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I. INTRODUCTION

It is well known that a binary message can be unbreakably
encoded using a key consisting of a random sequence of
zeros and ones@1#. Sender and receiver have to share the
knowledge of that key. The only threat to this way of encod-
ing messages is that the key may be subject to spying during
distribution and storage.

Quantum cryptography is a way to circumvent these prob-
lems as it allows the secure creation of a key at the time and
place it is needed. I will give only a short introduction to
quantum cryptography. For more detailed descriptions see,
for example,@2–4#. The scenario in which the key establish-
ment takes place is depicted in Fig. 1. The sender of a mes-
sage, Alice, is connected to the receiver Bob by two chan-
nels. The first channel shows classical behavior as, for
example, a radio transmitter does, and the second is a quan-
tum channel such as an optical fiber transporting single pho-
tons. An eavesdropper Eve has full access to the information
flow on the classical channel but she can listen only and
cannot tamper with the signals. On the other hand she can
tamper with the signals on the quantum channel but the in-
formation is not fully accessible to her because of the mea-
surement’s back reaction onto the system and the impossibil-
ity of cloning quantum states@5#.

There are several ways to implement a quantum crypto-
graphical system by means of the two channels@6–9#. The
first was proposed by Bennett and Brassard@2# and I will
concentrate on this scheme, abbreviated as BB84, in this
article. In the BB84 protocol two sets of orthogonal photon
states are used. The overlap of typeu^f1uf3&u2 between
states from different sets is12. As an example we may think
of the first set as vertical and horizontal linear polarized pho-
ton states and of the second set as right and left circular
polarized photon states.

In the first step of establishing the key Alice sends a ran-
dom sequence of signals built up from the four possible sig-
nal states, each appearing with equal probability. Bob pos-
sesses two measurement apparatuses adapted to the two sets
of signal states. He may distinguish either between vertical
and horizontal linear polarized photons or between right and
left circular polarized photons. For each of the signals sent to
him by Alice he chooses with equal probability an apparatus
to use. The results of the measurements can be divided into
two sets. The first set of signals and measurement results are

those where the signal fits the measurement apparatus, result-
ing in a deterministic outcome of the measurement. The
other set contains those photons where the measurement ap-
paratus does not fit, resulting in purely probabilistic results.
Alice and Bob now use as a second step the radio transmitter
and announce for each photon sent the set of signals it was
chosen from, linear or circular polarized, and the apparatus
used to measure it. This is enough to distinguish the deter-
ministic from the nondeterministic outcomes. In a third step
they discard all the probabilistic measurement outcomes. The
remaining data form the so-calledsifted key@10#.

In case Eve attempts to measure the signal as it passes
through the quantum channel she will, on average, corrupt
part of the signal. This becomes clear as there is no non-
demolition measurement which can operate reliably on non-
orthogonal states. Nonorthogonality is crucial here@11#. Al-
ice and Bob may thus perform a test for the presence of Eve
by comparing a fraction of their remaining deterministic data
consisting of the actual signal and the actual measurement
outcome. If they find discrepancies they know about the
presence of Eve and must try to establish a new key. On the
other hand, the absence of errors shows that the transmission
was not eavesdropped upon and the remaining data may be
used for encoding of the actual message. The encoded mes-
sage will be sent via the radio transmitter or other suitable
classical channel.

The BB84 scheme in this form works only on a noiseless
quantum channel. Noise will inevitably lead to errors in the
compared data during the last step. To get the scheme work-
ing again we have to extend it to cope with a mild form of
eavesdropping which will lead to a disturbance of the signal
comparable to that caused by noise. This has been treated by
different authors. In particular, a recent discussion of the
effects of von Neumann measurements performed by Eve
has been given by Ekertet al. @12#. By von Neumann mea-
surements I mean those described by a collapse of the wave
function into an eigenstate of a Hermitian operator. The key

FIG. 1. The setup with quantum and classical channels.
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ingredient is to define a quantity describing the disturbance
of the system and to relate this to the information Eve gets
by interacting with the system. Alice and Bob may then mea-
sure the disturbance and infer an estimate on Eve’s Shannon
information or expected collision probability about the key.
The Shannon information is of importance in estimating the
amount of information available to Eve in the context of
using a Wyner wiretap channel@13#. The expected collision
probability is of importance in deleting Eve’s information
about the key after some error correction. Eve’s information
is deleted by the process of privacy amplification@14,15# at
the cost of the length of the key.

In this paper I present a sharp estimate for the Shannon
information and the expected collision probability Eve can
gain by performinggeneral measurementson single-photon
states as they pass from Alice to Bob. The paper is organized
as follows in Sec. II the basic quantities describing the key
establishing process are defined and I introduce measures for
the Shannon information, the expected collision probability,
and for the disturbance of the transmission. Section III intro-
duces generalized measurements, thepositive operator mea-
sures~POM!. In Sec. IV I give a sharp estimate of Eve’s
information in the case that all operations are done in the
Hilbert space of a one-photon state. In Sec. V the optimal
strategy of the eavesdropper is given. A simple model for
noise is applied in Sec. VI to demonstrate the consequence of
the estimates.

II. BASIC QUANTITIES

The system is described by the joint probabilities of Alice
sending a specific signal and Bob finding a specific outcome
of a measurement. We denote the signals of the first alphabet
as uf1& and uf2& and the signals of the second alphabet as
uf3& anduf4&. The corresponding measurements are charac-
terized by two projectors each. The first one by
E15uf1&^f1u andE25uf2&^f2u and the second one by pro-
jectorsE3 andE4 onto the statesuf3& anduf4&. In terms of
a representation we may choose

uf1&5S 10D uf2&5S 01D , ~1!

uf3&5
1

A2
S 1

21D uf4&5
1

A2
S 11D . ~2!

This representation reflects the fact that the Hilbert space
of the polarization of a single photon is equivalent to that of
a spin-12 particle. For the following calculations the notion of
a single photon and a spin-1

2 particle is interchangeable. For
example, the signal statesuf1& anduf2& can then be viewed
as spin-up and spin-down states, respectively. We define the
matrix PAB to be the matrix of the joint probabilities for
sending signali and receiving signalj . They are of the type
1
4TrH(r i

1
2Ej ). Herer i is the density matrix corresponding to

the stateuf i&. I denote by the symbol TrH(.) the trace over
the two-dimensional Hilbert space. The factor1

4 is the prob-
ability of sending signalr i and the factor

1
2 is due to the fact

that Bob chooses with equal probability between the two
measurement apparatus. We find for the BB84 protocol

PAB5
1

8

E1 E2 E3 E4
1

8
TrH~r iEj !

1 0
1

2

1

2
f1

0 1
1

2

1

2
f2

1

2

1

2
1 0 f3

1

2

1

2
0 1 f4

.S D ~3!

By analogy with this definition we define the entries of
the matrixPAEB to be the same joint probabilities for the
outcomes of the measurements, but this time in the presence
of either Eve or noise on the channel. This means that we
generalize the matrix elements14TrH(r i

1
2Ej ) to

1
8TrH( r̃ iEj ),

wherer̃ i denotes the corrupted signal. By comparing signals
and outcomes one can actually determine the matrixPAEB ,
while the matrixPAB is a theoretical idealized object.

