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A sharp estimate is given for the amount of Shannon information and expected collision probability. This
estimate is valid for all eavesdropping strategies described by a generalized measurement and restricted to the
Hilbert space of the one-photon state. The optimal generalized measurement is explicitly [§i¥@80-
294796)00907-9

PACS numbgs): 03.65—-w, 42.79.Sz, 89.76-c

[. INTRODUCTION those where the signal fits the measurement apparatus, result-
ing in a deterministic outcome of the measurement. The
It is well known that a binary message can be unbreakablpther set contains those photons where the measurement ap-
encoded using a key consisting of a random sequence ¢fratus does not fit, resulting in purely probabilistic results.
zeros and onefl]. Sender and receiver have to share theAlice and Bob now use as a second step the radio transmitter
knowledge of that key. The only threat to this way of encod-and announce for each photon sent the set of signals it was
ing messages is that the key may be Subject to Spymg durin@]osen from, linear or circular polarized, and the apparatus
distribution and storage. used to measure it. This is enough to distinguish the deter-
Quantum cryptography is a way to circumvent these probMinistic from the nondeterministic outcomes. In a third step
lems as it allows the secure creation of a key at the time anthey discard all the probabilistic measurement outcomes. The
place it is needed. | will give only a short introduction to remaining data form the so-calleifted key[10].
quantum cryptography. For more detailed descriptions see, In case Eve attempts to measure the signal as it passes
for example[2—4]. The scenario in which the key establish- through the quantum channel she will, on average, corrupt
ment takes place is depicted in Fig. 1. The sender of a me$art of the signal. This becomes clear as there is no non-
sage, Alice, is connected to the receiver Bob by two chandemolition measurement which can operate reliably on non-
nels. The first channel shows classical behavior as, foprthogonal states. Nonorthogonality is crucial hgg#]. Al-
example, a radio transmitter does, and the second is a quai¢e and Bob may thus perform a test for the presence of Eve
tum channel such as an optical fiber transporting single phd?y comparing a fraction of their remaining deterministic data
tons. An eavesdropper Eve has full access to the informatiogonsisting of the actual signal and the actual measurement
flow on the classical channel but she can listen only an®utcome. If they find discrepancies they know about the
cannot tamper with the signals. On the other hand she caresence of Eve and must try to establish a new key. On the
tamper with the signals on the quantum channel but the inother hand, the absence of errors shows that the transmission
formation is not fully accessible to her because of the meawas not eavesdropped upon and the remaining data may be
surement’s back reaction onto the system and the impossibitsed for encoding of the actual message. The encoded mes-

ity of cloning quantum states)]. sage will be sent via the radio transmitter or other suitable
There are several ways to implement a quantum cryptoclassical channel. .

graphical system by means of the two chanréls9]. The The BB84 scheme in this form works only on a noiseless

first was proposed by Bennett and BrassgZfiand | will guantum channel. Noise will inevitably lead to errors in the

concentrate on this scheme, abbreviated as BB84, in thigompared data during the last step. To get the scheme work-
article. In the BB84 protocol two sets of orthogonal photoning again we have to extend it to cope with a mild form of
states are used. The overlap of tyl{eb;|¢3)|?> between eavesdropping which will lead to a disturbance of the signal
states from different sets $ AsS an examp|e we may think Comparable to that caused by noise. This has been treated by
of the first set as vertical and horizontal linear polarized phodifferent authors. In particular, a recent discussion of the
ton states and of the second set as right and left circulsgffects of von Neumann measurements performed by Eve
polarized photon states. has been given by Ekeet al.[12]. By von Neumann mea-

In the first step of establishing the key Alice sends a ransurements | mean those described by a collapse of the wave
dom sequence of Signa|s built up from the four possib|e SingnCtion into an eigenstate of a Hermitian Operator. The key
nal states, each appearing with equal probability. Bob pos-
sesses two measurement apparatuses adapted to the two sets A
of signal states. He may distinguish either between vertical i
and horizontal linear polarized photons or between right and
left circular polarized photons. For each of the signals sent to
him by Alice he chooses with equal probability an apparatus
to use. The results of the measurements can be divided into
two sets. The first set of signals and measurement results are  FIG. 1. The setup with quantum and classical channels.
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ingredient is to define a quantity describing the disturbance 1
of the system and to relate this to the information Eve gets E;. E B3 E4 g1 (piE))
by interacting with the system. Alice and Bob may then mea-
sure the disturbance and infer an estimate on Eve’s Shannon 11
. . o - 1 0 - = b1
information or expected collision probability about the key. 2 2
The Shannon information is of importance in estimating the 1 1
amount of information available to Eve in the context of 1 0o 1 - = b2 . (3
using a Wyner wiretap channgl3]. The expected collision Pas=3g 2 2
probability is of importance in deleting Eve’s information 1 1
about the key after some error correction. Eve’s information 5 5 1 0 &3
. . o 2 2
is deleted by the process of privacy amplificat{dd,15 at
the cost of the length of the key. 15 &
In this paper | present a sharp estimate for the Shannon 2 2 4

information and the expected collision probability Eve can
gain by performinggeneral measurements single-photon
states as they pass from Alice to Bob. The paper is organizeﬁj]
as foII_ow_s in Sec. Il the bas_|c quantities describing the keyoutcomes of the measurements, but this time in the presence
establishing process are defined and | introduce measures f8]r either Eve or noise on the c,hannel This means that we
the Shannon information, the expected collision probability,generalize the matrix elemeniﬁ’rﬁ(p-lE.-) to 4Tr,(5E)

. . . . . i “ 7 12 ] 8 : | ]_1
and for the dls.turbance of the transmission. Section Il intro wherep; denotes the corrupted signal. By comparing signals
duces generalized measurements,tbsitive operator mea-

sures(POM). In Sec. IV | give a sharp estimate of Eve's and outcomes one can actually determine the mdlis,

information in the case that all operations are done in thé’vhIIe the matrixPyg is a theoretical idealized object.
Hilbert space of a one-photon state. In Sec. V the optimal
strategy of the eavesdropper is given. A simple model for
noise is applied in Sec. VI to demonstrate the consequence of The string of Eve's measurement results contains a certain
the estimates. amount of Shannon informatidnabout the key sent by Al-
ice. We are interested in the Shannon information per signal
IIl. BASIC QUANTITIES of the key after the announcement of the used alphabets, and
thus we keep the signals belonging to different alphabets
The system is described by the joint probabilities of Alice separated. In general the Shannon information pet fst
sending a specific signal and Bob finding a specific outcomgjiven by[16]
of a measurement. We denote the signals of the first alphabet
as|¢4) and|¢,) and the signals of the second alphabet as _ ik ik ik
| p3) azwd|¢4). T>he corresponding measurements are charac- I(P)_Z H(% P +Ek H(Z P )_% H(P™),
terized by two projectors each. The first one by (4)
E1=|¢1)($1] andE,=|¢,){ ¢,| and the second one by pro-
jectorsEg andE,, onto the statebps) and|,). In terms of ~ where
a representation we may choose

