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We use continuous measurement theory to describe the evolution of two Bose condensates in an interference
experiment. It is shown how in a single run the system evolves into a state with a fixed relative phase, without
violating particle number conservation.@S1050-2947~96!07810-9#

PACS number~s!: 03.75.Fi, 03.65.Bz, 05.30.Jp, 42.50.Ar

Recent observation of Bose-Einstein condensation~BEC!
@1–3# has initiated theoretical discussions regarding the
properties of Bose condensates@4#. Of particular interest
have been questions related to the phase of the condensate
@5#. The assumption of such a phase as a result of a broken
gauge symmetry allows for a natural explanation of many
physical phenomena, but also implies that the state of the
condensate is a linear superposition of states with different
particle numbers. However, in second quantized formalism
of nonrelativistic quantum mechanics, as is usually em-
ployed to describe BEC, all observables commute with the
atomic number operatorN̂, which thus plays the role of a
superselection rule. As a consequence, starting from a state
with fixed atomic number or a mixed state, which is diagonal
in the atomic number basis, no atomic superpositions and
coherences will develop@6#.

In order to resolve this seeming contradiction, we use in
this paper the language of continuous measurement theory
@7# to describe a single realization of an interference experi-
ment between two independent condensates. We will discuss
how the state of the two condensates evolves as atoms are
detected. In particular, from our analysis it follows how a
state of well defined relative phasebuilds up dynamically in
a single experimental run as a consequence of the von Neu-
mann projection postulate of quantum theory. We emphasize
that our description does not contradict atomic number su-
perselection rules, and allows one to understand the coexist-
ence of both particle number conservation and the phase of a
condensate in a general situation. The problem addressed in
the present paper is related to very recent work by Jav-
anainen and Yoo@8#, and Naraschewskiet al. @9#, where it is
shown that two independent Bose condensates prepared in
Fock states may form a measurable interference pattern.
However, here we will show how the interference pattern is
formed dynamically, and, what is more important, how the
state of the two condensates collapses during the process of
detection of the many individual atoms.

We consider the situation depicted in Fig. 1: two statisti-
cally independentBose condensatesA and B of identical
atoms are dropped and detected by atomic counters in the
z50 plane. For simplicity, we assume that all the particles in
the first ~second! condensate occupy the same mode, which

is a plane wave of wave vectorkWa (kWb). We also assume that
kW y,z
a 5kW y,z

b andkW x
a52kW x

b ; that is, they have opposite momenta
in thex direction@10#. The initial density operator describing
the state of the condensates can be written as
r05r (a)^ r (b). Consistent with the atomic number superse-
lection rule we requirer ( j ) to be diagonal in the atomic
particle numbers,

r~ j !5 (
n50

`

pn
~ j !un, j &^n, j u ~ j5a,b!. ~1!

This includes as a special case Fock statesr ( j )5un, j &^n, j u,
i.e., states with a fixed atomic number~for the existence of
interference fringes in single realization of experiments with
Fock states see Refs.@8,9#!. The derivations which follow are
considerably simplified@11# if we assume for the initial
states of the condensates an ensemble of phase-averaged co-
herent states with fixed amplitudesa andb, respectively,

r~a!5E
0

2p dfa

2p
uaeifa&^aeifau, ~2a!

r~b!5E
0

2p dfb

2p
ubeifb&^beifbu, ~2b!

which correspond to Poissonian atomic number distributions
pn
( j )5e2 j 2 j 2n/n! ( j5a,b).

FIG. 1. Schematic setup of interference of two Bose conden-
sates.
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As the atoms are detected, the number of atoms in each
condensate decreases. Due to the fact that the atoms are iden-
tical, when one atom is detected one cannot determine
whether it belonged to the first or the second condensate,
which gives rise to interference. In other words, the number
of atoms in each of the condensates is not conserved. How-
ever, the total number of atoms must be conserved, and thus
the density operator describing the whole system must re-
main diagonal in the total number. It is therefore convenient
to define

R̂ab~f!5E
0

2p dfa

2p
uaeifa&^aeifau ^ ubei ~fa2f!&^bei ~fa2f!u

~3!

as the density operator of a state with fixed relative phase
f. Note that this state is diagonal in the total atom number
~consistent with overall number conservation!, but is an en-
tangled state with respect to the particles in both condensates
@12#. The initial state ~2! can then be rewritten as

r05E
0

2p df

2p
R̂ab~f![E

0

2p df

2p
f ab

~0!~f!R̂ab~f!, ~4!

which corresponds to a state withuniformly distributed ran-
dom relative phase@ f ab

(0)(f)51#.
In order to describe the evolution of the density operator

as the atoms are detected at thez50 plane we use a simple
continuous measurement model based on the master equation
@13#

ṙ52 iv@ â†â1b̂†b̂,r#1k~2ârâ†2â†âr2râ†â!