A. Shannon information

The string of Eve’s measurement results contains a certain
amount of Shannon informationI about the key sent by Al-
ice. We are interested in the Shannon information per signal
of the key after the announcement of the used alphabets, and
thus we keep the signals belonging to different alphabets
separated. In general the Shannon information per bitI is
given by @16#

I ~P!5(
i
HS (

k
P ikD 1(

k
HS (

i
P ikD 2(

ik
H~P ik!,

~4!

where

H~a!52a log2a ~5!

and theP ik are the joint probabilities of sending a signali
and receiving a signalk. All logarithms refer to base 2 so
that information is expressed in bits per signal. In the situa-
tion where we calculate the information Eve receives,i rep-
resents the four signal statesuf i&, and the range of values of
k represents all the possible outcomes of a measurement per-
formed by Eve.

The informationI (P) is a convex function over the set of
probability matrices with fixeda priori probabilities for each
signal @16#. This allows us to use Jensen’s inequality

I S (
i
piPi D<(

i
pi I ~Pi !, ~6!

which estimates the information gain of a mixture of strate-
gies, used in parallel with probabilitypi and resulting in joint
probability matricesPi , by the average of the information
gain associated with the single strategies. If we combine two
separate measurement outcomes into a single new one the
information decreases@16#. That means that combining two
rows or columns by replacing them with their sum will
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decrease the amount of Shannon information. Any permuta-
tion within either the signals or the outcomes will not change
the amount of information.

Next I consider the case in which the set of outcomes can
be separated into two subsets such that thea priori probabil-
ity of the signals across both subsets of outcomes separately
are, up to a fixed factor ofp and 12p, respectively, thea
priori probabilities across the whole set of outcomes. This
means that the measurement apparatus can be viewed as con-
sisting of two apparatuses used interchangeably with the
probabilitiesp and 12p. In this case we find that the infor-
mation gained by the use of the composed system is equal to
the sum of the information gained by the subsystems,
weighted with the probability of their use. This is expressed
as

I „@pP1 ,~12p!P2#…5pI~P1!1~12p!I ~P2!, ~7!

where@ . . . , . . .# denotes the composed matrix. We obtain a
similar property by interchanging signals and outcomes
which allows us to separate information with respect to two
subsets of signal states.

B. Expected collision probability

Eve’s information about the key consists of two parts. The
first is the string of outcomes of the measurements performed
by Eve on the signals and the second is the knowledge about
the correlation of those outcomes to the signals. This knowl-
edge can be quantified. The easiest way Eve can guess the
key from her measurement data is in the case of a von Neu-
mann measurement to call one outcome ‘0’ and the other ‘1.’
It is, however, not obvious how to transfer this to the general
positive operator measure situation, described later, which
deals with several different possible outcomes. The solution
lies in the possibility of assigning a probability to all keys
possibly sent by Alice to be the one originally sent. This is
the conditional probabilityp(xuy) thatx is the key when Eve
measured the string of outcomesy. This probability can be
calculated from the known probability that a given signal
triggers one of the outcomes. A possible attack by Eve on the
message is to try several keys chosen according to the prob-
ability distribution p(xuy). It is intuitively clear that a
sharply peaked probability distribution over the set of pos-
sible keys will help Eve to decode the message as this will
affect the decoding time. Thecollision probability
pc(y):5(xp

2(xuy) is the probability of drawing the same
key x twice.

The expected collision probability is defined as
^pc(y)&:5(yp(y)pc(y) with p(y) as the probability for Eve
to find outcome stringy. In a forthcoming paper@15# it is
shown that this quantity plays a central role in the process of
privacy amplification. In the case of a lowest upper bound
t in the sense

11 log2^pc~y!&
1
n<t ~8!

can be given for a key of lengthn andtP@0,1), we can cut
out Eve’s Shannon information on the key by shortening it
during privacy amplification. A reduction of the key length
by nt1s bits, wheres is a safety parameter, leaves Eve with
a total Shannon information of less thans2s/ ln2 bit on the
new key of lengthn(12t)2s.

In the case of the BB84 protocol we can formulate the
expression for the expected collision probability using the
joint probabilities for sending a specific signal and receiving
a specific outcome and using the total probability of the spe-
cific outcomes. More precisely we are interested in the ex-
pected collision probability after the public announcement of
the alphabets used. For this purpose we introduce a parallel
notation uca& for the signals byca where c50,1 is the
logical value of the signal anda indexes the alphabet.
We identify u01&[uf1&, u11&[uf2&, u02&[uf3& and
u12&[uf4&. Eve receives the signalska consisting of the
outcomek of a measurement performed by her and the later
acquired knowledge about the alphabet used, which is indi-
cated again bya.

In order to reexpress the expected collision probability in
terms of the joint probabilitiesp(fa ,ka) and the probabili-
tiesp(ka) we use the fact that the transmission of each pho-
ton is independent of the others. Then we find the conditional
probabilityp(xuy) for the whole key to be the product of the
conditional probability for each single key signal and out-
come, that is,

p~xuy!5)
i

S p~ca ,ka!

p~ka! D
i

, ~9!

where in thei th factorca andka are thei th signal ofx and
the i th outcome ofy. We next define numbersMka

and

m0aka
. For a sequence ofn signals Eve will find in the se-

quence of outcomesy the outcomeka a total ofMka
times.

Of thoseMka
signals the number ofm0aka

will be triggered

by the signalu0a&. The remaining (Mka
2m0aka

) are trig-

gered by the stateu1a&. With this notation we find, taking
into account the different permutations of strings, that

pc~y!5(
x

p2~xuy!5 (
m0aka

<Mka

)
ka

S Mka

m0aka
D

3S p~0a ,ka!

p~ka! D 2Mka S p~1a ,ka!

p~ka! D 2~Mka
2m0aka

!

5)
ka

F S p~0a ,ka!

p~ka! D 21S p~1a ,ka!

p~ka! D 2GMka

.

To calculate the expected collision probability we need
the probabilitiesp(M ) that Eve receives the set of numbers
Mka

as measurement outcomes. This probability is given by

p~M !5
n!

M01
!M02

!M11
! . . .Mka

! . . .)ka

p~ka!Mk2a.

~10!

The expectation value is taken over all values of theMka

with (ka
Mka

5n. We used the probabilitiesp(ka) for trig-

gering the different outcomeska by the equally distributed
signal states.

As a result we find the expression for the expected colli-
sion probability as

54 99SECURITY AGAINST EAVESDROPPING IN QUANTUM CRYPTOGRAPHY



^pc~y!&5S (
k,a,c

p~ca ,ka!2

p~ka! D n. ~11!

We will later concentrate on the relative expected collision
probability

^pc~y!&
1
n5 (

k,a,c

p~ca ,ka!2

p~ka!
~12!

as this is the quantity needed to find the estimating parameter
t corresponding to the minimum fraction of bits to be dis-
carded during privacy amplification.

C. Disturbance

We are now in a position to look for a measure of the
disturbance affecting the signals during the transmission on
the quantum channel. The simplest measures are based on
the joint probabilities of signals sent and outcomes mea-
sured. These joint probabilities can be measured directly by
Alice and Bob by comparing a fraction of their signals and
measured outcomes.

