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Dark pair coherent states of the motion of a trapped ion

S.-C. Gou, J. Steinbach, and P. L. Knight
Optics Section, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 11 April 1996!

We propose a scheme for generating vibrational pair coherent states of the motion of an ion in a two-
dimensional trap. In our scheme, the trapped ion is excited bichromatically by three laser beams along different
directions in theX-Y plane of the ion trap. We show that if the initial vibrational state is given by a two-mode
Fock state, the final steady state, indicated by the extinction of the fluorescence emitted by the ion, is a pure
state. The motional state of the ion in the equilibrium realizes that of the highly correlated pair coherent state.
@S1050-2947~96!50408-7#

PACS number~s!: 42.50.Vk, 42.50.Dv, 32.80.Pj
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A variety of generalized coherent states has been c
structed to describe different physical phenomena@1#. Math-
ematically, the constructions of these sets of generalized
herent states are associated with particular Lie groups.
Glauber coherent states, defined as the right eigenstates
single-mode boson annihilation operator, are associated
the Heisenberg group. Beyond these canonical cohe
states, particular generalized coherent states associated
the noncompact SU~1,1! group have been extensively stu
ied @1–6#. According to Barut and Girardello@3#, these as-
sociated coherent states are defined as the eigenstates
SU~1,1! lowering operator, whereas in the definition give
by Perelomov@4#, they are generated by the SU~1,1! ana-
logue of the displacement operator. These two sets of co
ent states are different, though they are closely related to
SU~1,1! group.

Regarding the two-mode boson realization of the SU~1,1!
group, a special set of coherent states of the Barut-Girard
type known as pair coherent states~PCS! can be formulated
@1#. If â (â†) and b̂ (b̂†) denote two independent boso
annihilation~creation! operators, thenâb̂ (â†b̂†) stands for
the pair annihilation~creation! operator for the two modes
The pair coherent statesuj,q&PCS are defined as eigenstate
of both the pair annihilation operatorâb̂ and the number
difference operatorQ̂5â†â2b̂†b̂, i.e.,

âb̂uj,q&PCS5juj,q&PCS, Q̂uj,q&PCS5quj,q&PCS, ~1!

wherej is a complex number andq is the ‘‘charge’’ param-
eter, which is a fixed integer. Furthermore, the PCS can
expanded as a superposition of the two-mode Fock state

uj,q&PCS5Nq(
l 50

`
j l

Al ! ~ l 1q!!
u l 1q,l &F , ~2!

whereNq5@ uju2qI q(2uju)#21/2 is the normalization constan
(I q is the modified Bessel function of the first kind of ord
q). Pair coherent states were introduced by Horn and Si
@5# to describe the production of pions and applied to ot
problems in quantum field theory@1#. In quantum optics,
PCS are regarded as an important type of correlated t
mode state, which possess prominent nonclassical prope
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such as sub-Poissonian statistics, correlation in the num
fluctuations, squeezing, and violations of Cauchy-Schw
inequalities@2#.

The experimental realization of such nonclassical state
of practical importance. Agarwal@2# suggested that the opti
cal PCS can be generated via the competition of four-w
mixing and two-photon absorption in a nonlinear mediu
This is the only scheme proposed to generate PCS know
us. In this Rapid Communication we propose a scheme
generate vibrational PCS of a trapped ion. Recently, due
remarkable advances in laser cooling of a trapped ion@7#, it
has become possible to realize nonclassical states of
center-of-mass~c.m.! motion of a single trapped ion. An ion
confined in an electromagnetic trap can be regarded a
particle with quantized c.m. motion moving in a harmon
potential. Exciting or deexciting the internal atomic states
the trapped ion by a classical laser driving field changes
external states of the ion motion, as atomic stimulated
sorption and emission processes are always accompanie
momentum exchange of the laser field with the ion. If bo
the vibrational amplitude of the ion is much smaller than t
laser wavelength, i.e., in the Lamb-Dicke limit@7#, and the
driving field is tuned to one of the vibrational sidebands
the atomic transition, then this model can be simplified to
form similar to the Jaynes-Cummings model~JCM! @8# in
which the quantized radiation field is replaced by the qu
tized c.m. motion of the ion. As the coupling between t
vibrational modes and the external environment is extrem
weak, dissipative effects, which are inevitable from cav
damping in the optical regime, can be significantly su
pressed for the ion motion. This unique feature thus make
possible to realize cavity QED experiments without using
optical cavity. Following this approach, nonclassical vibr
tional states of the trapped ions, such as Fock@9#, squeezed
@10#, and Schro¨dinger-cat states@11,12# have been propose
and observed@13#.

