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We derive natural representations for two-mode squeezing operators. By natural we mean that the represen-
tations are composed by the eigenvectors of either one of the two two-mode quadrature operators for squeez-
ing. The technique of integration within an ordered product of operators provides us with a convenient method
of derivation.@S1050-2947~96!08207-8#

PACS number~s!: 03.65.Ca, 03.65.Bz, 42.50.Dv

I. INTRODUCTION

In Ref. @1# the explicit form of the common eigenvectors
of the relative positionQ12Q2 and the total momentum
P11P2 , of two particles which were considered by Einstein,
Podolsky, and Rosen in their argument that the quantum-
mechanical state vector is not complete@2#, is constructed. It
is

uh&5exp~2 1
2 uhu21ha†2h* b†1a†b†!u00&, ~1!

where h5h11 ih2 is a complex numbera†,b† are two-
mode creation operators,u00& is the two-mode vacuum state.
On the other hand, the common eigenvector ofQ11Q2 and
P12P2 is

uj&5exp@~2 1
2 uju21ja†1j* b†2a†b†!u00&, j5j11 i j2 .

~2!

A question thus naturally arises: what is the squeezing effect
of uj& under the two-mode squeezing transformation? Note
that theuj& state is an orthonormal and complete one@1#,

^j8uj&5pd~j12j18!d~j22j28!, E d2j

p
uj&^ju51. ~3!

In this way uj& is in essence different from the two-mode
squeezed state; the latter is in essence a generalized coherent
state which is nonorthogonal and overcomplete@3#. Thus it
seems necessary to answer the question. In Secs. II and III
we shall investigate howuj& and uh& transform under the
two-mode squeezing operator’s action, respectively. The re-
sult will show that thê ju ~or ^hu) representation is the natu-
ral language for describing the two-mode squeezing opera-
tors. In Sec. IV we explain this result and further point out

the relationship between theuj& state and the eigenvector of
a photocurrent operatorẐ of a heterodyne detector recently
studied in Ref.@4#. Through our discussions we shall make
full use of the newly developed technique of integration
within an ordered product~IWOP! of operators@5#.

II. NEW REPRESENTATION OF TWO-MODE SQUEEZING
OPERATOR IN Šjz VECTOR SPACE

By two-mode squeezing operator we mean

S5exp@l~a†b†2ab!#. ~4!

We want to show that in̂ ju representationS can be ex-
pressed as an integration projection operator, i.e.,

mE d2j

p
umj&^ju[U, m.0, ~5!

wherem5el is a squeezing parameter. Let us first show that
U defined by~5! is unitary,

UU†5m2E d2j

p
umj&^ju E d2j8

p
uj8&^mj8u515U†U, ~6!

where the orthogonal property ofuj& ~see Ref.@1#! is used.
Then by virtue of the IWOP technique we perform the inte-
gration in ~5! @note that the normal ordering ofu00&^00u is
:exp(2a†a2b†b):#,*Mailing and permanent address.
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U5mE d2j

p
:exp@2 1

2 uju2~11m2!1j~ma†1b!1j* ~mb†1a!2a†b†2ab2a†a2b†b#:

52m~11m2!21:exp$~11m2!212~ma†1b!~mb†1a!2~a†1b!~b†1a!%:

5sechlexp~a†b†tanhl!:exp@~sechl21!~a†a1b†b!#:exp~2abtanhl!, ~7!

which is just the normally ordered form of the two-mode squeezing operatorS. Thus we can identify

S5U5mE d2j

p
umj&^ju, m5el. ~8!

This is a new representation ofS. With this representation one can immediately know the squeezing effect caused by the
two-mode squeezing transformation, i.e.,

Suj&5mumj&5m exp@2 1
2m2uju21m~ja†1j* b†!2a†b†#u00&, m25

11tanhl

12tanhl
. ~9!

III. THE Šhz REPRESENTATION OF S

Using ~8! we operateS on the state vectoruh&,

Suh&5mE d2j

p
umj&^juh&. ~10!

As a result of the overlap between^ju and uh&,

^juh&5 1
2 exp@

1
2 ~j*h2jh* !#, ~11!

we have

Suh&5mE d2j

2p
umj&e~1/2!~j* h2jh* !5mE d2j

2p
expS 2

m2

2
uju21m~ja†1j* b†!1 1

2 ~j*h2jh* !2a†b†D u00&5
1

m
uh/m&.

