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Second-harmonic generation has been obtained by the use of Laguerre-Gaussian beams in a variety of mode
orders. Each mode becomes doubled in frequency and transformed to a higher order. We show this to be a
consequence of the phase-matching conditions. The experiment is consistent with the interpretation that the
orbital angular momentum of the Laguerre-Gaussian mode is directly proportional to the azimuthal mode index
l. @S1050-2947~96!50711-0#

PACS number~s!: 42.50.Ct, 42.65.Ky

The first experiment in nonlinear optics was the genera-
tion in 1961 of the second harmonic of a ruby laser beam
that had been focused on a quartz crystal@1#. We report the
observation of second-harmonic generation using non-zero-
order Laguerre-Gaussian light beams and show that the
phase-matching conditions dictate that the modes become
converted to a higher order in the process. Such mode con-
version is shown to be consistent with the fact that the modes
possess orbital angular momentum proportional to the mode
index l and that orbital angular momentum is conserved
within the light fields. In 1993, Basistiyet al. @2# made brief
mention of the frequency doubling of a laser beam possess-
ing a phase dislocation centered on the axis of the beam;
apparently two dislocations resulted. But they offered no ex-
planation as to the physical basis of the observation; the
orbital angular-momentum content of the light was not men-
tioned and the experiment appears only to have been per-
formed for one, evidently non-Laguerre-Gaussian, beam.

A simple description of second-harmonic generation con-
siders the role of plane waves and subsequently defers to the
fact that the modes actually used are the lowest order of the
commonly occurring family of Hermite-Gaussian modes
emitted by real lasers. This family of modes is characterized
by Hermite polynomials with indicesn andm, the Rayleigh
range, and a simple Gaussian amplitude profile. Recent work
has shown that the related set of Laguerre-Gaussian modes
may be produced from Hermite-Gaussian mode by means of
a simple modes converter@3,4# consisting of a pair of cylin-
drical lenses. Such modes are characterized by the indicesp
and l wherep5m and l5n2m for n.m. Again the Rayleigh
range is one of their characterizing features. The lowest-
order ~0,0! mode is common to both sets of modes.

Laguerre-Gaussian modes have been shown theoretically
to possess orbital angular momentum ofl\ per photon@5# in
addition to any spin angular momentum due to their state of
polarization. The existence of orbital angular momentum has
been confirmed by Heet al. @6# by the transfer of angular
momentum from the Laguerre-Gaussian light beam to
micrometer-sized metallic particles held in an optical trap.
The experiment clearly distinguished between orbital and

spin angular momentum, but did not confirm the predictedl\
per photon. The interaction of atoms with light possessing
orbital angular momentum has already been the subject of
detailed investigation@7#, particularly with regard to trapping
and cooling; new effects have been predicted.

We show that a Laguerre-Gaussian mode may undergo
second-harmonic generation and that the resulting
frequency-doubled light is of a higher-order mode. A sim-
plistic interpretation of what we see is possible by the use of
a naive theory of second-harmonic generation, which as-
sumes that there is no absorption and that the depletion of the
input wave is negligible. In this case the amplitude of the
second harmonic at frequency 2v is proportional to the
square of the input amplitude at frequencyv; that is,E(2v)

}(E(v))2. It is easy to see that when the lowest-order Gauss-
ian mode is used, such thatEv5E1exp~2r2/w2!, the second
harmonic will have an amplitudeE2v5E1

2exp@22r2/~2w!2#
5E2exp~22r2/2w2!. This is again a simple Gaussian beam
with the spot size reduced by a factor of& compared with
the fundamental.

The same approximate approach may be applied to our
experiment. The general expression for the Laguerre-
Gaussian mode amplitude is given by

E~v!5E0expF 2 ikr 2z

2~zR
21z2! GexpF2r 2

w2 G
3expF2 i ~2p1 l11!arctanS z

zR
D G

3exp@2 i lf#~21!pS r&w D lLpl S 2r 2w2 D , ~1!

wherek is the wave number,zR the Rayleigh range, andw
the beam width at positionz.

At the beam waist wherez50, and for ap50 mode, this
becomes simply
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E~v!5E0expF2r 2

w2 Gexp@2 i lf#S r&w D l . ~2!

If this amplitude is squared we find that the result is again a
Laguerre-Gaussian mode withp50, but this time thel index
has become 2l andw is again reduced by&.

It follows that not only has the frequency been doubled,
so has the orbital angular momentum per photon. Two pho-
tons might be said to have combined their energy,\v, to
yield one with twice the energy, 2\v, and at the same time
two units ofl\ orbital angular momentum have combined to
give 2l\. This, of course, is not possible for circularly po-
larized light; a single second-harmonic beam cannot carry
spin angular momentum of 2\.

