
Generation of ultrashort pulses of harmonics

Ph. Antoine,1,2 B. Piraux,2 D. B. Milošević, 2,3 and M. Gajda4
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We study harmonic generation by a single atom exposed to two short perpendicularly polarized laser pulses.
The two perpendicular electric fields oscillate at two different frequenciesv1 andv2. Hence, the resultant field
has a polarization which depends on time. Since harmonics are emitted when the resultant oscillating field is
linearly polarized, it is expected that a short pulse of harmonics may be emitted if the external field is linearly
polarized during a short period of time. We show that, indeed, the atom may emit an ultrashort pulse of agiven
harmonic. This result has been obtained by time-frequency analyzing the acceleration of the induced dipole
moment with a filter whose frequency bandwidth is smaller than twice the frequency of the external field. Our
calculation of the dipole acceleration is based on the numerical solution of the time-dependent Schro¨dinger
equation. We then address the question of how far it is possible to reduce the duration of the emitted pulse of
one given harmonic by adjusting bothv1 andv2 and keeping the amplitude of this pulse significant. In order
to answer to this question, we used the quantum version of the two-step model@M. Lewensteinet al., Phys.
Rev. A 49, 2117~1994!#. @S1050-2947~96!50109-5#

PACS number~s!: 32.80.Rm, 42.65.Ky

An atom that is exposed to a strong electromagnetic field
may emit high-order harmonics of the driving field@1#. The
physical origin of this phenomenon has been recently attrib-
uted to a two-step process@2#: the atomic electron first tun-
nels out; it is then driven back by the field towards the ion
where it is scattered or recombines back to the ground-state
emitting harmonics. From this semiclassical interpretation, it
is clear that this phenomenon not only depends on the fre-
quency and intensity of the field but also on its polarization.
In the case of linear polarization, some of the classical tra-
jectories of the electron pass the ion periodically, allowing
for recombination and harmonic generation. There are
strictly speaking, no such trajectories for elliptic polarization.
Harmonic generation is in that case possible only thanks to
the finite extent of the electronic wave packet and quantum
diffusion effects. As a result, the harmonic generation effi-
ciency is expected to decrease rapidly with an increase of the
ellipticity of the field polarization@3,4#.

When the field is linearly polarized, the above interpreta-
tion indicates that harmonics are emitted as a train of ul-
trashort pulses. Every half an optical period, an electron may
be emitted and driven back by the field towards the residual
ion where it may recombine, emitting an harmonic pulse@5#.
Its duration is only determined by the electron oscillations.
Since harmonic generation strongly depends on the polariza-
tion of the external field, Corkumet al. @6# have suggested
that one of these ultrashort pulses of harmonics may be se-
lected by using a driving field whose polarization is time
dependent. The polarization has to vary in such a way that
the polarization is linear during a period of time shorter than
half an optical period. A small amount of ellipticity erases
the other pulses of the train. A time-dependent polarization is

achieved, for instance, when the field is composed of two
perpendicular fields that oscillate at two different frequencies
v1 andv2. Adjusting the difference between both frequen-
cies leads to a time control of the polarization. Since the
emission of these pulses is periodic in time with a frequency
equal to twice the frequency of the field~or the average
frequency of both fields in the case of a time-dependent po-
larization!, the observation of these pulses of harmonics re-
quires a filter whose frequency bandwidth is larger than 2v
@7#. In other words, these ultrashort pulses contain frequency
components associated with at least three consecutive har-
monics. It is important to stress that the idea of Corkumet al.
for producing extremely short pulses relies on the assump-
tion that all contributing harmonics are in phaseafter propa-
gation through the medium. So far, besides only one theo-
retical result,@8# there is no experimental evidence that these
harmonics are indeed in phase. In this contribution, we ad-
dress the problem of the pulsed emission of harmonics in a
different way: we analyze the atomic dipole acceleration
with a filter whose frequency bandwidth is shorter than 2v
in order to select only one given harmonic. Here, our first
objective is not the production of the shortest possible
pulses. Instead, we want to show that one can produce short
pulses of one given harmonic by adjusting the time during
which the external field is linearly polarized. In this way, the
pulse duration depends on the time the external field is lin-
early polarized rather than on any phase relation between
harmonics.

In the case of a time-independent polarization and if the
frequency bandwidth of the filter is shorter than 2v @7#, the
time profile of the harmonics depends essentially on the
shape of the external laser pulse and does not exhibit any fast
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oscillation. In the present case we use an external field whose
polarization is time dependent and study in detail the possi-
bility of observing the emission of a short pulse of harmonics
and how its width and amplitude can be controlled with the
difference between both frequenciesv1 andv2.

