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A unified theory of two-level atom coupling to vacuum field reservoirs witharbitrary mode-density spectra
is used to demonstrate that the quantum Zeno effect on excitation decay of the atom~and, correspondingly,
inhibition of spontaneous emission! is observable in open cavities and waveguides, using a sequence of
evolution-interrupting pulses on a nanosecond scale.@S1050-2947~96!51111-X#

PACS number~s!: 42.50.Dv, 03.65.Bz, 32.80.2t

The ‘‘watchdog’’ or quantum Zeno effect~QZE! is a
spectacular manifestation of the influence of continuous
measurements on the evolution of a quantum system. The
original QZE prediction has been the inhibition of exponen-
tial decay of an excited state into a reservoir, by repeated
interruption of the system-reservoir coupling by measure-
ments@1–3#. The essential requirement for the QZE is that
the measurements of the system state, which cause the inter-
ruption, be more closely spaced in time than the reservoir
correlation ~memory! time. This implies that the uninter-
rupted decay must deviate from the exponential law over a
time interval comparable to the spacing between successive
measurements~see below!. Atomic excited-state decay by
spontaneous emission into the electromagnetic field vacuum
in open space cannot fulfill this requirement, as the relevant
correlation time is then,10215 s. Although in resonators
this correlation time is undoubtedly longer, the issue of QZE
observability in resonators has not been studied in detail.
Instead, an experiment@4# ~based on a theoretical suggestion
@5#! and ensuing theoretical studies@6# have focused on the
QZE in the Rabi-oscillations regime of a coupled field-atom
system, and, lately, in the evolution of a decaying field-
driven multilevel atom@7# or in parametric down-conversion
@8#.

It is our purpose here to demonstrate that the inhibition of
nearly exponentialexcited-state decay by the QZE in two-
level atoms, in the spirit of the original suggestion@1#, is
amenable to experimental verification in resonators. Al-
though this task is widely believed to be very difficult, we
show, by further developing our unified theory of spontane-
ous emission into reservoirs with arbitrary mode-density
spectra@9#, that several realizable configurations based on
two-level emitters in cavities@10,11# or in waveguides@12#
are in fact adequate for QZE observation. The possibilities
for such observation are examined in various regimes that
can arise in resonators. Finally, we address the issue of QZE
suitability for decoherence-error prevention, which has been
brought up recently@13#.

We start with a general analysis of the evolution of an
initially excited two-level atom coupled to anarbitrary
density-of-modes~DOM! spectrumr(v) of the electromag-
netic field in the vacuum state. At timet this evolution is
interrupted by a short optical pulse, which serves as a quan-
tum measuring device@4–7#. Its role is to break the evolution
coherence, by transferring the populations of the excited
stateue& to an auxilliary state that then decays back toue&

incoherently @6#. As in our previous treatment@14#, the
atomic response, i.e., the emission rate into this reservoir at
frequencyv, which is ug(v)u2r(v), \g(v) being the field-
atom coupling energy, is divided into two parts,

G~v!5Gs~v!1Gb~v!. ~1!

HereGs(v) stands for the sharply varying~nearly singular!
part of the DOM distribution, associated with narrow cavity-
mode lines, the frequency cutoff in waveguides, or photonic
band edges. The complementary partGb(v) stands for the
broad portion of the DOM distribution~the ‘‘background’’
modes!, which always coincides with the free-space DOM
r(v);v2 at frequencies well above the sharp spectral fea-
tures. In an open structure~see below!, Gb(v) represents the
atom coupling to the unconfined free-space modes. We cast
the excited-state amplitude in the formae(t)e

2 ivat, where
va is the atomic resonance frequency. Then, for arbitrary
DOM spectra and coupling strengths, one can reduce the
equations for spontaneous decay@9# to the following evolu-
tion equation, up to the interruption timet :

ȧe~t!52E
0

t

dt@Fs~ t !1Fb~ t !#e
iDtae~t2t !. ~2a!

Here D5va2vs , vs is a characteristic frequency corre-
sponding to the maximum or the singularity of the sharp
spectral feature, whereasFs(t) and Fb(t) are the time-
domain Fourier transforms ofGs(v) and Gb(v), respec-
tively,

Fs~b!~ t !5E
0

`

dvGs~b!~v!e2 i ~v2vs!t. ~2b!

Restricting ourselves to a sufficiently short interruption inter-
val t, such thatae(t).1, yet long enough to allow the
rotating-wave approximation~RWA!, Eq. ~2! yields

ae~t!.12E
0

t

dt~t2t !Fs~ t !e
iDt

1~Db82 igb8/22gbt/2!. ~3!