By analogy with this definition we define the entries of
e matrix Pagg to be the same joint probabilities for the

A. Shannon information

H(a)=—alog,a (5)

|¢1>:

1) P >:(0> D and theP'® are the joint probabilities of sending a signal
0 2 1)’ and receiving a signat. All logarithms refer to base 2 so
that information is expressed in bits per signal. In the situa-
1/ 1 1 /1 tion where we calculate the information Eve receiiegp-
|hs)= —< ) |ba)= —( ) ) 2 resents the four signal statgs;), and the range of values of
V21 -1 V211 k represents all the possible outcomes of a measurement per-
formed by Eve.
This representation reflects the fact that the Hilbert space The informationl (P) is a convex function over the set of
of the polarization of a single photon is equivalent to that ofprobability matrices with fixea priori probabilities for each
a spins particle. For the following calculations the notion of signal[16]. This allows us to use Jensen’s inequality
a single photon and a spiparticle is interchangeable. For
example, the signal statge,) and|¢,) can then be viewed
as spin-up and spin-down s>tates, regpectively. We define the |(EI pipi) gzi pil (1), ©)
matrix Ppg to be the matrix of the joint probabilities for
sending signal and receiving signal. They are of the type which estimates the information gain of a mixture of strate-
%TrH(pi%Ej). Herep; is the density matrix corresponding to gies, used in parallel with probability and resulting in joint
the statd ¢;). | denote by the symbol Tx.) the trace over probability matricesP;, by the average of the information
the two-dimensional Hilbert space. The facfois the prob-  gain associated with the single strategies. If we combine two
ability of sending signap; and the factog is due to the fact separate measurement outcomes into a single new one the
that Bob chooses with equal probability between the twadnformation decreasdd6]. That means that combining two
measurement apparatus. We find for the BB84 protocol  rows or columns by replacing them with their sum will
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decrease the amount of Shannon information. Any permuta- In the case of the BB84 protocol we can formulate the
tion within either the signals or the outcomes will not changeexpression for the expected collision probability using the

the amount of information. _ joint probabilities for sending a specific signal and receiving
Next | cons_|der the case in which the set_of_outcome_:s caR specific outcome and using the total probability of the spe-
be separated into two subsets such thattipeiori probabil-  cific outcomes. More precisely we are interested in the ex-

ity of the signals across both subsets of outcomes separatefyacted collision probability after the public announcement of
are, up to a fixed factor gb and 1-p, respectively, the  the alphabets used. For this purpose we introduce a parallel
priori probabilities across the whole set of outcomes. Thisotation |¢,) for the signals by, where =0,1 is the
means that the measurement apparatus can be viewed as c@jyjical value of the signal andr indexes the alphabet.
sisting of two apparatuses used interchangeably with thgve identify |0)=|¢1), |1)=|¢2), |0,)=|¢s) and
probabilitiesp and 1-p. In this case we find that the infor- |1,)=|¢,). Eve receives the signals, consisting of the
mation gained by the use of the composed system is equal utcomek of a measurement performed by her and the later
the sum of the information gained by the subsystemsacquired knowledge about the alphabet used, which is indi-
weighted with the probability of their use. This is expressedcated again bye.
as In order to reexpress the expected collision probability in
_ _ _ terms of the joint probabilitiep( ¢, ,k,) and the probabili-
(PP, (1=P)P2D=pPI(PO+ (=PI (P2), () oo p(k,) we use the fact that the transmission of each pho-
where[ .. .,...] denotes the composed matrix. We obtain aton is independent of the others. Then we find the conditional
similar property by interchanging signals and outcomesgprobability p(x|y) for the whole key to be the product of the
which allows us to separate information with respect to twoconditional probability for each single key signal and out-

subsets of signal states. come, that is,
B. Expected collision probability iy =TI P Ka) )
Eve’s information about the key consists of two parts. The PIXIy i p(k,) | '

first is the string of outcomes of the measurements performed

by Eve on the signals and the second is the knowledge aboyere in theith factory,, andk,, are theith signal ofx and
the correlation of those outcomes to the signals. This knowlihe ith outcome ofy. We next define numbersl, and

edge can be quantified. The easiest way Eve can guess the . I

key from her measurement data is in the case of a von NedMo.k, For a sequence of signals Eve will find in t.he se-
mann measurement to call one outcome ‘0’ and the other ‘1.9uence of outcomes the outcomek,, a total of My times.
It is, however, not obvious how to transfer this to the generaOf thoseM, signals the number ahg  will be triggered
positive operator measure situation, described later, whichy the signgl|0a>. The remaining M:aa_ mo ) are trig-

deals with several different possible outcomes. The SOIUtiO@ered by the statél,). With this notation we find, taking

lies in the possibility of assigning a probability to all keys : ; ; ;
possibly sent by Alice to be the one originally sent. This iSmto account the different permutations of strings, that

the conditional probabilityp(x|y) thatx is the key when Eve M,
measured the string of outcomgs This probability can be _ 2(xv) = a
calculated from the known probability that a given signal Pe(y) zx: PEX}y) moakaz""ka lk_! Mo k,,

triggers one of the outcomes. A possible attack by Eve on the

message is to try several keys chosen according to the prob- (0, ko) | e [ (1, k) | 2 Mea™ o0k
ability distribution p(x|y). It is intuitively clear that a p(k,) p(k,)

sharply peaked probability distribution over the set of pos- “ “

sible keys will help Eve to decode the message as this will p(0,.k)\? [ p(L,,ky)) 2"k
affect the decoding time. Thecollision probability =H K + K)
pc(Y):=2,p%(x|y) is the probability of drawing the same Ka p(ka) p(ke
key x twice. . .
The expected collision probabilityis defined as To calculate the expected collision probability we need

(Pe(¥)):==,(y) Pc(y) with p(y) as the probability for Eve the probabilitiesp(M) that Eve recei\_/es the se'_[ of_ numbers
to find outcome string. In a forthcoming papef15] it is Mka as measurement outcomes. This probability is given by
shown that this quantity plays a central role in the process of

privacy amplification. In the case of a lowest upper bound B n! M

7 in the sense p(M)_Mol-'Moz!Mll! M lg p(ky) ke

1 (10
1+logx(pc(y))i=T ®)

can be given for a key of length and 7 [0,1), we can cut The expectation value is taken over all values of M@a

out Eve’s Shannon information on the key by shortening itWith ¢ My =n. We used the probabilities(k,) for trig-
during privacy amplification. A reduction of the key length gering the different outcomds, by the equally distributed
by nT+ s bits, wheres is a safety parameter, leaves Eve with signal states.

