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We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field
and find analytical scaling solutions for the evolving coherent state~condensate!. We further discuss the
characteristic features and the depletion of this coherent state.@S1050-2947~96!50209-X#

PACS number~s!: 03.75.Fi, 34.20.Cf

The recent successful experiments on Bose-Einstein con-
densation~BEC! in trapped ultracold alkali atom gases@1–3#
open a unique possibility to investigate dynamic properties
of a Bose-condensed phase. Of particular interest is the re-
sponse of the system to time-dependent variations of the con-
fining field. In an interacting Bose-condensed gas these prop-
erties are nontrivial. For example, if initially almost all
trapped atoms are in the condensate (T50), then under adia-
batically slow change of the trapping potential they remain in
the condensate, which now corresponds to the ground state
of the system in the instantaneous trapping field. At the other
extreme, a fast change of the potential from the initial to final
shape brings the system to an excited superpositional~ES!
state, where the admixture of the~final! ground state can be
small. Then, even assuming complete isolation of the system
from the environment, there is the question of how the cor-
relation properties change. Especially interesting are those
responsible for the reduction of the probability of inelastic
processes due to the presence of a Bose condensate@4#.

Another question concerns trapped gases with negative
scattering length. The trapping field stabilizes the condensate
provided that the spacing between adjacent trap levels ex-
ceeds the interparticle interaction@5,6#. Will this hold in the
ES state or will the system ‘‘collapse’’?

Of principal importance is the evolution of a completely
isolated many-body system which proves to be in the ES
state. Does the system undergo stochastization and imitate
relaxation behavior, at least for a large number of particles
and large interaction between them compared to the level
spacing in the potential well? This question is related to the
well-known problem of the appearance of irreversibility in a
quantum system with a large number of particles.

To answer most of the above questions we first consider
the evolution of a Bose condensate in a parabolic trapping
potential V(r )5mv2r 2/2 (m is the atom mass! with fre-
quencyv(t) varing from v0 to v1. We use ideas of the
analysis of the quantum motion of a particle in a harmonic
oscillator with time-dependent frequency~see@7#! and find
the solution of the time-dependent nonlinear Schro¨dinger
equation for the evolving coherent state. In certain cases our
analytical results can be compared with numerical calcula-
tions, first performed in Ref.@5#. We further analyze the
characteristic features of the evolving coherent state and dis-
cuss the problem of relaxation and the loss of coherence.

Let us consider a Bose gas with a fixed number of par-
ticles N in a symmetric harmonic potential with time-

dependent frequencyv(t). We assume a pair interaction po-
tential between atoms of the formU(r )5Ũd(r ). In a three-
dimensional ~3D! gas Ũ54p\2a/m, where a is the
scattering length andm the atom mass. The Schro¨dinger
equation for the Heisenberg field operator of atoms,
Ĉ(r ,t), reads

i\
]Ĉ
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The field operator can be represented as a sum of the above-
condensate part and the condensate wave function
C05^Ĉ&, which is ac number:Ĉ5Ĉ81C0 ~see@8#!. The
equation forC0(r ,t), obtained by averaging both sides in
Eq. ~1!, in the mean-field approach has the form
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wheren8(r ,t)5^Ĉ8†Ĉ8&. The mean-field equation of mo-
tion for Ĉ8(r ,t) follows from Eqs.~1! and ~2!:
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Ĉ8
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In Eqs. ~2! and ~3!, due to the conditionnuau3!1 (n is the
gas density!, we omitted the terms containing anomalous av-
erageŝ Ĉ8Ĉ8&.

Frequency variations change the time and distance scales
in Eqs.~2! and~3!. Let us formally introduce new operators
taking this into account@r5r /b(t)#:

C0~r ,t !5@b~ t !#2d/2x0„r,t~ t !…exp@ iF~r ,t !#,

Ĉ8~r ,t !5@b~ t !#2d/2x̂8„r,t~ t !…exp@ iF~r ,t !#, ~4!

whered is the dimension of the system and the phase

F~r ,t !5~mr2/2\!$ḃ~ t !/b~ t !%. ~5!

The equations of motion for the operatorsx0 and x̂8 in new
coordinate (r) and time (t) variables take the form
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whereñ 8(r,t)5^x̂8†(r,t)x̂8(r,t)&. Note that the choice of
phase in the form~5! leads to the cancellation of terms pro-
portional to¹rx̂8 and¹rx0. It is important that the phase be
the same for bothC0 andĈ8.