To maximize the sensitivity of the measure of the distur-
bance we monitor all of these joint probabilities and define
the disturbance based on the measured joint probabilities
PAEB and the theoretical predicted probabilitiesPAB as

D:5iPAB2PAEBiF , ~13!

where the Frobenius norm~or Schur or Hilbert-Schmidt
norm! of a real matrixM5$Mi j % is defined@17# as

iM iF :5S (
i j

M i j
2D 1/2. ~14!

Other choices are possible, for example, related to the
measure of fidelity@18#, the definition

Df :5TrP~PAB2PAEB!, ~15!

where the trace is taken over the matrix indices given as the
index of the signals sent and the outcomes measured. In Sec.
III we show thatD> (1/A2)Df . The measureDf depends
only on the diagonal elements ofPAB and PAEB while D
depends on all of them. It follows thatD is a stronger mea-
sure of disturbance thanDf in that it is more sensitive to
intervention by Eve. The optimal choice of the disturbance
measure can be determined only in connection with a good
model for the expected measured joint probabilities~that is,
in connection with a good noise model for the channel!. Such
an analysis is beyond the scope of this paper.

The disturbanceD is zero if and only if all measured joint
probabilities equal their theoretical predictions, that is,
PAB5PAEB . The Frobenius norm satisfies

iaM iF5uauiM iF

and the triangle inequality

uiM iF2iNiFu<iM1NiF<iM iF1iNiF . ~16!

Another feature of the Frobenius norm is that it is invariant
under unitary transformations, that is,

iM iF5iUM iF5iMViF5iUMViF , ~17!

with U and V unitary. This property makes the Frobenius
norm convenient to use in connection with the singular value
decomposition. Every real matrixM (MPRm3n) can be rep-
resented in the form@17#

M5USV ~18!

with U andV unitary. The matrixS is a quasidiagonal in the
sense that forS5$si j % we find

si j5H 0 iÞ j

si i5 j
with si>0. ~19!

The diagonal elementssi are called the singular values of the
matrixM and are uniquely determined up to a permutation.
For a symmetric matrix these singular values are the eigen-
values of the matrix. Since the Frobenius norm is invariant
under unitary transformations we find

iM iF5iSiF5A(
i
si
2. ~20!

There are two main properties of the disturbanceD which
we will use later on. The first concerns a mixture of different
strategies, which Eve uses with probabilitypi and result
in the matrices PAEB( i ) , leading to a combined
PAEB5( i piPAEB( i ) . The disturbance caused by this eaves-
dropping strategy can be estimated by the disturbance of
each substrategy by

DS (
i
piPi D<(

i
piD~Pi ! ~21!

using the triangle inequality~16!. A mixing of strategies may
thus result in a lower disturbance. The other property of the
disturbanceD is that it is invariant under any permutations
of the signals or of the outcomes.

III. POM AND WHAT HAPPENS TO THE SIGNAL

A. POM

A positive operator measure@19–21# on a Hilbert-space
H is defined to be a set of positive Hermitian operators
which add up to the identity on the Hilbert-spaceH,

(
i
Fi51H . ~22!

EachFi corresponds to an outcome of a measurement.
The probabilitypi of the i th outcome of a measurement per-
formed on a signal with density matrixr is given by

pi5TrH~rFi !. ~23!

As long as we restrict our description to a situation where
single-photon states reach Eve and Eve forwards another
single-photon state we can use the two-dimensional Hilbert
space of the polarization of a single photon. Then we can
simplify the definition to the following: A POM is given by
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a set of Hermitian complex 232 matrices with eigenvalues
ranging in the interval@0,1# whose sum is the two-
dimensional identity matrix.

A trivial example is the POM representing a von Neu-
mann measurement which is described by two orthogonal
projection operators. They can be represented in a suitable
basis of the two-dimensional Hilbert space as

F15S 1 0

0 0D , F25S 0 0

0 1D . ~24!

A first advantage of using POMs is that we can describe
quite simply and generally eavesdropping strategies where
Eve chooses for each signal one strategy out of a set of von
Neumann measurements or does not interfere at all. For ex-
ample, the POM with

F15S 13 0

0 0
D , F25S 0 0

0
1

3
D , ~25!

F35S 1

6

1

6

1

6

1

6

D , F45S 1

6
2
1

6

2
1

6

1

6

D ,

F55S 1

3
0

0
1

3

D ,

describes a strategy where Eve measures with equal prob-
ability either in the $f1 ,f2% basis (F1 ,F2), or in the
$f3 ,f4% basis (F3 ,F4), or does not interfereF5 . The non-
interference is described by a POM element proportional to
the identity matrix and corresponds to at most noting that
there is a photon but not measuring its states. As a major
difference from the von Neumann measurements the ele-
ments of a POM need not be proportional to a projection
operator. For example, the matrix

F̃5S 1

2
0

0
1

3

D ~26!

may be an element of a POM. It can be represented by the
decomposition

F̃5
1

2 F23 S 1 0

0 1D 1
1

3 S 1 0

0 0D G , ~27!

which can be seen as a mixture of two strategies used with
probability 1

3 and
2
3, respectively. The first is a pure counting

as represented by the first matrix while the second matrix
represents the measuring of the overlap with a pure state.
However, the observer does not know by which strategy the
outcome which representsF̃ was triggered. To give this

knowledge to Eve, she has to perform a measurement which
splits F̃ up into the two possible POM elements on the right-
hand side.

One might hope that all POM sets can be viewed as con-
sisting of a mixture of von Neumann projector elements and
the identity operation. This is, however, not true@22#. An
example is the POM with three elements given by projectors
which are rotated by an angle of 2p/3 ,

S 13 0

0 0
D , S 1

3
cos

2p

3

1

3
sin
2p

3

2
1

3
sin
2p3

3

1

3
cos

2p

3

D ,

S 1

3
cos

4p

3

1

3
sin
4p

3

2
1

3
sin
4p

3

1

3
cos

4p

3

D . ~28!

All POMs can be represented as a set of projection opera-
tors in a higher-dimensional Hilbert space@23#. Up to now it
is not clear whether all POMs can be physically realized in a
measurement apparatus. However, it is widely accepted@19#
that all measurement apparatus can be characterized by a
POM. This is obvious at least for a mixture of von Neumann
measurements as shown in the example~25!. In Appendix A,
I give a POM which describes a more complicated measure-
ment on a two-level system. For further examples see@19#.
All measurements and, hence, all eavesdropping strategies
can therefore be described by a POM. Given the POM we
can calculate Eve’s Shannon informationI and expected col-
lision probability^pc&. For this we only need to calculate the
joint probabilities for the outcomes of the type
1
4TrH(r iFk).