a total Shannon information of less than®/In2 bit on the As a result we find the expression for the expected colli-
new key of lengtm(1—17)—s. sion probability as
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a Ka)?|" M|e=UM|e=[IMV|e=|[UMV|E, 1
o= 3 M) a IMlle=IUMIle=[MV]e= UMV (17)

= k . . . .
Kaw  P(K) with U and V unitary. This property makes the Frobenius

We will later concentrate on the relative expected collisionOrm convenient to use in connection with the singular value
probability decomposition. Every real matrM (M e R™") can be rep-

resented in the form17]

1o P Ke)?
<pc(y)>n_k§¢ p(ka)

as this is the quantity needed to find the estimating paramet
7 corresponding to the minimum fraction of bits to be dis-
carded during privacy amplification. [O i

(12 M=USV (18)

gyith U andV unitary. The matribXS is a quasidiagonal in the
Sense that fo6={s;;} we find

with 5,=0. (19

Sij = L
C. Disturbance Si 17
We are now in a position to look for a measure of theThe diagonal elements are called the singular values of the
disturbance affecting the signals during the transmission omatrix M and are uniquely determined up to a permutation.
the quantum channel. The simplest measures are based por a symmetric matrix these singular values are the eigen-
the joint probabilities of signals sent and outcomes meavalues of the matrix. Since the Frobenius norm is invariant

sured. These joint probabilities can be measured directly byinder unitary transformations we find

Alice and Bob by comparing a fraction of their signals and

measured outcomes. )
To maximize the sensitivity of the measure of the distur- IMl[e=l[Sl|e= Z Si. (20)
bance we monitor all of these joint probabilities and define

the disturbance based on the measured joint probabilities There are two main properties of the disturbaBcavhich
Paes and the theoretical predicted probabilitiPgg as we will use later on. The first concerns a mixture of different
D:=|/Pas— Pacsl 13 strategies, which Eve uses with probabiliy and result
AB~ TAEBIF: in the matrices P{L;, leading to a combined

where the Frobenius norrfor Schur or Hilbert-Schmidt Page=2iPiPaks. The disturbance caused by this eaves-

norm) of a real matrixM ={M;} is defined[17] as dropping strategy can be estimated by the disturbance of
" each substrategy by
||M|F:=(Z Mi,-z) : (14)
L D(Ei pﬂ%)gEi PiD(P) (21
Other choices are possible, for example, related to the
measure of fidelity18], the definition using the triangle inequalit{l6). A mixing of strategies may
thus result in a lower disturbance. The other property of the
Dt :=Trp(Pag—Paes), (15  disturbanceD is that it is invariant under any permutations

. o . of the signals or of the outcomes.
where the trace is taken over the matrix indices given as the

index of the signals sent and the outcomes measured. In Sec.
Il we show thatD= (1/y/2) D;. The measur®; depends
only on the diagonal elements @,g and Pagg While D A. POM

depends on all of them. It follows th& is a stronger mea- A positive operator measufd9—21 on a Hilbert-space

sure of disturbance thaB; in that it is more sensitive to . ! . s
intervention by Eve. The optimal choice of the disturbanceH is defined to be a set of positive Hermitian operators

measure can be determined only in connection with a googlvhICh add up fo the identity on the Hilbert-spaife

model for the expected measured joint probabilifighat is,

in connection with a good noise model for the chahrelich E Fi=1y. (22

an analysis is beyond the scope of this paper. :
The disturbanc® is zero if and only if all measured joint

probabilities equal their theoretical predictions, that is

Pag=Paeg- The Frobenius norm satisfies

IIl. POM AND WHAT HAPPENS TO THE SIGNAL

EachF; corresponds to an outcome of a measurement.
'The probabilityp; of theith outcome of a measurement per-
formed on a signal with density matrixis given by

aM]le=allMlle o =T pF). 23
and the triangle inequality ) o o
As long as we restrict our description to a situation where
|||M||F_||NHF <|M+N|[e=[M|g+|N[lc. (16) single-photon states reach Eve and Eve forwards another
single-photon state we can use the two-dimensional Hilbert
Another feature of the Frobenius norm is that it is invariantspace of the polarization of a single photon. Then we can
under unitary transformations, that is, simplify the definition to the following: A POM is given by
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a set of Hermitian complex 22 matrices with eigenvalues knowledge to Eve, she has to perform a measurement which
ranging in the interval[0,1] whose sum is the two- splitsF up into the two possible POM elements on the right-
dimensional identity matrix. hand side.

A trivial example is the POM representing a von Neu-  One might hope that all POM sets can be viewed as con-

mann measurement which is described by two orthogonaiisting of a mixture of von Neumann projector elements and
projection operators. They can be represented in a suitable identity operation. This is, however, not tr[22]. An

basis of the two-dimensional Hilbert space as example is the POM with three elements given by projectors
which are rotated by an angle ofr&3,
c (1 O) - (0 0) 24
1= 0o 0/ 2= o 1/ 1 2 1 27«
~ o 3% 33
A first advantage of using POMs is that we can describe 3 , 1 2 ,
. . . . 273 1 27
quite simply and generally eavesdropping strategies where 00 — Zsi—— Zcos—
Eve chooses for each signal one strategy out of a set of von 3~ 3 3 3
Neumann measurements or does not interfere at all. For ex- 14 1 4
ample, the POM with < T L AT
33 3°%M3
1o 0 0 1 47 1 4x @8
Fim| 3 ] Fem| g L)) (29 35y 353
00 3
All POMs can be represented as a set of projection opera-
11 1 1 tors in a higher-dimensional Hilbert spa@8]. Up to now it
6 6 6 6 is not clear whether all POMs can be physically realized in a
Fs= . Fu= , measurement apparatus. However, it is widely accefdt@p
1 E _ E 1 that all measurement apparatus can be characterized by a
6 6 6 6 POM. This is obvious at least for a mixture of von Neumann

measurements as shown in the exani@®. In Appendix A,

| give a POM which describes a more complicated measure-
ment on a two-level system. For further examples [463.

