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A mesoscopic beam of two-level Rydberg atoms, prepared in the lower state, interacts with a coherently
driven cavity mode. The dynamics is described by Maxwell-Bloch equations with atomic propagation. On
resonance, the system was predicted to exhibit multistability, upper-branch instabilities, and self-pulsing. In the
presence of atomic detuning its dynamical behavior is shown to include in addition period doubling, frequency
locking, quasiperiodicity, and chaos, thus providing a remarkable example of nonlinear dynamics of a passive
autonomous atomic system with propagation.@S1050-2947~96!03807-3#

PACS number~s!: 42.65.Sf, 42.65.Pc, 42.50.Fx

I. INTRODUCTION

Multistability and temporal instabilities, as well as self-
pulsing behavior, were recently predicted to occur in the
resonant interaction of a beam of two-level Rydberg atoms
with a microwave cavity mode and a coherent injected signal
@1,2#. Here, we extend our previous analysis by investigating
system dynamics at finite atomic detuning.

The physical system considered is similar to the microma-
ser @3#, but differs due to the presence of the injected field
and a larger number of atomsN in the cavity, which ranges
from a few tens to a few hundreds. As the covered regime is
intermediate between the micromaser (N,1) and ordinary
masers (N@1), we call the system a mesoscopic microma-
ser ormesomaser. The atoms are assumed to enter the cavity
in the lower state, so that the system acts as a nonlinear
absorber.

The mesomaser may be employed to explore a parameter
range of particular interest in cavity electrodynamics, in
which the atom-field coupling constant and the cavity mode
linewidth have the same order of magnitude. In the presence
of a strong driving field, the suppression of spontaneous
emission@4# and the occurrence of cavity-induced transitions
in a bichromatic field@5# have been predicted. On the other
hand, for a sufficiently weak driving field, the dynamics is
governed by atomic cooperation, leading to nonlinear and
collective phenomena. Assuming a saturation photon number
well above that of the micromaser, the system dynamics can
be described semiclassically by Maxwell-Bloch equations
~MBE!, propagation effects being taken into account@1,2#.
For Rydberg transitions, atomic relaxation may be neglected
so that the main contribution to the atomic linewidth is tran-
sit broadening due to the finite time of flight through the
cavity. This leads to remarkable differences compared with
the corresponding optical systems. As in optical bistability,
more then one stable state exists. However, for Rydberg at-
oms the rotation of the Bloch vector is not affected by atomic

relaxation, which leads to distinctive phenomena such as
multistability, i.e., the appearance of more then one hyster-
esis loop, as well asinstabilities in the upper-branch of the
hysteresis curve, andself-pulsing oscillations. These effects,
predicted for resonant interaction, are presently under experi-
mental investigation. None of them can occur in ordinary
absorptive single-mode bistability in the optical range@6#,
though for beams of two-level atoms crossing an optical
resonator~see, e.g.,@7#!, Rosenberger and Kim recently pre-
dicted the occurrence of multistability and temporal instabili-
ties if the transit time is smaller than the spontaneous life-
time @8,9#. These authors have obtained results similar to our
steady state analysis, but with multimode effects at the origin
of the instabilities, whereas for Rydberg atoms’ instabilities
are a single-mode phenomenon.

The subject of this paper is the dynamical behavior of the
mesomaser. In particular, we extend our previous analysis to
the case ofnonresonantinteraction. Steady-state and nonlin-
ear dynamics have been investigated on the basis of MBE
including atomic propagation and detuning effects. The lin-
ear stability analysis of the stationary solutions has been per-
formed with atomic detuning taken into account. We find
that, for moderate detuning, multistability and upper-branch
instabilities similar to the resonant case should occur~see
also Refs.@8,9#!. In contrast, remarkable differences show up
in the nonlinear dynamics of the system. In the detuned case
the number of independent system variables is doubled with
respect to resonance and correspondingly a much richer va-
riety in the dynamical behavior is predicted. By using the
driving field amplitude as a control parameter, we report ex-
amples of self-pulsing and precipitation as well as period
doubling, frequency locking, quasiperiodicity, and chaos. In
particular, chaos is approached when the period-doubling be-
havior, bifurcated from the~period-one! self-pulsing regime,
is perturbed by the onset of another independent frequency.
Hence the mesomaser is a remarkable example of a passive
atomic system exhibiting temporal instabilities and chaotic
behavior. Furthermore, this system displays dynamics be-
yond the wide class of autonomous systems exhibiting
Maxwell-Bloch or Lorentz chaos@10,11#. The atomic propa-
gation through the cavity makes the dynamics intrinsically
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space dependent so that the MBE include partial derivatives
as well as integrals in the longitudinal coordinate. The stud-
ies closest to this aspect of our investigations are some recent
ones by Oraevski and co-workers@12# on maser dynamics
~with an inverted medium, no injected signal and no detun-
ing!.

The organization of the paper is the following. In Sec. II
we introduce the mesomaser model, as described by suitably
scaled MBE including atomic propagation and detuning ef-
fects. The steady state behavior of the system is discussed in
Sec. III. In Sec. IV we present the linear stability analysis of
the stationary solutions. On this basis, the nonlinear system
dynamics is investigated in Sec. V. A discussion of the re-
sults is presented in Sec. VI.