In the case of a time-dependent polarization, all the cal-
culations that have been carried out so far@6# are based on
the quantum-mechanical version of the two-step model@9#,
which includes the effects of quantum tunneling, quantum
diffusion, and interference. The validity of this model has
only been checked in the case of low frequencies, high-field
intensities, and linear polarization. Here, we present results
obtained by solving the corresponding three-dimensional
Schrödinger equation. We consider the interaction of atomic
hydrogen with a short electromagnetic pulse whose field po-
larization is time dependent. We solve numerically~and
without any approximation! the time-dependent Schro¨dinger
equation@10#:

i
]

]t
C~rW,t !5@H01AW ~ t !•pW #C~rW,t !, ~1!

whereH0 is the atomic Hamiltonian andAW (t) the vector
potential associated with the field

AW ~ t !5A0f ~ t !@cos~v1t !eW x1sin~v2t !eW y#; ~2!

A0 is the amplitude of the potential,eW x andeW y the unit vec-
tors along thex and y axes, respectively,v1 and v2 the
frequencies, andf (t) is a slowly varying envelope. We ex-
pand the total wave function on the basis of complex
Coulomb-Sturmian functions@11# in the radial coordinate
and spherical harmonics in the angular coordinates. As a
result, we obtain a set of coupled first-order differential equa-

tions in time for the expansion coefficients. These equations
are solved numerically by means of a fully implicit Runge-
Kutta method of order 7. It is important to note that due to
the lack of cylindrical symmetry, the azimuthal quantum
numberm of the electron is not conserved and the problem is
now a fully three-dimensional one. This implies that within
our method, the number of atomic states involved is ex-
tremely high. In order to get convergence in the case treated
here, we have included 82 000 atomic states. The implicit
character and the high order of our method ensure a stable
time propagation of the solution. In order to minimize the
execution time, the time step as well as the total number of
angular momenta included are adjusted by the code itself.
Knowing the wave functionC(rW,t), it is a simple matter to
evaluate the dipole accelerationaW (t) by means of Ehrenfest’s
theorem.

The time profile of a given harmonics may be obtained by
means of a time-frequency analysis~either Gabor or wave-
lets! of the dipole accelerationaW (t) @13#. Here, we use a
Gabor analysis in order to get a time resolution that is inde-
pendent of the harmonic order@12#. This type of analysis
consists of introducing a time-frequency transform that de-
pends on two adjustable parameters denoted bya andb:

aW ~ t !→aW ~a,b!5 È`

Tab~ t !aW ~ t !dt, ~3!

where the analyzing functionTab(t) is given by

Tab~ t !5e2 i t /aG~ t2b!. ~4!

G(t) is a window function, which in the present case is a
Gaussian. 1/a defines the frequency of oscillation of the ana-
lyzing function andb the position of the window function in
the analyzed signal. This time-frequency transform is signifi-
cantly nonzero at a given time when the signal oscillates at a

FIG. 1. 1s-state population, i.e., the projection of the full wave
function on the bare 1s state of atomic hydrogen, as a function of
time in a.u. in the case where the atom is exposed to two perpen-
dicularly polarized laser pulses of 1014W/cm2. The photon energies
are 0.118 and 0.110 a.u. Both pulses have a flat top and sine square
turn-on and -off. In both cases, the total duration of the pulse is 20
optical cycles, and it is turned on and off over two optical cycles.

FIG. 2. Fast Fourier transform in arbitrary units of thex com-
ponent of the acceleration of the atomic dipole moment for the
same case as in Fig. 1. They component, not shown here, has the
same behavior. It is important to stress that the harmonic order
given in the abscissa refers to the average frequencyv̄.
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frequency close to the frequency of the analyzing function
Tab(t) and therefore, acts as filter, both in time and fre-
quency.

Let us now examine the interaction of an atomic hydrogen
with a flat electromagnetic pulse with a two-optical-cycle
sine square turn-on and -off. The total duration of the pulse
is 20 optical cycles. The electric field is composed of two
perpendicular fields~in the x-y plane! that oscillate at two
different frequencies. The corresponding photon energies are
0.118 and 0.110 a.u. In the present case, the electric field is
circularly polarized at timet56400 a.u. andt50, and lin-
early polarized at timet56200 a.u. The maximum intensity
associated with both fields is 1014 W/cm2. In Fig. 1, we
represent the ‘‘1s-state population,’’ i.e., the square of the
projection of the total wave function on the bare atomic 1s
state as a function of time. This projection gives information
on the motion of the atomic electron wave packet during the
interaction of the atom with the field. The ‘‘squeezes’’ of the
curve around 0~middle of the input pulse! and6400 a.u. of
time arise because at these times, the polarization of the field
is circular. In that case, the wave packet does not oscillate
through the nucleus. At time6200 a.u., the field is linearly
polarized and the 1s-state population exhibits fast oscilla-
tions associated with the back and forth motion of the elec-
tron wave packet through the nucleus. These oscillations oc-
cur at the average frequencyv̄5(v11v2)/2. We have
checked that the population that leaves the ground state is
ionized rather than transferred to an excited state. However,
it is important to note that ionization is much slower than in
the case where the field stays linearly polarized during the
entire duration of the input pulse@7#. This has an interesting
consequence: we may force the system to emit harmonics
when the input pulse intensity is maximum if the electric
field is linearly polarized in the middle of the pulse by pre-
venting ionization during the increasing edge of the pulse.
The first tests indicate that in our regime of laser frequencies
and intensity, we could increase the intensity of each har-
monic significantly.

