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Quantum Zeno effect on atomic excitation decay in resonators
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A unified theory of two-level atom coupling to vacuum field reservoirs withitrary mode-density spectra
is used to demonstrate that the quantum Zeno effect on excitation decay of théaaintorrespondingly,
inhibition of spontaneous emissipiis observable in open cavities and waveguides, using a sequence of
evolution-interrupting pulses on a nanosecond s¢&#&050-294®6)51111-X]

PACS numbg(s): 42.50.Dv, 03.65.Bz, 32.86t

The “watchdog” or quantum Zeno effedfQZE) is a  incoherently[6]. As in our previous treatmentl4], the
spectacular manifestation of the influence of continuousitomic response, i.e., the emission rate into this reservoir at
measurements on the evolution of a quantum system. Thigequencyw, which is|g(w)|?p(w), ig(w) being the field-
original QZE prediction has been the inhibition of exponen-atom coupling energy, is divided into two parts,
tial decay of an excited state into a reservoir, by repeated
interruption of the system-reservoir coupling by measure- G(w)=Gs(w)+Gp(w). @
ments[1-3]. The essential requirement for the QZE is thatHereG

. ) s(w) stands for the sharply varyingearly singular
the measurements of the system state, which cause the Nt rt of the DOM distribution, associated with narrow cavity-
ruption, be more closely spaced in time than the reservoi

. . SN ) ode lines, the frequency cutoff in waveguides, or photonic
correlation (memory time. This implies that the uninter- q y 9 P

. . band edges. The complementar w) stands for the
rupted decay must deviate from the exponential law over & .o-q p(?rtion of the DF())M distriguE@olﬁhe) “background”

Vrﬁode$, which always coincides with the free-space DOM

measurementgsee beloy Atomic excited-state decay by (w)~ w? at frequencies well above the sharp spectral fea-

spontaneous emission into the electromagnetic field vacuu Ures. In an open structusee below; Gy(w) represents the

IcnororZIGanticS)r?at(i:ri:ailgrl?]tagﬂllgﬂgssreilljtlrr]irﬂer? tina?et:(?ngjletlfr\éan tom coupling to the unconfined free-space modes. We cast
; g the excited-state amplitude in the foram(7)e™'“a7, where

this correlation time is undoubtedly longer, the issue of QZE is the atomic resonance frequency. Then, for arbitrary
observability in resonators has not been studied in detaig%M spectra and coupling strengths 'one c:;m reduce the
Instead, an experimefd] (based on a theoretical suggestion equations for spontaneous deday to th,e following evolu-

[5]) and ensuing theoretical studif&| have focused on the tion equation. up to the interruntion time
QZE in the Rabi-oscillations regime of a coupled field-atom q » ub P

system, and, lately, in the evolution of a decaying field- ] - '
driven multilevel aton{ 7] or in parametric down-conversion a(17)=— fo dif P (t)+Dy(t)edta(7—t). (23
[8].

It is our purpose here to demonstrate that the inhibition ofH
nearly exponentiabxcited-state decay by the QZE in two- sponding to the maximum or the singularity of the sharp

level atoms, in the spirit of the. 9r|g_|nal _suggesuﬁljl, IS spectral feature, whereabg(t) and ®dy(t) are the time-
amenable to experimental verification in resonators. Al-

though this task is widely believed to be very difficult, we ﬁ\c/)enr;m Fourier transforms dBy(w) and Gp(w), respec
show, by further developing our unified theory of spontane- '
ous emission into reservoirs with arbitrary mode-density o _

spectra[9], that several realizable configurations based on Dgpy(t)= fo dwGgp)(w)e (07 est, (2b)

two-level emitters in cavitief10,11] or in waveguide$12]
are in fact adequate for QZE observation. The possibilitieestricting ourselves to a sufficiently short interruption inter-
for such observation are examined in various regimes thaj;| + such thata.(7)=1, yet long enough to allow the

can arise in resonators. Finally, we address the issue of Qzl%tating-wave approximatiofRWA), Eq. (2) yields
suitability for decoherence-error prevention, which has been ’

ere A=w,— wg, wg iS a characteristic frequency corre-

brought up recently13]. T At
We start with a general analysis of the evolution of an ag(T)=1— fodt( T P(t)e
initially excited two-level atom coupled to aarbitrary
density-of-modegsDOM) spectrump(w) of the electromag- + (AL =iy 2— yp1/2). 3)

