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Coherent quantum tunneling between two Bose-Einstein condensates
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We study an elementary model of two tunneling Bose-Einstein condensates with an atom detector in one of
the traps. Stochastic simulations of atom detection in one trap show an oscillation of atom number between
traps even though the condensates are initially in equal number Fock states. The oscillation has a random
amplitude depending on the phase difference between the condensates, which coincides with that given by a
spontaneously broken symmetry argumé¢stl050-29476)50612-§

PACS numbg(s): 03.75.Fi, 05.30.Jp, 03.65.Bz, 42.50.Ar

The recent experimental realization of Bose-Einstein cong, (t) =a,coswst—iasinwgt. The time variation of the expec-
densation in a gas of alkali-metal atofil has stimulated a tation value of the atom number in the right-hand trap can
number of theoretical studies on the properties of these corhen be written
densates. One question that has received much attention is
related to the phase of the condensate and how it is estab- N
lished[2—7]. One recent approach to the determination of the t - T
phase of a Bose-Einstein condensate is that of Javanainen (a(t)a (1) 2 (1+ acoszwot+ fsingsinZt), (2)
and Yoo[2], who consider the interference of two conden-
sates by dropping the conde_n_sates onto a measurement ap%ereNz(aIaﬁafaQ is the total number of atoms and we
ratus that measures the position of the atoms in space. Even , R +
if both the condensates are initially in number states an in<'2 < definedr=(a 2 —a/a)/N. 5 ?2d¢ arTe the modulus
terference pattern is formed. A phase is established owing t8nd Phase of the complex numhge'”=2(a,a;)/N.
the lack of knowledge as to in which condensate the detected_E!€mentary spontaneously symmetry-breaking arguments
atom originated. The interpretation is that a phase is creatddl IMPly that each Bose-Einstein condensate is described by
by the measurement process. This conclusion has also be8rfoherent state with a distinct but random phase. We could
reached by a number of other authf8s-6]. then write(a;) = \/N—Jefl(ﬁ," for j=r,I. Assuming we have the

In this Rapid Communication we consider two Bose-Same number of atoms in each condensate the oscillation (_jue
Einstein condensates separated by a barrier that allows pdf unequal numbers of atoms vanishes and we are left with
ticles to tunnel between the two traps, analogous to the c@n oscillation due only to the interference term,
herent tunneling of Cooper pairs in a Josephson junction. We
shall show that by introducing a measurement device that N
continuously monitors the particle number in one of the <a;‘(t)ar(t)>=§[1+sin(¢|—¢r)sin2w0t]. 3
wells a macroscopic quantum coherence or quantum phase is
established between the two condensates that gives rise to
quantum tunneling. Thus the same results as those witlThe phases ascribed to the condensates by the broken sym-
spontaneous symmetry-breaking arguments are obté8led metry give rise to an oscillation.
without the need to introduce a small injected signal. We Spontaneous symmetry breaking in a Bose-Einstein con-
begin by briefly revising the usual spontaneous symmetrydensate assumes that the ground state is degenerate, the
breaking arguments for tunneling between two wells. states being coherent states all of the same energy but differ-

We assume that the symmetric double-well potential exing in phase. The ground state is invariant under a gauge
perienced by the atoms has two closely spaced low-energyansformation that changes a coherent state to a coherent
states that are well separated from higher energy levels of thetate with a different phase. The general argument goes that,
potential. This allows us to treat the system as two interactbecause the particle number is very large, the ground state
ing modes[9-12. In addition, we assume that the atoms incannot exist in a superposition of coherent states; it must
each condensate are noninteractipllisions have been pick only one, breaking the gauge invariance of the system
considered recentli{6] in the interfering condensates case and giving the condensate a definite phase. The spontane-
The Hamiltonian, ously broken symmetry argument relies on taking the ther-

modynamic limit, which here means approximating the atom
(1) number by infinity,N—o (the system then becomes essen-

tially classical. However, in recent experimenfd] Bose-

Einstein condensates have been formed with from tb0
describes the tunneling between the two condensates, repre®® atoms, much smaller than this classical limit. The state
sented by the mode operatams and a; for the right-hand of the condensate can of course be described as a statistical
and left-hand condensates, respectively. The Heisenbemixture of Fock states. If the condensates are in number
equation of motion for the right-hand mode operator isstates where there is no phase information at all, then

— T T
Hsys_hwo(ar ataja),
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Be'?=(N, ,N,|aja,/|N,,N,)=0 and no oscillation occurs at tored by the detector, so that even if a detection does not
all, a result incompatible with spontaneous symmetry breakE)ccurqwe still gain information about the state of the system
ing. 13,14.