B. Back reaction of a POM measurement onto the system

Up to now we have not considered the back reaction of a
POM measurement onto the measured system. I report some
results derived by Davies and Kraus@20,21# which describe
the most general measurements, their outcome, and the cor-
responding back reaction. The assumption for this descrip-
tion is that the measurement has the property to be com-
pletely positive@21#. This property may be viewed@24# as
allowing the existence of a third system of arbitrary dimen-
sion in addition to the measuring device and the system un-
der investigation. This requirement is naturally fulfilled
@24,25# since by randomly choosing the signalsuf i& the ini-
tial state of the combined system of eavesdropper and signal
is given as a product stater i ^ rE with an eavesdropper state
rE independent of the signal states. This assures complete
positivity. The basic object of this description is a set of
matricesAk . The index setK is partitioned inton subsets
Ki . The matricesAk are any complex matrices which satisfy
the restriction that the elementsFi defined by

F̃ i5 (
kPKi

Ak
†Ak ~29!

make up a POM.
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Given any such set of matricesAk we can describe the
back reaction onto a system with a density-matrixr as a
change to the density-matrixr̃ after the measurement. In the
case of a nonselective measurement considered here the den-
sity matrix is given by

r̃5 (
kPK

AkrAk
† . ~30!

A nonselective measurement always forwards the measured
system and does not suppress it depending on the outcome of
the measurement. The probabilitypi of the outcomei is
given by

pi5TrHS r(
Ki

Ak
†AkD . ~31!

It is always true that the set with the elements

Fi5Ai
†Ai iPK ~32!

forms a POM@21#. As far as the disturbance is concerned it
does not matter which subset ofK is grouped into which
POM element since the disturbed density matrix~30! con-
tains the sum over the whole set. For the information gained
by the measurement the grouping does matter. Thus an
eavesdropping strategy is characterized by a set ofA matri-
ces together with a partition of this set to form the POM
describing the outcome of the measurements.

IV. SECURITY AGAINST POM ATTACK

In this section, I give an estimate of the amount of Shan-
non information and expected collision probability Eve can
gain by applying an eavesdropping strategy which resends
one-photon states to Bob. Thus she performs nonselective
measurements. The signal states sent by Alice are one-
photon states as well and thus the description of the measure-
ment is given by the previously summarized formalism. In
this calculation we deal with the BB84 protocol only. It can
be easily generalized to other cryptographical protocols
which use nonorthogonal basis sets of orthogonal signals
which no longer have the overlap12.

A. Disturbance

As a preparation we deal with the disturbance alone. The
disturbance is a function of the joint probabilitiesPAEB

i j of
Alice sending signali and Bob receiving signalj . These
joint probabilities are given by

PAEB
i j 5

1

8(k TrH~Akr iAk
†Ej !. ~33!

Eve’s original strategy is described byA matrices which can
be represented in the form

Ak5AakUk1~Abk2Aak!UkPk ~34!

with non-negative real numbersak and bk satisfying
0<ak<bk , Uk being unitary matrices andPk being one-
dimensional projection operators. The properties~29! and
~22! imply

(
k

~ak1bk!52. ~35!

In the following I show that a replacement of the original
strategy by the one given by

Ãk5AakUk1~Abk2Aak!UkP̄k ~36!

does not change the disturbance. Here and in the following
chapters over-lined objects are orthogonal complements, for
example,Pk512Pk .

I insert Eq.~34! into ~36! and find after some manipula-
tion

PAEB
i j 5(

k
$ 1
8AakbkTrH~Ukr iUk

†Ej !1 1
8Aak~Abk2Aak!

3@TrH~UkPkr iPkUk
†Ej !2TrH~UkPkr iPkUk

†Ej !#

1 1
8 ~Abk2Aak!2TrH~UkPkr iPkUk

†Ej !%. ~37!

We make use of the decomposition of the type

TrH~UkPkr iPkUk
†Ej !5TrH~Pkr i !TrH~PkUk

†EjUk! ~38!

and of identities of type

TrH~Pkr i !5TrH~Pk r i ! ~39!

to find

PAEB
i j 5(

k
$ 1
8AakbkTrH~Ukr̄ iUk

†Ej !1 1
8Aak~Abk2Aak!

3@ TrH~UkPk r i PkUk
†Ej !2TrH~UkPkr iPkUk

†Ej !#

1 1
8 ~Abk2Aak!2 TrH~UkPk r i PkUk

†Ej !%. ~40!

This shows that using the strategy described byAk̃ together
with a toggling of lines and rows, belonging to orthogonal
signals and measurement projectors, in the joint probability
matrixPAEB

i j leaves this matrix invariant. This is because the
orthogonal complements of signals are contained in the set of
signals and the same is true for the projection operatorsEi
describing Bob’s measurement. The matrixPAB turns out to
be invariant under this toggling. Thus changing the strategy
does not affect the value of the measured disturbance and we
find

D@$Ak%k#5D@$Ak̃%k#. ~41!

The notation$.%k is used to indicate that the index runs over
all k. Now we can show that the disturbance decreases by
mixing both strategies with equal probability. This is proven
by using~21! and ~41! to find

D@$Ak%k#5 1
2D@$Ak%k#1 1

2D@$Ak̃%k#

>DF H 1

A2
AkJ

k

øH 1

A2
Ak̃J

k

G . ~42!
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Applying a decomposition~34!, ~36! in the same way as in
~40! we find for the disturbance

DF H 1

A2
AkJ

k

øH 1

A2
Ak̃J

k

G
5
1

8 ITrH~r iEj !2(
k

@AakbkTrH~r iUk
†EjUk!#

2(
k

S ~Abk2Aak!2

2
@TrH~UkPkr iPkUk

†Ej !

1TrH~UkPkr iPkUk
†Ej !# D I

F

. ~43!

Since the Frobenius norm is strongly connected to singular
values we have a closer look at the eigensystem of the matrix
we are taking the Frobenius norm of. We find that there are
two eigenvectors associated with the eigenvalue zero. These
are the vectors12(1,1,1,1) and

1
2(1,21,1,21). The existence

of the eigenvectors is purely due to the fact that we use two
sets of orthogonal signals and corresponding measurement
operators. These two eigenvectors form thestructural eigen-
system. The orthogonal complement is two dimensional
which means that the whole matrix has at most two nonva-
nishing singular values denoted bys1 ands2 . We use this
fact to make the estimate

D@PAB2PAEB#5F(
i51

2

~s i@PAB2PAEB# !2G1/2 ~44!

>
1

A2(i51

2

s i@PAB2PAEB# ~45!

5
1

A2(i51

4

s i@PAB2PAEB#. ~46!

To come from the first to the second line I used the inequal-
ity x21y2> (x1y)2/2 for all real x,y. In the last step I
denoted bys3 ands4 the two structural eigenvalues of value
zero and thus extended the range of the summation to that
over all singular values.

For any matrixM the sum over its singular valuess i is
again a matrix norm with all the properties of a matrix norm,
satisfying especially the triangle inequality. The triangle
equation leads to the inequality

(
i

s i@M #5
1

2 S (
i

s i@M #1(
i

s i@M
T# D

> 1
2 (

i
si@M 1 MT# > TrP~M !. ~47!

HereMT is the transposed matrix ofM . Note that the fidelity
disturbance measureDf appears in this expression as

D>
1

A2
Df

5
1

A2
TrPS PAB2PAEBF H 1

A2
AkJ

k

øH 1

A2
Ak̃J

k

G D .
~48!