Consider the quantized motion of a two-level ion of ma
M that is trapped in a two-dimensional~2D! isotropic har-
monic potential characterized by the trap frequencyn. The
creation~annihilation! of vibrational quanta in theX and Y
directions is described by the operatorsâ(â†) and b̂(b̂†),
respectively. The position operators are given
x̂5l(â1â†) and ŷ5l(b̂1b̂†), wherel5A\/2nM . In our
R1014 © 1996 The American Physical Society
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54 R1015DARK PAIR COHERENT STATES OF THE MOTION OF . . .
scheme, which we sketch in Fig. 1, the ion is driven bich
matically by three laser beams in theX-Y plane. The first
two lasers are both tuned to the second lower vibratio
sideband and applied to the ion along directions with
anglep/4 and 3p/4 relative to theX axis, respectively. The
third laser, which drives the ion along theX axis, is resonant
with the atomic transition frequency. In the rotating-wa
approximation, the Hamiltonian describing the coherent e
lution is

Ĥ5\n~ â†â1b̂†b̂!1
\v0

2
ŝz2@DE~2 !~ x̂,ŷ,t !ŝ21 H.c.#,

~3!

where the first two terms describe the free evolution of
external and internal degrees of freedom of the ion and
last indicates the atom-field interaction. The operatorsŝ1

and ŝ2 are raising and lowering operators for the two-lev
ion obeying commutation relations@ŝ1 ,ŝ2#5ŝz and
@ŝz ,ŝ6#562ŝ6 . The transition in the two-level ion is
characterized by the dipole matrix elementD and the transi-
tion frequencyv0 . The negative frequency part of the cla
sical electric driving field is given by

E~2 !~ x̂,ŷ,t !5E1ei @~v022n!t2k2x̂81f1#

1E2ei @~v022n!t2k2ŷ81f2#1E0ei ~v0t2k0x̂1f0!,

~4!

where 2Ej andf j indicate the amplitudes and phases of t
driving lasers, respectively. We have introduced new po
tion operatorsx̂8 and ŷ8, which are related tox̂ and ŷ by a
p/4 rotation in theX-Y plane, so that for the creation~anni-
hilation! operatorsÂ (Â†)andB̂ (B̂†), defined in theX8 and
Y8 directions, respectively, we obtain the following transfo
mation:

S Â

B̂
D 5

1

A2
S 1 1

21 1D S â

b̂
D . ~5!

According to Vogel and de Matos Filho@11,14#, if the ion
is in the resolved sideband limit and the driving laser

FIG. 1. Configuration to generate vibrational PCS. The car
field drives the ion on resonance along theX axis. The other two
lasers are both resonant with the second lower vibrational sideb
They drive the ion along theX8 and Y8 axes, having phase
f150 andf25p, respectively.
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resonant with one of the vibrational sidebands, then the i
laser interaction can be described as a nonlinear JCM.
lowing Refs.@11,14#, the Hamiltonian of Eq.~3! can be writ-
ten in the interaction picture as

ĤI5\e2h2/2F (
j 50

`
~ ih!2 j 12

j ! ~ j 12!!
@V1eif1Âj~Â†! j 12

1V2eif2B̂j~B̂†! j 12#1V0eif0(
j 50

`
~ ih!2 j

j ! j !
â j~ â†! j G ŝ2

1 H.c., ~6!

where V j52DEj /\ are the Rabi frequencies, and th
Lamb-Dicke parameterh5kl has been defined assumin
k2.k05k.