The experimental arrangement is shown in Fig. 1. An in-
tracavity cross wire was used to generate a variety of
Hermite-Gaussian modes from a diode-pumped, Nd:YAG
~neodymium-doped yttrium aluminum garnet! laser operat-
ing at 1064 nm with a linearly polarized output power of 100
mW. Each mode could be converted into a Laguerre-
Gaussian mode by means of a mode converter@4#. The cor-
responding Laguerre-Gaussian modes were then frequency
doubled using a 20-mm-long crystal of lithium triborate@8#,
temperature tuned to give noncritical, type-I phase matching
for the second harmonic at 532 nm. The input Laguerre-
Gaussian modes were optimally focused into the nonlinear
crystal to maximize the power in the second-harmonic mode,
typically a few microwatts. The experiment was also per-
formed with a crystal of KTP which was angle-tuned to give
critical, type-II phase matching.

A second mode converter was used to convert both the
transmitted input and second-harmonic Laguerre-Gaussian
modes back into their corresponding Hermite-Gaussian
modes. The modes were recorded using a charge-coupled-
device array; the input or second-harmonic light was selected
by the use of appropriate filters. The indices of both the
fundamental and second-harmonic Laguerre-Gaussian modes
were then inferred from the observedn,m indices of the
respective Hermite-Gaussian modes.

For a Hermite-Gaussian input mode with indicesn,m a
Laguerre-Gaussian mode leaving the mode converter has
p5m and l5(n2m). This mode produces the second har-
monic at frequency 2v, which, if our argument is correct for
p50, will have indicesp5m50 andl52(n2m)52n. The
mode converter works equally well either way: just as a
Hermite-Gaussian mode can be converted into a Laguerre-
Gaussian mode, so a Laguerre-Gaussian mode may be con-
verted into a Hermite-Gaussian using the same or an identi-
cal mode converter@4#. Thus if the second-harmonic light is

passed into a mode converter, a Hermite-Gaussian mode
should result at frequency 2v with modes indices 2n and 0.

Figure 2 shows the intensity distributions obtained when
the laser was operated in the Hermite-Gaussian~1,0! mode
for second-harmonic generation in LBO. Figures 2~a! and
2~b! show the input Hermite-Gaussian and Laguerre-
Gaussian modes, respectively. Figure 2~c! shows the second-
harmonic Laguerre-Gaussian and Fig. 2~d! is the Hermite-
Gaussian recorded after the second mode converter. Figures
2~c! and 2~d! were then used to infer the mode indices of the
second-harmonic Laguerre-Gaussian modes as outlined in
the preceding paragraph. We find that for the frequency-
doubled mode the azimuthal mode indexl is doubled while
p remains zero. We have investigatedp50 modes for
l50,1,2, . . . ,7 and found for each mode that second-
harmonic generation doublesl . Figure 3 shows the same be-
havior for a laser operating initially in the Hermite-Gaussian
~3,0! mode for second-harmonic generation in KTP.

Phase-matching for a nonlinear process depends on the
vector addition of the wave vectors of the interacting fields.
In a second-order nonlinear process, such as frequency dou-
bling, optimum phase matching requires that

Dk5k3
~2v!2k2

~v!2k1
~v!50, ~3!

FIG. 1. The experimental con-
figuration showing the mode trans-
formation that occurs when a
Laguerre-Gaussian mode is fre-
quency doubled.

FIG. 2. Second-harmonic generation in LBO:~a! shows the in-
put Hermite-Gaussian~n51, m50); ~b! shows the corresponding
Laguerre-Gaussian (l51, p50); ~c! shows the Laguerre-Gaussian
~l52, p50) produced after second-harmonic generation; and~d!
shows the second-harmonic mode converted back to a Hermite-
Gaussian (n52, m50).
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wherek i
~v8! is the wave vector of thei th field at frequency

v8.
For a type-I geometry both fields atv have the same

polarization, which is orthogonal to the polarization of the
field at 2v. In noncritical phase matching, all fields propa-
gate perpendicular to the optic axis of the nonlinear material.
The temperature of the material is such that the fundamental
and second-harmonic light experience the same refractive in-
dex. Thusk25k1 , and for perfect phase matching,

Dk5k~2v!22k~v!50. ~4!

In isotropic media the wave vectork is parallel to the Poyn-
ting vectorS, but in an anisotropic material this is no longer
the case. However, in the noncritical geometry,k is very
nearly parallel toS. The Laguerre-Gaussian modes have spi-
raling Poynting vectors,@5#. It is therefore not unreasonable
to assume that Laguerre-Gaussian modes will exhibit phase-
matching conditions different from those of a Hermite-
Gaussian mode of the same frequency. In fact, we find that
the phase-matching temperature for optimum second-
harmonic generation is the same for modes of any order.
This implies that in all cases, the wave vectors for the fun-
damental and second-harmonic Laguerre-Gaussian modes
are parallel throughout the length of the crystal. It follows
that the spiral paths described by the Poynting vectors must
be of the same form for each mode.

For a Laguerre-Gaussian mode withlÞ0 the helical wave
fronts imply that the Poynting vector is not collinear with the
direction of the beam. It has an azimuthal component such
that its rate of rotation about the beam axis@9# is given by

]u

]z
5

l

k~v!r 2
. ~5!