The terms within the parentheses in Eq.~3! are the contribu-
tion of the background DOM, simplified according to
the Weisskopf-Wigner approximation@9#. Here Db8
5dDb /dva , whereDb is the Lamb shift due to the back-
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ground modes, Db5P*0
`dvGb(v)/(va2v). Likewise,

gb85dgb /dva is the frequency derivative of gb

52pGb(va), the effective rate of spontaneous emission into
the background modes. Equation~3! is obtained to first order
in the atom-field interaction. To the same accuracy, the
excited-state probability aftern interruptions ~measure-
ments!, W(t5nt)5uae(t)u2n, can be written as

W~ t5nt!'@2 Reae~t!21#n'e2kt, ~4!

where

k52 Re@12ae~t!#/t. ~5!

One can estimate that typically@9# uDb8u;uDbu/va;g f /va ,
g f being the free-space rate of spontaneous emission. Hence,
Db8 is utterly negligible in Eq.~4!, unlessgb50, as in a
perfectphotonic band gap. In most structures, however,gb is
comparable tog f and gives rise to anexponentialdecay
factor in the excited-state probability, regardless of how
short t is, i.e.,k5ks1gb , whereks is the contribution to
k from the sharply varying modes.

Thus the background-DOM effect cannot be modified by
QZE. Only the sharply varying DOM portion allows for
QZE, provided that

ks5~2/t! ReE
0

t

dt~t2t !Fs~ t !e
iDt ~6!

rises with t for sufficiently shortt. This is essentially a
condition on the correlation~or memory! time of the field
reservoir. If Gs(v) falls off faster than 1/uv2vsu for
uv2vsu@Gs , whereGs is the width~or the reciprocal cor-
relation time! of the sharply varying reservoir, then for
t!uDu21,Gs

21 one can neglect the exponential in the integral
expression ~2b! for Fs(t), leading to Fs(t)
'*0

`dvGs(v)[gs
2 This yields ~neglecting the background

contribution!

ae~t!.12~gst!2/2 ~t!uDu21,Gs
21 ,gs

21!, ~7!

i.e., a parabolic-segment evolution. Correspondingly, Eq.~5!
reduces to

k5ks1gb , ks5gs
2t. ~8!

Only theks term decreases witht, indicating the QZE inhi-
bition of the smooth nearly exponential decay into the field
reservoir ast→0.

First and foremost, we wish to apply the above analysis to
the case of a two-level atom coupled to a near-resonant
Lorentzian line centered atvs , characterizing a high-Q cav-
ity mode or a ‘‘defect’’ mode in a photonic band structure
@9#. In this case,Gs(v)5gs

2Gs /$p@Gs
21(v2vs)

2#%, where
gs is the resonant coupling strength andGs is the linewidth
~Fig. 1—inset!. The evolution ofae(t) @Eq. ~2!# is thenex-
actly solvablewithin the RWA, in the form

ae~t!5~1/2!e~ iD2Gs!t/2~A1e
Dt1A2e

2Dt!, ~9!

where A6516(Gs2 iD)/(2D) and D5@(Gs2 iD)2/
42gs

2] 1/2.

We can henceforth draw a distinction between thestrong-
coupling regimeof underdamped Rabi oscillations, corre-
sponding to 2gs@Gs1uDu, and theweak-coupling regimeof
overdamped Rabi oscillations, orirreversible nearly expo-
nential decay, corresponding to 2gs!Gs1uDu. However, we
choose to underscore thecommon characterof both regimes
as regards the QZE. To this end, we introduce the short-time
approximation to the solution~9!, to the same accuracy as
Eq. ~3!. Taking into account that the Fourier transform of the
LorentzianGs(v) is Fs(t)5gs

2e2Gst, Eq. ~3! yields ~ne-
glecting the background modes!

ae~t!'12
gs
2

Gs2 iD Ft1
e~ iD2Gs!t21

Gs2 iD G . ~10!

We can now distinguish among the following cases:
~i! t!(Gs1uDu)21,gs

21 . Obviously, it is easiest to sat-
isfy this inequalityon resonance, whenD50. Then Eq.~10!
yields Eqs.~7! and~8!. SinceGs andD have dropped out of
Eq. ~8!, the decay inhibition is thesamefor both strong- and
weak-coupling regimes~Fig. 1!. Physically, this comes about
since fort!gs

21 the energy uncertainty of the emitted pho-
ton is too large to distinguish between reversible and irre-
versible evolutions.