Fs= , All measurements and, hence, all eavesdropping strategies
can therefore be described by a POM. Given the POM we
can calculate Eve’s Shannon informatioand expected col-

) ) lision probability{p.). For this we only need to calculate the
de;_cnbe_s a s’grategy where Eve measures with _equal proﬂiint probabilities for the outcomes of the type
ability either in the {¢,,¢,} basis €,,F,), or in the i, (piFY)-

{3, ¢4} basis E3,F,), or does not interfer€s. The non-  * 700 X
interference is described by a POM element proportional to
the identity matrix and corresponds to at most noting that
there is a photon but not measuring its states. As a major Up to now we have not considered the back reaction of a
difference from the von Neumann measurements the eld?OM measurement onto the measured system. | report some
ments of a POM need not be proportional to a projectiorvesults derived by Davies and Kra[20,21] which describe
operator. For example, the matrix the most general measurements, their outcome, and the cor-
responding back reaction. The assumption for this descrip-
tion is that the measurement has the property to be com-
_ pletely positive[21]. This property may be viewefR4] as

F= (26) allowing the existence of a third system of arbitrary dimen-
sion in addition to the measuring device and the system un-

W =
o

o
w| =

B. Back reaction of a POM measurement onto the system

N =
o

o
W=

der investigation. This requirement is naturally fulfilled
[24,25 since by randomly choosing the signéds) the ini-
may be an element of a POM. It can be represented by thga| state of the combined system of eavesdropper and signal
decomposition is given as a product statg® pg with an eavesdropper state
pe independent of the signal states. This assures complete
E_E[E(l 0) +l(1 0) 27) positivity. The basic object of this description is a set of
2/13\0 1) 310 O matricesA,. The index seK is partitioned inton subsets
K;. The matrice\, are any complex matrices which satisfy
which can be seen as a mixture of two strategies used witthe restriction that the elemenis defined by
probability 3 and %, respectively. The first is a pure counting
as represented by the first matrix while the second matrix E=S Ala 29
represents the measuring of the overlap with a pure state. bOE k™K
However, the observer does not know by which strategy the
outcome which represents was triggered. To give this make up a POM.
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Given any such set of matrices, we can describe the
back reaction onto a system with a density-mapixas a Ek: (axtbe)=2. (35
change to the density-matrjx after the measurement. In the
case of a nonselective measurement considered here the d

. t NONSS §"the following I show that a replacement of the original
sity matrix is given by

strategy by the one given by

p= kEK ApA] . (30 A= VaUy+ (Vb= Va) U Py (36)

dpes not change the disturbance. Here and in the following
A nonselective measurement always forwards the measurex
apters over-lined objects are orthogonal complements, for

system and does not suppress it depending on the outcome o leP.—1— P

the measurement. The probabiliy of the outcomei is  €X@MPIE k= k- , )

given by | insert Eq.(34) into (36) and find after some manipula-
tion

pi=Tr p2 AEAK). (31

Ples= Z{SJakb Tr(Uip ULE) + 3 ae(Vb— Vay)

X[Tr3(UyPipiPLULE)) — Tr(UyPipi PLULE)) ]

+5(Vb = Va) Tr(UPpiPLURE Y. (37)
forms a POM[21]. As far as the disturbance is concerned it
does not matter which subset Bf is grouped into which We make use of the decomposition of the type
POM element since the disturbed density mat@g) con-
tains the sum over the whole set. For the information gainedr(UxPypiPULE)) = Try(Pypi) Tr( PLULE; Uy (38
by the measurement the grouping does matter. Thus an
eavesdropping strategy is characterized by a sét ofatri-  and of identities of type
ces together with a partition of this set to form the POM .
describing the outcome of the measurements. Try(Pypi) = Try(Py pi) (39

It is always true that the set with the elements

Fi=A'A, ieK (32

IV. SECURITY AGAINST POM ATTACK to find

In this section, | give an estimate of the amount of Shan- .. E—
’ - +
non information and expected collision probability Eve can PREB_; {5 Vaby Tr(Uipi ULE)) + 3 Va( Vo — Vay)
gain by applying an eavesdropping strategy which resends

one-photon states to Bob. Thus she performs nonselective X[ TrH(UkP_leiP_kUIEj)_TrH(UkPkEPkUEE_j)]
measurements. The signal states sent by Alice are one- -
photon states as well and thus the description of the measure- + (Vb= Va2 Tr (U Py pi PULE)D}. (40

ment is given by the previously summarized formalism. In

this calculation we deal with the BB84 protocol only. It can This shows that using the strategy describedwwogether

be easily generalized to other cryptographical protocolswith a toggling of lines and rows, belonging to orthogonal
which use nonorthogonal basis sets of orthogonal signalsignals and measurement projectors, in the joint probability

which no longer have the overlap matrix P}l -5 leaves this matrix invariant. This is because the
orthogonal complements of signals are contained in the set of
A. Disturbance signals and the same is true for the projection operdtrs

describing Bob’s measurement. The matflxg turns out to

be invariant under this toggling. Thus changing the strategy
does not affect the value of the measured disturbance and we
find

As a preparation we deal with the disturbance alone. Th
disturbance is a function of the joint probabiliti@ g of
Alice sending signal and Bob receiving signaj. These
joint probabilities are given by

D[{Ahk]=D[{A]. (41)

The notation{.}, is used to indicate that the index runs over
all k. Now we can show that the disturbance decreases by
mixing both strategies with equal probability. This is proven
by using(21) and(41) to find

. 1
Ples=g2 Tr(ApALE)). (33

Eve’s original strategy is described Bymatrices which can
be represented in the form

A= a U+ (Vb= Va ) U Py (34)

with non-negative real numbers, and b, satisfying
O=a,=<by, U, being unitary matrices an&, being one-
dimensional projection operators. The propert{gs) and
(22) imply

D[{Ah]=3D[{Ac]+ 3 D[{Adk]

1 1.
=D —Ak] u{ _Ak] (42)
{ \/5 k \/E k
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Applying a decompositiori34), (36) in the same way as in

1
(40) we find for the disturbance D= —D;
2
Nk Nk —=T1rp| Pag— Paeg| { =A« =
2 o2, 2 2N B
1 (48)
=5 | TPiE) — 2 [VabiTr(piUE U]
With this result and using the notation/[r) to denote the
(Vb —Vay)? trace over the probability matrix elements formed by the
- ( [Tr2(UPipi PLULE)) indicesi andj we find
k

4y D

1 1
EeRES)

1
Since the Frobenius norm is strongly connected to singular = ——=Trg[ Try(p;E;)]
values we have a closer look at the eigensystem of the matrix 8\2

we are taking the Frobenius norm of. We find that there are 1

two eigenvectors associated with the eigenvalue zero. These _ fab——Tro TrA 0:UTE. U

are the vectorg(1,1,1,1) andi(1,—1,1,—1). The existence )y kg2 AT PiUE; U]
of the eigenvectors is purely due to the fact that we use two

+TrH<ukP_kpiP_kUEE,->])
F

sets of orthogonal signals and corresponding measurement (Vbe—+a)? 1
operators. These two eigenvectors form streictural eigen- —EK 2 8.2
system The orthogonal complement is two dimensional

which means that the whole matrix has at most two nonva-

nishing singular values denoted by ando,. We use this xTrp[TrH(UkPkpiPkUlEj)+TrH(UkP_kPiP_kUlEj)] .
fact to make the estimate

1/2 (49)

2
D[Pas— Pacsl= [ Pas— Pacsl)’ 44
[Pas~Pacsl ;1 (01l Pas ™ Pacel) “4 We now deal with the three parts of this expression inde-

pendently. The first part can be directly calculated using the

12 signal representationd) and(2) to be
=—=2, 0i[Pag~ Paesl (45)
e ) L Try(piEj)] - (50)
——=Tr Try(piE)) 1= —=.
. , 8\/5 pLHTHADIE] 2\/5
=— i - : 46
\/Eigl 7ilPas~ Paesl 49 The second term can be estimated using

TrH(piUlEjUk)sl, since this expression can be interpreted
To come from the first to the second line | used the inequal2s overlap between two states. From this we find that
ity x2+y?= (x+y)%/2 for all realx,y. In the last step |
denoted byr; ando, the two structural eigenvalues of value
zero and thus extended the range of the summation to thatz Vayby \/—TVP[TVH(P.U kEjU] | < —E vagby.
over all singular values. (51)

For any matrixM the sum over its singular values is
again a matrix norm with all _the properties 9f a matrix NOM, 1he third term can be estimated, with the help of the inequal-
satisfying especially the triangle inequality. The triangle. : !