II. THE MODEL

We describe the interaction of a monokinetic beam of
two-level Rydberg atoms with a spatially uniform mode of a
superconducting microwave cavity driven by a coherent
field. The average numberN of atoms in the cavity is taken
to range from a few tens to a few hundreds, while the satu-
ration photon number is assumed to be large enough for the
validity of the semiclassical approximation@1,2#. The dy-
namics of the system is described by the following dimen-
sionless MBE including propagation:

dx~ t̄ !

dt̄
52 k̄F ~11 iu!x~ t̄ !2y28CE

0

1

r2~ z̄, t̄ !dz̄G ,
~2.1a!

S ]

] t̄
1

]

] z̄
D r2~ z̄, t̄ !5x~ t̄ !r 3~ z̄, t̄ !2 idr2~ z̄, t̄ !, ~2.1b!

S ]

] t̄
1

]

] z̄
D r 3~ z̄, t̄ !52

1

2
@x~ t̄ !r1~ z̄, t̄ !1c.c.#, ~2.1c!

together with the complex conjugates of Eqs.~2.1a,2.1b!.
Here, t̄ and z̄ are time and space variables

t̄5t/t, z̄5z/vt ~0< z̄<1!, ~2.2!

scaled to the atomic transit timet5L/v, L being the
cavity length andv the atomic velocity. The Maxwell equa-
tion ~2.1a! describes the time evolution of the complex di-
mensionless amplitude of the cavity mode,

x5Vt52gat, ~2.3!

where uVu52guau is the Rabi frequency,g the Jaynes-
Cummings coupling constant, anduau2 the mean photon
number. The evolution of the cavity mode amplitudex re-
sults from the interplay of the decay due to the coupling to
the environment, the input from the driving field, and the
dipole coupling with the atomic polarization distributed
along the cavity. These three processes are governed by the
parameters

k̄5kt, ~2.4a!

y5V int52ga int, ~2.4b!

C5Ng2t2/4k̄, ~2.4c!

wherek is the linewidth of the cavity mode,y the dimen-
sionless amplitude of the coherent driving field, which is
taken to be real, andC the cooperation parameter.

Equations~2.1b,2.1c! are the Bloch equations with atomic
propagation for the evolution in space and time of the slowly
varying one-atom complex polarizationr6 and population
inversion 2r 3 . Note the absence of atomic relaxation terms,
which are negligible for Rydberg transitions. The conserva-
tion of the modulus of the Bloch vector follows,
r1r21r 3

251/4. Another consequence is that the atomic line-
width is set by the inverse time of flight, 1/t. The parameters
d andu describe the effects of atomic and cavity detuning,
respectively:

d5~va2v in!t, ~2.5a!

u5~vc2v in!t/ k̄, ~2.5b!

whereva is the~angular! frequency of the transition between
the two Rydberg levels,v in the ~reference! frequency of the
external signal, andvc the cavity mode frequency.

We assume that all atoms enter the cavity~planez̄50) in
the lower level, so that the boundary conditions for the MBE
are

r6~0,t̄ !50, r 3~0,t̄ !521/2. ~2.6!

Hence the system operates as anonlinear absorber.

III. STEADY-STATE REGIME WITH DETUNING EFFECTS

At steady state, the Bloch equations~2.1b,2.1c! with the
boundary conditions ~2.6! are easily solved for
r6( z̄),r 3( z̄):

r2~ z̄!52
x

2X H sin~Xz̄!2 id
12cos~Xz̄!

X J , ~3.1a!

r 3~ z̄!52
1

2
1

uxu2

X2 sin
2SXz̄2 D52

1

2
1P↑~ z̄!, ~3.1b!

where

X5Auxu21d2 ~3.2!

is the generalized Rabi frequency andP↑( z̄) the occupation
probability of the upper level. Its expression at the cavity exit
~planez̄51)

P↑
out5

uxu2

X2 sin
2SX2 D ~3.3!

is particularly important, since all experimental information
on system dynamics is obtained by monitoring the popula-
tions of the atomic levels outside of the cavity by the field
ionization technique@3#.

Substitution of~3.1! into the field equation~2.1a! gives
the (x2y) state equation@1#:

54 899NONLINEAR DYNAMICS OF A PASSIVE, COHERENTLY . . .



y5xF114C
12cosX

X2 1 i S u24Cd
12sincX

X2 D G , ~3.4!

where sincX5sinX/X. On resonance (d5u50, X5x) Eq.
~3.4! reduces to the state equation of absorptive multistability
@1#

y5x14C
12cosx

x
. ~3.5!

Essentially the same expressions were obtained indepen-
dently by Rosenberger and Kim@8,9#, though our model is
tailored for the mesomaser, whereas in the optical domain
some supplementary assumptions are required~see also Sec.
VI !. Before investigating the stability of the stationary solu-
tions ~3.1! and ~3.4!, we illustrate briefly the effects of
atomic and cavity detuning on steady state behavior. To this
end, we rewrite the state equation~3.4! in terms of the modu-
lus of the cavity mode amplitude:

y5uxuF S 114C
12cosX

X2 D 21S u24Cd
12sincX

X2 D 2G1/2.
~3.6!