~ii ! Gs
21!t!(Gs1uDu)/gs

2 . This is the weak-coupling
regime witht sufficiently long for exponential relaxation to
begin, ae(t)'12gs

2@(Gs2 iD)t21#/(Gs2 iD)2. The sec-
ond term in the square brackets represents a small correction
to the exponential decay. The evolution aftern measure-
ments now obeys Eqs.~4!-~6!, with

k5ks1gb5
2gs

2Gs

Gs
21D2 1

2gs
2~D22Gs

2!

~Gs
21D2!2t

1gb , ~11!

which approximates the decay rate for the uninterrupted
case, as one would expect. The second term in Eq.~11!,
arising from the above correction to exponential decay, re-
duces orenhancesthe decay rate foruDu,Gs or uDu.Gs,

FIG. 1. Evolution of excited-state populationW in a two-level
atom coupled to a cavity mode with Lorentzian line shape~inset! in
case~i! ~on resonance,D50): curve 1, decay to background-mode
continuum at rategb.g f5106 s21; curve 3, uninterrupted decay in
cavity with F[(12R)225105, L515 cm, andf50.02; curve 4,
idem, but withF5106 ~damped Rabi oscillations!; curve 2, inter-
rupted evolution alongboth curves 3 and 4, at intervals
t5331028 s.
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respectively. Though small, this term decreases witht,
which facilitates its observation.

~iii ! uDu21!t!Gs
21 ,uDu/gs

2 . This case corresponds to an
intermediate regime of off-resonant evolution, where dimin-
ishing oscillations with amplitude&gs

2/D2!1 take place,
coinciding asymptotically~in the limit of larget) with expo-
nential decay 12gs

2t/(Gs2 iD) @cf. Eq. ~10!#. In this case
ae(t) is sensitiveto the free-evolution phaseDt between
two consecutive interruptions~Fig. 2!. When the measure-
ments are performed at the maxima of the free-evolution
oscillations,Dt52pm(m being an integer!, then

k5ks1gb54gs
2Gs /D

21gb , ~12!

the decay rate due to the sharply varying modes being twice
that for the uninterrupted case@compare the first terms in
~11! and ~12!#. On the other hand, when the measurements
are performed at the minima,Dt5(2m11)p, the decay rate

k5ks1gb54gs
2/~D2t!1gb ~13!

is much larger than in Eq.~12! and decreases ast grows,
thus presenting a non-QZE behavior~Fig. 2!.

The experimental scheme we envisage for observing the
above effects is as follows. A fraction of an atomic beam
oriented perpendicular to the axis of a confocal cavity is
excited to stateue& by a laser outside the cavity. Within the
cavity the atoms repeatedly interact with a pump laser, which
is resonant with theue&→uu& transition frequency. The re-
sulting ue&→ug& fluorescence rate is collected as in Ref.@10#
and monitored as a function of the pulse repetition rate. Each
short, intense pump pulse of durationtp and Rabi frequency
Vp is followed by spontaneous decay~via fluorescence!
from uu& back toue&, at a rategu . The ‘‘measuring’’ pulse
has to satisfytp

21!gu!Vp , so as todestroy the coherence
of the system evolution, on the one hand, andreshuffle the
entire populationfrom ue& to uu& and back, on the other hand
~Fig. 2—inset!. By combining these requirements with the

demand that the interval between measurements significantly
exceed the measurement time, we infer the inequality
t@tp . The above inequality can be relaxed to require
t@gu

21 if the ‘‘measurements’’ are performed withp
pulses:Vptp5p, tp!gu

21 . The only real constraint in case
~i! is that (Gs1uDu)21@t@gu

21 . This calls for choosing a
uu&→ue& transition with a much shorter radiation lifetime
than that ofue&→ug&. The curves in Figs. 1 and 2 are calcu-
lated for such a choice; and for feasible cavity parameters,
Gs5(12R)c/L,gs5Ac fg f /(2L), gb5(12 f )g f , whereR
is the geometric-mean reflectivity of the two mirrors,f is the
fractional solid angle~normalized to 4p) subtended by the
confocal cavity, andL is the cavity length.