netic field in the vacuum state. At time this evolution is

interrupted by a short optical pulse, which serves as a quarFhe terms within the parentheses in E8). are the contribu-
tum measuring devidet—7]. Its role is to break the evolution tion of the background DOM, simplified according to
coherence, by transferring the populations of the excitedhe Weisskopf-Wigner approximation[9]. Here A]
state|e) to an auxilliary state that then decays backed =dA,/dw,, whereA, is the Lamb shift due to the back-
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ground modes, Ay=P[idwG,(w)/(wa— ). Likewise,
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1
v,=dyp/dw, is the frequency derivative of vy,
=27Gp(w,), the effective rate of spontaneous emission into 0.8
the background modes. Equati8) is obtained to first order
in the atom-field interaction. To the same accuracy, the 0.6
excited-state probability aften interruptions (measure- = 04
ments, W(t=n7)=|a.(7)|?", can be written as :
W(t=n7)~[2 Rexg(7)—1]"~e !, 4 02 4
where 0~300 200 300 400 500 600 700 800
k=2 Rd1—ay (7] (5 Time (ns)

One can estimate that typicall@] |Ay|~|Apl/wa~ yi/wa,

FIG. 1. Evolution of excited-state populati®i in a two-level

¥t being the free-space rate of spontaneous emission. Hencgom coupled to a cavity mode with Lorentzian line shépsed in

A] is utterly negligible in Eq.(4), unlessy,=0, as in a
perfectphotonic band gap. In most structures, howewygris
comparable toy; and gives rise to amxponentialdecay

case(i) (on resonanced =0): curve 1, decay to background-mode
continuum at ratey,= y;=10° s™%; curve 3, uninterrupted decay in
cavity with F=(1—R) 2=10°, L=15 cm, andf=0.02; curve 4,

factor in the excited-state probability, regardless of howidem, but withF=10° (damped Rabi oscillatiofscurve 2, inter-

short 7 is, i.e., k= kst y,, Wherexg is the contribution to
« from the sharply varying modes.

rupted evolution alongboth curves 3 and 4, at intervals
7=3x108s.

Thus the background-DOM effect cannot be modified by

QZE. Only the sharply varying DOM portion allows for
QZE, provided that

ko= (217) Redet( ) D (1)t ®)
0

rises with = for sufficiently short7. This is essentially a
condition on the correlatiolior memory time of the field
reservoir. If Gy(w) falls off faster than lk—w for
|o—wd>T, wherel'g is the width(or the reciprocal cor-
relation timeg of the sharply varying reservoir, then for
t<|A|‘1,1“S_1 one can neglect the exponential in the integral
expression (2b) for @ (t), leading to d(t)
~f°0“deS(w)Eg§ This yields (neglecting the background
contribution

ag()=1-(gsn%/2 (r<[|A|" Tt gsh, ()
i.e., a parabolic-segment evolution. Correspondingly,(Ex.
reduces to

®)

Only the x4 term decreases with, indicating the QZE inhi-
bition of the smooth nearly exponential decay into the field
reservoir asr—0.

First and foremost, we wish to apply the above analysis t
the case of a two-level atom coupled to a near-resona
Lorentzian line centered ai;, characterizing a higky cav-
ity mode or a “defect” mode in a photonic band structure
[9]. In this caseGy(w) =gl s/{m[T2+ (w— ws)?]}, Where
0s is the resonant coupling strength afidis the linewidth
(Fig. 1—inse}. The evolution ofag(t) [Eq. (2)] is thenex-
actly solvablewithin the RWA, in the form

— _ a2
K=KsT Yp, Ks=0g7.

ae(T):(1/2)e(iA_Fs)T/2(A+eD7+Aie_D,r), ©

where A.=1+(T(—iA)/(2D) and D=[(T—iA)¥

4-gi*"2.

We can henceforth draw a distinction betweengtreng-
coupling regimeof underdamped Rabi oscillations, corre-
sponding to >+ |A|, and theweak-coupling regimef
overdamped Rabi oscillations, d@reversible nearly expo-
nential decaycorresponding to @<I's+|A|. However, we
choose to underscore tikemmon characteof both regimes
as regards the QZE. To this end, we introduce the short-time
approximation to the solutiof®), to the same accuracy as
Eq. (3). Taking into account that the Fourier transform of the
Lorentzian Gy(w) is ®4(t)=g2e ", Eq. (3) yields (ne-
glecting the background modes

:

We can now distinguish among the following cases:

(i) 7<(T's+|A])"1,g; 1. Obviously, it is easiest to sat-
isfy this inequalityon resonancewhenA =0. Then Eq(10)
yields Egs.(7) and(8). Sincel’s andA have dropped out of
Eq. (8), the decay inhibition is theamefor both strong- and
weak-coupling regime&ig. 1). Physically, this comes about
since f0r7-<g;l the energy uncertainty of the emitted pho-
ton is too large to distinguish between reversible and irre-
versible evolutions.