Let us first considerd52. We chooset(t) andb(t) such
that they are governed by the equations

t~ t !5E t

dt8/b2~ t8!, ~8!

b̈~ t !1v2~ t !b~ t !5v0
2/b3~ t !, ~9!

wherev05v(2`) is the initial frequency. Then Eqs.~6!
and ~7! are reduced to a universal form
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1Ũx0
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Equations~10! and~11! are universal in the sense that in the
variablesr,t the problem is reduced to an interacting Bose
gas in a harmonic well with constant frequency. Once we
find the solution in the initial potential well, we know the
answer at anyt. One should only solve the simple equation
~9! with initial conditionsb(2`)51, ḃ(2`)50. For ex-
ample, the expression forC0(r ,t) reads

C0~r ,t !5
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b~ t !
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b~ t !
D expS i mr2
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2 imt~ t ! D ,
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wherem is the initial chemical potential andC̄0(r ) is the
stationary solution for the condensate wave function at
t→2`. Using the Bogolyubov transformation, generalized
for an inhomogeneous case~see, e.g.,@9#!, on the basis of
Eqs.~10! and~11! we can describe the evolution of the spec-
trum and wave functions of elementary excitations.

Neglecting the excitations, Eq.~12! describes the 2D~ra-
dial! evolution of C0 in long samples~axial frequency is
much smaller than the radial one! under variations of the
radial frequency; as to a first approximation one may omit
the dependence ofC0 on the axial coordinate.

If the nonlinear interaction terms in Eqs.~6! and ~7! can
be omitted the above universal scaling takes place for any
d. This requires at least a small ratio of interparticle interac-
tion to the level spacing in the initial potential,
h5n0Ũ/\v0!1, wheren05uC0(0,2`)u2 ~see below!.

In the 3D case for arbitraryh there is no universality. On
the other hand, in the limith@1, neglecting the excitations,
Eq. ~6! can be again reduced to a universal form. In this case
the kinetic energy term in Eq.~6! is comparatively small and
can be omitted~see below!. Then, introducing, instead of~8!
and ~9!, the equations

t~ t !5E t

dt8/b3~ t8!, ~13!

b̈~ t !1v2~ t !b~ t !5v0
2/b4~ t !, ~14!

Eq. ~6! is transformed to
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For t→2` Eq. ~15! has a solution x0(t)
5x̄0(r )exp(2imt), where x̄0 is given by the well known
expression@10,11#

x̄0~r !5
1
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mv0
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2D 1/2 ~16!

and zero otherwise. As follows from Eq.~15!, for any t the
condensate wave function has the form
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b3/2~ t !
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where b(t) is governed by Eq. ~14! with b(2`)
51, ḃ(2`)50.

Equations ~12! and ~17! conserve the norm
* uC0(r ,t)u2ddr5N0, whereN0 is the initial number of par-
ticles in the condensate. Universal solutions of Eqs.~10! and
~11! conserve the norm*@ uC0(r ,t)u21n8(r ,t)#ddr5N.

We should emphasize that Eqs.~12! and ~17! describe a
coherent evolution ofC0. Generally speaking, it is very dif-
ferent from the condensate wave function corresponding to
the ground state of the system in the potential well with an
instantaneous value ofv or the final valuev1, even if
v(t) returns to the initial frequencyv0.

The time dependence ofC0 and normal excitations for
d52 ~or at anyd for h!1, neglecting the nonlinear inter-
action terms! is determined by the solution of Eq.~9!. The
latter can be found in a general case~see, e.g.,@7#!. Note that
the classical equation for a harmonic oscillator with time-
dependent frequency

j̈~ t !1v2~ t !j~ t !50, ~18!
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leads to Eq.~9!, if one setsj(t)}b(t)exp@6iv0t(t)#. With
j(t)5exp(iv0t) for t→2` and t interpreted as a ‘‘spatial
coordinate,’’ Eq.~18! is equivalent to the one-dimensional
Schrödinger equation for the reflection of a particle with
‘‘energy’’ v0

2 from the ‘‘potential’’ v0
22v2(t). At times

wherev is already constant (v1) we have

b2~ t ![uj~ t !u25
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F11R

12R
2
2R1/2

12R
cos~2v1t1d!G ,

~19!

t~ t !5
1

v0
arctanF11AR

12AR
tan~v1t1d/2!G , ~20!

whereR is the reflection coefficient andd the phase.
For slowly changing frequency~on a time scale

t0@v0,1
21) the coefficientR is exponentially small, and

b5Av0 /v1. In this case the initial condensate is adiabati-
cally transformed to the ground state of the system in the
final trapping field, without oscillations. If the condition
v0,1t0@1 is not valid, for at least one of the frequencies, the
scaling parameterb(t) will oscillate with a constant ampli-
tude given by Eq.~19!. There is no damping of the oscilla-
tions of the condensate density, unless relaxation is included
~see below!.

