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Continuous observation of interference fringes from Bose condensates
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We use continuous measurement theory to describe the evolution of two Bose condensates in an interference
experiment. It is shown how in a single run the system evolves into a state with a fixed relative phase, without
violating particle number conservatigr51050-294{@6)07810-9

PACS numbsg(s): 03.75.Fi, 03.65.Bz, 05.30.Jp, 42.50.Ar

Recent observation of Bose-Einstein condensat#C) s a plane wave of wave vectéf (k°). We also assume that
[1-3] has initiated theoretical dlscussmn_s reggrdmg thqz;f@yz andk2= —K®; that is, they have opposite momenta
properties of Bose condensatp]. Of particular interest iy e direction[10]. The initial density operator describing
have been questions related to the phase of the condensgi® state of the condensates can be written as
[5]. The assumption of such a phase as a resu_lt of a brokeﬁozp(a)@)p(b)_ Consistent with the atomic number superse-
gauge symmetry allows for a natural explanation of manyaction rule we requirep’) to be diagonal in the atomic
physical phenomena, but also implies that the state of thBarticIe numbers,
condensate is a linear superposition of states with different
particle numbers. However, in second quantized formalism oz
of nonrelativistic quantum mechanics, as is usually em- pV=2 plInixnjl (j=ab). (1)
ployed to describe BEC, all observables commute with the n=0

atomic number operatdX, which thus plays the role of a Thjs includes as a special case Fock statds=|n,j)(n,j|,
superselection rule. As a consequence, starting from a stafe_, states with a fixed atomic numbgor the existence of
with fixed atomic number or a mixed state, which is diagonalinterference fringes in single realization of experiments with
in the atomic number basis, no atomic superpositions angock states see Ref&,9]). The derivations which follow are
coherences will develofs]. considerably simplified11] if we assume for the initial

In order to resolve this seeming contradiction, we use irstates of the condensates an ensemble of phase-averaged co-
this paper the language of continuous measurement theoherent states with fixed amplitudasandb, respectively,
[7] to describe a single realization of an interference experi-

; i 27
hment between two independent condensates. We will discuss p(a):f d¢a|aei¢a><aei¢a|, (2a)
ow the state of the two condensates evolves as atoms are o 2
detected In particular, from our analysis it follows how a
state of well defined relative phabeilds up dynamically in ) fzw
pb) =

a single experimental run as a consequence of the von Neu-
mann projection postulate of quantum theory. We emphasize
that our description does not contradict atomic number SUgich correspond to Poissonian atomic number distributions
perselection rules, and allows one to understand the coexisty;) %2 (i—ab

ence of both particle number conservation and the phase offp =€ "1 (i=a,b).

condensate in a general situation. The problem addressed in

the present paper is related to very recent work by Jav- y X
anainen and Yof8], and Naraschewslet al.[9], where it is condensate 1 | > condensate 2
3 Z ©

%o bgtny(ba, (21

0

shown that two independent Bose condensates prepared in e e Se e
Fock states may form a measurable interference pattern. o ¢ % ‘ "‘0 ®e
However, here we will show how the interference pattern is Co % P
formed dynamically, and, what is more important, how the \ ke ko /

state of the two condensates collapses during the process of

detection of the many individual atoms. screen

We consider the situation depicted in Fig. 1: two statisti-
cally independentBose condensate& and B of identical
atoms are dropped and detected by atomic counters in the
z=0 plane. For simplicity, we assume that all the particles in  FIG. 1. Schematic setup of interference of two Bose conden-
the first(secondl condensate occupy the same mode, whiclsates.
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As the atoms are detected, the number of atoms in eadlith ¢=[k2—k2]x,. That is, an atom is removed from the
condensate decreases. Due to the fact that the atoms are idéirst or the second condensate, and the position of the atom is
tical, when one atom is detected one cannot determinassociated with a relative phageof the plane waves. The
whether it belonged to the first or the second condensateime evolution between two subsequent detections is gov-
which gives rise to interference. In other words, the numbeerned by
of atoms in each of the condensates is not conserved. How-
ever, the total number of atoms must be conserved, and thus pr. e Hetnei—tn) e et 1 th) 9)
the density operator describing the whole system must re- N+l N
main diagonal in the total number. It is therefore convenient | ot s now follow the time evolution of the atomic den-

to define sity operator in a time interval0t] for a sequence of atom

- 2rdg, _ _ _ detections: we assume that the first atom is detected at the
Rap( @) = f |ag'%a)(ae %a| @ |be(?a~ ¥ (bel(Pa 9| position corresponding t¢, and at timet,, the second atom
o 2m at ¢, t,, etc., and theNth atom ate¢y, ty. In the present
) case, starting from the initial statd) and according td8)

as the density operator of a state with fixed relative phasémd(.g)’ this sequence dW detections prepares at tinidhe
. Note that this state is diagonal in the total atom numbef€NSity Operator
(consistent with overall number conservabiobut is an en- 27 deb N
tangled state with respect to the particles in both condensates Pt_Cf H la+ bei(¢k7¢)|2Ratbt(¢)
=1

