare it with a random numberR ~uniformly distributed
between 0 and 1! after each iteration of the time step. If
p(1),R then we evolve the wave function for the next time
step by Eq.~5!; on the other hand, ifp(1).R then we say a
jump has occurred and the wave function collapses via Eq.
~4!. As the system is undergoing nonunitary evolution we
normalize the wave function after each jump, i.e., each de-
tection. The process then begins again with the free evolu-
tion. This process yields the timest1 , . . . ,tm at which an
atom is detected.

This formulation is equivalent to the theory of continuous
photon detection of Srinivas and Davies@16#. This can be
seen if we write the probability density form detections to
occur at the timest1,t2,•••,tm during the interval
@0,t#:

pm~ t1 , . . . ,tm ;@0,t# !

5gm^Nl ,Nr ueiHeff
† t1 /\ar

†eiHeff
†

~ t22t1!/\

3ar
†
•••are

2 iHeff~ t22t1!/\are
2 iHefft1 /\uNr ,Nl&.

This is the temporal analog of Javanainen and Yoo’s joint
probability density for the positions of the atoms.

For our simple model the tunneling rate is much faster
than the rate of detection and the condensates are initially in
number states. The conditional probability density that the
next detection will occur at timet given that atoms were
emitted at timest1,t2,•••,tm and none in between is
given by

p~ tut1 , . . . ,tm! ~6!

5
pm11~ t1 ,..,tm ,t;@0,t# !

pm~ t1 , . . . ,tm ;@0,t# !

5g^csys~ t !uar
†ar ucsys~ t !&,

5g
^csys~ tm!ue~ i /\!Heff

† tar
†are

~2 i /\!Hefftucsys~ tm!&

^csys~ tm!ue~ i /\!~Heff
†

2Heff!tucsys~ tm!&
, ~7!

where t5t2tm . We assume that the rate of detection is
much slower than the rate of tunneling, i.e.,g!v0. This
assumption means that on average the atoms have plenty of
time to mix between the two traps in between detections,
allowing the state of the system to evolve due to the continu-
ous detection, and yet not having it dominate the behavior.
We can then write Eq.~7! as
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p~ tut1,...,tm!

.g^csys~ tm!ue2 iH systm /\ar
†~ t !ar~ t !e

iH systm /\ucsys~ tm!&,

where ar(t)5e( i /\)Hsys
† tare

(2 i /\)Hsyst, and the system state
vector is propagated back in time as if no detector were
present. This is simply a unitary transformation of the system
from a Schro¨dinger picture to a Heisenberg picture, and the
motion is now in the operators instead of the state vector.

But our conditional probability density now has the same
form as the average atom number, Eq.~2!, with the initial
state noweiH systm /\ucsys(tm)& and with N→g(N2m11).
This equation has the necessary form for us to observe the
oscillation, but we also need to simulate a run of detections
with Eqs.~4! and ~5! to determine thata, b, andf tend to
fixed values as more detections are made. Note that, for
m51, where we are simply detecting the number of atoms in
the well,eiH syst/\uc sys(t)&5uNr ,Nl&, there is no interference
term (b50), and only the oscillatory behavior between two
traps with unequal initial atom number is observed.

This equation@Eq. ~2!# should be compared to the equiva-
lent conditional probability density given by Javanainen and
Yoo @2# for the nontunneling case. Note that in our case the
random phasef determines the amplitude of the oscillation.

A histogram of the times of the detections of the atoms is
given in Figs. 1~b! and 2~b! for 500 detections of an initial
1000 atoms and 1000 detections of 10 000 atoms, respec-
tively. If we putv05p, then the period of the oscillations is
simply 1 and the times of the detections can be rewritten
t j85t j2k, wherek is an integer and 0<t j8<1 is plotted on
the interval@0,1# to increase resolution. The solid line is a
least-squares fit to the data. These plots show quite distinctly
the oscillation of the atom number. In Figs. 1~a! and 2~a! we
have also plotted the evolution ofa and bsinf over the
detections;bsinf becomes quite well defined by the time
'AN particles have been detected (b→1 as the number of
detections is increased!. a has a mean value of 0 due to our

choice of initial state; it fluctuates about this mean value
because for any detection we do not know which condensate
the atom was originally from. Figure 1 is a ‘‘good’’ run, as
in this caseusinfu'1. This requires the detection times to be
very regular; in this caseb goes to 1 at nearly the fastest
possible rate; in generalb rises at a slower rate. For an
infinite number of atoms and completely regular detection
times the values ofb follow the sequence given by
$0,1/2,3/4, . . . ,(m21)/m%, wherem is the number of detec-
tions; this describes the upper bound on the values ofb.

The output atom intensity is then essentially of the same
form as Eq.~3!. If the experiment were repeated, the result
would be the same except that the phase differencef would
vary randomly from one run to the next and depend only on
the times of each atom detection. The interesting point here
is that the oscillation has a random amplitude given by
sinf, which will be different for each experimental run. Ob-
viously the more atoms detected the better the visibility of
the histogram, but a better pattern is also found when the
initial number of atoms is increased.

In summary we have demonstrated Josephson-like oscil-
lations due to a phase difference between two tunneling
Bose-Einstein condensates by using quantum trajectory tech-
niques to model the continuous detection of the atom number
in one of the condensates. We note that in this case the
amplitude of the oscillations arises from a random phase, so
that in one particular run of the experiment this amplitude
will be random. We also note that the model outlined here
may be more accessible to experiment than that of two non-
tunneling condensates in momentum eigenstates, for the rea-
son given by Javanainen and Yoo. In recent experiments@1#
the condensates were more accurately modeled by a large
occupation number of the ground state of an atom trap than
that of a momentum eigenstate. Our method simply requires
two of these traps to be brought close enough together so that
the atoms are able to tunnel between the traps.

We would like to thank T. Wong and J. Ralph for useful
discussions and acknowledge the support of the University
of Auckland Research Committee and the Marsden Fund of
the Royal Society of New Zealand.

FIG. 1. Results of a numerical simulation of one run of 500
detections from a initial number of 1000 atoms.~a! shows the evo-
lution of a ~dashed line! andbsinf ~solid line! over the detections.
~b! is a histogram~given by the circles! of the number of atoms
detected during 20 equal time intervals over one period of the os-
cillation. The solid line is a least-squares fit to the data.

FIG. 2. The same as Fig. 1 but for one run of 1000 detections of
10 000 initial atoms.
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