As the damping of vibrational quanta can be significan
suppressed in an ion trap, the dominant decay process i
spontaneous emission from the two-level ion, and the ti
evolution of the system in the interaction picture can be
scribed by a density operatorr̂ obeying the master equatio
@9,11#

dr̂

dt
52

i

\
@ĤI ,r̂ #1

G

2
~2ŝ2%̂ŝ12ŝ1ŝ2r̂2 r̂ŝ1ŝ2!,

~7!

whereG is the spontaneous decay rate of the excited stat
the ion, and the modified density operator

%̂5
1

4E21

1 E
21

1

dudvW~u,v !eik~ux̂1v ŷ!r̂e2 ik~ux̂1v ŷ! ~8!

accounts for the momentum transfer in theX-Y plane due to
spontaneous emission, whereW(u,v) describes the angula
distribution of the spontaneous emission. In the Lamb-Dic
regime,h!1, the master equation, Eq.~7!, can be well ap-
proximated by expanding Eq.~8! up to first order inh and
Eq. ~6! up to second order inh. In this case, only the leading
terms, i.e.,j 50 in ĤI , are considered, and%̂ is replaced by
r̂. SettingV15V25V andf150,f25p, the master equa
tion, Eq. ~7!, simplifies to

dr̂

dt
52

i

\
@ĤI8 ,r̂ #1

G

2
~2ŝ2r̂ŝ12ŝ1ŝ2r̂2 r̂ŝ1ŝ2!,

~9!

with the effective HamiltonianĤI8 given by

ĤI85a@ âb̂2j#ŝ11 H.c., ~10!

where

a52\Vh2exp(2h2/2),

and j5V0V21h22exp(2if0). Disregarding the constan
driving termj, the effective Hamiltonian of Eq.~10! is iden-
tical to the nondegenerate two-mode JCM@15#.

For a master equation of the form of Eq.~9!, the steady-
state solutionr̂s is a pure state@9–11#, r̂s5ug&uc&^cu^gu,
where ug& is the atomic ground state anduc& defines the
vibrational state of the ion. When the system reaches
steady state,dr̂s /dt50. Assuming a steady state of the for
above gives@ĤI8 ,r̂s#50, as the dissipative term on the righ

r
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hand side of Eq.~9! vanishes in this case. A sufficient con
dition for us to generate the vibrational steady stateuc& is to
ensure that r̂s satisfies the restriction@ĤI8 ,r̂s#50, or
âb̂uc&5juc&. This is identical to our first definition of a
PCS given above in Eq.~1!. In order to generate a fully
characterized PCS, however, we need another constrai
ensure that the final vibrational state remains an eigensta
the number difference operatorQ̂. This can be achieved b
properly choosing the initial vibrational state. In view of th
fact that@ âb̂,Q̂#50, it follows that the number difference i
a constant of motion in processes involving simultane
pair annihilation or creation@16#. Thus, for an initial vibra-
tional stateuc0&, if the conserved ‘‘charge’’ condition is ini-
tially satisfied, i.e.,Q̂uc0&5quc0&, then this condition holds
for the whole time evolution of the system described by E
~9!. Regarding the feasibility of an experimental realizatio
it seems that the two-mode Fock stateuc0&5um1q,m&F is
best suited to fulfil the conserved ‘‘charge’’ condition. With
out loss of generality we may set the initial vibrational sta
as uc0&5uq,0&F (q>0), which, according to recent work
can be prepared with very high efficiency@13#. In general the
effects of spontaneous emission described in Eq.~8! disturb
the correlations of the two modes since they change the
tional states in different directions independently. Theref
the assumption ofh!1, which led us from Eq.~7! to Eq.
~9!, is important. We note, however, thath should not be too
small in real experiments, for it is needed to allow exci
tions of the second sidebands.

In order to gain insight into the transient behavior w
have solved the master equation, Eq.~9!, numerically, em-
ploying a Monte Carlo state-vector method@17#. Our nu-
merical analysis was performed using a high-order unra
ling technique@18# in a finite ~truncated! Fock-state basis
with a cutoff chosen such that an increase of this cutoff d
not alter the result of our integration.

