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Nonlinear dynamics of a passive, coherently driven mesoscopic micromaser
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A mesoscopic beam of two-level Rydberg atoms, prepared in the lower state, interacts with a coherently
driven cavity mode. The dynamics is described by Maxwell-Bloch equations with atomic propagation. On
resonance, the system was predicted to exhibit multistability, upper-branch instabilities, and self-pulsing. In the
presence of atomic detuning its dynamical behavior is shown to include in addition period doubling, frequency
locking, quasiperiodicity, and chaos, thus providing a remarkable example of nonlinear dynamics of a passive
autonomous atomic system with propagatidi1050-294{6)03807-3

PACS numbd(s): 42.65.Sf, 42.65.Pc, 42.50.Fx

I. INTRODUCTION relaxation, which leads to distinctive phenomena such as
multistability, i.e., the appearance of more then one hyster-
Multistability and temporal instabilities, as well as self- esis loop, as well amstabilitiesin the upper-branch of the
pulsing behavior, were recently predicted to occur in thehysteresis curve, angklf-pulsing oscillationsThese effects,
resonant interaction of a beam of two-level Rydberg atomgpredicted for resonant interaction, are presently under experi-
with a microwave cavity mode and a coherent injected signaiental investigation. None of them can occur in ordinary
[1,2]. Here, we extend our previous analysis by investigatingabsorptive single-mode bistability in the optical rar{@,
system dynamics at finite atomic detuning. though for beams of two-level atoms crossing an optical
The physical system considered is similar to the micromaresonator(see, e.9.[7]), Rosenberger and Kim recently pre-
ser[3], but differs due to the presence of the injected fielddicted the occurrence of multistability and temporal instabili-
and a larger number of atomdé in the cavity, which ranges ties if the transit time is smaller than the spontaneous life-
from a few tens to a few hundreds. As the covered regime isime[8,9]. These authors have obtained results similar to our
intermediate between the micromas&f<{1) and ordinary steady state analysis, but with multimode effects at the origin
masers N>1), we call the system a mesoscopic microma-of the instabilities, whereas for Rydberg atoms’ instabilities
ser ormesomasefThe atoms are assumed to enter the cavityare a single-mode phenomenon.
in the lower state, so that the system acts as a nonlinear The subject of this paper is the dynamical behavior of the
absorber. mesomaser. In particular, we extend our previous analysis to
The mesomaser may be employed to explore a parametéie case ofionresonantnteraction. Steady-state and nonlin-
range of particular interest in cavity electrodynamics, inear dynamics have been investigated on the basis of MBE
which the atom-field coupling constant and the cavity modencluding atomic propagation and detuning effects. The lin-
linewidth have the same order of magnitude. In the presencear stability analysis of the stationary solutions has been per-
of a strong driving field, the suppression of spontaneousormed with atomic detuning taken into account. We find
emission 4] and the occurrence of cavity-induced transitionsthat, for moderate detuning, multistability and upper-branch
in a bichromatic field5] have been predicted. On the other instabilities similar to the resonant case should odsae
hand, for a sufficiently weak driving field, the dynamics is also Refs[8,9]). In contrast, remarkable differences show up
governed by atomic cooperation, leading to nonlinear andn the nonlinear dynamics of the system. In the detuned case
collective phenomena. Assuming a saturation photon numbehe number of independent system variables is doubled with
well above that of the micromaser, the system dynamics carespect to resonance and correspondingly a much richer va-
be described semiclassically by Maxwell-Bloch equationsiety in the dynamical behavior is predicted. By using the
(MBE), propagation effects being taken into acco[h2)]. driving field amplitude as a control parameter, we report ex-
For Rydberg transitions, atomic relaxation may be neglectedmples of self-pulsing and precipitation as well as period
so that the main contribution to the atomic linewidth is tran-doubling, frequency locking, quasiperiodicity, and chaos. In
sit broadening due to the finite time of flight through the particular, chaos is approached when the period-doubling be-
cavity. This leads to remarkable differences compared witthavior, bifurcated from théperiod-oné self-pulsing regime,
the corresponding optical systems. As in optical bistability,is perturbed by the onset of another independent frequency.
more then one stable state exists. However, for Rydberg aHence the mesomaser is a remarkable example of a passive
oms the rotation of the Bloch vector is not affected by atomicatomic system exhibiting temporal instabilities and chaotic
behavior. Furthermore, this system displays dynamics be-
yond the wide class of autonomous systems exhibiting
“Permanent address: Max-Planck-Institufr flQuantenoptik, Maxwell-Bloch or Lorentz chaogl0,11. The atomic propa-
D-85748 Garching, Germany. gation through the cavity makes the dynamics intrinsically
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space dependent so that the MBE include partial derivatives C=N9272/4k_, (2.49
as well as integrals in the longitudinal coordinate. The stud-
ies closest to this aspect of our investigations are some recefiherek is the linewidth of the cavity modey the dimen-
ones by Oraevski and co-workef$2] on maser dynamics sjonless amplitude of the coherent driving field, which is
(Wlth an inverted medium, no |nJeCtEd Slgnal and no detuntaken to be real, an@ the Cooperation parameter.
ing). o _ _ Equations2.1b,2.1¢ are the Bloch equations with atomic

