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Second-harmonic generation and the orbital angular momentum of light
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Second-harmonic generation has been obtained by the use of Laguerre-Gaussian beams in a variety of mode
orders. Each mode becomes doubled in frequency and transformed to a higher order. We show this to be a
consequence of the phase-matching conditions. The experiment is consistent with the interpretation that the
orbital angular momentum of the Laguerre-Gaussian mode is directly proportional to the azimuthal mode index
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The first experiment in nonlinear optics was the generaspin angular momentum, but did not confirm the predid¢ted
tion in 1961 of the second harmonic of a ruby laser beanper photon. The interaction of atoms with light possessing
that had been focused on a quartz crygtal We report the  orbital angular momentum has already been the subject of
observation of second-harmonic generation using non-zergletailed investigatiofi7], particularly with regard to trapping
order Laguerre-Gaussian light beams and show that thand cooling; new effects have been predicted.
phase-matching conditions dictate that the modes become We show that a Laguerre-Gaussian mode may undergo
converted to a higher order in the process. Such mode cof€cond-harmonic ~ generation and that the resulting
version is shown to be consistent with the fact that the modef€guency-doubled light is of a higher-order mode. A sim-
possess orbital angular momentum proportional to the modghstl(_: interpretation of what we see is pOSS|bI¢ by the_use of
index | and that orbital angular momentum is conserved® Naive theory of second-harmonic generation, which as-
within the light fields. In 1993, Basistigt al. [2] made brief ~Sumes that there is no absorption and that the depletion of the
mention of the frequency doubling of a laser beam possesd?Put wave is negligible. In this case the amplitude of the
ing a phase dislocation centered on the axis of the beanfecond harmonic at frequencyw2s proportional to the
apparently two dislocations resulted. But they offered no exsquare of the input amplitude at frequeneythat is, E)
planation as to the physical basis of the observation; the& (E())% Itis easy to see that when the lowest-order Gauss-
orbital angular-momentum content of the light was not menian mode is used, such th&t'=E exp(—r%/w?), the second
tioned and the experiment appears only to have been peharmonic will have an amplitudg?”=Eexd —2r%/(2w)?]
formed for one, evidently non-Laguerre-Gaussian, beam. =E,exp(—2r?/2w?). This is again a simple Gaussian beam

A simple description of second-harmonic generation conwith the spot size reduced by a factorvd compared with
siders the role of plane waves and subsequently defers to tliee fundamental.

—ikr?z
2(zg%+7°)

fact that the modes actually used are the lowest order of the The same approximate approach may be applied to our

commonly occurring family of Hermite-Gaussian modesexperiment. The general expression for the Laguerre-

emitted by real lasers. This family of modes is characterizedsaussian mode amplitude is given by

by Hermite polynomials with indices and m, the Rayleigh

range, and a simple Gaussian amplitude profile. Recent work

has shown that the related set of Laguerre-Gaussian modes _y2

may be produced from Hermite-Gaussian mode by means of E(®) = Eoexr{ ex;{ 5 }

a simple modes convertgs,4] consisting of a pair of cylin- w

drical lenses. Such modes are characterized by the ingdices 7

andl wherep=m andl=n—m for n>m. Again the Rayleigh Xexp{ —i(2p+|+1)arctar6 —)

range is one of their characterizing features. The lowest- Zr

order (0,00 mode is common to both sets of modes. v\l 2r2
Laguerre-Gaussian modes have been shown theoretically xXexd —il ¢](—1)p(— L'p(—z) (D)

to possess orbital angular momentund/fer photor{5] in w w

addition to any spin angular momentum due to their state of

polarization. The existence of orbital angular momentum has

been confirmed by Het al. [6] by the transfer of angular wherek is the wave numberzg the Rayleigh range, ang

momentum from the Laguerre-Gaussian light beam tdhe beam width at position

micrometer-sized metallic particles held in an optical trap. At the beam waist where=0, and for ap=0 mode, this

The experiment clearly distinguished between orbital andecomes simply
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’ FIG. 1. The experimental con-
figuration showing the mode trans-
I | ] | formation that occurs when a

- | Laguerre-Gaussian mode is fre-
! [ quency doubled.

Vo [

Cylindrical lens Nonlinear Cylindrical lens
mode converter crystal mode converter
—r2 _ rva\! passed into a mode converter, a Hermite-Gaussian mode
E(@=Eyex v exd —il ¢] w (2)  should result at frequency«2with modes indices & and 0.