If this expression is equated for the fundamental and second-
harmonic frequencies, we obtain

l ~v!

k~v!r 2
5

l ~2v!

k~2v!r 2
. ~6!

where l ~v8! is the azimuthal mode index of the light at fre-
quencyv8. As k2v52kv it follows that l 2v52lv, as we
have observed; it follows too that the orbital angular momen-
tum per photon in the second-harmonic mode is twice that in
the fundamental. As previously argued, this is entirely con-
sistent with frequency doubling in the photon picture. A
similar, if slightly more complicated, argument can be fol-
lowed for type-II phase matching@10#. We have confirmed
experimentally that the phase-matching angle is independent
of mode and that the frequency doubling of ap50 Laguerre-
Gaussian mode again leads to a doubling of the azimuthal
mode index.

We should note that the relationship between the beam
widthsw~v! andw~2v! means that the Rayleigh ranges for the
fundamental and second-harmonic modes are identical. This
is important, as the Rayleigh range of the mode dictates the
design of the mode converter. It explains why it was possible
to use the same mode converter to convert both the input and
second-harmonic Laguerre-Gaussian modes to Hermite-
Gaussian, so that the mode indices may be determined.

Laguerre-Gaussian modes wherepÞ0 were also observed
to frequency double with the same phase-matching condi-
tions asp50 modes. However, in these cases the mode
transformation that occurs is more complex. ApÞ0 mode
consists of a series of concentric rings. The nonlinear rela-
tionship between the field amplitudes of the fundamental and
second-harmonic modes means that the amplitude distribu-
tion of the rings changes dramatically on frequency dou-
bling. The second-harmonic beam can no longer be ex-
pressed in terms of a single Laguerre-Gaussian mode.
Second-harmonic generation with these modes is the subject
of further detailed study.

We have demonstrated the frequency doubling of a family
of Laguerre-Gaussian modes with azimuthal index from 0 to
7 andp50. The index of the mode has been found to double
as well as the frequency. The observed doubling of thel
index maximizes the overlap between the fundamental and
second-harmonic fields and ensures that the wave vectors
associated with the two fields are collinear. The experiment
of He et al. @6# confirmed that linearly polarized Laguerre-
Gaussian modes possess angular momentum. As in our
work, the effects found in their experiment cannot arise from
polarization and spin angular momentum but must be due to
orbital angular momentum. Our experiment is thus consistent
with the interpretation that the orbital angular momentum of
the Laguerre-Gaussian mode is directly proportional to the
azimuthal mode indexl . This is as expected from the theory
of Allen et al. @5#, which shows that the ratio of the angular
momentum to energy in a linearly polarized beam goes as
l\/\v.

This work was supported by EPSRC Grant No. GR/
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FIG. 3. Second-harmonic generation in KTP:~a! shows the in-
put Hermite-Gaussian (n53, m50); ~b! shows the corresponding
Laguerre-Gaussian (l53, p50); ~c! shows the Laguerre-Gaussian
( l56, p50) produced after second-harmonic generation; and
~d!shows the second-harmonic mode converted back to a Hermite-
Gaussian (n56, m50).

R3744 54DHOLAKIA, SIMPSON, PADGETT, AND ALLEN



@1# P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, Phys.
Rev. Lett.7, 118 ~1961!.

@2# I.V. Basistiy, V.Y. Bazhenov, M.S. Soskin, and M.V. Vas-
netsov, Opt. Commun.103, 422 ~1993!.

@3# C. Tamm and C.O. Weiss, J. Opt. Soc. Am. B7, 1034~1990!.
@4# M.W. Beijersbergen, L. Allen, H.E.L.O. van der Veen, and

J.P. Woerdman, Opt. Commun.96, 123 ~1993!.
@5# L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, and J.P.

Woerdman, Phys. Rev. A45, 8185~1992!.
@6# H. He, M.E.J. Friese, N.R. Heckenberg, and H. Rubinsztein-

Dunlop, Phys. Rev. Lett.75, 826 ~1995!.

@7# M. Babiker, W.L. Power, and L. Allen, Phys. Rev. Lett.73,
1239 ~1994!; W.L. Power, L. Allen, M. Babiker, and V.E.
Lembessis, Phys. Rev. A52, 479 ~1995!; M. Babiker, V.E.
Lembessis, W.K. Lai, and L. Allen, Opt. Commun.123, 523
~1996!; L. Allen, V.E. Lembessis, and M. Babiker, Phys. Rev.
A 53, R2937~1996!.

@8# C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, and R.L.
Byer, J. Opt. Soc. Am. B6, 616 ~1989!.

@9# M.J. Padgett and L. Allen, Opt. Commun.121, 36 ~1995!.
@10# Solid State Laser Engineering, edited by W. Koechner, 6th ed.

~Springer-Verlag, Berlin, 1995!, Chap. 10.

54 R3745SECOND-HARMONIC GENERATION AND THE ORBITAL . . .