The organization of the paper is the following. In Sec. Il propagation for the evolution in space and time of the slowly
we introduce the mesomaser model, as described by Suita rying one-atom Comp'ex polarizati(]'nt and popu'ation
scaled MBE including atomic propagation and detuning efijnyersion 2. Note the absence of atomic relaxation terms,
fects. The steady state behavior of'the system is dlscus'sed Which are negligible for Rydberg transitions. The conserva-
Sec. lll. In Sec. IV we present the linear stability analysis oftion of the modulus of the Bloch vector follows,
the stationary solutions. On this basis, the nonlinear systerp+r—+r§:1/4_ Another consequence is that the atomic line-
dynamics is investigated in Sec. V. A discussion of the reyyiqih is set by the inverse time of flight, 4/The parameters
sults is presented in Sec. VI. 5 and 6 describe the effects of atomic and cavity detuning,

respectively:
Il. THE MODEL

We describe the interaction of a monokinetic beam of 0= (wa= 0in) T, (2.59

two-level Rydberg atoms with a spatially uniform mode of a —

superconducting microwave cavity driven by a coherent 0=(wc— win) /K, (2.5b
field. The average numbé of atoms in the cavity is taken ) N

to range from a few tens to a few hundreds, while the satuWherew, is the(angulay frequency of the transition between
ration photon number is assumed to be large enough for thi'€ two Rydberg levelsy;, the (reference frequency of the
validity of the semiclassical approximatidd,2]. The dy- €xteral signal, and, the cavity mode frequency.
namics of the system is described by the following dimen- We assume that all atoms enter the cayitianez=0) in

sionless MBE inc|uding propagation: the lower |eVe|, so that the boundary conditions for the MBE
are
dx(t) R R . .
T —k (1+|6)x(t)—y—80f0r (z,t)dz|, r=(04)=0, ry(0t)=-1/2. (2.6)
(219 .
Hence the system operates asamlinear absorber
J J - I
(E_-F a—?>r(z,t)=X(t)r3(2,t)—i5r(Z, ), (21D 1. STEADY-STATE REGIME WITH DETUNING EFFECTS

At steady state, the Bloch equatiots1b,2.1¢ with the
boundary conditions (2.6) are easily solved for

1% J I I ki AN
(—_—k—?)rs( ,t):—z[x(t)r*(z,t)ﬁtc.c.], (219 r*(2),r3(2):

at  d
together with the complex conjugates of E¢2.1a,2.1h. r(z—):_i[sim@_mw], (3.19
Here,t andz are time and space variables 2X X
t=t/7r, z=zlvr (0<z=<1), 2.2 _ 1 |x|? Xz 1 .
( @3 ra(z =—§+|X—|zsin2(;j=—§+PT( ), (3.1b
scaled to the atomic transit time=L/v, L being the
cavity length and> the atomic velocity. The Maxwell equa- \yhere
tion (2.13 describes the time evolution of the complex di-
mensionless amplitude of the cavity mode, X= \/m (3.2