Let us first setu50 ~no cavity detuning! to describe the
effect of atomic detuningd. In Fig. 1 we show the behavior
of the cavity field modulusuxu as a function of the driving
field amplitudey as follows from Eq.~3.6! for a fixed value
of the cooperation parameter,C55, and different values of
the atomic detuningd. On resonance,d50, we see an ex-
ample of multistable behavior~tristability!. Note the pres-
ence of bleaching points, where there is full transmission
(x5y). These points correspond to stationary states in which
the atoms perform an integer number of Rabi nutations dur-
ing the time of flight through the cavity. Off resonance we
see that the presence of an increasing atomic detuning brings
about a progressive rectification of the steady state curve,
which first becomes bistable and then simply monostable. In
the limit d@1, settingu50 in Eq. ~3.6! gives uxu&y, be-

cause both the absorptive and the dispersive oscillating non-
linearities become strongly attenuated.

Let us now examine the complementary situation with
d50 but nonvanishing cavity detuningu. In Fig. 2 we show
the steady state diagramuxu versusy from Eq. ~3.6! with
C55 as in Fig. 1, but for different values ofu. The effects
of frequency mismatch between the cavity mode and the in-
cident field turn out to be rather dramatic. By increasing the
parameteru, we see that not only is the curve rectified pro-
gressively, but also the power level of the cavity mode is
decreased strongly. Actually, from Eq.~3.6! ~with d50) we
can easily check that, in the limitu@1, the functionuxu(y)
approaches a linear behavioruxu.y/u for uxu@1, so that
eventuallyuxu!y.

In the following we shall consider the effect of atomic
detuning d, assuming that the cavity mode is resonantly
driven (u50). This choice is mainly motivated by the above
analysis. Furthermore, we shall see that while the presence of
cavity detuning does not increase the complexity of numeri-
cal simulations, it would make the linear stability analysis
more involved than necessary.

IV. LINEAR STABILITY ANALYSIS
WITH ATOMIC DETUNING

As a first step in the linear stability analysis of the station-
ary solutions of the mesomaser dynamics@Eqs. ~3.1! and
~3.4!#, we introduce a decomposition into real and imaginary
parts of the field and polarization variables, setting

x~ t̄ !5x1~ t̄ !1 ix2~ t̄ !, ~4.1a!

r7~ z̄, t̄ !5w1~ z̄, t̄ !6 iw2~ z̄, t̄ !, ~4.1b!

r 3~ z̄, t̄ !5w3~ z̄, t̄ !. ~4.1c!

The MBE ~2.1! ~with u50) become

dxi~ t̄ !

dt̄
52 k̄Fxi~ t̄ !2yd i ,128CE

0

1

wi~ z̄, t̄ !dz̄G ~ i51,2!,

~4.2a!

FIG. 1. Steady state with atomic detuning. Cavity field modulus
uxu vs driving field amplitudey, from Eq. ~3.6! with C55,u50,
and atomic detuning~a! d50, ~b! d52.5, ~c! d54.5, and ~d!
d510.

FIG. 2. Steady state with cavity detuning. Cavity field modulus
uxu vs driving field amplitudey, from Eq. ~3.6! with C55,d50,
and cavity detuning~a! u50, ~b! u51, ~c! u53, and~d! u55.
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S ]

] t̄
1

]

] z̄
Dw1,2~ z̄, t̄ !5x1,2~ t̄ !w3~ z̄, t̄ !6dw2,1~ z̄, t̄ !,

~4.2b!

S ]

] t̄
1

]

] z̄
Dw3~ z̄, t̄ !52@x1~ t̄ !w1~ z̄, t̄ !1x2~ t̄ !w2~ z̄, t̄ !#,

~4.2c!

whered i ,1 is the Kronecker symbol.
Next we consider small fluctuations around the stationary

solutions, with an assumed exponential time dependence:

xi~ t̄ !5xis1@exp~ l̄t̄ !dxi
~0!1c.c.# ~ i51,2!, ~4.3a!

wj~ z̄, t̄ !5wjs~ z̄!1@exp~ l̄t̄ !dwj
~0!~ z̄!1c.c.# ~ j51,2,3!.

~4.3b!

A stationary state will be stable if and only if Rel̄,0 for
each solutionl̄[lt of the eigenvalue problem for the lin-
earized dynamics. By inserting expressions~4.3!, the linear-
ized version of Eqs.~4.2! reads

l̄dxi
~0!52 k̄S dxi

~0!28CE
0

1

dwi
~0!~ z̄!dz̄D ~ i51,2!,

~4.4a!

S l̄1
]

] z̄
D dw1,2

~0!~ z̄!5x1s,2sdw3
~0!~ z̄!1w3s~ z̄!dx1,2

~0!

6ddw2,1
~0!~ z̄!, ~4.4b!