The instantaneous size of the evolving condensate is re-
lated to the initial size byr 0(t)5r 0b(t) @r 0[r 0(2`)#. In
the case of abrupt change of the frequency we have

R5~v02v1!
2/~v01v1!

2, d50, ~21!

and the functionb(t) oscillates from 1 tov0 /v1. For
v0@v1 there is a large expansion of the condensate and then
compression to the initial shape. At timest!v1

21 the expan-
sion is practically free, and Eqs.~19! and ~20! yield

b~ t !5~11v0
2t2!1/2, t~ t !5~1/v0!arctan~v0t !. ~22!

If v150 the compression does not occur. We have an ex-
panding condensate described by Eq.~22! at anyt.

At times t@v0
21 the characteristic velocity of free expan-

sion v05 ṙ 0(t)5v0r 0. As follows from Eq.~16!, for h@1
the initial size of the condensater 05(2m/mv0

2)1/2, and we
havev05A2m/m. Since in this casem5n0Ũ, the velocity is
determined by the interaction between particles. Forh!1
the initial sizer 0' l 0, wherel 05(\/mv0)

1/2 is the amplitude
of zero-point oscillations in the initial potential, and
v0'A\v0 /m is much smaller than forh@1.

The same picture holds for the 3D evolution of a conden-
sate in the opposite limit, where initiallyh@1, although we
should use the scaling transformation following from Eqs.
~13! and~14!. The latter has no analog in the quantum theory
of scattering and should be solved directly. We again obtain
a periodic functionb(t), and oscillations of the condensate
density will be determined by Eq.~17! which was derived
assuming a large ratio of interparticle interaction to the
kinetic-energy term~IK ratio! in Eq. ~6!. For h@1 the IK
ratio varies ash2/b(t) and definitely remains large if the
frequency increases@b(t)<1#. As follows from Eq. ~14!,
fast decrease of the frequency tov1!v0 leads to large os-

cillations with bmax'A2/3v0 /v1. The solution~17! will be
valid if v1*v0 /h

2. At times t!v1
21, where the expansion

is free, Eq.~14! yields b(t)'A2/3v0t (t@v0
21), and the

velocity of expansionv0'A4m/3m. Forv1!v0 /h
2 the IK

ratio can become small and the scaling~9!, instead of~14!,
should be used. Then the profile of the condensate density
will change, but the parameterb(t) determining the charac-
teristic size of the condensate will be very close to that fol-
lowing from Eq.~14!.

Let us now describe the evolution of a 3D Bose-
condensed gas with negative scattering length. The initial
condensate will be stabilized by the trapping field ifh!1,
i.e., the IK ratio is small@5,6#. The prime stabilization factors
are the presence of the gap;\v0 for one-particle excita-
tions and the existence of a large energy barrier for quantum
fluctuations leading to collapse@6#. Both are related to small
values ofh. In the case of radial evolution of long samples
the IK ratio in Eq.~10! remains constant. Hence, the evolv-
ing condensate witha,0 and initially small h will be
equally stable with respect to collapse as the initial conden-
sate. For the 3D evolution withh!1 the IK ratio in Eq.~6!
varies ash/b(t) and decrease of the frequency~expansion!
makes the evolving condensate even more stable. On the
other hand, with large and fast increase of the frequency
~compression! to v1*v0 /h, or adiabatic increase to
v1*v0 /h

2, the parameterh(t)/b(t) strongly increases and
becomes of order unity. This can lead to instability of the
condensate with respect to collapse. The principal difference
of the uniform 3D compression from the radial compression
of long samples is attractive for comparative experiments.

The evolving coherent state described by the wave func-
tion C0(r ,t) is an ES state. For sufficiently large and fast
change of the frequency, the admixture of the final ground
state inC0 is very small, which raises two questions: What
happens with correlations characteristic of the static conden-
sate in the absence of irreversible processes, and how fast is
the depletion of the evolving coherent state? Analyzing the
first question we consider correlations responsible for the
reduction of the probability of inelastic processes due to the
presence of the condensate. The event rate of anm-body
inelastic process in a homogeneous gasnm5amZmV, where
am is the rate constant,V the system volume, and
Zm5^@Ĉ†(0,0)#m@Ĉ(0,0)#m& the local density correlator@4#.
For three-body recombination we havem53, and for spin-
dipole relaxationm52. In the absence of condensate
Zm5m!( n̄)m, where n̄ is the average particle density. At
T→0 in a stationary condensate the density fluctuations are
suppressed andZm5(n̄)m. Hence,nm in the condensate de-
creases by a factorm! @4#.