x=Qr=2gar, 23 s the generalized Rabi frequency aRel(z) the occupation

where || =2g|e| is the Rabi frequencyg the Jaynes- probability of the upper level. Its expression at the cavity exit
Cummings coupling constant, arjé|2 the mean photon (Planez=1)
number. The evolution of the cavity mode amplitudee- 5
sults from the interplay of the decay due to the coupling to p outzﬁsmz(f) (3.3
the environment, the input from the driving field, and the ! X? 2 '
dipole coupling with the atomic polarization distributed
along the cavity. These three processes are governed by tigeparticularly important, since all experimental information
parameters on system dynamics is obtained by monitoring the popula-
o tions of the atomic levels outside of the cavity by the field
k=kr, (2.49  ionization techniqug3].
Substitution of(3.1) into the field equation(2.13 gives
y=Q,7=20a,T, (2.4p  the (x—y) state equatiofl]:
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FIG. 1. Steady state with atomic detuning. Cavity field modulus
|x| vs driving field amplitudey, from Eq. (3.6) with C=5,0=0,
and atomic detuninga) 5=0, (b) §=2.5, (c) §=4.5, and(d)
5=10.

FIG. 2. Steady state with cavity detuning. Cavity field modulus
|x| vs driving field amplitudey, from Eqg. (3.6) with C=5,6=0,
and cavity detuninda) 6=0, (b) #=1, (c) #=3, and(d) #=5.

cause both the absorptive and the dispersive oscillating non-
1-sincX linearities become strongly attenuated.
9-4Co N ” (3.4 Let us now examine the complementary situation with
6=0 but nonvanishing cavity detunirgy In Fig. 2 we show
where sin&=sinX/X. On resonanced=#=0, X=x) Eq. the steady state diagrafm| versusy from Eg. (3.6) with
(3.4) reduces to the state equation of absorptive multistabilityc=5 as in Fig. 1, but for different values & The effects
[1] of frequency mismatch between the cavity mode and the in-
cident field turn out to be rather dramatic. By increasing the
1-cox parameterd, we see that not only is the curve rectified pro-
(3.5 gressively, but also the power level of the cavity mode is
decreased strongly. Actually, from E@.6) (with 5=0) we

Essentially the same expressions were obtained indepef@n €asily check that, in the limit>1, the function|x|(y)
dently by Rosenberger and Kifi8,9], though our model is approaches a linear behavipx|=y/¢ for |x|>1, so that
tailored for the mesomaser, whereas in the optical domaifventually|x|<y. _ _
some supplementary assumptions are requised also Sec. In Fhe following we shall conS|d(_ar the effe_ct of atomic
VI). Before investigating the stability of the stationary solu-detuning §, assuming that the cavity mode is resonantly
tions (3.1) and (3.4), we illustrate briefly the effects of driven (6=0). This choice is mainly motivated by the above
atomic and cavity detuning on steady state behavior. To thighalysis. Furthermore, we shall see that while the presence of

end, we rewrite the state equatit®h4) in terms of the modu- ~ cavity detuning does not increase the complexity of numeri-
lus of the cavity mode amplitude: cal simulations, it would make the linear stability analysis

more involved than necessary.

oX
y=X 1+4C—XQ—+I

y=x+4C

0—4Cs IV. LINEAR STABILITY ANALYSIS

(3.6 WITH ATOMIC DETUNING

y:|X| X2

1—sincX | 2]12
X .

1—cosX\?
1+4C—2 +

Let us first setd=0 (no cavity detuninyto describe the As a first step in the linear stability analysis of the station-
effect of atomic detuning. In Fig. 1 we show the behavior ary solutions of the mesomaser dynamjéxs. (3.1) and

of the cavity field modulusx| as a function of the driving (3.4], we introduce a decomposition into real and imaginary
field amplitudey as follows from Eq(3.6) for a fixed value  Parts of the field and polarization variables, setting

of the cooperation parameteZ,=5, and different values of ool el e

the atomic detuningd. On resonanced=0, we see an ex- X()=x1() +ixx(1), (4.13
ample of multistable behaviaftristability). Note the pres- ri(zﬁ=wl(z_ﬁtiw2(z—ﬁ (4.1b
ence of bleaching points, where there is full transmission ' ’ Y