S l̄1
]

] z̄
D dw3

~0!~ z̄!52@x1sdw1
~0!~ z̄!1w1s~ z̄!dx1

~0!

1x2sdw2
~0!~ z̄!1w2s~ z̄!dx2

~0!#.

~4.4c!

The three linearized Bloch equations~4.4b,4.4c! with the ini-
tial conditionsdwj

(0)(0)50 can be solved for the deviations
dwj

(0)( z̄), providing the expressions ofdw1,2
(0)( z̄) to be inte-

grated in the right-hand side~rhs! of the linearized Maxwell
equation~4.4a!. Note that these latter equations would be
coupled in the presence of a finite cavity detuningu, so that
the subsequent calculations would be even lengthier. After
carrying out the integrations, we obtain the following linear
homogeneous set of eigenvalue equations:

~ l̄1 k̄2gJ1!dx1
~0!2gJ2dx2

~0!50, ~4.5a!

~ l̄1 k̄2gJ18!dx2
~0!2gJ28dx1

~0!50, ~4.5b!

where

g5
4Ck̄

X2~ l̄21X2!
~4.6!

and the expressions for the quantitiesJi ,Ji8( i51,2) as func-
tions of x1s ,x2s ,l̄,d are reported in Appendix A.

From Eqs.~4.5! we finally derive the characteristic equa-
tion for the eigenvaluel̄:

~ l̄1 k̄!22g~l̄1 k̄!~J11J18!1g2~J1J182J2J28!50.
~4.7!

Instead of solving Eq.~4.7! directly, we consider the param-
eter space (C,k̄,d,y) of the system and determine the bound-
ary between the stable and unstable regions of the stationary
solutions. One part of the instability boundary is set by the
change of sign of a real eigenvalue of the characteristic equa-
tion ~4.7!, i.e., by the condition for the change of stability
l 5̄0. Taking the limit l̄→0, after some calculations we
find that Eq.~4.7! reduces to

y

X

dy

dX
50. ~4.8!

Condition ~4.8! is satisfied whendy/dX50, that is the off-
resonance generalization of the well-known result,
dy/dx50, which proves the instability of all negative-slope
branches of the stationary (x2y) diagram, in agreement
with elementary physical considerations.

The remaining part of the instability boundary is deter-
mined by the change of sign of the real part of two complex
conjugate eigenvalues. Hence in Eq.~4.7! we set

l̄5 i n̄, ~4.9!

wheren̄[nt is a dimensionless frequency. When this part of
the boundary is crossed, the system undergoes a Hopf bifur-
cation in which a stationary state~fixed point in phase space!
loses its stability, being replaced by a state oscillating at
frequencyn ~limit cycle!. By inserting~4.9! into the charac-
teristic equation~4.7!, separating the real and the imaginary
parts, and using the expressions ofJi and Ji8, after lengthy
calculations we obtain the following two equations:

k̄22 n̄22g$@ k̄~a1b!2 n̄~e1 f !#uxsu212d2~dk̄1hn̄ !%1g2$@~ab2e f!2d2~nl12qr !#uxsu41d2„@d~a1b!

1h~e1 f !1m~n2 l !1p~q12r !#1d2@n~n2 l !22r ~q12r !#…uxsu21d2@~m22p2!1d2„~d22h2!

12~mn12pr !…1d4~n224r 2!#%50, ~4.10a!

2k̄n̄2g$@n̄~a1b!1 k̄~e1 f !#uxsu212d2~dn̄2hk̄!%1g2$@~a f1be!1d2~nq22rl !#uxsu41d2„@2h~a1b!1d~e1 f !

2p~n2 l !1m~q12r !#1d2@n~q12r !12r ~n2 l !#…uxsu222d2~mp2d2@2mr2np2dh#22d4nr !%50, ~4.10b!
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where the expressions for the quantitiesa,b, . . . ,r are re-
ported in Appendix B. Instead of the parametery, corre-
sponding to the incident field amplitude, we use the station-
ary value of the cavity field modulusuxsu, which is linked to
y by the state equation~3.6!. This is possible as all field
strengths can be expressed in terms ofuxsu.

We have studied Eqs.~4.10! numerically. For a set of
fixed values for the parameters (C,k̄,d) there is either no
real solution, if the system is stable, or there are two solu-
tions for the quantities (uxsu i ,n̄ i)( i51,2) . In the latter case the
system displays oscillatory behavior~Rel.0) for stationary
cavity field values in the region bounded by the two solu-
tions uxsu1 and uxsu2 . This boundary between stable and un-
stable steady states in theuxsu-k̄ plane of parameter space is
shown in Fig. 3 for fixedC andd. Crossing the boundary at
a bifurcation pointuxsu i , the system starts oscillating sponta-
neously with a small amplitude at frequencyn5 n̄ i /t. Thus,
the numerical solution of Eqs~4.10! allows us to determine
the regions of instability of the system, as well as the oscil-
lation frequency at the instability boundary.