[12]. Theinitial state (2) can then be rewritten as 2
2rde ~ 27 d " 27Td¢ R
po= fo %Raawz fo %f;‘ﬁwmam (4) - fo 519 ($)Ran (). (10

which corresponds to a state witimiformly distributed ran-  We identify ngb)((ﬁ)ocHE:ﬂa-}- be/ (%~ 9)|2 with the distri-
dom relative phasgf(9(4)=1]. bution of the relative phase of a state with decaying coherent
In order to describe the evolution of the density operatoramplitudes a,=ae *!, b,=be !, and C is a time-
as the atoms are detected at #e0 plane we use a simple independent normalization constant.
continuous measurement model based on the master equationThe simplicity of Eq.(10) is due to the properties of co-
[13] herent states. First, they remain coherent but with a decaying
. i ogn A At oata At amplitude under the time evolution with the effective Hamil-
p=—iw[a'atb'b,p]+k(2apa’—a'ap—pa’a) tonian Heg, i.e., e Meft|a)|b)oc|a,)|b,). Second, they are
Y S U T eigenstates of the annihilation operator and therefore also
+k(2bpb’—b'bp—pb'h), ®) eigenstates of the jump superoperators:

wherea andb are annihilation operators for particles in the
first and second condensate, respectively. The evolution fre-

guencyw and the loss rate due to detectiorare assumed to Note thatf V(&) is independent of the jump timeg, which

be equal for the two modes, in accordance with their corre- ) .
is a consequence of our assumption of equal damping con-

sponding moment&® and k®. Note that, according to this ganis e, equal transverse momenta of the two modes.

master equation, the density operator does not develop Thg probability for observing the next count at a position
atomic superpositions or coherences. The relationship bec'orresponding to the angk is thus given by
tween this master equation and the physical situation we are

TyRap(#)=|a+be V=9 |2R (). (12)

considering becomes apparent if we rew(Be as 2md e _
, P($)= f 5. atbe IR (g). (12
- - . ﬂ- 0
p= —IHeﬁp+lleﬁ+f deTyp, (6)
0 Suppose now that in a particular run an atom is counted at
where dn+1- The state immediately after th&l (- 1)th detection is
—(w—ix)(aTa+Db'b 2 d¢ o .
Her=(w—ik)(a'a+b'b), (73 Prsdt™ fo E|a+be'(¢N+1 ¢)|2fg\tl:)(¢)Ratb[(¢)'
Jsp=2x(a+be'®)p(a+be®)!, $e[0,2m), (7b) (13)

are the(non-Hermitian effective Hamiltonian and recycling i.e., the relative phase distribution changes according to the

superoperator, respectively. According to continuous meamap f{} "1 (¢)—|a+benr1=912fW(4) (except for a

surement theory7], the interpretation of6) in the present normalization constantnitially, before the first atom is de-

situations is as follows: a detection of an atom at the positionected, the positiorfrelative phasedistribution is uniform

Xo is associated with the action of the jump superoperator agnd P(y)= const. The(random position of the first and

given in(7b), subsequent detected atoms gradually determines the relative
phase of the condensates, thereby breaking the initial sym-

Pry+ > TpPryp ®  metry of the distribution.
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FIG. 2. Evolution of the distribution of the relative phase FIG. 3. Buildup of the interference pattern for
fg“k‘))(¢) as a function of the number of detected atomsN=20,200,1000 atoms corresponding(#), (b), and (c), respec-
N=1,2,...,8 and\=50 for two sample runs. Note that the scaling tively.
of they axis is arbitrary.

Figures 2 and 3 give two examples of trajectories which An interference experiment of the type described here
were obtained by simulating a sequence of counts assumirgjepares a state of the for(8) with a fixed relative phase
equal initial amplitudea=b (note that in that case the result between the two condensates. Note that this state is diagonal
is independent of the specific value @&b). In Figs. 4a)  in the total number of particles, i.e., it does not violate su-
and 2Zb) we have plotted the evolution of the relative phaseperselection rules, and therefore it gives a consistent descrip-
distributionf(N)(¢>) afterN=1, ...,8 andafter the 50th de- tion of the experiment. Furthermore, the interference fringes
tected atom. Typically, the phase distribution is well peakedor any possible outcomed(; , ¢, ... ,pn) are completely
after the first few counts. Asymptotically the width of the consistent with the outcome produced if one had initially two
distribution scales ad ¢c1/\/N, and p, approaches a state coherent statega) and |be'?), with a phase difference
with a well defined relative phase. Of course, the value okoinciding with the asymptoticN— =) phase difference of
this phase varies randomly from run to run. If we averageR(¢). This means that for the descriptionadyinterference
over many realizations, the interference pattern disappearexperiment with Bose condensates, one can simply assume
as expected from master equatidd). Figure 3 shows a that the initial state of each of the condensasea coherent
simulation of the interference pattern in tRey plane of a state with a random phasdespite the fact that this state
single realization of the experiment for three different num-does not comply with the particle superselection rule, the
bers of detection®N=20, 200, and 100QFigs. 3a), 3(b),  results predicted in any experiment will be the same as those
and 3¢)]. . given by a consistent theory such as the one presented here.