. . . ity proven in Appendix B, to be
equation leads to the inequality

1 -
1 - . e ) e
Z aiM]=3 Z Ui[M]JrZ o[MT] SﬁTrP[TrH(UkPkplPkUkEJ)+TrH(UkPkp|PkUkE])]
(52
=1 g[M+MT]=Trp(M). (47) )
I ~
<4\/— 2\/—[(Ck )2+ (de—3)21" (C—3)?
HereM T is the transposed matrix ™. Note that the fidelity _
disturbance measui®; appears in this expression as +(de— 3)?]2 (53
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Here we have defined the overlaps ~HTp2Pk) The signals are pure states eyﬁd as the orthogonal comple-
=:Cy, TrH(p4Pk)— dy, TrH(EZUkPkUk)— Ck and ment ofp;, is a signal state as well. The use of the second
Tr(EsU P U =: dk These two pairs of overlaps satisfy strategy described bff, just toggles again lines and rows

the inequality belonging to orthogonal signals and POM elements with or-
1 1o 1 thogonal projector parts in the joint probability matrix. This
(d—32)°+(c—3)°=g3, (54 toggling does not affect the informatidn Thus we find
roven in Appendix C. From this, the third term can be es- =~

B o to hay I{FGI=11{F. (62
(\/b—— \/a_)2 1 This result implies that an equal mixture of both strategies
> k K T T (U Pypi PLUTE) does not affect the amount of Shannon information either as

K 2 g2 Tk KPIT KK we find from(7) and(62) that

+TrH(UkP_kPiP_kUIEj)] (55) |[{Fk}k]:%'[{Fk}k]+%'[{FNk}k]:|[{%Fk}kU{%ﬁ<}k](- )

63
(\/— \/—)2 The union of the sets describing the two single strategies
8 \/E 5 (56) gives the description of the alternative statistical use of the

K

two strategies. By reordering the elements of this POM we
see that this can also be viewed as a statistical mixture of

We put all three results together to find using the strategies consisting of the two POM elements

Fy/a,+b, and E,;/akJr b, with the probability a,+b,/2.
D[ Pap— Paesl= \/_2 (b 2\/—) (57)  This means
1 1 actb[ F P
. . . . a | _Fk U _Fk :l U y
This result can be rewritten using the ratip: = b_ as 2 2 K 2 axt by a+ by
k k k
(64)
D[ Pas— P, £2 actb(I-Va® o
[Pag— Paesl= 2 1+te (58) _2 a+ by
=2 5
With this we have estimated the disturbance caused by an
eavesdropper. The estimate depends no longer on the specific Fy Fr
projection operators used in thematrices of Eve’s strategy. X1 —ak by At by | (65
B. Shannon information The missing subscrigt at the curly brackets indicates now

For a given set oA matrices Eve will receive the maxi- that only the two named operators form the POM while
mal amount of Shannon information by choosing a POMIS  kept fixed. ~We can calculate the terms

where each POM element corresponds to exactlyfomea- | [{Fi/a+by,Fi/a+be}] using(59) and the definitions of
trix [16]. | denote the elements of this POM by C,dy and ¢, from the section above. We find the result
Fri=AlA,.
“ KK |[{F k 1_|ng(1+6k)+m
From (34) it then follows that the POM elements take the k
form X{ (€t Cx— €Ci)10g( €+ C— €Cy)
Fr=al+(by—a) Py ax<by. (59 +(1—cy+ clogy(1—c+ €Cy)
| show first that a change of the original strategy to the one + (et dy— edi)logy( e+ dy— €, dy)

described by thé\ matricesK,; resulting in the POM

— _ +(1_dk+ Ekdk)logz(l_dk+ ekdk)} . (66)
Fk:akl'f' (bk_a.k) Pk < bk (60)

does not change the amount of Shannon information gainedhe above expression for the Shannon information can be
The information| is a function of the joint probabilities shown to be convex in all the overlagg and dy which
k- of Alice sending a signal and Eve finding the outcome Satisfy the inequalitie$54). Therefore the maximum of the

k For this we find information exists and is taken on the boundary of the pa-
rameter space described by the overlaps. This boundary can
Pie=1Tr(piF) = fa+ F(o—a) Try(piPy) be parametrized by

:%ak+le(bk_ak)TrH(PiP_k)Z%TTH(EFNk)- (61) ck=3(1+cospy), di=73(1+singy). (67)
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It can be shown that the expressi6) is maximal if ¢,

e{0,37,m,37}. The maximum value is then given by o 0.8[ ' ' ' '
S
ak+bk1 €k g 06-_ //// B
I{F =< | 1-logy(1+ )+ ——I . g 70 . ]
[{Fihd Ek: 2 2 0Gp(1+ €) 1te 002 € $
(68) S 0.4f 1
. .. . c b - |
Thus we have been able to give an upper limit on the infor- s
mation by optimizing Eve’s strategy and retaining as the °g o2k ]
only variables the parameteag+ b, and e, of the A matri- g S ]
ces. These parameters are the same as in the estimate of the % I
disturbance. o 0.0

Next we show that it would be favorable for Eve to use a 0.00 0.02 0.04 0.06 0.08
constant value ot for all k. For that we note that we can measured disturbance Dr,
vary the sumay+b, independently of the values,. We
take any twoe,, here renamed ag and 8, and vary them
depending on a continuous paramedes such a way, that
the disturbanc® is unchanged. In the following calculation

we suppress the othey in the arguments. We may without Thjs |ower bound on the other hand implies an upper bound
loss of generality assume that a<B and gn the Shannon information

FIG. 2. The estimated Shannon information in the sHagn-
tinuous ling and the linear estimatdgdashed lingas a function of
the measured disturbanéx,, .

dD ,
W>O. We show in Appendix D, that -
I<1-logy(1+e€)+ . log,e (74)
da(s dif a(s),B(s €
B _o gng MMAELBEL_ ) o)
ds ds

since the right-hand side is monotonically decreasing. itt
This means that for a fixed disturbance the estimated im‘orgaml_be shonn that this estimate can be further estimated by
mation can always be increased by moving the values of twd€ inear relation

€, closer to each other. Clearly the optimal case is the one,
. 4.2
where all ¢, have the same value. We denote this value l<——D,, (75)
by e. This means that we now have the two inequalities In2
J2 (1-6)? where In2 is the natural logarithm of 2. For smal},, this
D=5 TIaT (70 estimate is nearly as good as the estim@4 which will

later be shown to be sharp. The sharp bound and the linear
- approximation are plotted in Fig. 2 as a function of the mea-

6 .
I<1—logy(1+¢)+ o 71) sured disturbance.