We now extend the above analysis to DOM distributions
of a more general form, including distributions characterized
by a lower cutoff frequency, as in a waveguide or a photonic
band edge@9#. For convenience, we leave out the back-
ground contribution in what follows. If there is a slowly
decreasing tail in the reservoir, e.g.,

Gs~v!'C/~v2vs!
b ~v2vs@Gs!, ~14!

with 0,b,1, andGs(v) diminishes fast or is cut off for
v2vs,Gs , then one can show, by using the Fourier trans-
form of ~14!, Fs(t), in Eq. ~3!, that for
t!Gs

21 ,uDu21,C21/(b11)

ae~t!'12@G~2b!/~b11!#C~ i t!b11, ~15!

whereG( ) is the EulerG function @15#. Here, instead of the
parabolic-segment evolution ofae(t) as the limiting form of
Eq. ~10! for a Lorentzian reservoir, we obtain a lower expo-
nentq511b, in the range 1,q,2, implying that the QZE
exists, but is less pronounced than in the previous case, i.e.,

ks5p@cos~pb/2!G~21b!#21Ctb. ~16!

When there are slowly diminishing tails on both sides of
Gs(v), contributions from the tails add up independently in
Eqs.~15! and ~16!.

A specific model for the spectral response of a DOM dis-
tribution with a cutoff is represented by@9# @Fig. 3—inset
~a!#

Gs~v!5@CAv2vs/~v2vs1Gs!#Q~v2vs!, ~17!

wherevs is the cutoff ~or band-edge! frequency,Gs is the
cutoff-smoothing parameter,C is the strength of the coupling
of the atomic dipole to this reservoir, andQ( ) is the Heavi-
side step function. Upon computing the Fourier transform of
Eq. ~17!, we find from Eq.~2! that the QZE condition is

t!min$Gs
21 ,uDu21,C22/3%. ~18!

Under this condition, Eqs.~2a! and ~6! yield ae(t) of the
form ~15! with b51/2 and, correspondingly,

ks5~25/2p1/2/3!Ct1/2. ~19!

As mentioned above, the QZE is nowless pronounced„see
Fig. 3, where we used the exact solution@Eq. ~A11! in @9## to
computeae(t)…. This case is realizable for an active dipole

FIG. 2. Idem, in case~iii ! of a two-level atom coupling to
Lorentzian mode, withD5108 s21, F5106, L515 cm, f50.15,
andg f5106 s21: curve 1, decay to background-mode continuum at
rategb ; curve 2, interrupted free-evolution oscillations at intervals
t52p31028 s (Dt52p); curve 3, idem, fort55p31028 s
(Dt55p); curve 4, idem, fort53p31028 s (Dt53p). Inset:
the level scheme for all figures.
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layer embedded in a dielectric waveguide@12# @Fig. 3—inset
~b!#, using a level scheme similar to that of Fig. 2.

By contrast, if, instead of Eq.~18!, t satisfiesGs
21!t

!uDu21,Gs
2/C2, one obtainsae(t)'12(2C/Gs)Aipt and

ks5~23/2p1/2C/Gs!t
21/2. ~20!

In this case the measurementsenhancethe decay rate, con-
trary to QZE behavior. This regime can be realized for a
sufficiently weak coupling,C!Gs

3/2. Finally, for t@uDu21

the exponential behavior@9# prevails, irrespective of the val-
ues ofC andGs .

Our unified analysis of two-level atom coupling to field
reservoirs has revealed~a! the most general optimal condi-
tions for observing the QZE in various field-confining struc-
tures~cavities, waveguides, and three-dimensional photonic
band structures!; ~b! the common character of QZE in both
strong-coupling~reversible! and weak-coupling~irreversible!
evolution regimes; and~c! the importance of the free-
evolution phase accrued between consecutive interruptions,
which can significantly affect the rate of decay and can set
non-QZE behavior. We note that the wave-function collapse
notion is not involved here, since the measurement is explic-
itly described as an act of coherence breaking@6#. This
analysis also clarifies that the QZE cannot combat the
background-mode contribution to exponential decay, and is
therefore inadequate for decoherence error prevention@13#.
The best way to achieve such prevention is by switching off
the entire density of modes, i.e., placing the atomic reso-
nance well within an ideal photonic band gap.
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FIG. 3. Evolution of excited-state populationW for a two-level
atom (g f5106 s21) coupled to the waveguide field, with coupling
C2/351.23107 s21 and widthGs50: curve 1, uninterrupted evo-
lution at cutoff frequency (D50); curve 4, idem,D5108 s21;
curve 2, interrupted evolution at intervalst51028 s for D50;
curve 3, idem, forD5108 s21. Insets:~a! DOM with cutoff @Eq.
~17!#; ~b! dipole in a waveguide.
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