In the spatially inhomogeneous evolving Bose-condensed
gas, generalizing the above expression for the event rate we
havenm(t)5am*d3rZm(r ,t). The structure of the field op-
erators in the correlatorZm(r ,t) is determined by the scaling
transformation~4!. If almost all atoms are in the coherent
state C0(r ,t), then both Eq.~12! and Eq. ~17! lead to
nm(t)5nm(2`)@V(2`)/V(t)#m21, where n(2`) is the
inelastic rate in the initial static condensate and the appear-
ance of the quantity@(V(2`)/V(t)#m21 is a trivial conse-
quence of changing the system volume:V(t)
5V(2`)bd(t). This result shows that coherent evolution
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retains the effect of partial suppression of inelastic processes,
characteristic of the static condensate. Since any loss of co-
herence will lead to an increasing inelastic rate, there is an
interesting possibility to study the depletion of the evolving
condensate through the measurement of the rates of intrinsic
or light-induced inelastic collisional processes.

In an isolated system the relaxation of the evolving coher-
ent state will be accompanied by the appearance of an effec-
tive temperature. Assuming zero initial temperature and
v1!v0, a complete depletion of the condensate would lead
to the effective temperatureTeff;m for h@1 and
Teff;\v0 for h!1. In the 3D case the BEC transition tem-
perature in the final potentialTc'\v1N0

1/3 @12#. For h!1
the condition of complete depletion of the condensate,
Tc /Teff;(v1 /v0)N0

1/3&1, is rather strong although there is
an upper bound for the number of particles,N0! l 0 /a. For
h@1, with m5h\v0 andh;(N0a/ l 0)

2/5 @6#, we obtain a
weaker condition which can easily be fulfilled:

Tc /Teff;~v1 /hv0!N0
1/3

'~v1 /v0!~ l 0 /a!2/5N0
21/15&1.

The question of relaxation and the loss of coherence in a
quantum system with a large number of particles has several
nontrivial aspects, especially with regard to dynamic evolu-
tion of a completely isolated system. In the latter case we can
discuss the imitation of stochastization and the relaxation
picture, although there are a number of reasons for the real
relaxation. Thus far our analysis has assumed the mean-field
approach. The relaxation can only appear beyond this ap-
proach: One should at least consider the exact Hamiltonian
and include in the analysis the interaction terms proportional
to Ũ2.

Fast decrease of the frequency tov1!v0 brings the sys-
tem to a high ES state of the final potential. In the case of a
large interaction~h@1) the characteristic energy of expan-
sion is;m. For maximum expansion (b'v0 /v1) the evo-
lution is almost quasistationary and the sizer 0(t) is close to

the size of stationary states with energy;m in the final
potential. The corresponding one-particle density of states
g(m)'m2/2(\v1)

3 (d53) will be very large, ensuring that
the spacing between adjacent levelsd«;m(\v1 /m)

3 is
much smaller than the interparticle interaction at maximum
expansionn0minŨ;m(v1 /v0)

3. The many-particle density
of states grows exponentially, with the exponent depending
on the number of particlesN. Under these conditions even a
small external influence can lead to ‘‘mixing’’ of states and
insert irreversibility.

The characteristic relaxation time in this case will be de-
termined by the collisional timetc;@nsv(m)#21, where
s58pa2 is the elastic cross section,v(m) the particle ve-
locity at energym, andn;n0min. Strictly speaking,tc rep-
resents the minimum relaxation time and it would be inter-
esting to find possibilities to observe a larger time of
relaxation. One may assume that even in the absence of any
external influencetc will be responsible for the formation of
the state which imitates relaxation. The imitation can be pro-
moted by the deviation of the external field from harmonicity
or spherical symmetry.

The characteristic time of dynamic evolution is deter-
mined byv1

21, and we obtain a dimensionless parameter
characterizing the relaxation:

~tcv1!;~ l 0 /a!~ l 0 /N0a!3/5~v0 /v1!
2. ~23!

This estimate shows the possibility of both fast and slow
relaxation. Fortcv1@1 one can expect to observe oscilla-
tions of the condensate.

For a small interaction (h'N0a/ l 0!1) the characteristic
energy of expansion;\v0, and we have (tcv1);( l 0 /a)
3( l 0 /N0a)(v0 /v1)

2@1. In this limit the relaxation, and
hence the loss of coherence, is always slower.
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