—log,e€.
€

) ] C. Expected collision probability
Alice and Bob can measure the actual disturbabggby

comparing a fraction of their exchanged signals. The in- The expected collision probability will be maximized, as

equality shown in Appendix E, by using a strategy with a one-to-one
correspondence between POM elements Aamdatrices. We
V2 (1—f6)? can then use the same decomposition of the POM element
T iz (72) (59 as before. We use this expression to find
a,t+b
leads to a lower bound & as p(k,)= "4 k (76)

_ [1-4V(J2-8D,)D,,\?

Ee=e = ) (73)  for the total probability of occurrence &, , that is, of out-
1—8\/§Dm comek while alphabetx was used, and
(//:20 . P(Ya Ke)?=flai+ (b= a) Tr(po,Pi )17+ fl @i+ (be—a) Tr(py P )1 (77)

1
= sab+ 160k )’ Trpo, Pk )2+ Tri(p1 Py ) (78)
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for the joint probabilities occurring ifiL2). Then the relative expected collision probability is given by executing the sums over
a andy in (12

1 actby dabct (b aA[(1— e+ o+ (1-d®+di]
<pc(y)>”_2k 2 2(ak+ bk)2 (79)
s agt+ by det (1— €)[(1—c )%+ ci+(1—dy)2+dE] 50
T2 2(1+ &)? ' (80
|
Here again | used the definitions of, d,, ande, as above ot
andc, andd, are again limited by the inequali$s4). The smT
last expression for the information estimate is, again, convex , (85)
in all ¢, andd,.. On the boundary of the allowed parameter o ot o
space[parameterized by67)] it takes on the form 2

a,+b, det 2 (1 €)? with 0'6{0.,77/2. yar, 32}, Thg anglep+ 6 can be viewed
<pc(y)>1/n$z kT Tk 2 — (81) as spin direction or, alternatively, the angte+ /2 as an
k2 2(1+€) angle of the polarization plane of a photon. We denote by
P4(¢) the projector on the corresponding vector. We now
We repeat the procedures applied to the Shannon informaise a strategy described by tRematrices
tion to show that Eve’s optimal strategy usesenndepen-

dent ofk. For details see Appendix D. Following the proce- _ €opt vz
dures there we arrive at the final estimate for the expected KTl2(1+ €opt)
collision probability depending on the measured disturbance 1 1 12
Do +( | Somt } )P 86
2(1+60pt) 2(1+€opt) o) (89)
y 1.2 .2
(p(y))Y¥< w (82) and the corresponding POM elements
4(1+€)? L
€opt ~ €opt

_ Fi= 1+ P . 8

Here the quantity is the same as for the Shannon informa- KT2(1t+ €op)  2(1+€opy) o) 87

tion given by Eq.(73).
The resulting minimum fraction of bits to be discarded in
the privacy amplification is then given fro8) by

Here the parameter,, is the ratio of lesser to the greater
eigenvalue of the eigenvalues of the POM elements. The
resulting disturbance can be shown to be

3+2e+3e” _Je 2
T=|ng—_2. (83 D= \/_E M_
2(1+€) 16 1+ep

Thus we find that the equality= e, holds independently

An upper bound to this estimate is the linear upper approxi . _
of ¢. The main reason for that is that by use of the symmet-

mation
8\/§ 10 L T T I’ T
7<—Dp (84 I .
In2 - i e ;
_GCJ 0.8 N //’ 7]
which is, as for the estimate of the Shannon information, .g L ]
very close to the more accurate estimate for a small deviation 9 0.6 g
Dn,. Both estimates are plotted as a function of the measured 5 - | ]
disturbanceD,, in Fig. 3. © O4r ]
S ]
S 02 1
V. OPTIMAL EAVESDROPPER STRATEGY = [/ 1
0.0l

In this section, | give an eavesdropper strategy which will
indeed gain the estimated information for a given resulting
disturbance. This strategy is described/Aynatrices which
involve projection operators in the same symmetry which is

. . FIG. 3. The fractionr of bits to be discarded before the error
shown by the signal states. They are represented by projec- L , . . X
. correction in the shargcontinuous ling and the linear estimates
tions onto the vector

(dashed lingas a function of the measured disturbafxg.

0.00 0.02 0.04 0.06 0.08
measured disturbance Dy,
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ric projectors the matrif,gg becomes symmetric and so the _ 08 : :
singular values are the eigenvalues of the matrix. Second, the o r o
nonstructural eigenvalues are equal so that the equality holds %
in the estimateg44). g 06- g
On the other hand we find for the expected Shannon in- £
formation and the fractior the expressions § 04l ]
c b ~. ]
| =1—logy(1+ egp) + 2P| 88 5 | T
=1-logy(1+ €opy) 1_,’_—60pt09260pt (88) 2 02l ~ ]
g | !
and 2 0.0l . . . .
34+2¢. +3e2 000 005 010 015 020 025
= |092L20m, (89) error rate ¢
2( 1+ Eopt)

FIG. 4. The estimated Shannon information in the sharp esti-
which proves that all of the inequalities leading to the esti-mate as a function of the error ratef our noise modefsolid line).
mates(74) and(83) are sharp in the sense that the equalitiesThe dashed line shows the amount of Shannon information shared
are satisfied for the optimal strategy presented here. by Alice and Bob. No error correction is applied.

VI. NOISY CHANNELS 1=1+clog,c+(1—c)logy(1—c). (93)

We have obtained our estimate of an eavesdropper's A Wyner wiretap constructiorf13] is possible if the
knowledge about the key at this stage depending on the aGhannon information shared by Alice and Bob exceeds that
tual measured disturbané®,;,. | will now investigate the of Eve. Both relevant quantities are plotted in Fig. 4. We see
situation of a noisy channel. Any implementation of a quan-that forc<0.15, corresponding to a noise-induced error rate
tum cryptographical system will show an error rateecause of 15%), a Wyner wiretagif it can be realizegiwill work on
of dark counts or misalignment. To be on the safe side, thesthis system.
errors have to be thought of as being caused by an eaves- For current implementations the only known way for a
dropper. The error rates have to be small enough so that theecure communication employing quantum cryptography
according(74) and(82) estimated amount of Eve’s Shannon uses the privacy amplificatiof26]. For this Alice and Bob
information and expected collision probability still allows first have to perform error correction. Discarding the errors