From Fig. 3 it is evident that oscillatory behavior can only
occur if k̄ exceeds a threshold value, defined by the vertex of
the parabolic instability boundary. In Fig. 4 we show this
threshold value ofk̄ as a function of the remaining two
phase-space parametersC and d. Generally, for nontrivial
temporal instabilities to occur the cooperation parameterC
must be large enough for multistability and the product
Ck̄, which controls the atom-field coupling@see the rhs of
Eq. ~2.1a!#, must satisfy the inequalityCk̄@1. By the defi-
nitions ~2.4!, this inequality implies thatgAN.1/t, which
means that the atoms can cooperatively interact with the cav-
ity field at a rate larger than transit broadening. With increas-
ing d, the values ofk̄ andC at which self-pulsing sets in
increase, as demonstrated in Fig. 4.

As a relevant example, in Fig. 5 we show the results for
the stability of the stationary states when the system is mul-
tistable and detuned (C55 andd50.4) for different values
of the loss parameterk̄. Instabilities on positive-slope upper
branches of the (uxu2y) state diagram appear atk̄.1.4; their
extension grows with increasing values ofk̄, while small

unstable intervals appear also in the upper part of the lower
positive-slope branch. Eventually, as fork̄55.7 in Fig. 5 the
system exhibits an instability continuum from the lower to
the upper positive-slope branches, through the~trivially un-
stable! negative-slope branch. From these results it follows
that the presence of moderate detuning,d&1, does not sub-
stantially modify the instability conditions as well as their
physical interpretation encountered in the resonant situation
@2#. Dramatic differences from the resonant case, however,
show up in the mesomaser dynamics.

V. NONLINEAR DYNAMICS

To describe the dynamics of the system we numerically
integrated the MBE~2.1! with atomic propagation and de-
tuning effects, adapting a method devised by Risken and

FIG. 3. Boundary in theuxus-k̄ plane of parameter space for
nontrivial instability in the first upper branch, obtained from the two
solutionsuxsu1 anduxsu2 to Eqs.~ 4.10!. The steady state is unstable
in the shaded region. Fixed parameters areC55, d51.

FIG. 4. Threshold for the occurrence of instability in the first
upper branch of the steady-state solution, displayed as a surface in
the space spanned by the parametersC,d, and k̄. The system dis-
plays spontaneous oscillations for points above the plotted surface.
Note the divergence for small values ofC, corresponding to stable
behavior even for arbitrarily large values ofk̄.

FIG. 5. Upper-branch instability boundaries in the (uxu2y) dia-
gram, from Eqs.~4.10! with C55,d50.4, andk̄53 (d), k̄53.5
(*), k̄55.7 (!).
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Nummedal@13#. Some details are given in Appendix C. Our
goal was to obtain the time evolution of the system variables
at the exit of the cavity, which corresponds to the only ex-
perimentally accessible information. From the number of in-
dependent variables and parameters, which is four in both
cases, we expected the possibility to observe interesting dy-
namical behavior. On the other hand, we were guided by the
previous analysis of the system’s steady state together with
the results on resonant dynamics reported in Ref.@2#. There-
fore, we present results for parameter ranges considered in
the previous sections, obtained by using the incident field
amplitudey as the control parameter. More precisely, we
fixed the parametersC, k̄, d at values (C55, k̄55.7,
d50.4) for which we know that the system is multistable
and presents nontrivial temporal instabilities on upper
branches of the (uxu2y) steady-state curve~see Fig. 5!. Then
we integrated the MBE~2.1! with boundary conditions~2.6!
for different values ofy, choosing initial values of the cavity
mode variables very close to stationary points of the
(uxu2y) diagram.

The results of the numerical simulations are summarized
in Fig. 6, where the different dynamical regimes are indi-
cated for decreasing values of the control parametery. For
y>11.897 the linear analysis of Sec. IV predicts the stability
of upper-branch stationary states. Accordingly, we find that
after a short transient the system approaches the predicted
steady state (S↑ in Fig. 6!. The trajectories approach a fixed
point, which is the simplest attractor in the phase space as-
sociated with the system. Asy reaches the predicted insta-
bility boundary for the Hopf bifurcation,y511.896, the sys-
tem spontaneously develops undamped oscillations~self-
pulsing behavior!, i.e., a periodic regime (P in Fig. 6!
described by a limit cycle in phase space. At this instability
threshold the value of the frequency of self-pulsing oscilla-
tions turns out to be in excellent agreement with the predic-
tion of the linear stability analysis. This value,n̄15n1t
50.72, is within the atomic linewidth 1/t set by the inverse
transit time, as expected for a single-mode instability. If one
displaces the system from steady state in the stable region

just above the Hopf bifurcation~i.e., with y slightly above
the bifurcation value!, the cavity mode amplitude relaxes to
steady state through damped oscillations, whose broad power
spectrum has a maximum just atn̄5 n̄1 . As the bifurcation is
crossed, the power spectrum undergoes a spectacular narrow-
ing to a line atn̄5 n̄1 . An example of self-pulsing behavior
is illustrated in Fig. 7. We shall see that the oscillation at
n1 will survive through all dynamical regimes, with its value
slowly decreasing towards 1/2t as y decreases. The power
spectrum of system variables displays the presence of har-
monics of the self-pulsing frequencyn̄1 , whose weight
grows as the periodic oscillations become more and more
irregular.