In Fig. 2, we show for the same case as before, the fast
Fourier transform of thex componentax of the dipole accel-

eration~they component, not shown here, behaves exactly in
the same way!. This spectrum of harmonics of the averaged
frequencyv̄ exhibits the usual features, namely, a ‘‘plateau’’
and a relatively sharp cutoff. By means of a Gabor time-
frequency analysis ofaW ~the frequency bandwidth of the filter
is roughly equal tov̄/2), we have studied the time profile of
the ninth harmonic. The results are presented in Fig. 3. We
clearly see that two well-defined pulses are emitted around
6200 a.u. of time when the external field is linearly polar-
ized. The second maximum is smaller due to the partial ion-
ization of the atom. In both cases, the time width at half
maximum is equal to 3 fs, which is about twice the laser
period. All these results have been obtained by solving nu-
merically the time-dependent Schro¨dinger equation. It is
worth mentioning that, qualitatively, the results for the har-
monic spectrum are in reasonable agreement with those ob-
tained with the two-step model, although, strictly speaking,
the present conditions do not correspond to its validity do-
main. In fact, the cutoff of the harmonic spectrum is sharper
in the case of the two-step model.

So far, we have shown by means of an ‘‘exact’’ calcula-
tion that we can produce ultrashort harmonic pulses by using
a time-dependent polarization field. Whether or not the du-
ration of these pulses can be further reduced is an interesting
question. However, in order to avoid long execution times of

FIG. 3. Time profile in arb. units of the ninth harmonic, emitted
by atomic hydrogen exposed to the same pulses as in Fig. 1.

FIG. 4. Amplitude~a! and duration~b! of the pulse of the 65th
harmonic emitted by a model atom of neon exposed to two perpen-
dicular fields. The total intensity is 631014W/cm2. Both amplitude
and duration are given as a function of the parameterp, the fre-
quenciesv1 andv2 being defined in terms ofp asv15v̄(12p)
andv25v̄(11p).
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the code, we tackled this problem by using the two-step
model. Because the validity of this model is restricted to
lower frequencies, we have considered the following case:
the average frequency is 0.05767 a.u., the total intensity of
the field is 631014 W/cm2, and the ionization potential is
the one of the neon atom. Depletion of the ground state is
still negligible at the intensity considered. We introduce the
parameterp such that

v15v̄~12p!, ~5!

v25v̄~11p!. ~6!

The values ofp we choose are 1/32, 1/16, 1/8, 1/4, and
1/2; this means that for a givenp, the resultant electric field
is linearly polarized at timet5nT/4p, wheren is an integer
number andT52p/v̄. In the following, we analyze the time
profile of the 65th harmonic, which for the case considered
here, is in the ‘‘plateau’’ region of the harmonic spectrum.
The time resolution of our Gabor analysis isT/3. In Fig. 4,
we study both the amplitude and the duration of the pulse of
the harmonic 65 as a function ofp. As expected, the ampli-
tude of the pulse decreases asp increases but its variation
stays relatively small; in other words, the harmonic conver-
sion efficiency depends only slowly on the rate of change of
the light ellipticity. Moreover, as shown in Fig. 4~b!, the
pulse duration decreases until it reaches the limit value of
0.42 optical cycles forp51/16. The pulse duration for
p<1/16 may be understood as follows: if we assume that the
harmonic efficiency is reduced by a factor of 2 when the
ellipticity is equal to 60.1 @14#, the harmonic emission
should last 1/40p of an optical period@15#. Whenp51/8 or
1/4, the pulse duration is roughly constant. We also checked

that this duration is not limited or imposed by the time reso-
lution of our analysis. In order to understand this behavior, it
is important to remember that within the quasiclassical
model the atomic dipole is expressed~in the plateau region
of the spectrum! as the sum of contributions corresponding
to two dominant electron trajectories in the continuum. Fur-
thermore, the time interval between the emissions of light
resulting from these two trajectories is of the order of 0.20 of
an optical period; when convoluted with the analyzing filter,
it leads to a duration of;0.45T. Although we are at the limit
of the time resolution of our analysis, this result indicates
that it is not possible to select only one electron trajectory by
simply increasing the rate at which the ellipticity changes.
For larger rates corresponding top.1/4, the electron trajec-
tories are strongly affected and the pulse amplitude decreases
rapidly. The point corresponding top51/2 is not reproduced
in Fig. 4 because the ellipticity changes too quickly in com-
parison to the time resolution of the analysis.

In this paper, we have analyzed the harmonic generation
by a single atom exposed to an oscillating field whose polar-
ization depends on time. Since harmonics are emitted when
the field is essentially linearly polarized, we expect that a
short pulse of harmonics may be emitted if the time interval
during which the field is linearly polarized is sufficiently
short. We have shown that it is actually possible for the
atomic system to emit an ultrashort pulse of agiven har-
monic, whose time duration is of the order of the optical
period. It is important to stress that this short pulse duration
can be controlled externally. All the calculations presented
here are based on the numerical solution of the time-
dependent Schro¨dinger equation and on a generalization of
Lewenstein’s model.
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