Note that the state of relative phaRé¢) is indeed a fixed The results obtained above can also be explained and gen-
point of the map defined by the simulation procedure, since ieralized using the coherent state representation. In order to
is reproduced by any jump  operator 7, do that, we use the following property of quantum mechan-
TyRan( D) TH T Ran($)} =Ran(9), i€, Rab(¢) does not ics: if the state of a system can be written in a diagonal form
evolve apart from a decay of its amphtude The distributionWith respect to a set of stat¢s;) (that do not need to be

of atoms in the screen correspondingRg) is given by orthogona), i.e., p=2P;|a;)(aj|, then a single realization
of a given experlment must yield the same result as if the

o (=) — a2 M2 _ state of the system is one of these statgs. Obviously, the
P(4)>*|a+bée |=a’+b*+2abcody—¢) (19 probability of obtaining the result corresponding |t ) is
and agrees perfectly with the interference pattern that on®;. In our case, we can expaitd large class 9fstates that
would expect intuitively from a state of fixed relative phaseare diagonal in the Fock basis representation in terms of
¢. coherent statefgl4]
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2rdep, _ we can nowpredictthe phase which will be observed in an
P:f daP(a)f 2—|ae'¢a><ae'¢a|, (19  interference experiment betwefrandC, y=a+ 3, at least
0 a L .
within the uncertainty of our knowledge of the phases
and 8.
and in particular the state®). Consequently, a single real- /N Ssummary, using a description based on continuous

ization of any experiment must give a result compatible withm&asurement theory we have shown how the dynamics in a
at least one of the particular coherent stdees #a), which single run of an interference experiment betyveen two Bose
leads to the same conclusion as in the preceding paragrapfPndensates prepares a state with relative fixed phase. The
This interpretation can also be used to show that two contelative phase of the two condensates is directly reflected in
densates in Fock states may lead to interferefiged. For the spatial distribution of the interference pattern we mea-
any physical state of the condensate diagonal in the atomigU'®- The other side of this is that measurement of the posi-
number, we can writél5) or (1) (both are equivaleritL5)). tion of an atom gives information about the relative phase.
Thus a single realization of an experiment has to be compat//€ cannot determine from which of the condensates the at-
ible with both Fock and coherent states. Since for two initial®Ms ¢ame from, so we have increased the uncertainty in the
coherent states the probability distribution is of the fafs) ~ NUmber of atoms in each condensate. We note that prepara-
(the coherent states are fixed points of any jump operatotllon of a state with fixed relative phase is not in contradiction
J,), for two Fock states it must have the same form. with the superselection rule of atom number conservation:
‘J’A’S a final comment. we note that the above discussiofin® a@tom number selection rule applies to the total number of
implies the existence of ahase standardor the relative ~2{0MS in the condensate. Finally, we emphasize that our dis-
phase between Bose condensates. Let us assume that initiafiySSion explicitly assumes that the time scale of phase fluc-

we have three condensatés B, and C which have been tuations due to dynamical properties of the Bose condensate
prepared in the product Statéozp(a)@p(b)@p(c) corre- [16] is much slower than the observation times necessary to

sponding to an ensemble of coherent stateg)UIIOI up an interference pattern.

|ael%a)| b o) |ce¥e) with uniformly distributed random After this wo_rk was completed we became aware of two
phasesp,, &, and ¢.. First, observation of interferences related discussions of the phase of Bose condensate and its
a’ 1 c-* )

betweenA andB in a single run will fix the relative phase measurement by Castin and Dalibard, andiiter [17].
betweenA and B, a=¢,— ¢y, and thus prepare the state  This work was supported by the Austrian Science Foun-
|ag'?ay|be'?a~*)|c€ %) with ¢,,¢. random. Second, ob- dation, the Marsden Fund Contract No. GDN-501 under the

servation of interference betwedh and C will prepare a  auspices of the Royal Society of New Zealand, and the Deut-
state|a€ #a)|be'%a~*)|ce/¥a~ ) with ¢, random. From this sche Forschungsgemeinschaft.
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