1k~2b̂rb̂†2b̂†b̂r2rb̂†b̂!, ~5!

whereâ and b̂ are annihilation operators for particles in the
first and second condensate, respectively. The evolution fre-
quencyv and the loss rate due to detectionk are assumed to
be equal for the two modes, in accordance with their corre-
sponding momentakWa and kWb. Note that, according to this
master equation, the density operator does not develop
atomic superpositions or coherences. The relationship be-
tween this master equation and the physical situation we are
considering becomes apparent if we rewrite~5! as

ṙ52 iH effr1 irHeff
† 1E

0

2p

dfJfr, ~6!

where

Heff5~v2 ik!~ â†â1b̂†b̂!, ~7a!

Jfr52k~ â1b̂eif!r~ â1b̂eif!†, fP@0,2p!, ~7b!

are the~non-Hermitian! effective Hamiltonian and recycling
superoperator, respectively. According to continuous mea-
surement theory@7#, the interpretation of~6! in the present
situations is as follows: a detection of an atom at the position
x0 is associated with the action of the jump superoperator as
given in ~7b!,

r tN1dt}Jfr tN, ~8!

with f5@kx
b2kx

a#x0. That is, an atom is removed from the
first or the second condensate, and the position of the atom is
associated with a relative phasef of the plane waves. The
time evolution between two subsequent detections is gov-
erned by

r tN11
}e2 iHeff~ tN112tN!r tNe

iHeff
†

~ tN112tN!. ~9!

Let us now follow the time evolution of the atomic den-
sity operator in a time interval@0,t# for a sequence of atom
detections: we assume that the first atom is detected at the
position corresponding tof1 and at timet1, the second atom
at f2 , t2, etc., and theNth atom atfN , tN . In the present
case, starting from the initial state~4! and according to~8!
and~9!, this sequence ofN detections prepares at timet the
density operator

r t5CE
0

2p df

2p)
k51

N

ua1bei ~fk2f!u2R̂atbt
~f!

[E
0

2p df

2p
f ab

~N!~f!R̂atbt
~f!. ~10!

We identify f ab
(N)(f)})k51

N ua1bei (fk2f)u2 with the distri-
bution of the relative phase of a state with decaying coherent
amplitudes at5ae2kt, bt5be2kt, and C is a time-
independent normalization constant.

The simplicity of Eq.~10! is due to the properties of co-
herent states. First, they remain coherent but with a decaying
amplitude under the time evolution with the effective Hamil-
tonian Heff , i.e., e

2 iHefftua&ub&}uat&ubt&. Second, they are
eigenstates of the annihilation operator and therefore also
eigenstates of the jump superoperators:

JcR̂ab~f!5ua1bei ~c2f!u2R̂ab~f!. ~11!

Note thatf ab
(N)(f) is independent of the jump timestk , which

is a consequence of our assumption of equal damping con-
stants, i.e., equal transverse momenta of the two modes.

The probability for observing the next count at a position
corresponding to the anglec is thus given by

P~c!}E
0

2p df

2p
ua1bei ~c2f!u2f ab

~N!~f!. ~12!

Suppose now that in a particular run an atom is counted at
fN11. The state immediately after the (N11)th detection is

r t1dt}E
0

2p df

2p
ua1bei ~fN112f!u2f ab

~N!~f!R̂atbt
~f!,

~13!

i.e., the relative phase distribution changes according to the
map f ab

(N11)(f)→ua1bei (fN112f)u2f ab
(N)(f) ~except for a

normalization constant!. Initially, before the first atom is de-
tected, the position~relative phase! distribution is uniform
and P(c)5 const. The~random! position of the first and
subsequent detected atoms gradually determines the relative
phase of the condensates, thereby breaking the initial sym-
metry of the distribution.
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Figures 2 and 3 give two examples of trajectories which
were obtained by simulating a sequence of counts assuming
equal initial amplitudea5b ~note that in that case the result
is independent of the specific value ofa5b). In Figs. 2~a!
and 2~b! we have plotted the evolution of the relative phase
distribution f ab

(N)(f) afterN51, . . . ,8 andafter the 50th de-
tected atom. Typically, the phase distribution is well peaked
after the first few counts. Asymptotically the width of the
distribution scales asDf}1/AN, andr t approaches a state
with a well defined relative phase. Of course, the value of
this phase varies randomly from run to run. If we average
over many realizations, the interference pattern disappears,
as expected from master equation~5!. Figure 3 shows a
simulation of the interference pattern in thex-y plane of a
single realization of the experiment for three different num-
bers of detectionsN520, 200, and 1000@Figs. 3~a!, 3~b!,
and 3~c!#.