However, in the case of two interfering condensates, it To complete this scheme we need to find the probability
has been showj2] that, if an explicit measuring apparatus is that an atom is emitted during the time interdal The prob-
assumed at every point in space, then an interference patteability of a detection occurring is from Eq.(4),
is observed. For the case of tunneling between two Bosqa(1)=<¢sys(t)|ya;rar|zpsys(t)>dt; and for no detection,
Einstein condensates we consider an analogous situatign(0)=1—p(1).
where an atom detector is continuously measuring the atom We are interested in a number of detectionsover a
number(measuring the atom number in the same sense dite period of timeT; in practice we evaluate this with an
the photon number is measured by a photodetpdtothe iterative process for each detectifi#]. We first evolve the
right-hand trap. In our atom detector each atom is removedystem via Eq(5) for a finite time stepAt=dt, calculating
from the trap upon detection, in analogy with photon detecp(1) each time. Ap(1) is a classical probability we simply
tion. compare it with a random numb& (uniformly distributed

By investigating a model similar to Javanainen and Yoo’'sbetween 0O and )lafter each iteration of the time step. If
but in the time domain, we are able to align this work with p(1)<R then we evolve the wave function for the next time
an increasing body of knowledge surrounding timeaveling  step by Eq(5); on the other hand, i5(1)>R then we say a
of the master equation into stochastic trajectories for statfimp has occurred and the wave function collapses via Eq.
vectors[13,14. All these methods depend explicitly on the (4). As the system is undergoing nonunitary evolution we
fact that the quantum state of the system is conditioned oRormalize the wave function after each jump, i.e., each de-
the outcome of a measurement, i.e., on the value of a staection. The process then begins again with the free evolu-
chastic classical variable. In our case the system of two tuntion. This process yields the timds, ... t,, at which an
neling condensates interacting with a bath is conditioned oatom is detected.
whether or not an atom is measured in the output of the Thijs formulation is equivalent to the theory of continuous
system. One quantum trajectofgne set ofm detections  photon detection of Srinivas and Davigsg]. This can be

will yield an oscillation, whereas a master equation treatmengeen if we write the probability density fon detections to
consists of an average over the times of the detections so thgécur at the timest;<t,<---<t,, during the interval

the oscillations will average to zero. [0t]:
We wish to study the dynamics of the two coupled con-
densates conditioned on the measurement of the output @™(t,, ... t,;[0t])
one of the condensates. The evolution of the state of the - -
system and battassuming the rotating-wave approximation =y™(N,,N,|eHert1 /g eiHe(t2~t)/h

in the interaction picture is given 5] . .
><a,T~ . -a,e"Heﬁ(‘Z‘tl)’ﬁa,e"Heﬁtl’h|N, ,N|>.

d .
gl v ={-Hgdh+ Vy(bla,—alby)}y(1), This is the temporal analog of Javanainen and Yoo's joint
probability density for the positions of the atoms.
whereb, is the bath operator in the Markov approximation, For our simple model the tunneling rate is much faster

defined byb,= [*_b(w,t)dw, which satisfies the commuta- than the rate of detection and the condensates are initially in
tion relation[bt,t;f]z 8(t—1). Hyysis given by Eq(1) and number states. The conditional probability density that the

is the counling constant between the bath and the conde next detection will occur at time given that atoms were
Y + piing c . "Emitted at timest;<t,<---<t,, and none in between is
sate. Theb, a coupling describes the escape of an atom fromgiven by

the trap into the bath, where it is then detected. As we ar

continuously m_onitoring .th_g output, in any i_nfinitesimal in- (tlty, ... tm) (6)
terval dt there is a possibility that an atom is detected anop

also that an atom is not detected. The system evolution is p™ Lt t. t:[04])

thus conditioned on the outcome of the measurement. The —=—— b mo-

probability of each outcome is governed by a classical prob- PH(ty, - - tm; [OL])

ability density and will be given below. The unnormalized =7<¢sys(t)|a?ar|lﬂsys(t)>,

state of the system when a detection occurs is givefiLBy
. t .
 (edt)[MMemala eI Rer g ()

(Proyd t) [ €10 HerHet) T (1))

|Esy5(t+dt)>= \/;arhhsys(t»- (4)

The wave function experiences a “jump” and one atom is
removed from the condensate. When no atom is detected, thvehere r=t—t,,. We assume that the rate of detection is
state is governed by an evolution equation of the form much slower than the rate of tunneling, i.&fwq. This
_ assumption means that on average the atoms have plenty of
|, dt+dt)y =~ IMHerd y (1)), (5)  time to mix between the two traps in between detections,
allowing the state of the system to evolve due to the continu-
whereH .= Hsys—ihya;rarlz. This is a nonunitary evolution ous detection, and yet not having it dominate the behavior.
and arises because the output is being continuously moni#/e can then write EQ(7) as

(7)
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FIG. 1. Results of a numerical simulation of one run of 500 FIG. 2. The same as Fig. 1 but for one run of 1000 detections of
detections from a initial number of 1000 atont@). shows the evo- 10 000 initial atoms.
lution of @ (dashed lingand Bsin¢ (solid line) over the detections.