With this result and using the notation TrP(.) to denote the
trace over the probability matrix elements formed by the
indicesi and j we find

DF H 1

A2
AkJ

k

øH 1

A2
Ak̃J

k

G
>

1

8A2
TrP@TrH~r iEj !#

2(
k

S Aakbk
1

8A2
TrP@TrH~r iUk

†EjUk!# D
2(

k H ~Abk2Aak!2

2

1

8A2

3TrP@TrH~UkPkr iPkUk
†Ej !1TrH~UkPkr iPkUk

†Ej !#J .
~49!

We now deal with the three parts of this expression inde-
pendently. The first part can be directly calculated using the
signal representations~1! and ~2! to be

1

8A2
TrP@TrH~r iEj !#5

1

2A2
. ~50!

The second term can be estimated using
TrH(r iUk

†EjUk)<1, since this expression can be interpreted
as overlap between two states. From this we find that

(
k

S Aakbk
1

8A2
TrP@TrH~r iUk

†EjUk!# D <
1

2A2(k
Aakbk.

~51!

The third term can be estimated, with the help of the inequal-
ity proven in Appendix B, to be

1

8A2
TrP@TrH~UkPkr iPkUk

†Ej !1TrH~UkPkr iPkUk
†Ej !#

~52!

<
1

4A2
1

1

2A2
@~ck2

1
2 !21~dk2

1
2 !2#1/2@~ c̃k2

1
2 !2

1~ d̃k2
1
2 !2#1/2. ~53!
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Here we have defined the overlaps TrH(r2Pk)
5:ck , TrH(r4Pk)5:dk , TrH(E2UkPkUk

†)5: c̃k and
TrH(E4UkPkUk

†)5:d̃k . These two pairs of overlaps satisfy
the inequality

~d2 1
2 !21~c2 1

2 !2< 1
4 , ~54!

proven in Appendix C. From this, the third term can be es-
timated to be

(
k

S ~Abk2Aak!2

2

1

8A2
TrP@TrH~UkPkr iPkUk

†Ej !

1TrH~UkPkr iPkUk
†Ej !# D ~55!

<
3

8A2(k
~Abk2Aak!2

2
. ~56!

We put all three results together to find

D@PAB2PAEB#>
A2
16(k

~Abk2Aak!2

2
. ~57!

This result can be rewritten using the ratioek :5
ak
bk

as

D@PAB2PAEB#>
A2
16(k

ak1bk
2

~12Aek!
2

11ek
. ~58!

With this we have estimated the disturbance caused by an
eavesdropper. The estimate depends no longer on the specific
projection operators used in theA matrices of Eve’s strategy.

B. Shannon information

For a given set ofA matrices Eve will receive the maxi-
mal amount of Shannon information by choosing a POM
where each POM element corresponds to exactly oneA ma-
trix @16#. I denote the elements of this POM by

Fk :5Ak
†Ak .

From ~34! it then follows that the POM elements take the
form

Fk5ak11~bk2ak!Pk ak,bk . ~59!

I show first that a change of the original strategy to the one
described by theA matricesAk̃ resulting in the POM

Fk̃5ak11~bk2ak!Pk ak,bk ~60!

does not change the amount of Shannon information gained.
The information I is a function of the joint probabilities
PAE
ik of Alice sending a signali and Eve finding the outcome

k. For this we find

PAE
ik 5 1

4 TrH~r iFk!5 1
4ak1

1
4 ~bk2ak!TrH~r iPk!

5 1
4ak1

1
4 ~bk2ak!TrH~r i Pk!5 1

4 TrH~r iFk̃!. ~61!

The signals are pure states andr i , as the orthogonal comple-
ment ofr i , is a signal state as well. The use of the second
strategy described byFk̃ just toggles again lines and rows
belonging to orthogonal signals and POM elements with or-
thogonal projector parts in the joint probability matrix. This
toggling does not affect the informationI . Thus we find

I @$Fk%k#5I @$Fk̃%k#. ~62!

This result implies that an equal mixture of both strategies
does not affect the amount of Shannon information either as
we find from ~7! and ~62! that

I @$Fk%k#5 1
2 I @$Fk%k#1 1

2 I @$Fk̃%k#5I @$ 1
2Fk%kø$ 1

2Fk̃%k#.
~63!

The union of the sets describing the two single strategies
gives the description of the alternative statistical use of the
two strategies. By reordering the elements of this POM we
see that this can also be viewed as a statistical mixture of
using the strategies consisting of the two POM elements
Fk /ak1bk and Fk̃/ak1bk with the probability ak1bk/2.
This means

I F H 12FkJ
k

øH 12Fk̃J
k

G5I Fø
k

ak1bk
2 H Fk

ak1bk
,

Fk̃

ak1bk J G
~64!

5(
k

ak1bk
2

3I F H Fk

ak1bk
,

Fk̃

ak1bk
J G . ~65!

The missing subscriptk at the curly brackets indicates now
that only the two named operators form the POM whilek
is kept fixed. We can calculate the terms
I @$Fk /ak1bk ,Fk̃/ak1bk%# using~59! and the definitions of
ck ,dk andek from the section above. We find the result

I @$Fk%k#5(
k

ak1bk
2 F12 log2~11ek!1

1

2~11ek!

3$~ek1ck2ekck!log2~ek1ck2ekck!

1~12ck1ekck!log2~12ck1ekck!

1~ek1dk2ekdk!log2~ek1dk2ekdk!

1~12dk1ekdk!log2~12dk1ekdk!%G . ~66!

The above expression for the Shannon information can be
shown to be convex in all the overlapsck and dk which
satisfy the inequalities~54!. Therefore the maximum of the
information exists and is taken on the boundary of the pa-
rameter space described by the overlaps. This boundary can
be parametrized by

ck5
1
2 ~11coswk!, dk5

1
2 ~11sinwk!. ~67!
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It can be shown that the expression~66! is maximal if wk
P$0,12p,p,

3
2p%. The maximum value is then given by

I @$Fk%k#<(
k

ak1bk
2

1

2 S 12 log2~11ek!1
ek

11ek
log2ekD .

~68!

Thus we have been able to give an upper limit on the infor-
mation by optimizing Eve’s strategy and retaining as the
only variables the parametersak1bk andek of theA matri-
ces. These parameters are the same as in the estimate of the
disturbance.

Next we show that it would be favorable for Eve to use a
constant value ofek for all k. For that we note that we can
vary the sumak1bk independently of the valuesek . We
take any twoek , here renamed asa andb, and vary them
depending on a continuous parameters is such a way, that
the disturbanceD is unchanged. In the following calculation
we suppress the otherek in the arguments. We may without
loss of generality assume that a,b and
dD@a(s),b(s)#

ds
.0. We show in Appendix D, that

db~s!

ds
<0 and

dI@a~s!,b~s!#

ds
>0. ~69!

This means that for a fixed disturbance the estimated infor-
mation can always be increased by moving the values of two
ek closer to each other. Clearly the optimal case is the one,
where all ek have the same value. We denote this value
by ẽ. This means that we now have the two inequalities

D>
A2
16

~12Aẽ !2

11 ẽ
~70!

