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Evolution of a Bose-condensed gas under variations of the confining potential
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We discuss the dynamic properties of a trapped Bose-condensed gas under variations of the confining field
and find analytical scaling solutions for the evolving coherent stededensate We further discuss the
characteristic features and the depletion of this coherent $&1t850-294®6)50209-X]

PACS numbes): 03.75.Fi, 34.20.Cf

The recent successful experiments on Bose-Einstein corependent frequenay(t). We assume a pair interaction po-
densation(BEC) in trapped ultracold alkali atom gasiis-3]  tential between atoms of the fort(r)=U&(r). In a three-
open a unique possibility to investigate dynamic propertiegimensional (3D) gas U=4m#2a/m, where a is the
of a Bose-condensed phase. Of particular interest is the '&cattering length andn the atom mass. The Séhﬁoger
sponse of the system to time-dependent variations of the corquation for the Heisenberg field operator of atoms,
fining field. In an interacting Bose-condensed gas these propf,(r,t), reads
erties are nontrivial. For example, if initially almost all ) 52
trapped atoms are in the condensdate-Q), then under adia- ihg _ ﬁ_ = Mo (Or P+ 0 Hog 1)
batically slow change of the trapping potential they remain in at 2m 2 '
the condensate, which now corresponds to the ground state
of the system in the instantaneous trapping field. At the othef € field operator can be represented as a sum of the abqve-
extreme, a fast change of the potential from the initial to ﬁnalcondeqsate .part and the condensate wave function
shape brings the system to an excited superposititEi Wo=(¥), which is ac number:¥=¥"+¥, (see[8]). The
state, where the admixture of tifinal) ground state can be €auation for¥(r,t), obtained by averaging both sides in
small. Then, even assuming complete isolation of the systelﬁq' (), in the mean-field approach has the form
from the environment, there is the question of how the cor- 52 mao?(t)r2 _
relation properties change. Especially interesting are thoséh ——=— — AW ,+————— W+ U[|¥,|2+2n" ]y,
responsible for the reduction of the probability of inelastic at 2m 2
processes due to the presence of a Bose condddate 2

Another question concerns trapped gases with negative ..
scattering length. The trapping field stabilizes the condensatheren’(r,t)=(¥'"¥’). The mean-field equation of mo-
provided that the spacing between adjacent trap levels extion for ¥'(r,t) follows from Egs.(1) and(2):
ceeds the interparticle interacti9®,6]. Will this hold in the
ES state or will the system “collapse”? P 52 mw2(t)r? .

S . . . J ~
Of principal importance is the evolution of a completely if—=— — AP + —— P’
isolated many-body system which proves to be in the ES at 2m 2
state. Does the system undergo stochastization and imitate w2yt
. ; : ~ - o
relaxation behavior, at least for a large number of particles +2U| (| o2+ n) W' + >—|- 3)

and large interaction between them compared to the level

spacing in the potential well? This question is related to the

well-known problem of the appearance of irreversibility in ain Egs.(2) and(3), due to the conditiom|a|3<1 (n is the

guantum system with a large number of particles. gas density, we omitted the terms containing anomalous av-
To answer most of the above questions we first consideérageq\iﬂ\iw_

the evolution of a Bose condensate in a parabolic trapping Frequency variations change the time and distance scales

potential V(r) =mw?r?/2 (m is the atom magswith fre-  in Egs.(2) and(3). Let us formally introduce new operators

quencyw(t) varing from wg {0 ;. We use i(_jeas of the_ taking this into accounp=r/b(t)]:
analysis of the quantum motion of a particle in a harmonic

oscillator with time-dependent frequenésee[7]) and find Wo(r,t)=[b(t)]™xo(p, 7(t))exd i ®(r,1)],
the solution of the time-dependent nonlinear Sdimger T _ —di22r .
equation for the evolving coherent state. In certain cases our VO =[bM] X" (b, r(0)exd i (r.v], “
analytical results can be compared with numerical calculaghered is the dimension of the system and the phase
tions, first performed in Ref[5]. We further analyze the
characteristic features of the evolving coherent state and dis- cI)(r,t):(mrz/Zﬁ){b(t)/b(t)}_ (5)
cuss the problem of relaxation and the loss of coherence.