~12!

which tells us that in̂hu representation the squeezing opera-
tor S can be expressed as

S5
1

mE d2h

p
uh/m&^hu; ~13!

this is consistent with the fact thatuh& is a Fourier transfor-
mation of uj& ~Ref. @6#!, e.g.,

E d2j

2p
uj&e~1/2!~j* h2jh* !5uh&. ~14!

IV. PHYSICAL EXPLANATION FOR S’S TWO NEW
REPRESENTATIONS

We now give a physical explanation for the results of
Secs. II and III. As one knows, the two-mode squeezing’s
criterion lies in the quadratures’ fluctuation

^X̂1
2&2^X̂1&

25~DX̂1!
25 1

4e
2l, ~DX̂2!

25 1
4e

22l,
~15!

whereX̂j ( j51,2) are two quadratures of optical field~3!

X̂15
1
2 ~Q11Q2!, Q15

1

A2
~a1a†!, Q25

1

A2
~b1b†!,

X̂25
1
2 ~P11P2!, P15

1

A2i
~a2a†!, P25

1

A2i
~b2b†!,

~16!

with @X̂1 ,X̂2#5 i /2 and^ & representing the expectation value
of operators in the two-mode squeezed vacuum state. From
~15! and ~16! we notice that two-mode squeezing may get
naturally characterized or described in the space spanned by
the eigenstates ofX̂1 . Remember that@Q11Q2 ,P12P2]
50, X̂1 can share common eigenstates withŶ15

1
2

(P12P2). This is why the two-mode squeezing operatorS
can have natural representation in theuj& state space. On the
other hand,X̂2 and its conjugate partnerŶ25

1
2(Q12Q2) can

also be chosen as a quadrature phase, andX2 shares a set of
common eigenstatesuh& with Ŷ2; thus it is not strange that
S can also have a natural representation by virtue of the
uh& state. Based on@1#

X̂1uj&5
1

A2
j1uj&, X̂2uh&5

1

A2
h2uh& ~17!
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and ~8! as well as~13! we deduce

SX̂1S
215m2E d2j

p
umj&^juX̂1E d2j8

p
uj8&^mj8u

5m2E d2j

p
umj&^mju

1

A2
j15

1

m
X̂1 , ~18!

SX̂2S
215

1

m2E d2h

p
uh/m&^h/mu

1

A2
h25mX̂2 . ~19!

Similarly we haveSŶ1S
215m21Ŷ1 , SŶ2S

215mŶ2 .
The new representation ofS can simplify many calcula-

tions about the effect of squeezing. As the first application of
~8! we calculate the action ofS on the two-mode coherent
state

SuZ1Z2&5mE d2j

p
umj&^juZ1Z2&

5sechlexp@2 1
2 ~ uZ1u21uZ2u2!1sechl~Z1a

†

1Z2b
†!1tanhl~a†b†2Z1Z2!#u00&. ~20!

Then using~8! and

^jumn&5e2~1/2!uju2(
l50

~21! l~j* !m2 ljn2 l

3
An!m!

l ! ~n2 l !! ~m2 l !!
, ~21!

we can easily obtain the overlap between number state and
squeezed number state:

^m8n8uSumn&5m^m8n8u E d2j

p
umj&^jumn&

5(
l ,k

~21! l1kdn1m8,m1n8~sechl!n1m82 l2k11m l2k1m82m
~n1m82 l2k!! @n!m!n8!m8! #1/2

l ! ~n2 l !! ~m2 l !!k! ~n82k!! ~m82k!!
.

~22!

In summary, we have presented a natural representation
for two-mode squeezing. This is consistent with the fact that
the quadratures for judging two-mode squeezing are given
by Eq. ~16!. The new representation is mathematically con-
cise and physically appealing because the two-mode squeez-
ing manifestly corresponds to the transformation fromuj& to
mumj&. Besides, it is interesting to point out that the state
uj& can be realized in some quantum optical experiments, for

example, in Ref.@4# the heterodyne eigenstate, which is the
eigenvector of the photocurrentẐ5a1b† has the same
structure with the stateuj& in our work. As one can easily see
when one rewritesuj& in Eq. ~2! as

uj&5eja†2j* au0&&, u0&&[e2a†b†u00&. ~23!

This form is just Eq.~10! of Ref. @4#, up to a phase factor.
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