I<12 log2~11 ẽ !1
ẽ

11 ẽ
log2ẽ. ~71!

Alice and Bob can measure the actual disturbanceDm by
comparing a fraction of their exchanged signals. The in-
equality

Dm>
A2
16

~12Aẽ !2

11 ẽ
~72!

leads to a lower bound ofẽ as

ẽ >ē:5S 124A~A228Dm!Dm

128A2Dm
D 2. ~73!

This lower bound on the other hand implies an upper bound
on the Shannon information

I<12 log2~11 ē !1
ē

11 ē
log2ē ~74!

since the right-hand side is monotonically decreasing ine. It
can be shown that this estimate can be further estimated by
the linear relation

I<
4A2
ln2

Dm , ~75!

where ln2 is the natural logarithm of 2. For smallDm , this
estimate is nearly as good as the estimate~74! which will
later be shown to be sharp. The sharp bound and the linear
approximation are plotted in Fig. 2 as a function of the mea-
sured disturbance.

C. Expected collision probability

The expected collision probability will be maximized, as
shown in Appendix E, by using a strategy with a one-to-one
correspondence between POM elements andA matrices. We
can then use the same decomposition of the POM element
~59! as before. We use this expression to find

p~ka!5
ak1bk
4

~76!

for the total probability of occurrence ofka , that is, of out-
comek while alphabeta was used, and

(
c50,1

p~ca ,ka!25 1
16 @ak1~bk2ak!TrH~r0a

Pka
!#21 1

16 @ak1~bk2ak!TrH~r1a
Pka

!#2 ~77!

5 1
8akbk1

1

16
~bk2ak!

2@TrH~r0a
Pka

!21TrH~r1a
Pka

!2 ~78!

FIG. 2. The estimated Shannon information in the sharp~con-
tinuous line! and the linear estimates~dashed line! as a function of
the measured disturbanceDm .
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for the joint probabilities occurring in~12!. Then the relative expected collision probability is given by executing the sums over
a andc in ~12!

^pc~y!&
1
n5(

k

ak1bk
2

4akbk1~bk2ak!
2@~12ck!

21ck
21~12dk!

21dk
2#

2~ak1bk!
2 ~79!

5(
k

ak1bk
2

4ek1~12ek!
2@~12ck!

21ck
21~12dk!

21dk
2#

2~11ek!
2 . ~80!

Here again I used the definitions ofck , dk, andek as above
andck anddk are again limited by the inequality~54!. The
last expression for the information estimate is, again, convex
in all ck anddk . On the boundary of the allowed parameter
space@parameterized by~67!# it takes on the form

^pc~y!&1/n<(
k

ak1bk
2

4ek1
3
2 ~12ek!

2

2~11ek!
2 . ~81!

We repeat the procedures applied to the Shannon informa-
tion to show that Eve’s optimal strategy uses anek indepen-
dent ofk. For details see Appendix D. Following the proce-
dures there we arrive at the final estimate for the expected
collision probability depending on the measured disturbance
Dm:

^pc~y!&1/n<
312ē13ē2

4~11 ē !2
. ~82!

Here the quantityē is the same as for the Shannon informa-
tion given by Eq.~73!.

The resulting minimum fraction of bits to be discarded in
the privacy amplification is then given from~8! by

t5 log2
312ē13ē2

2~11 ē !2
. ~83!

An upper bound to this estimate is the linear upper approxi-
mation

t<
8A2
ln2

Dm ~84!

which is, as for the estimate of the Shannon information,
very close to the more accurate estimate for a small deviation
Dm . Both estimates are plotted as a function of the measured
disturbanceDm in Fig. 3.

V. OPTIMAL EAVESDROPPER STRATEGY

In this section, I give an eavesdropper strategy which will
indeed gain the estimated information for a given resulting
disturbance. This strategy is described byA matrices which
involve projection operators in the same symmetry which is
shown by the signal states. They are represented by projec-
tions onto the vector

S sin
w1u

2

cos
w1u

2

D , ~85!

with uP$0,p/2 ,p, 3p/2 %. The anglew1u can be viewed
as spin direction or, alternatively, the anglew1u/2 as an
angle of the polarization plane of a photon. We denote by
Pu(w) the projector on the corresponding vector. We now
use a strategy described by theA matrices

Ak5F eopt
2~11eopt!

G1/21
1S F 1

2~11eopt!
G1/22F eopt

2~11eopt!
G1/2DPu~w! ~86!

and the corresponding POM elements

Fk5
eopt

2~11eopt!
11

12eopt
2~11eopt!

Pu~w!. ~87!

Here the parametereopt is the ratio of lesser to the greater
eigenvalue of the eigenvalues of the POM elements. The
resulting disturbance can be shown to be

D5
A2
16

~12Aeopt!
2

11eopt
.

Thus we find that the equalityē5eopt holds independently
of w. The main reason for that is that by use of the symmet-

FIG. 3. The fractiont of bits to be discarded before the error
correction in the sharp~continuous line! and the linear estimates
~dashed line! as a function of the measured disturbanceDm .
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ric projectors the matrixPAEB becomes symmetric and so the
singular values are the eigenvalues of the matrix. Second, the
nonstructural eigenvalues are equal so that the equality holds
in the estimate~44!.

On the other hand we find for the expected Shannon in-
formation and the fractiont the expressions

I512 log2~11eopt!1
eopt

11eopt
log2eopt ~88!

and

t5 log2
312eopt13eopt

2

2~11eopt!
2 , ~89!

which proves that all of the inequalities leading to the esti-
mates~74! and~83! are sharp in the sense that the equalities
are satisfied for the optimal strategy presented here.

VI. NOISY CHANNELS

We have obtained our estimate of an eavesdropper’s
knowledge about the key at this stage depending on the ac-
tual measured disturbanceDmin . I will now investigate the
situation of a noisy channel. Any implementation of a quan-
tum cryptographical system will show an error ratec because
of dark counts or misalignment. To be on the safe side, these
errors have to be thought of as being caused by an eaves-
dropper. The error rates have to be small enough so that the
according~74! and~82! estimated amount of Eve’s Shannon
information and expected collision probability still allows
Alice and Bob to establish a secret key.

The noisy channel is modeled by replacing the signal
statesuf i& by

uf i&^f i u→~12c!uf i&^f i u1cuf i&^f i u. ~90!

Here, again, overlined states are the orthogonal comple-
ments. By calculating the joint probabilities of signals and
outcomes between Alice and Bob using these signal states
and the results taking the place of the matrixPAEB , we find
a measured disturbance

Dm5
A2
4
c. ~91!

On the other hand the Shannon information shared by Alice
and Bob after announcement of the alphabets used, but be-
fore discarding any bits, is given by

I AB5 1
2 @11c log2c1~12c!log2~12c!#. ~92!

The transition from theraw key to the sifted key@12# by
discarding all the bits where the alphabets used by Alice and
Bob do not match will not change Eve’s amount of Shannon
information and expected collision probability since the cor-
relation between signals and Eve’s measurement outcomes
are the same for the discarded and the retained bits. In con-
trast, the Shannon information shared by Alice and Bob does
increase by this operation since here the signal-outcome cor-
relations differ for the two sets. For the sifted key we find the
Shannon informationI AB

(s) to be

I AB
~s!511c log2c1~12c!log2~12c!. ~93!