We find that the system evolves from an initial product
a two-mode Fock state and a superposition of the inte
states of the ion into the pure steady state, as expected.
ure 2 depicts the excitation number distribution in the t
vibrational modes at different times, showing the system a
evolves from the initial pure stateuC0&5ue& ^ u7,6&F into its
steady state. The steady-state excitation number distribu
@Fig. 2~d!# is indistinguishable from that of a PCS wit
j52 andq51. This is the expected result since the partic
lar choice of the initial state determines the conserv
‘‘charge’’ q5^C0uQ̂uC0&51 , and from Eqs.~1! and ~10!
the second number defining the PCS is determined by
driving term j in the effective Hamiltonian, which in the
example shown isj52 . We verify that the steady state
pure by calculating the trace of the square of the den
operator Tr(r̂s

2) from the steady state obtained in our n
merical integration. We find Tr(r̂s

2)50.9997. The deviation
of the purity from unity is a consequence of the finite numb
of trajectories used in the Monte Carlo method. We ha
tested this by increasing the cutoff of the truncated Fo
state basis. Figure 3 shows the transient behavior of the
ternal state of the ion. We depict the time evolution of t
inversion^ŝz& @Fig. 3~a!# and the imaginary part of the po
larizationi ^ŝ22ŝ1& @Fig. 3~b!#. We note that the time scal
for the system to reach the steady state is much longer th
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would take the same ion to reach its steady state in a r
nance fluorescence experiment.

One may examine the existence of the PCS by observ
the collapses and the revivals of the atomic inversion. Thi
illustrated by switching off the carrier field suddenly on

FIG. 2. We depict the excitation number distributionP(n,m) in
the two vibrational modes at different times. The system evol
from ~a!, the initial pure stateuC0&5ue& ^ u7,6&F (Gt50.0),
through ~b! and ~c!, two intermediate states (Gt5125.0) and
(Gt5500.0), into~d!, its steady state, which is the pure product
the internal ground state of the ion and a vibrational PC
uCs&5ug& ^ u2,1&PCS (Gt52000.0). The data shown have been o
tained from a Monte Carlo simulation that included 1000 trajec
ries and was performed in a truncated Fock-state b
(u0,0&F , . . . ,u20,20&F). Parameters:a50.2,j52.0,G510.0.

FIG. 3. Time evolution of the internal state of the two-level io
as the system evolves into its steady state.~a! shows the inversion
^ŝz& and~b! the imaginary part of the polarizationi ^ŝ22ŝ1&. The
real part of the polarization̂ŝ21ŝ1& remains zero at all times
The two insets show the evolution in the time intervalGt50.0 to
Gt520.0. Parameters and data used are the same as in Fig. 2
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54 R1017DARK PAIR COHERENT STATES OF THE MOTION OF . . .
the system has reached the steady state. In this case
system is equivalent to the nondegenerate two-mode J
interacting with a PCS when the ion is initially in its groun
state. The time evolution of such a system has been inv
gated by several authors@19#. In particular, whenq50 the
Rabi oscillation of the atom exhibits exactly periodic beha
ior. However, as the atomic decay is essential to the pre
treatment and cannot be ignored, the collapses and rev
of the Rabi oscillation of the trapped ion are substantia
different from the previous results. One possible way to s
press the complications caused by the atomic decay i
increase the intensities of the driving lasers so that the r
G/a is lowered. Thus, in the short-time regime the influen
of spontaneous emission can be eliminated.

In conclusion, we have proposed a scheme for the rea
tion of pair coherent states of the c.m. motion of a trapp
ion. In our scheme, three laser beams, one of which is tu
to the carrier frequency and the other two to the sec
lower vibrational sideband, are used to drive the ion trap
p-
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in a 2D isotropic harmonic potential well. In appropriate lim
its, the system will relax to a steady state due to the spo
neous emission from the ion. If the vibrational state of m
tion of the ion is initially prepared in a Fock state, then t
steady state of the system is a pure state given by a pro
of the atomic ground state with a PCS of the vibration
motion. In this case, the two parameters,j andq, that char-
acterize the PCS are determined by the intensities and ph
of the driving lasers and by the number difference betwe
the two vibrational modes determined by the initial Fo
state, respectively.
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