(i) Tol<r<(Ts+|Al)/g2. This is the weak-coupling

gime with 7 sufficiently long for exponential relaxation to

92

Is—

(IA-Tg97_

T—iA

e
T+

(10

ag(T)~1—

iA

e
Iilegin, ae(r)~1—g§[(rs—m)¢— 1]/(I's—iA)2. The sec-

ond term in the square brackets represents a small correction
to the exponential decay. The evolution afrermeasure-
ments now obeys Eq$4)-(6), with

L 20T 205a%-TY)
TTZEAZ T(TZr A2 T

11

K=Kg

which approximates the decay rate for the uninterrupted
case, as one would expect. The second term in (Ed),
arising from the above correction to exponential decay, re-
duces orenhanceshe decay rate fofA|<I'g or |A|>T,
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1 , demand that the interval between measurements significantly
""""" exceed the measurement time, we infer the inequality
o N\ ™1,. The above inequality can be relaxed to require
<7 N >y, ' if the “measurements” are performed withr
0.8 NS N pulses:Q ty=m, ty<y, 1. The only real constraint in case
> - N e 1 (i) is that Cs+|A|) "> 7>y, . This calls for choosing a
0.7 N XN |uy—|e) transition with a much shorter radiation lifetime
Mo N than that ofie) —|g). The curves in Figs. 1 and 2 are calcu-
06 N lated for such a choice; and for feasible cavity parameters,
‘ 4~ I's=(1-R)c/L,gs=Vcfys/(2L), v,=(1—f)7y;, whereR
05 ' is the geometric-mean reflectivity of the two mirrofds the

50 100 150 200 250 300 350 400 fractional solid anglgnormalized to 4r) subtended by the
confocal cavity, and. is the cavity length.
We now extend the above analysis to DOM distributions
of a more general form, including distributions characterized
FIG. 2. Idem, in casdiii) of a two-level atom coupling to by a lower cutoff frequency, as in a waveguide or a photonic
Lorentzian mode, witlA=10° s™%, F=1Cf, L=15 cm,f=0.15, band edge[9]. For convenience, we leave out the back-
andy;=10° s~*: curve 1, decay to background-mode continuum atground contribution in what follows. If there is a slowly
rate y, ; curve 2, interrupted free-evolution oscillations at intervals decreasing tail in the reservoir, e.g.,
r=27x108 s (Ar=2m); curve 3, idem, forr=57x10% s
(Ar=5m); curve 4, idem, forr=37x10"8 s (Ar=3m). Inset: Gy(w)~Cl(w—wg)? (0—wsTy), (14
the level scheme for all figures.

Time (ns)

with 0<B8<1, andG4(w) diminishes fast or is cut off for
respectively. Though small, this term decreases with ®—ws<Is, then one can show, by using the Fourier trans-
which facilitates its observation. form of (14), &(t), in Eq. (3), that for
(iii) |A|"t<7<I'2,|A|/g2. This case corresponds to an 7<I's *,|A[~1,C™ VD)
intermediate regime of off-resonant evolution, where dimin-
ishing oscillations with ampIitudesgi/A2<1 take place,
coinciding asymptoticallyin the limit of larget) with expo-

ag(n)~1-[T(=B)(B+1)]C(i7)"", (15

) b ) . wherel'( ) is the Euler” function[15]. Here, instead of the
nentla_l decay_ _}gst/(l“s—m) Lcf. I_Eq. (10)]. In this case parabolic-segment evolution of,(7) as the limiting form of
ae(t) is sensitiveto the free-evolution phasé 7 between  pq (10) for a Lorentzian reservoir, we obtain a lower expo-
two consecutive interruption@-ig. 2). When the measure- nentq=1+ B, in the range ¥ q<2, implying that the QZE

ments are performed at the maxima of the free-evolutionyiqis pyt is less pronounced than in the previous case, i.e.,
oscillations,A 7=27m(m being an integer then

= 2)I'(2+ ~icB, 16
K:KS+7b:4g§Fs/A2+')’ba (12) Ksg W[COi’JTﬁ ) ( IB)] T ( )

. . . When there are slowly diminishing tails on both sides of
the decay rate due to the sharply varying modes being twicg;  ,y ‘contributions from the tails add up independently in
that for the uninterrupted cageompare the first terms in Egs.(15) and (16).