Alice and Bob to establish a secret key. will change the expected relative collision probability since
The noisy channel is modeled by replacing the signakignals triggering an outconefor Eve will in general lead
states| ¢;) by to asymmetric error rates depending on the choice of that

- signal and Eve can take this into account. In this way the
| i) dil— (1—c)| i) dil + | i ){ il (90)  expected relative collision probability may increase. In order

. ) to get a feeling for this | compare the expected collision
Here, again, overlined states are the orthogonal comples,gpapility before and after error correction in the case
ments. By calculatmg.the joint probapllltles of S|gnals and\yhere Eve applies a strategy consisting of projections onto
outcomes between Alice and Bob using these signal statgfq toyr vectors(85) with o= /4. The joint probabilities

and the results taking the place of the mawes, we find  pafore error correction are given via the expression, p to
a measured disturbance ik

be
szﬁc_ (91) 0.0183 0.1067 0.1067 0.0183
4 0.1067 0.0183 0.0183 0.1067
On the other hand the Shannon information shared by Alice Pae=| 00183 00183 01067 0.1047 Y
and B_ob aft_er announcement of the alphabets used, but be- 0.1067 0.1067 00183 0.0183
fore discarding any bits, is given by
dlead t ted collisi bability of
| = 11+ ¢l0g,c+(1—c)logy(1—c)]. 92) and lead to an expected collision probability o
(Pe(yN)"=1, (95

The transition from theaw keyto the sifted key[12] by

discarding all the bits where the alphabets used by Alice andnd the fraction of bits to be discarded as

Bob do not match will not change Eve’s amount of Shannon

information and expected collision probability since the cor- r=1l0g,3. (96)
relation between signals and Eve’'s measurement outcomes

are the same for the discarded and the retained bits. In cor signal p; which triggered Eve’s outcomiewill trigger the
trast, the Shannon information shared by Alice and Bob doesorrect outcome for Bob with the probability

increase by this operation since here the signal-outcome cor-

relations differ for the two sets. For the sifted key we find the Trr(PwpiPypi) (97)
Shannon informatio(s) to be Tri(piPy)
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Therefore the joint probabilities after error correction aretransforming the results into this paper, and Simon Phoenix
given by and Paul Townsend for discussion of the results. Special
thanks also to Michael Hall for introducing me to the work
ST, (PepiPeps) 98) of Kraus and Davies. This work was funded by the German
N H(PepiPrpi Academic Exchange Servic€DAAD) under the HSPII
AUFE program.
with the normalization factoN:=X; , Try(Pyp;Pyp;). The

values of the joint probabilities for the corrected string are APPENDIX A- TWO-LEVEL SYSTEM

then
This appendix deals with the description of a measure-
0.0036 0.1214 0.1214 0.0086 ment on a two-level system in terms of a POM. The mea-
" 0.1214 0.0036 0.0036 0.1214 surement is done by connecting the original two-level system
AR = (990 S to another two-level systerivl. After an interaction de-
0.0036 0.0036 0.1214 0.1214 scribed by a general interaction Hamiltonidr= 6o soy we
0.1214 0.1214 0.0036 0.0086 perform a von Neumann measurement on the sydteriihe
outcome probabilities of this measurement can be described
leading to the expected collision probability by a POM defined on the Hilbert space of the original system
(Ch1h_ 17 S before the interaction.
(Pe(y)™) =13, (100 We denote byE; the two projectors describing the von

Neumann measurement performed Mnafter the evolution
and byF; the two POM elements describing the von Neu-
mann measurement on the level of the syst®imefore the
evolution. The density operators 8fandM before the mea-

. ; . surement process and evolution are denote and

A more systematic study is under way and the results will bethe ones Ft))efore the measurement but aﬁg?%ﬁg' evolution

published elsewhere. ~ =~ The densit i £ th bined svst
The noise model introduced here is only a first test of the>? Ps:Pm- 1he density-malibpys ot the combined System
as the initial valugoy5(0)=pu®ps. By og,0y | denote

practicability for constructing quantum cryptographical sys- . . S i

tems. More general noise models are needed to optimize tlf[ € sipln mgtmigs QS an(tjM, thatdn:ﬁanST_thE‘?ﬁU wger?
construction of such systems. However for purposes of ap-.e(’ are Faul sp|rf1 matrices and theare the three Larte-
plication to real data transfer we will not need these models'2" components of a unit vector .

as we are able to estimate the quantiteand |® directly The measurement ol after the interaction leads to the
from the measured [}, and the fraction of bits discarded probability P; for the outcomd as

during the error correction.

and the fraction of bits to be discarded as

7©=log,%. (101

Pi=Tru[Eipm(D)]=Trud (Ei®ls)pms(t)]

VII. CONCLUSION =Trud (Ei®lg)e ?7sM(py @ pg)e 197sM]
In this paper | have established estimates for the Shannon =Trs({[sirPOTry(omEiompm)
information and the expected collision probability an eaves-
dropper can gain in an attack on the Bennett-Brassard proto- +c0s 0Try(Eipum)11s}ps)

col. The present analysis applies before error correction takes
place and depends on a measured disturbance or noise on the
system. | have shown that these estimates are sharp and have ) )
given an explicit characterization of the optimal eavesdrop!n the last step | used the identity
per strategy in terms oA matrices and POM elements of a ,
generalized measurement. e'’7s"M=cosf lystisinfosoy , (A2)

The estimate of the Shannon information indicates an al-
lowed noise level of 15%, but up to now there has been navhich can be proven by the Taylor expansion. From this
algorithm to make use of the required Wyner wiretap chan<alculation we find the POM describing the measurement by
nel concept. However, this work suggests the possibility ofcomparing(Al) with the general form for an outcome prob-
performing privacy amplification to give provable security ability Pi=Trg(F;psg) , as
on a noisy channel foall error rates provided Alice and
Bob can perform an error correction. These estimates will Fi:[Sir\zaTrM(o'MEig'MpM)+CO§0TrM(EipM)]]S
allow us to control the theoretical security of experimental

+Trs({isindcoshTry([Ei ,omlpm) ostps). (Al)

systems and to improve the construction of forthcoming ex- +isingcod Try(LEi,omlpm)os. (A3)
periments by means of more elaborate models of noise and
errors induced by the components of the setup. The elements of this POM differ from multiples of the iden-

tity matrix only if
ACKNOWLEDGMENTS

Tryu([E;, =Tr , E;
| thank Stephen M. Barnett for the introduction to quan- m(LEromlom) =Tru(low pu]E)
tum cryptography, discussion of the results, and for help =Try([pm.Eilom) #0.
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APPENDIX B: ESTIMATE OF PROJECTION PART
[(c—3)?+(d—3)*1"(T-3)?