A Wyner wiretap construction@13# is possible if the
Shannon information shared by Alice and Bob exceeds that
of Eve. Both relevant quantities are plotted in Fig. 4. We see
that forc<0.15, corresponding to a noise-induced error rate
of 15%, a Wyner wiretap~if it can be realized! will work on
this system.

For current implementations the only known way for a
secure communication employing quantum cryptography
uses the privacy amplification@26#. For this Alice and Bob
first have to perform error correction. Discarding the errors
will change the expected relative collision probability since
signals triggering an outcomek for Eve will in general lead
to asymmetric error rates depending on the choice of that
signal and Eve can take this into account. In this way the
expected relative collision probability may increase. In order
to get a feeling for this I compare the expected collision
probability before and after error correction in the case
where Eve applies a strategy consisting of projections onto
the four vectors~85! with w5 p/4 . The joint probabilities
before error correction are given via the expression1

8Trr i Pk to
be

PAE5S 0.0183 0.1067 0.1067 0.0183

0.1067 0.0183 0.0183 0.1067

0.0183 0.0183 0.1067 0.1067

0.1067 0.1067 0.0183 0.0183

D , ~94!

and lead to an expected collision probability of

^pc~y!&1/n5 3
4 , ~95!

and the fraction of bits to be discarded as

t5 log2
3
2 . ~96!

A signalr i which triggered Eve’s outcomek will trigger the
correct outcome for Bob with the probability

TrH~Pkr iPkr i !

TrH~r iPk!
. ~97!

FIG. 4. The estimated Shannon information in the sharp esti-
mate as a function of the error ratec of our noise model~solid line!.
The dashed line shows the amount of Shannon information shared
by Alice and Bob. No error correction is applied.
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Therefore the joint probabilities after error correction are
given by

1

N
TrH~Pkr iPkr i ! ~98!

with the normalization factorN:5( i ,kTrH(Pkr iPkr i). The
values of the joint probabilities for the corrected string are
then

PAE~C!5S 0.0036 0.1214 0.1214 0.0036

0.1214 0.0036 0.0036 0.1214

0.0036 0.0036 0.1214 0.1214

0.1214 0.1214 0.0036 0.0036

D , ~99!

leading to the expected collision probability

^pc~y!~C!&1/n5 17
18 , ~100!

and the fraction of bits to be discarded as

t~C!5 log2
17
9 . ~101!

A more systematic study is under way and the results will be
published elsewhere.

The noise model introduced here is only a first test of the
practicability for constructing quantum cryptographical sys-
tems. More general noise models are needed to optimize the
construction of such systems. However for purposes of ap-
plication to real data transfer we will not need these models
as we are able to estimate the quantitiest and I (s) directly
from the measured Dm and the fraction of bits discarded
during the error correction.

VII. CONCLUSION

In this paper I have established estimates for the Shannon
information and the expected collision probability an eaves-
dropper can gain in an attack on the Bennett-Brassard proto-
col. The present analysis applies before error correction takes
place and depends on a measured disturbance or noise on the
system. I have shown that these estimates are sharp and have
given an explicit characterization of the optimal eavesdrop-
per strategy in terms ofA matrices and POM elements of a
generalized measurement.

The estimate of the Shannon information indicates an al-
lowed noise level of 15%, but up to now there has been no
algorithm to make use of the required Wyner wiretap chan-
nel concept. However, this work suggests the possibility of
performing privacy amplification to give provable security
on a noisy channel forall error rates provided Alice and
Bob can perform an error correction. These estimates will
allow us to control the theoretical security of experimental
systems and to improve the construction of forthcoming ex-
periments by means of more elaborate models of noise and
errors induced by the components of the setup.
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APPENDIX A: TWO-LEVEL SYSTEM

This appendix deals with the description of a measure-
ment on a two-level system in terms of a POM. The mea-
surement is done by connecting the original two-level system
S to another two-level systemM . After an interaction de-
scribed by a general interaction HamiltonianH5usSsM we
perform a von Neumann measurement on the systemM . The
outcome probabilities of this measurement can be described
by a POM defined on the Hilbert space of the original system
S before the interaction.

We denote byEi the two projectors describing the von
Neumann measurement performed onM after the evolution
and byFi the two POM elements describing the von Neu-
mann measurement on the level of the systemS before the
evolution. The density operators ofS andM before the mea-
surement process and evolution are denoted byrS ,rM and
the ones before the measurement but after the evolution
by r̃S ,r̃M . The density-matrixrMS of the combined system
has the initial valuerMS(0)5rM^ rS . By sS ,sM I denote
the spin matrices onS andM , that meanss5( inis

i where
thes i are Pauli spin matrices and theni are the three Carte-
sian components of a unit vector

The measurement onM after the interaction leads to the
probabilityPi for the outcomei as

Pi5TrM@Ei r̃M~ t !#5TrMS@~Ei ^ 1S!r̃MS~ t !#

5TrMS@~Ei ^ 1S!e
iusSsM~rM^ rS!e

2 iusSsM#

5TrS„$@sin
2uTrM~sMEisMrM !

1cos2uTrM~EirM !#1S%rS…

1TrS„$ isinucosuTrM~@Ei ,sM#rM !sS%rS…. ~A1!

In the last step I used the identity

eiusSsM5cosu 1MS1 i sinusSsM , ~A2!

which can be proven by the Taylor expansion. From this
calculation we find the POM describing the measurement by
comparing~A1! with the general form for an outcome prob-
ability Pi5TrS(FirS) , as

Fi5@sin2u TrM~sMEisMrM !1cos2u TrM~EirM !#1S

1 i sinu cosu TrM~@Ei ,sM#rM !sS . ~A3!

The elements of this POM differ from multiples of the iden-
tity matrix only if

TrM~@Ei ,sM#rM ![TrM~@sM ,rM#Ei !

[TrM~@rM ,Ei #sM !Þ0.
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APPENDIX B: ESTIMATE OF PROJECTION PART

The expression

1

8A2
TrP@TrH~UkPkr iPkUk

†Ej !1TrH~UkPkr iPkUk
†Ej !#

~B1!

can be written as

A2TrP~PAEPEB! ~B2!

with matrices PAE5 1
4TrH(Pk1

r i) and PEB
51

4TrH(UkPki
Uk
†Ej ) where I have redefinedPk0

:5Pk and

Pk1
:5Pk. The matrixPAE can be always represented using

numbersc,dP@0,1# by

PAE5
1

4 S 12c c

c 12c

12d d

d 12d

D ~B3!

5
A2
4

1

2 S 111
1

D ^
1

A2
~1,1!

1
1

A2
@~c2 1

2 !21~d2 1
2 !2#1/2ucd^

1

A2
~1,21!. ~B4!

Here we used the unit vector

ucd :5
1

A2 F S c2
1

2D
2

1S d2
1

2D
2G1/2S 1

2
22

c2 1
2

1
22d

d2 1
2

D
^

1

A2
~1,21!.