(11) and (12)]. On the other hand, when the measurements s gpecific model for the spectral response of a DOM dis-
are performed at the minima,r=(2m-+ 1), the decay raté  iption with a cutoff is represented @] [Fig. 3—inset

k= Kot Yo= 42 (A27)+ 7, 1y @
Gs(w):[c Vw_ws/(w_ws+rs)]®(w_ws)a (17)

where wg is the cutoff(or band-edgefrequency,l’y is the
Sutoff-smoothing parameteg is the strength of the coupling
of the atomic dipole to this reservoir, a{ ) is the Heavi-

is much larger than in Eq.12) and decreases asgrows,
thus presenting a non-QZE behavigig. 2).

The experimental scheme we envisage for observing th
above effects is as follows. A fraction of an atomic beam

oriented perpendicular to the axis of a confocal cavity is_; . . .
: . . o side step function. Upon computing the Fourier transform of
excited to statée) by a laser outside the cavity. Within the Eq. (17), we find from Eq.(2) that the QZE condition is

cavity the atoms repeatedly interact with a pump laser, which
is resonant with thee)—|u) transition frequency. The re- <mindT=L [Al-1 C-2 18
sulting|e)—|g) fluorescence rate is collected as in HaD] r<min{l’s . JA[ ¥ (18)

and monitored as a function of the pulse repetition rate. Eaclynger this condition Eqsi2a and (6) vield a.(r) of the
short, intense pump pulse of duratignand Rabi frequency  orm (15) with B= 1/2’ and, correspondingly ¢
Q, is followed by spontaneous decdyia fluorescence ' ’

from |u) back to|e), at a ratey,. The “measuring” pulse k= (2527213)C 712 (19
has to satisfyt,;l< Yu<<{p, so as todestroy the coherence

of the system evolution, on the one hand, aashuffle the As mentioned above, the QZE is ndess pronouncedsee
entire populatiorfrom |e) to |u) and back, on the other hand Fig. 3, where we used the exact solut[@y. (A11) in [9]] to
(Fig. 2—insel. By combining these requirements with the computea¢(7)). This case is realizable for an active dipole
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FIG. 3. Evolution of excited-state populatiad for a two-level
atom (y;=10° s~ 1) coupled to the waveguide field, with coupling
C?P=1.2x10" s7* and widthT'¢=0: curve 1, uninterrupted evo-
lution at cutoff frequency £=0); curve 4, idemA=10 s 1;
curve 2, interrupted evolution at intervals=10"8 s for A=0;
curve 3, idem, forA=10° s~1. Insets:(a) DOM with cutoff [Eq.
(17)]; (b) dipole in a waveguide.

layer embedded in a dielectric wavegu[d2] [Fig. 3—inset
(b)], using a level scheme similar to that of Fig. 2.

By contrast, if, instead of Eq18), 7 satisfiesI'y ler
<|A|1,T'2/C?, one obtainsye(7)~1—(2C/T¢)imr and
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Kks=(232mY2CIT ) 7712, (20)

In this case the measurememtshancethe decay rate, con-
trary to QZE behavior. This regime can be realized for a
sufficiently weak couplingC<TI'22. Finally, for r>|A| 1

the exponential behavi¢®@] prevails, irrespective of the val-
ues ofC andI's.

Our unified analysis of two-level atom coupling to field
reservoirs has revealgd) the most general optimal condi-
tions for observing the QZE in various field-confining struc-
tures(cavities, waveguides, and three-dimensional photonic
band structures (b) the common character of QZE in both
strong-couplingreversiblg and weak-couplindirreversible
evolution regimes; andc) the importance of the free-
evolution phase accrued between consecutive interruptions,
which can significantly affect the rate of decay and can set
non-QZE behavior. We note that the wave-function collapse
notion is not involved here, since the measurement is explic-
ity described as an act of coherence breakib§ This
analysis also clarifies that the QZE cannot combat the
background-mode contribution to exponential decay, and is
therefore inadequate for decoherence error preverfigh
The best way to achieve such prevention is by switching off
the entire density of modes, i.e., placing the atomic reso-
nance well within an ideal photonic band gap.
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