Let us consider a Bose gas with a fixed number of parThe equations of motion for the operatgrg and ' in new
ticles N in a symmetric harmonic potential with time- coordinate p) and time ¢) variables take the form
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ax h? ( ) ~
ﬁ_o(_ b?(t )) ApXo"‘ Z(t)"' b(t ) p?b*(t) xo+ bTTZ[|X0|2+2n,]XOi (6)
L Ox' (AT, ) h? o2 b(t) p2bA(t) % u 2, =0 U 251
|ﬁ¥(ab )]=- a5 W3(1)+ by | P?DUOF + pozllxol*+ IR + oz %)

wheren '(p,7)=(x'"(p,7) X' (p.7)). Note that the choice of In the 3D case for arbitrary there is no universality. On

phase in the fornt5) leads to the cancellation of terms pro- the other hand, in the limiy>1, neglecting the excitations,

portional ton)“(’ andV ,xq. Itis important that the phase be Eg.(6) can be again reduced to a universal form. In this case

the same for bothV, and W'. the kinetic energy term in E¢6) is comparatively small and
Let us first consided=2. We chooser(t) andb(t) such  can be omittedsee below. Then, introducing, instead 8)

that they are governed by the equations and(9), the equations

t t
T(t)zf dt’/b%(t’), (8) T(t)zf dt'/o3(t"), (13
b(t)+ w2(1)b(1) = wd/b¥(1), 9) B(t)+ w2(1)b(t) = w/b¥(1), (14)
where wo=w(—) is the initial frequency. Then Eqs6)  Eq. (6) is transformed to
and(7) are reduced to a universal form
2 2
dxo Mwop ~
_dxo magp® _, ifi— = X0+ Ul xol*x0- (15)
ih——=— 5 Apxot TX0+U[|X0|2+2n Ixo, 2 0 or Ao
(10) For t——c Egq. (15 has a solution xo(t)
PIy 52 Maw2o2 = xo(r)exp(=iut), where o is given by the well known
iha_XT: - ﬁAp)A(' + Top)“(/ +20[ | xol2+7 ' 1’ expressiorf10,11]

~ . o 1 me? |12 2 12
Equations(10) and(11) are universal in the sense that in the

variablesp, 7 the problem is reduced to an interacting Boseand zero otherwise. As follows from E{L5), for anyt the
gas in a harmonic well with constant frequency. Once wecondensate wave function has the form

find the solution in the initial potential well, we know the

answer at any. One should only solve the simple equation 1 “mr? b(t)
(9) with initial conditionsb(—)=1, b(—%)=0. For ex- o1\ 0= ey Xo| oty | &P\ 27 b(p) A7)
ample, the expression fo¥ y(r,t) reads a7

mr2 b(t)
2% b(t)

1 —( r p( where b(t) is governed by Eg.(14) with b(—c=)
b 0l b)) =1, b(—)=0.
Equations (120 and (17) conserve the norm
_ J1Wo(r,1)]?2d% =Ng, whereN, is the initial number of par-
where u is the initial chemical potential an®¥(r) is the ticles in the condensate. Universal solutions of E46) and
stationary solution for the condensate wave function a{11) conserve the nornfi[ | ¥ (r,t)|?+n’(r,t)]d% =N
t— —o. Using the Bogolyubov transformation, generalized We should emphasize that Eq42) and (17) describe a
for an inhomogeneous cassee, e.g.[9]), on the basis of coherent evolution of,. Generally speaking, it is very dif-
Egs.(10) and(11) we can describe the evolution of the spec-ferent from the condensate wave function corresponding to

\Po(r,t): I/‘LT(t)

trum and wave functions of elementary excitations.
Neglecting the excitations, EL2) describes the 2[ra-

dial) evolution of ¥ in long samplegaxial frequency is

much smaller than the radial onender variations of the

the ground state of the system in the potential well with an
instantaneous value ob or the final valuew;, even if
w(t) returns to the initial frequency,.

The time dependence oF, and normal excitations for

radial frequency; as to a first approximation one may omitd=2 (or at anyd for <1, neglecting the nonlinear inter-

the dependence oF, on the axial coordinate.
If the nonlinear interaction terms in Eq&) and(7) can

action termg is determined by the solution of E(). The
latter can be found in a general cadsee, e.g.,7]). Note that

be omitted the above universal scaling takes place for anghe classical equation for a harmonic oscillator with time-
d. This requires at least a small ratio of interparticle interac-dependent frequency

tion to the level spacing in the initial
n=noU/hwy<1, whereny=|¥,(0,—=)|? (see below.