The transposed matrixPEBT can be represented in the same
way with numbersc̃,d̃ replacingc,d. With that we find

A2 Tr~PAEPEB!5
1

4A2
3
1

2 S 111
1

D ^ ~1,1,1,1! ~B5!

1
1

2A2
@~c2 1

2 !21~d2 1
2 !2#1/2@~ c̃2 1

2 !2

1~ d̃2 1
2 !2#1/2^ucduuc̃ d̃&ucd^uc̃ d̃ ~B6!

and can read the singular values

sS5
1

4A2
~B7!

sNS5
1

2A2
@~c2 1

2 !21~d2 1
2 !2#1/2@~ c̃2 1

2 !2

1~ d̃2 1
2 !2#1/2u^ucduuc̃ d̃&u. ~B8!

This knowledge of the singular values and the estimate
u^ucduuc̃ d̃&u<1 allows us to estimate the third term of Eq.
~49! by

A2 TrP~PAEPEB!<A2(
i

s@PAEPEB# ~B9!

<
1

4A2
1

1

2A2
@~c2 1

2 !2

1~d2 1
2 !2#1/2@~ c̃2 1

2 !21~ d̃2 1
2 !2#1/2.

~B10!
This is the expression given in the text.

APPENDIX C: INEQUALITY FOR OVERLAPS

The quantitiesc andd are restricted by quantum mechan-
ics. This restriction depends on the overlapb between the
two alphabets given asb5u^f1uf3&u2 and which takes the
value 1

2 for the Bennett Brassard protocol. The restriction
takes the form

12c2d12cd22Acd~12c!~12d!<b<12c2d12cd

12Acd~12c!~12d! ~C1!

and is derived by inserting the constructive identity
uC&^Cu1uC̄&^C̄u into the definition ofb and using the tri-
angle inequality. This restriction is equivalent to

~d2c!2

12b
1

~12c2d!2

b
<1. ~C2!

For the Bennett-Brassard protocol withb5 1
2 it simplifies fur-

ther to

S d2
1

2D
2

1S c2
1

2D
2

<
1

4
. ~C3!

APPENDIX D: CHANGE ALONG THE PATH ˆa„s…,b„s…‰

We change two ratio parametersa andb depending on a
continuous parameters in such a way, that the estimate for
the disturbance remains unchanged. Without loss of general-
ity we assume thata<b and dD@a(s),b(s)#/ds.0. The
demand for the disturbance estimate to remain constant can
then be formulated as

]D@a,b#

]a

da~s!

ds
1

]D@a,b#

]b

db~s!

ds
50. ~D1!

With the use of

]D@a,b#

]a
52

A2
16

pa

12a

Aa~11a!2
, ~D2!
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wherepa is the probability of the outcome connected toa
and the abbreviation

D8@a#:5
A2
16

12a

Aa~11a!2

we find

db~s!

ds
52

D8@a#

D8@b#

da~s!

ds
. ~D3!

We note that
db(s)
ds

is negative sinceD8@a# is a positive

function.
Next we investigate under which circumstances the

amount of a Shannon informationI increases, that is
dIS/ds>0, for all possible values ofa andb. This is the
condition that

]I @a,b#

]a

da~s!

ds
1

]I @a,b#

]b

db~s!

ds
>0 ~D4!

is satisfied parallel to Eq.~D3!. We find the expression

]I @a,b#

]a
5
1

2
pa

log2a

~11a!2
~D5!

which leads with the definition of the positive function

I 8@a#:52
1

2

log2a

~11a!2

to the condition

I 8@a#

D8@a#
<

I 8@b#

D8@b#
. ~D6!

Since this condition has to be fulfilled for all values ofa and
b with a<b this is equivalent to

]

]a

I 8@a#

D8@a#
>0.

Inserting the introduced functions we find this condition to
be

8A2
ln2

3
2a2~11a!lna22

Aa~12a!2
>0, ~D7!

which can be shown to be fulfilled foraP@0,1#.
In the same way using

]^pc&
1/n@a,b#

]a
52pa

12a

~11a!3

we find the condition

8

A2
3

12a

Aa~11a!2
>0. ~D8!

This condition is obviously fulfilled. These two results show
that the upper limit of the Shannon information and the ex-
pected collision probability is maximized by choosing the
ratiosek as constants independent of the indexk.

APPENDIX E: ACQUIRING ADDITIONAL KNOWLEDGE

In this section I show that the expected collision probabil-
ity will always grow, in the context of the BB84 protocol,
when more detailed knowledge is acquired. The basic de-
scription of this situation is that a measurement outcomek to
POM elementFl can be replaced by two new outcomesl 8
and l 9 described byFl 8 and Fl 9 satisfying Fl5Fl 81Fl 9.
Here I will focus on the description in terms of the joint
probabilitiespik between signalsi and measurement out-
comesk. For the measurement outcome which gets split up
we find p( i ,l )5p( i ,l 8)1p( i ,l 9) for all signalsi .

To prove that the expected collision probability never de-
creases in such a situation I use two steps. In the first step I
split all the initial joint probabilitiesp( i ,l ) into the same
fractions p( i ,l 8)5mp( i ,l ) and p( i ,l 9)5(12m)p( i ,l )
which can be viewed as splitting a column of the matrix
Pik5$p( i ,k)% into two proportional columns. I will show
that this does not affect the expected collision probability. In
the second step I show that the expected collision probability
will generically increase when we change these joint prob-
abilities in such a way that the sum over all signalsp(k)
stays the same for the two new outcomes.

The first step is done by writing the expected collision
probability down as

^pc&5 (
k

i51,2

p~k!
p~ i ,k!2

p~k!2
, ~E1!

wherek in this context includes the choice of the alphabet
a and the two signals are the two possible ones given the
alphabet used.

By doing the split of the joint probabilities of the outcome
l we find thatp( l 8)5mp( l ) and p( l 9)5(12m)p( l ). We
pick out the part of the expected collision probability refer-
ring to the outcomesl 8 and l 9 to find

p~ l 8!
p~ i ,l 8!2

p~ l 8!2
1p~ l 9!

p~ i ,l 9!2

p~ l 9!2
5p~ l !

p~ i ,l !2

p~ l !2
. ~E2!

Thus the expected collision probability remains unchanged
under this split.

The basic step of changing the split of a column ofP into
proportional columns into a split in arbitrary columns is done
by changing the probabilities depending on a parameterd,

p~1,l 8!5mp~1,l !1d p~1,l 9!5~12m!p~1,l !2d
~E3!

p~2,l 8!5mp~2,l !2d p~2,l 9!5~12m!p~2,l !1d.
~E4!
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The relevant terms of the expected collision probability then
are

g~d!:5
@mp~1,l !1d#21@mp~2,l !2d#2

m@p~1,l !1p~2,l !#

1
@~12m!p~1,l !2d#21@~12m!p~2,l !1d#2

~12m!@p~1,l !1p~2,l !#
.

The derivative

]

]d
g~d!5

4d

~12m!m@p~1,l !1p~2,l !#

shows that the minimal value is reached ford50, which is
the proportional split. That means that the collision probabil-
ity can only increase for any other splits of an outcome.
Therefore Eve’s optimal strategy consists of a POM where
each POM element is of the formFk5Ak

†Ak .
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