(b) is a histogram(given by the circlesof the number of atoms . - . .
detected during 20 equal time intervals over one period of the os(-:hoIce of initial state; it fluctuates about this mean value

cillation. The solid line is a least-squares fit to the data. because for any .d(.atection we d9 not kan which condensate
the atom was originally from. Figure 1 is a “good” run, as
in this casgsing|~1. This requires the detection times to be
p(tltj_. 1tm) . H
very regular; in this cas@ goes to 1 at nearly the fastest
= WPy tm)| e Medmtal(t)a, (1) eMsdm /|y (1)), possible rate; in genergB rises at a slower rate. For an

infinite number of atoms and completely regular detection
. + . 1 i
where a,(t) = eMHhda e(-iMHsd and the system state times the values ofgB follow the sequence given by

vector is propagated back in time as if no detector Weré.o’l/_z’f]/.4 d ' -(".‘b‘ 1)/r:n}’ Where;m |s(';he m;]mberl of detfec-
present. This is simply a unitary transformation of the systent®nS; this describes the upper bound on the valueg.o
from a Schidinger picture to a Heisenberg picture, and the The output atom intensity is then essentially of the same
motion is now in the operators instead of the state vector. form as Eq.(3). If the experiment were repeated, the result
But our conditional probability density now has the sameWwould be the same except that the phase differeheeould
form as the average atom number, E2), with the initial ~ vary randomly from one run to the next and depend only on
state noweiHsyém/ﬁWSys(tm)) and with N—y(N—-m+1). the times of each atom detection. The interesting point here
This equation has the necessary form for us to observe tHé that the oscillation has a random amplitude given by
oscillation, but we also need to simulate a run of detection§ing, which will be different for each experimental run. Ob-
with Egs. (4) and (5) to determine that, 8, and¢ tend to ~ Viously the more atoms detected the better the visibility of
fixed values as more detections are made. Note that, fdhe histogram, but a better pattern is also found when the
m=1, where we are simply detecting the number of atoms irinitial number of atoms is increased. _ _
the well, ¥/ |y (1)) =[N, ,N,), there is no interference In summary we have demonstrated Josephson-like oscil-
term (8=0), and only the oscillatory behavior between two lations due to a phase difference between two tunneling
traps with unequal initial atom number is observed. Bose-Einstein condensates by using quantum trajectory tech-
This equatiorfEq. (2)] should be compared to the equiva- Nidues to model the continuous detection of the atom number
lent conditional probability density given by Javanainen andn oné of the condensates. We note that in this case the
Yoo [2] for the nontunneling case. Note that in our case thétmplitude of the oscillations arises from a random phase, so
random phaseb determines the amplitude of the oscillation. that in one particular run of the experiment this amplitude
A histogram of the times of the detections of the atoms jg¥ill be random. We also note that the model outlined here
given in Figs. 1b) and 2b) for 500 detections of an initial MaY bg more accessmlg to experiment than that of two non-
1000 atoms and 1000 detections of 10 000 atoms reSpegynnellng condensates in momentum eigenstates, for the rea-
tively. If we putwo= , then the period of the oscillations is SN given by Javanainen and Yoo. In recent experimietts
simply 1 and the times of the detections can be rewritteﬂi)hceC CO;[qoen”iatri% gveorfetr:gor?oarigur?;te;yo;n;r?it%?nbt)r/aa :2;%3
r_ : : ' . upati u r und s
f _t-j_k’ wherek 'S an integer and .ﬁtj slis plpttgd on that gf a momentum eigengtate Our method simply rezuires
the interval[ 0,1] to increase resolution. The solid line is a o of these traps 1o be brou ht'close enouah toaether so that
least-squares fit to the data. These plots show quite distinctl toms ar pbl t0 tunn Igb ween th t? 9
the oscillation of the atom number. In Figdalland Za) we € atoms are able fo tunnel between the traps.
have also plotted the evolution af and Bsing over the We would like to thank T. Wong and J. Ralph for useful
detections;Bsing becomes quite well defined by the time discussions and acknowledge the support of the University
~ N particles have been detected-¢1 as the number of of Auckland Research Committee and the Marsden Fund of
detections is increasgdx has a mean value of O due to our the Royal Society of New Zealand.
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