The expression 2 \/‘
1 — — +(d— )21V u g uz B8
_8\/§Tr73[TrH(UkPkpiPkUlEj)_"TrH(UkPkpiPkUIIEj)] (027 edl )] (59
(B1) This knowledge of the singular values and the estimate
[{ucqlugg)| =<1 allows us to estimate the third term of Eq.
can be written as (49) by
V2T PagPes) (B2)

_ _ ) V2 Trp( PagPes) < \/52 o[ PaePes] (B9)

with matrices  Pag= 3Try(Pk, pi) and Pes '

=%TrH(UkPkiUEE]-) where | have redefineﬂ’ko:=Pk and

Pkl::P_k. The matrixP,e can be always represented using < Y —1y2
numbersc,d €[ 0,1] by 4 2
1-¢c ¢ +(d= 5P E- 32+ (d- 5
— . . . . B10
P _ipc 1-c B3) This is the expression given in the text. (810
AET411-d d
d 1—d APPENDIX C: INEQUALITY FOR OVERLAPS
1 The quantitiex andd are restricted by quantum mechan-
ics. This restriction depends on the overlagbetween the
_ V21| 1 11 two alphabets given as=|($4|$3)|*> and which takes the
2 2|1 ®E( D value 3 for the Bennett Brassard protocol. The restriction
1 takes the form
1 1 l1-c—d+2cd—2ycd(1-c)(1-d)sb<1l-c—d+2cd
T (c—1)24 (d—1)2712 ~(1-1)
\/E[(C 2) (d 2) ] Ucg® \/E(lv 1) (B4) +2 Cd(l_C)(l_d) (Cl)
Here we used the unit vector and is derived by inserting the constructive identity
. | UMW W]+ | W) P| into the definition ofo and using the tri-
572 angle inequality. This restriction is equivalent to
_1
U 1 €Tz (d—c)? (1-c—d)?
cd \/E 1 2 d 1 211/2 %_d l—b + b gl (CZ)
C—E + —E 4
T2 For the Bennett-Brassard protocol wiik- 3 it simplifies fur-
ther t
1 - er to
®E( 1 ) 1 2 1 2 1
d— E c— E = Z (C3)

The transposed magi??EB can be represented in the same

way with number<,d replacingc,d. With that we find
APPENDIX D: CHANGE ALONG THE PATH {a(s),B(s)}

1
We change two ratio parametaersand 8 depending on a
1 1 continuous parameterin such a way, that the estimate for
V2 TH(PagPes) = \/EXE 1 2(111D (BS) the disturbance remains unchanged. Without loss of general-
1 ity we assume thatv<B and dD[ «(s),B(s)]/ds>0. The
demand for the disturbance estimate to remain constant can
then be formulated as
c—1% 2+ d_l 271/ '5_;2
2f [(e=8+ (= HTAE o[ ,p] da(s) DlapldB(S) o
F(A- DU UeBUzg  (B6) feds 9B s

and can read the singular values With the use of

1 D[ a, 2 1
o= = (87) % —£6 P, 1+“ (D2)
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wherep,, is the probability of the outcome connecteddo  This condition is obviously fulfilled. These two results show

and the abbreviation that the upper limit of the Shannon information and the ex-
pected collision probability is maximized by choosing the
D'[a] \/5 -« ratios €, as constants independent of the index
ali=

16 Va(1+a)?

find APPENDIX E: ACQUIRING ADDITIONAL KNOWLEDGE
we Tin

In this section | show that the expected collision probabil-
dgB(s) 3 D'[a] da(s) ity will always grow, in the context of the BB84 protocol,

ds D'[B] ds (D3) when more detailed knowledge is acquired. The basic de-
scription of this situation is that a measurement outcértee
da(s) . ] ] ) N POM elementF, can be replaced by two new outcomiés
We note that ds S negative since'[«a] is a positive  gnd|” described byF,, and F,. satisfying F,=F,, +F.
function. Here | will focus on the description in terms of the joint

Next we investigate under which circumstances thaProbabilities p;k between signals and measurement out-
amount of a Shannon informatioh increases, that is comesk. For the measurement outcome which gets split up
dlg/ds=0, for all possible values of and 8. This is the ~We findp(i,l)=p(i,I")+p(i,I") for all signalsi.

condition that To prove that the expected collision probability never de-
creases in such a situation | use two steps. In the first step |
dlla,B] da(s) dl[a,B] dB(S) split all the initial joint probabilitiesp(i,l) into the same
. s B gs =0 (D4)  fractions p(i,I")=pup(i,l) and p(i,1")=(1-pw)p(,l)
which can be viewed as splitting a column of the matrix
is satisfied parallel to EqD3). We find the expression Pi={p(i,k)} into two proportional columns. | will show
that this does not affect the expected collision probability. In
la,p] 1 log,a the second step | show that the expected collision probability
Ja Epa(lJra)z (D5)  will generically increase when we change these joint prob-
abilities in such a way that the sum over all signplk)
which leads with the definition of the positive function ~ Stays the same for the two new outcomes. N
The first step is done by writing the expected collision
1 log,a probability down as
Vak="3Tray
he conditi (Pd=2 p Lk (ED
to the condition Pe) = k12 p(k)2 ,
i=
I’ I’
[a] _ ,[B] . D6)
D'[«] ~ D'[A]

wherek in this context includes the choice of the alphabet
a and the two signals are the two possible ones given the
alphabet used.

By doing the split of the joint probabilities of the outcome

Since this condition has to be fulfilled for all values@fand
B with a=< g this is equivalent to

g 1'[a] I we find thatp(l')=up(l) and p(1")=(1—wx)p(l). We
— D,—;O. pick out the part of the expected collision probability refer-
da D'[a] ring to the outcome$’ and|” to find

Inserting the introduced functions we find this condition to

be ( ) i,I”)2 i'|)2
1) o+ B e B (2

8\/_ 2a—(1+a)na—2 _

*(1-a) Thus the expected collision probability remains unchanged
. ) under this split.
wh;chtr?an hie Shown tq be fulfilled faz < [0,1]. The basic step of changing the split of a columrRaihto
n the Same way using proportional columns into a split in arbitrary columns is done
APV, B] 1- by changing the probabilities depending on a paraméter
c ' _
da - pa(l-i— a)g
P(LIN=up(1h)+6 p(ll")=(1-p)p(ll)=46
we find the condition (E3
1-«

(D8) P2l =up(2)=56 p(21")=(1-w)p(2])+46.

f Vv a? €9
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The relevant terms of the expected collision probability then J 46
- 5 =
are 7590~ A= alp(1h + p(2D]
[p(L])+ 817+ [ up(2))— 6]

g(6):=
rIp(LD+p(21)] shows that the minimal value is reached #+ 0, which is
[(1—w)p(1))— 617+ [(1—w)p(2)) + 617 the proportional split. That means that the collision probabil-
(1—w[p(H+p2hH] : ity can only ir]creas_e for any other splits of an outcome.
Therefore Eve’s optimal strategy consists of a POM where
The derivative each POM element is of the forﬁlszIAk.
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