Figure 2 shows the intensity distributions obtained when
the laser was operated in the Hermite-Gaus$ia®) mode
If this amplitude is squared we find that the result is again &or second-harmonic generation in LBO. Figure®)2and
Laguerre-Gaussian mode wigh=0, but this time thé index  2(b) show the input Hermite-Gaussian and Laguerre-
has become I2andw is again reduced by?2. Gaussian modes, respectively. Figute) Zhows the second-

It follows that not only has the frequency been doubledharmonic Laguerre-Gaussian and Figd)2is the Hermite-
so0 has the orbital angular momentum per photon. Two phoGaussian recorded after the second mode converter. Figures
tons might be said to have combined their eneryy, to  2(c) and Zd) were then used to infer the mode indices of the
yield one with twice the energy /i, and at the same time second-harmonic Laguerre-Gaussian modes as outlined in
two units ofl% orbital angular momentum have combined tothe preceding paragraph. We find that for the frequency-
give 214. This, of course, is not possible for circularly po- doubled mode the azimuthal mode indebs doubled while
larized light; a single second-harmonic beam cannot carry remains zero. We have investigatgd=0 modes for
spin angular momentum offi2 1=0,1,2...,7 and found for each mode that second-

The experimental arrangement is shown in Fig. 1. An in-harmonic generation doublésFigure 3 shows the same be-
tracavity cross wire was used to generate a variety ohavior for a laser operating initially in the Hermite-Gaussian
Hermite-Gaussian modes from a diode-pumped, Nd:YAG3,00 mode for second-harmonic generation in KTP.
(neodymium-doped yttrium aluminum garphéaser operat- Phase-matching for a nonlinear process depends on the
ing at 1064 nm with a linearly polarized output power of 100vector addition of the wave vectors of the interacting fields.
mW. Each mode could be converted into a Laguerredin a second-order nonlinear process, such as frequency dou-
Gaussian mode by means of a mode convg#erThe cor-  bling, optimum phase matching requires that
responding Laguerre-Gaussian modes were then frequency
doubled using a 20-mme-long crystal of lithium triborg&g, (20) L) L(w)
temperature tuned to give noncritical, type-I phase matching Ak=kz™"— k3" —k;*'=0, ©)
for the second harmonic at 532 nm. The input Laguerre-
Gaussian modes were optimally focused into the nonlinea
crystal to maximize the power in the second-harmonic mode
typically a few microwatts. The experiment was also per-
formed with a crystal of KTP which was angle-tuned to give

critical, type-ll phase matching. (a) (b) (’
A second mode converter was used to convert both the
transmitted input and second-harmonic Laguerre-Gaussia
modes back into their corresponding Hermite-Gaussiar
’ n : .

modes. The modes were recorded using a charge-couplet
device array; the input or second-harmonic light was selectet
by the use of appropriate filters. The indices of both the
fundamental and second-harmonic Laguerre-Gaussian modt
were then inferred from the observedm indices of the
respective Hermite-Gaussian modes.

For a Hermite-Gaussian input mode with indiagesn a
Laguerre-Gaussian mode leaving the mode converter ha
p=m and|=(n—m). This mode produces the second har-
monic at frequency @, which, if our argument is correct for

p=0, will have indicesp=m=0 andl =2(n—m)=2n. The FIG. 2. Second-harmonic generation in LB@) shows the in-
mode converter works equally well either way: just as aput Hermite-Gaussiatn=1, m=0); (b) shows the corresponding
Hermite-Gaussian mode can be converted into a Laguerrg@aguerre-Gaussiarl € 1, p=0); (c) shows the Laguerre-Gaussian
Gaussian mode, so a Laguerre-Gaussian mode may be can=2, p=0) produced after second-harmonic generation; @hd
verted into a Hermite-Gaussian using the same or an identshows the second-harmonic mode converted back to a Hermite-
cal mode convertd4]. Thus if the second-harmonic light is Gaussian =2, m=0).
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. lowed for type-Il phase matchingl0]. We have confirmed