The amplitude of self-pulsing oscillations, which is small
close to the bifurcation, initially increases as the control
parametery decreases. Let us recall that on resonance@2# the
oscillation amplitude eventually either~for smaller values
of k̄) decreases approaching the other bifurcation point, or
~for higher values ofk̄) is suddenly interrupted by the occur-
rence of a precipitation on the lower positive-slope branch,
where another stationary state is available. Hence, self-
pulsing and precipitation exhaust the dynamical effects oc-
curring on resonance. This is not the case in the presence of
atomic detuning.

The self-pulsing regime lasts until the control parameter
reaches a valuey59.359, where a subharmonic bifurcation
or period doubling occurs~P2 in Fig. 6!. An example of
period doubling behavior is illustrated in Fig. 8. The power
spectrum shows the characteristic structure with all harmon-
ics of the frequencyn̄1/2, while the line atn̄5 n̄1 remains the
dominant one. Asy is further decreased, these period-
doubled oscillations persist down toy58.70. Only in the
final portion of this interval, for some values ofy between
8.79 and 8.74, another frequencyn̄2, n̄1 appears in the
power spectrum. However, this new frequency is commen-
surate with the old ones, the ratio being a rational number

FIG. 6. Dynamical regimes for decreasing values of the driving
field amplitudey, starting from the upper branch of the (uxu2y)
curve forC55,d50.4,k̄55.7. S↑ (S↓) denotes the stationary state
on the upper~lower! branch;P denotes periodic~self-pulsing! re-
gime;P2 denotes the period-doubling regime. In the inset,C is the
chaotic regime; see text for the route to chaos.

FIG. 7. Self-pulsing regime.~a! Long-time behavior of the cav-
ity field modulusuxu. ~b! Power spectrum~PS! of cavity field ~loga-
rithmic power scale!. ~c! Limit cycle in the (x1 ,P↑

out) projection of
phase space. From Eqs.~C2! with C55, k̄55.7, d50.4,
y59.3659.
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( n̄1 / n̄253/2). More precisely,n̄2 appears to be locked with
n̄ 1/2, in such a way that the power spectrum shows a series
of lines at all multiples of a basic frequency
n̄ 1/65( n̄1/2)/35 n̄2/4, as shown in Fig. 9.
At y58.70, while the system still exhibits period-

doubling behavior, a frequencyn̄2 appears in the power
spectrum, but this time frequency locking does not occur
( n̄1 / n̄2,3/2), so that quasiperiodicity is introduced in the
dynamics. As shown in Fig. 10, besides the dominant lines at
harmonics of n̄1/2 ~period-doubling structure!, the power
spectrum displays an emerging substructure withn̄2 and the
combination tones betweenn̄1/2 andn̄2 ~quasiperiodic struc-
ture!. This process builds up rapidly~see Fig. 10 for
y58.6844), until suddenly, asy is decreased very slightly
~see Fig. 11 fory58.6843), the system apparently enters a
chaotic regime (C in Fig. 6!, corresponding to the motion on
a strange attractor in phase space. The time evolution of the

system variables as well as the trajectories in phase space
become unpredictable. The main indication of the occurrence
of deterministic chaos comes from the power spectrum,
which suddenly broadens to a continuum of frequencies
while its profile becomes very noisy. The only clear trace of
all past dynamical regimes survives in some sharp lines at
n̄ 1 and a few of its harmonics and~occasionally! subhar-
monics, where the values ofn̄1 are close to 0.5, i.e.,
n1>1/2t. The route of the system to chaos appears to be via
the onset of an incommensurate frequencyn̄2 , which desta-
bilizes the period-doubling regime described by the frequen-
cies n̄1 and n̄1/2. The problem of better characterizing and
proving the existence of a chaotic regime will be addressed
in Sec. VI.

The chaotic behavior is observed in the range

FIG. 8. Period-doubling regime. Same plots as in Fig. 5 for
y58.9322.

FIG. 9. Frequency locking regime. Same plots as in Figs. 5 and
6 for y58.7617. Note the period-six oscillations, due to the pres-
ence of a new and commensurate frequency~see text!.

FIG. 10. Route to chaos. Same plots as in Figs. 5–7, for
y58.6844. The power spectrum~b! shows the coexistence of pe-
riod doubling and quasiperiodicity due to the presence of a new and
incommensurate frequency~see text!.

FIG. 11. Chaos. Same plots as in Figs. 5–8, fory58.6843. Note
the dramatic change in the power spectrum~b! with respect to the
previous one@8~b!#.
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8.68>y>8.58. For lower values ofy ~see Fig. 12!, the
strong irregular oscillations make the system escape from the
basin of attraction of the strange attractor, and approach a
simple fixed point. In relation to the (uxu2y) state diagram,
we can say that the time evolution of the system ends with
the precipitation from unstable stationary states on the
positive-slope upper branch, down to stable states on the
positive-slope lower branch (S↓ in Fig. 6!.