potential,

£+ w()E(1) =0, (18)
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leads to Eq.(9), if one setsé(t)=b(t)exd *iwpr(t)]. With  cillations with b~ \2/3w/w,. The solution(17) will be
f(t)z_eXFt’@wotl)E fo(rlé;—m a_ndlt irtltf:rptrﬁted asdf"‘ “spatial I valid if w;=wq/7?. At timest<w; *, where the expansion
coordinate,” Eq. is equivalent to the one-dimensional . : - s -1
Schr"ojinger eqquation forqthe reflection of a particle with 1S frefe, Ea. (14 y@lds b(t*)~\/73wot (w57, Zand the
“energy” a)o from the “potential” wg—wz(t). At times vel_ocny Of expansion o= y4u/3m. For_w1§ wo/ 7" the IK
wherew is already constants(;) we have ratio can become small and the scali{®y, instead of(14),

1 should be used. Then the profile of the condensate density
1+R 2R2 will change, but the parameté(t) determining the charac-
1 R 1— RCOS(2w1t+ o) s teristic size of the condensate will be very close to that fol-

(19) lowing from Eq.(14).
Let us now describe the evolution of a 3D Bose-

bz(t)zlgml2

1 1+ VR condensed gas with negative scattering length. The initial
(t)= _arCtarii—tar(le 812) |, (200  condensate will be stabilized by the trapping fieldyi1,
o 1- \/ﬁ i.e., the IK ratio is small5,6]. The prime stabilization factors

are the presence of the gapfiw, for one-particle excita-

whereR is the reflection coefficient and the phase. tions and the existence of a large energy barrier for quantum

For slowly changing frequency(on a time scale fluctuations leading to collapgé]. Both are related to small
70> w,3) the coefficientR is exponentially small, and values of7. In the case of radial evolution of long samples
b=\/wy/w;. In this case the initial condensate is adiabati-the IK ratio in Eq.(10) remains constant. Hence, the evolv-
cally transformed to the ground state of the system in théng condensate witta<<O and initially small  will be
final trapping field, without oscillations. If the condition equally stable with respect to collapse as the initial conden-
wo 170> 1 is not valid, for at least one of the frequencies, thesate. For the 3D evolution withy<<1 the IK ratio in Eq.(6)
scaling paramete(t) will oscillate with a constant ampli- varies asy/b(t) and decrease of the frequen@xpansion
tude given by Eq(19). There is no damping of the oscilla- makes the evolving condensate even more stable. On the
tions of the condensate density, unless relaxation is include@ther hand, with large and fast increase of the frequency
(see below. (compressioh to w;=wy/7, or adiabatic increase to

The instantaneous size of the evolving condensate is re»;1= wo/ 7?, the parameter(t)/b(t) strongly increases and
lated to the initial size by o(t)=rob(t) [ro=ro(—=)]. In  becomes of order unity. This can lead to instability of the

the case of abrupt change of the frequency we have condensate with respect to collapse. The principal difference
of the uniform 3D compression from the radial compression
R=(wo— w1)%/(wo+ wy)?, 6=0, (21) of long samples is attractive for comparative experiments.

The evolving coherent state described by the wave func-
and the functionb(t) oscillates from 1 towg/w;. For  tion W(r,t) is an ES state. For sufficiently large and fast
wo> w4 there is a large expansion of the condensate and thethange of the frequency, the admixture of the final ground
compression to the initial shape. At timeSw; ! the expan-  state in¥, is very small, which raises two questions: What
sion is practically free, and Eq&19) and(20) yleld happens with correlations characteristic of the static conden-

sate in the absence of irreversible processes, and how fast is
b(t)=(1+wjt?)¥?  7(t)=(Llwo)arctawet). (22)  the depletion of the evolving coherent state? Analyzing the
first question we consider correlations responsible for the
If w,=0 the compression does not occur. We have an exreduction of the probability of inelastic processes due to the
panding Condensate described by E2p) at anyt. presence of the condensate. The event rate ofnesody
At tlmest>w0 ! the characteristic velocity of free expan- inelastic process in a homogeneous gas: a2}, where
sionvo=rq(t)=wero. As follows from Eq.(16), for »>1 @y is the rate constant() the system volume, and
the initial size of the condensatg= (2/_L/mwo)1/2 and we  z =([¥"(0,0)]"[¥(0,0)]™) the local density correlatd#].
havev,= v2u/m. Since in this casg=nyU, the velocity is  For three-body recombination we hawme=3, and for spin-
determined by the interaction between particles. kBetl dipole relaxationm=2. In the absence of condensate
the initial sizer y=~1,, wherel = (%/mwg)*?is the amplitude  Z,,=m!(n)™, wheren is the average particle density. At
of zero-point oscillations in the initial potential, and T—0 in a stationary condensate the density fluctuations are

vo~+Vhwy/mis much smaller than fop>1. suppressed and,,=(n)™. Hence,v,, in the condensate de-
The same picture holds for the 3D evolution of a conden-<reases by a facton! [4].
sate in the opposite limit, where initially>1, although we In the spatially inhomogeneous evolving Bose-condensed