experimentally that the phase-matching angle is independent
FIG. 3. Second-harmonic generation in KT} shows the in-  of mode and that the frequency doubling gb&0 Laguerre-
put Hermite-Gaussiam(= 3, m=0); (b) shows the corresponding Gaussian mode again leads to a doubling of the azimuthal
Laguerre-Gaussian €3, p=0); (c) shows the Laguerre-Gaussian mode index.
(I=6, p=0) produced after second-harmonic generation; and \We should note that the relationship between the beam
(d)ShOWS the second-harmonic mode converted back to a Hermitggidthsw(®’ andw2®) means that the Rayleigh ranges for the
Gaussian 1f=6, m=0). fundamental and second-harmonic modes are identical. This
is important, as the Rayleigh range of the mode dictates the
, design of the mode converter. It explains why it was possible
whereki(‘“ ) is the wave vector of théth field at frequency to use the same mode converter to convert both the input and
w'. second-harmonic Laguerre-Gaussian modes to Hermite-
For a type-l geometry both fields ai have the same Gaussian, so that the mode indices may be determined.
polarization, which is orthogonal to the polarization of the Laguerre-Gaussian modes wherg0 were also observed
field at 2w. In noncritical phase matching, all fields propa- to frequency double with the same phase-matching condi-
gate perpendicular to the optic axis of the nonlinear materialtions asp=0 modes. However, in these cases the mode
The temperature of the material is such that the fundamentatansformation that occurs is more complex.pA0 mode
and second-harmonic light experience the same refractive irconsists of a series of concentric rings. The nonlinear rela-
dex. Thusk,=k;, and for perfect phase matching, tionship between the field amplitudes of the fundamental and
second-harmonic modes means that the amplitude distribu-
tion of the rings changes dramatically on frequency dou-
Ak=k?) —2k») =0, (4)  bling. The second-harmonic beam can no longer be ex-
pressed in terms of a single Laguerre-Gaussian mode.
Second-harmonic generation with these modes is the subject
of further detailed study.

If this expression is equated for the fundamental and second-
harmonic frequencies, we obtain

¢
‘ [ (@) | (2w)
ol - T = [ ©®)
K@r2 ~ KRo)2:
’ .

wherel ") is the azimuthal mode index of the light at fre-
quency »'. As k?*=2k® it follows that I2=21¢, as we
have observed; it follows too that the orbital angular momen-
tum per photon in the second-harmonic mode is twice that in
the fundamental. As previously argued, this is entirely con-
sistent with frequency doubling in the photon picture. A
similar, if slightly more complicated, argument can be fol-

(a)
(©)

In isotropic media the wave vect@ris parallel to the Poyn-

ting vectorS, but in an anisotropic material this is no longer _ :
9 b 9 We have demonstrated the frequency doubling of a family

the case. However, in the noncritical geometkyjs very fL G ) d ith azimuthal index f 0t
nearly parallel td5. The Laguerre-Gaussian modes have spi—O aguerre-t>aussian modes with azimuthal index from U to

raling Poynting vectord5]. It is therefore not unreasonable 7 andp=0. The index of the mode has been found to double

to assume that Laguerre-Gaussian modes will exhibit phas;é‘-S well as the frequency. The observed doubling of lthe
matching conditions different from those of a Hermite- index maximizes the overlap between the fundamental and

Gaussian mode of the same frequency. In fact, we find tha%econd-harmonic fields and ensures that the wave vectors

the phase-matching temperature for optimum secong@ssociated with the two fields are collinear. The experiment
harmonic generation is the same for modes of any ordetof He et al. [6] confirmed that linearly polarized Laguerre-
This implies that in all cases, the wave vectors for the fun-GaUSS'an modes possess angular momentum. As in our

damental and second-harmonic Laguerre-Gaussian modiork, the effects found in their experiment cannot arise from
are parallel throughout the length of the crystal. It follows polarization and spin angular momentum but must be due to

that the spiral paths described by the Poynting vectors mué)tr.bital angular momentum. Our experiment Is thus consistent
be of the same form for each mode with the interpretation that the orbital angular momentum of

For a Laguerre-Gaussian mode with0 the helical wave th? Laguerre-Ga_ussian m_ode is directly proportional to the
fronts imply that the Poynting vector is not collinear with the azimuthal mode indek This is as expected from the theory

direction of the beam. It has an azimuthal component sucﬁf Allen et al. [5], which shows that the ratio of the angular

that its rate of rotation about the beam ap8$ is given by :Tflc/)?entum to energy in a linearly polarized beam goes as
w.
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