VI. CONCLUSIONS

We have investigated the dynamics of a passive, coher-
ently driven, mesoscopic micromaser ormesomaser. Gener-
alizing our previous treatment@1,2# we have included atomic
detuning in the MBE with atomic propagation, describing the
system dynamics in the semiclassical approximation. In
these equations atomic relaxation is neglected, which is rea-
sonable for a beam of Rydberg atoms. As a consequence, the

modulus of the atomic Bloch vector is conserved, the atomic
linewidth is determined by transit broadening, and dissipa-
tion enters the nonlinear system only via the cavity decay.

The steady-state analysis shows the occurrence of multi-
stability and nontrivial temporal instabilities~Hopf bifurca-
tions! on upper branches of the state diagram of cavity field
versus incident field amplitude. Starting from these results,
and by using the external coherent field amplitude as a con-
trol parameter, we have investigated the time evolution of
the system variables at the cavity exit, which are the experi-
mentally relevant quantities.

Sampling the system with decreasing values ofy, we first
found the onset of spontaneous undamped oscillations~self-
pulsing! occurring at the instability threshold, the oscillation
frequency corresponding to that predicted by the stability
analysis. This frequency is equal to the control frequency of
relaxation oscillations observed when the system is displaced
from a stable stationary state. Self-pulsing originates from a
cooperative behavior of the mesoscopic atomic system,
which leads to an oscillatory energy exchange between at-
oms and cavity field occurring at a rate larger that the inverse
atomic transit time 1/t. In this case the system can self-
organize and develop periodic oscillations at frequencies that
are smaller than, or comparable, to 1/t. In particular, for
decreasing values ofy, the self-pulsing frequencyn1 de-
creases slowly, approaching the value 1/2t.

In contrast to the resonant case, where only self-pulsing
and ~for proper values ofk̄) precipitation to a lower stable
state can take place, the self-pulsing behavior leads to a sub-
harmonic bifurcation~period doubling!. Near the end of the
period-doubling regime, another oscillation frequency,
n2,n1 , is generated for some values ofy, but is always
locked to the first frequency, so that the dynamics remains
periodic. At the very end of the period-doubling regime, a
frequencyn2 is generated again, but this time it is incom-
mensurate ton1 . Thus period doubling, which gives the
dominating periodic structure of the power spectrum of sys-
tem variables, coexists with quasiperiodicity, which gives a
substructure of lines at the combination tones ofn1/2 and
n2 . This situation leads to a very sharp transition to a chaotic
regime, observed via a dramatic change in the power spec-
trum, which develops a broad frequency continuum with a
very noisy profile. Eventually the irregular oscillations make
the system precipitate to the stationary state available on the
low power branch of the stationary diagram.

Several remarks are in order concerning our results. The
mesomaser has been shown to be an interesting example of a
passive atomic system exhibiting nonlinear oscillations and
deterministic chaos. It is also quite different from most dy-
namical systems exhibiting Maxwell-Bloch or Lorentz
chaos. First of all, while the system is autonomous, the
atomic variables depend on both time and space. This has
consequences for the investigation of chaos. The question of
the occurrence of deterministic chaos should be answered by
the evaluation of~at least! the maximal Lyapunov exponent,
which is positive if nearby orbits in phase space diverge
exponentially. This extreme sensitivity of the system to ini-
tial conditions is a signature of chaotic dynamics. The point
is that the related algorithms have been developed for ordi-
nary autonomous systems. We are presently working on a
generalization that may be suitable to our system whose dy-

FIG. 12. Precipitation from upper to lower positive-slope branch
of the (uxu2y) diagram.~a! Time evolution of cavity field modulus
uxu. ~b! Trajectory of the representative point in the (x1 ,P↑

out) pro-
jection of phase space. Same parameters as in Figs. 5–9, except
y58.0063.

54 905NONLINEAR DYNAMICS OF A PASSIVE, COHERENTLY . . .



namics depend on both time and space variables.
Another remarkable difference with systems described

semiclassically by MBE is the absence of atomic relaxation,
which is well justified for Rydberg atoms in the microwave
regime. Multistability and instabilities were predicted even
in optical domain@8,9# for beams of two-level atoms cross-
ing a resonator. In that regime, however, spontaneous emis-
sion may only be neglected for extremely fast atomic beams,
and the uniform field limit must be assumed, whereas in the
mesomaser suitable conditions exist automatically. An inter-
esting connection with the optical domain is provided by the
recently demonstratedmicrolaser @14#, which is the optical
analog of the micromaser, because in that system the atomic
linewidth is really dominated by transit time. Having in mind
the passage from the micromaser to the mesomaser, we plan
to investigate the concept of a coherently drivenmesolaser,
which could be configurated as a microlaser operating with
higher atomic fluxes and with a lower finesse, in order to
favor collective atomic behavior in an intermediate-coupling
regime.