should use the scaling transformation following from Egs.gas, generalizing the above expression for the event rate we
(13) and(14). The latter has no analog in the quantum theoryhave v, (t) = amfd3rZ,(r,t). The structure of the field op-

of scattering and should be solved directly. We again obtairerators in the correlatdt,(r,t) is determined by the scaling

a periodic functionb(t), and oscillations of the condensate transformation(4). If almost all atoms are in the coherent
density will be determined by Eq17) which was derived state W(r,t), then both Eq.(12) and Eq.(17) lead to
assuming a large ratio of interparticle interaction to thevm(t)=vm(—=)[Q(—*)/Q(t)]™ !, where v(—=) is the
kinetic-energy term(IK ratio) in Eq. (6). For >1 the IK inelastic rate in the initial static condensate and the appear-
ratio varies asp?/b(t) and definitely remains large if the ance of the quantity(Q(—)/Q(t)]™ ! is a trivial conse-
frequency increasepb(t)<1]. As follows from Eg.(14), quence of changing the system volumeQ(t)

fast decrease of the frequency dg<wq leads to large os- =0(—)bd(t). This result shows that coherent evolution
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retains the effect of partial suppression of inelastic processethe size of stationary states with energyu in the final
characteristic of the static condensate. Since any loss of cgotential. The corresponding one-particle density of states
herence will lead to an increasing inelastic rate, there is ag(u)~u?/2(hw,)*® (d=3) will be very large, ensuring that
interesting possibility to study the depletion of the evolvingthe spacing between adjacent levels~ u(fiw,/p)® is
condensate through the measurement of the rates of intrinsfduch smaller than the interparticle interaction at maximum
or light-induced inelastic collisional processes. expansionngmisU ~ u(w1/we)®. The many-particle density

In an isolated system the relaxation of the evolving coherof states grows exponentially, with the exponent depending
ent state will be accompanied by the appearance of an effe@n the number of particle. Under these conditions even a
tive temperature. Assuming zero initial temperature ancsmall external influence can lead to “mixing” of states and
w;<wg, @ complete depletion of the condensate would leadnsert irreversibility. S .
to the effective temperatureTe~u for 7>1 and The characteristic relaxation time in this case will be de-
Tei~Hhwg for p<1. In the 3D case the BEC transition tem- termmec; by the collisional tlme"c_w[nUU(M)]_l- ‘where
perature in the final potentidl,~% w;N&? [12]. For 5<1 o=8ma“ is the elastic cross section(u) the particle ve-
the condition of complete depletion of the condensatelOCity at energyu, andn~nppy,. Strictly speaking . rep-
T/ Tesi~ (01 /wo)NY3<1, is rather strong although there is resents the minimum relaxation time and it would be inter-
an upper bound for the number of particlég<I,/a. For esting to find possibilities to observg a larger time of
751, with p=phw, and 7~ (Nga/l)2® [6], we obtain a relaxanon. One may assume that even in the absen_ce of any
weaker condition which can easily be fulfilled: external |nflu_en(_:e_c will be resppnsnole f(_)r Fhe_formatlon of

the state which imitates relaxation. The imitation can be pro-

T/ T~ (w1 pwg)NG? moted by the deviation of the external field from harmonicity
) or spherical symmetry.
~(w1/wo)(Ig/a)?Ng <1, The characteristic time of dynamic evolution is deter-

) . . mined by w[l, and we obtain a dimensionless parameter
The question of relaxation and the loss of coherence in @haracterizing the relaxation:

guantum system with a large number of particles has several

nontrivial aspects, especially with regard to dynamic evolu- (1ew1)~(lg/a)(1g/Nga)¥¥(wo/ wq)2. (23
tion of a completely isolated system. In the latter case we ca hi . h h ibility of both f d sl
discuss the imitation of stochastization and the relaxatio IIS estimate shows the possibility of bot b ast an .SHOW
picture, although there are a number of reasons for the re&flaxation. Forrew;>1 one can expect to observe oscilla-
relaxation. Thus far our analysis has assumed the mean-fielP"S Of the condensate. N
approach. The relaxation can only appear beyond this ap- For a small |nte.ract|om§~ Nga/ly<<1) the characteristic
proach: One should at least consider the exact HamiltoniaRN€rgy Of expansion-fiwo, and we have f.w;)~(lo/a)

2 . . . B
and include in the analysis the interaction terms proportionaf<(lo/No2)(@wo/@1)*>1. In this limit the relaxation, and
to U2 hence the loss of coherence, is always slower.
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