Note that the state of relative phaseR̂(f) is indeed a fixed
point of the map defined by the simulation procedure, since it
is reproduced by any jump operator Jc ,
JcR̂ab(f)/Tr$JcR̂ab(f)%5R̂ab(f), i.e., R̂ab(f) does not
evolve apart from a decay of its amplitude. The distribution
of atoms in the screen corresponding toR̂(f) is given by

P~c!}ua1bei ~c2f!u5a21b212abcos~c2f! ~14!

and agrees perfectly with the interference pattern that one
would expect intuitively from a state of fixed relative phase
f.

An interference experiment of the type described here
prepares a state of the form~3! with a fixed relative phase
between the two condensates. Note that this state is diagonal
in the total number of particles, i.e., it does not violate su-
perselection rules, and therefore it gives a consistent descrip-
tion of the experiment. Furthermore, the interference fringes
for any possible outcome (f1 ,f2 , . . . ,fN) are completely
consistent with the outcome produced if one had initially two
coherent statesua& and ubeif&, with a phase differencef
coinciding with the asymptotic (N→`) phase difference of
R(f). This means that for the description ofany interference
experiment with Bose condensates, one can simply assume
that the initial state of each of the condensatesis a coherent
state with a random phase. Despite the fact that this state
does not comply with the particle superselection rule, the
results predicted in any experiment will be the same as those
given by a consistent theory such as the one presented here.

The results obtained above can also be explained and gen-
eralized using the coherent state representation. In order to
do that, we use the following property of quantum mechan-
ics: if the state of a system can be written in a diagonal form
with respect to a set of statesua i& ~that do not need to be
orthogonal!, i.e., r5( iPi ua i&^a i u, then a single realization
of a given experiment must yield the same result as if the
state of the system is one of these statesua i&. Obviously, the
probability of obtaining the result corresponding toua i& is
Pi . In our case, we can expand~a large class of! states that
are diagonal in the Fock basis representation in terms of
coherent states@14#

FIG. 2. Evolution of the distribution of the relative phase
f ab
(N)(f) as a function of the number of detected atoms
N51,2, . . . ,8 andN550 for two sample runs. Note that the scaling
of the y axis is arbitrary.

FIG. 3. Buildup of the interference pattern for
N520,200,1000 atoms corresponding to~a!, ~b!, and ~c!, respec-
tively.
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r5E daP~a!E
0

2p dfa

2p
uaeifa&^aeifau, ~15!

and in particular the states~2!. Consequently, a single real-
ization of any experiment must give a result compatible with
at least one of the particular coherent statesuaeifa&, which
leads to the same conclusion as in the preceding paragraph.
This interpretation can also be used to show that two con-
densates in Fock states may lead to interferences@8,9#. For
any physical state of the condensate diagonal in the atomic
number, we can write~15! or ~1! ~both are equivalent@15#!.
Thus a single realization of an experiment has to be compat-
ible with both Fock and coherent states. Since for two initial
coherent states the probability distribution is of the form~14!
~the coherent states are fixed points of any jump operator
Jc), for two Fock states it must have the same form.

As a final comment, we note that the above discussion
implies the existence of aphase standardfor the relative
phase between Bose condensates. Let us assume that initially
we have three condensatesA, B, andC which have been
prepared in the product stater05r (a)^ r (b)^ r (c) corre-
sponding to an ensemble of coherent states
uaeifa&ubeifb&uceifc& with uniformly distributed random
phasesfa , fb , andfc . First, observation of interferences
betweenA andB in a single run will fix the relative phase
betweenA andB, a5fa2fb , and thus prepare the state
uaeifa&ubeifa2a&uceifc& with fa ,fc random. Second, ob-
servation of interference betweenB and C will prepare a
stateuaeifa&ubeifa2a&uceifa2b& with fa random. From this

we can nowpredict the phase which will be observed in an
interference experiment betweenA andC, g5a1b, at least
within the uncertainty of our knowledge of the phasesa
andb.

In summary, using a description based on continuous
measurement theory we have shown how the dynamics in a
single run of an interference experiment between two Bose
condensates prepares a state with relative fixed phase. The
relative phase of the two condensates is directly reflected in
the spatial distribution of the interference pattern we mea-
sure. The other side of this is that measurement of the posi-
tion of an atom gives information about the relative phase.
We cannot determine from which of the condensates the at-
oms came from, so we have increased the uncertainty in the
number of atoms in each condensate. We note that prepara-
tion of a state with fixed relative phase is not in contradiction
with the superselection rule of atom number conservation:
the atom number selection rule applies to the total number of
atoms in the condensate. Finally, we emphasize that our dis-
cussion explicitly assumes that the time scale of phase fluc-
tuations due to dynamical properties of the Bose condensate
@16# is much slower than the observation times necessary to
build up an interference pattern.

After this work was completed we became aware of two
related discussions of the phase of Bose condensate and its
measurement by Castin and Dalibard, and Mo” lmer @17#.
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