As for the feasibility of an experimental observation of
the effects described in this paper, the main difficulties re-

main those discussed in the analysis of the resonant case
@1,2#. Problems are effects of the atomic velocity distribu-
tion, also investigated by Rosenberger and Kim in the optical
case@9# and by Oraevski and co-workers for maser amplifi-
ers @12#, and inhomogeneous broadening induced by stray
fields. Since multistability appears to be experimentally ac-
cessible, and actually is under experimental investigation, we
are confident that dynamical effects may be observed in the
laboratory as well.
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APPENDIX A

In this appendix we report expressions for the quantities
Ji ,Ji8 ( i51,2) which appear in the eigenvalues equations
~4.5! and the characteristic equation~4.7! of the linear stabil-
ity analysis of the system:

J1~x1s ,x2s ,l̄,d!5
x2s

l̄
~dx1s1l̄x2s!@~cosX2e2 l̄ !2l̄sincX#1Fx1s2 2d~x1sx2s2l̄d!

l̄22X2

l̄~ l̄21X2!
G ~12e2 l̄cosX!

2
x1s
2

l̄
S 11

l̄2

X2 2e2 l̄ DXsinX1d~x1sx2s2l̄d!S 122
x

l̄21X2e
2 l̄sinXD , ~A1!

J2~x1s ,x2s ,l̄,d!5
x2s

l̄
~ l̄x1s2dx2s!@ l̄sincX2~cosX2e2 l̄ !#1

1

l̄
F x2s~ l̄x1s1dx2s!12l̄2d

x1s
2 1d2

l̄21X2 G ~12e2 l̄cosX!

2
x1sx2s

l̄
S 11

l̄2

X2 2e2 l̄ DXsinX1dXe2 l̄sinX2d~x1s
2 1d2!S 122

X

l̄21X2
e2 l̄sinXD , ~A2!

Ji8~x1s ,x2s ,l̄,d!5Ji~x2s ,x1s ,l̄,2d! ~ i51,2!. ~A3!

APPENDIX B

The coefficientsa,b, . . . ,r in Eqs. ~4.10! are defined as
follows:

a512cosn̄cosX2X2sincn̄sincX, ~B1!

b5cosX2cosn̄, ~B2!

d5
1

X22 n̄2
@2X2n̄2sincn̄sincX

2~X21 n̄2!~12cosXcosn̄ !#, ~B3!

e5 n̄Fsincn̄cosX1sincXS 12cosn̄

n̄2
X221D G , ~B4!

f5 n̄~sincn̄2sincX!, ~B5!

h5 n̄F11
~X21 n̄2!sincn̄cosX22X2cosn̄sincX

X22 n̄2
G , ~B6!

l5sincn̄~11cosX!2sincX, ~B7!

m5X2cosn̄sincX, ~B8!

n5122
X2cosn̄sincX2 n̄2sincn̄cosX

X22 n̄2
, ~B9!

p5X2n̄sincn̄sincX, ~B10!

q5
1

n̄
~12cosn̄ !~11cosX!, ~B11!
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r5
p2 n̄~12cosn̄cosX!

X22 n̄2
. ~B12!

APPENDIX C

In order to integrate numerically the MBE~2.1! with
atomic propagation and detuning effects, it is convenient to
introduce real and imaginary parts of the field and polariza-
tion variables, setting

x5x11 ix2 , ~C1a!

r75
u6 iv
2

, ~C1b!

r 35
w

2
. ~C1c!

The MBE ~2.1! are transformed into the following set of
coupled partial-derivative, integro-differential equations:

dx1~ t̄ !

dt̄
52 k̄Fx1~ t̄ !2y24CE

0

1

u~ z̄, t̄ !dz̄G , ~C2a!

dx2~ t̄ !

dt̄
52 k̄Fx2~ t̄ !24CE

0

1

v~ z̄, t̄ !dz̄G , ~C2b!

S ]

] t̄
1

]

] z̄
D u~ z̄, t̄ !5x1~ t̄ !w~ z̄, t̄ !1dv~ z̄, t̄ !, ~C2c!

S ]

] t̄
1

]

] z̄
D v~ z̄, t̄ !5x2~ t̄ !w~ z̄, t̄ !2du~ z̄, t̄ !, ~C2d!

S ]

] t̄
1

]

] z̄
Dw~ z̄, t̄ !52x1~ t̄ !u~ z̄, t̄ !2x2~ t̄ !v~ z̄, t̄ !.

~C2e!

The boundary conditions~2.6! become

u~0,t̄ !5v~0,t̄ !50, w~0,t̄ !521. ~C3!

By the definitions~C1!, the modulus of the atomic Bloch
vector, which is constant in the absence of atomic relaxation,
is now unitary:

u21v21w251. ~C4!

In fact, the space and time evolution of the Bloch vector can
be described by two angles on the unitary Bloch sphere~po-
lar and azimuthal!, thereby reducing the number of equations
from five to four, which is of course the number of indepen-
dent system variables. However, the presence of angles turns
out to complicate the numerical integration of the MBE. So
we preferred to integrate the set of Eqs.~C2!, for which the
relation ~C4! provides a check at each numerical step.

To integrate the MBE~C2! numerically, we have adapted
a method originally developed by Risken and Nummedal for
the analysis of laser dynamics@13#. It uses a finite-difference
scheme, which is second-order accurate in both space and
time. The steps of the scaled time and space grids are taken
equal to guarantee the stability of the solution.
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