(x=Yy). These points correspond to stationary states in which ra(z,t) =ws(z,t). (4.10

the atoms perform an integer number of Rabi nutations dur-

ing the time of flight through the cavity. Off resonance we The MBE (2.1) (with 6=0) become

see that the presence of an increasing atomic detuning bringsdx © )

about a progressive rectification of the steady state curve, =7 = KM =vs —SCI W(ZDdz =12
which first becomes bistable and then simply monostable. In  dt (DY 0 (20 (i=12),
the limit 6> 1, settingf=0 in Eq. (3.6) gives|x|=<y, be- (4.29
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J J I - R
(:l‘ %Wl’z(z, ):lez(t)W:.}(Z,t)i aNz’l(Z,t),

ot o9z

(4.2b
J J — - -
(_—_l— 4W3(th): _[Xl(t)Wl(Z,t)+Xz(t)Wz(Z,t)],

ot oz

(4.20

where §; ; is the Kronecker symbol.

Next we consider small fluctuations around the stationar

solutions, with an assumed exponential time dependence:
xi(h)=xs+[expA\) XV +cec] (i=1,2, (4.33

Wiz D =wis@ +lexpn ow? (@ el (j=123.
(4.3b

A stationary state will be stable if and only if R0 for
each solutiom=A\ 7 of the eigenvalue problem for the lin-
earized dynamics. By inserting expressidads3), the linear-
ized version of Eqs(4.2) reads

Nox(0 = _F(&§O)_80fl&N§O)(?)d7) (i=12,
0
(4.48

— _ _ _
N+ a—?) OWS(Z) = X1 2s0WS ) (2) + W3s(Z) 5x

* 56w)(2), (4.4b

— J _ _ _
N 6—4 S5 (2) = — [x150W,” (2) + Wig(2) 5%
z

+ XosOW5’ (2) + Wios(2) 8%5 7.
(4.40
The three linearized Bloch equatiofs4b,4.4¢ with the ini-
tial conditions&w}o)(O)=0 can be solved for the deviations

sw{®)(z), providing the expressions @w{%(z) to be inte-
grated in the right-hand sideghs) of the linearized Maxwell
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(k=737 %% — y3,8x0 =0, (4.59
(A k= 93} X0 — 435 0x( ¥ =0, (4.5b
where
- 4Ck o
T x?) '

and the expressions for the quantitiysJ; (i=1,2) as func-

){ions of X45,Xs5,\, 8 are reported in Appendix A.

From Eqgs.(4.5 we finally derive the characteristic equa-
tion for the eigenvalua.:

(NK)2= y(N+K) (I3 +3)) +72(313; — 3,35) =0.
4.7

Instead of solving Eq4.7) directly, we consider the param-
eter space(,k, 8,y) of the system and determine the bound-
ary between the stable and unstable regions of the stationary
solutions. One part of the instability boundary is set by the
change of sign of a real eigenvalue of the characteristic equa-
tion (4.7), i.e., by the condition for the change of stability

N =0. Taking the limitA—0, after some calculations we
find that Eq.(4.7) reduces to

y dy
X dX_O' (4.8
Condition (4.8) is satisfied wherdy/dX=0, that is the off-
resonance generalization of the well-known result,
dy/dx=0, which proves the instability of all negative-slope
branches of the stationaryx{y) diagram, in agreement
with elementary physical considerations.

The remaining part of the instability boundary is deter-
mined by the change of sign of the real part of two complex
conjugate eigenvalues. Hence in E4.7) we set

A=iv, 4.9
wherev=v7 is a dimensionless frequency. When this part of
the boundary is crossed, the system undergoes a Hopf bifur-
cation in which a stationary statéxed point in phase spage

equation(4.43. Note that these latter equations would beloses its stability, being replaced by a state oscillating at

coupled in the presence of a finite cavity detunihgso that

frequencyy (limit cycle). By inserting(4.9) into the charac-

the subsequent calculations would be even lengthier. Afteteristic equation(4.7), separating the real and the imaginary
carrying out the integrations, we obtain the following linear parts, and using the expressionsJpfandJ/, after lengthy

homogeneous set of eigenvalue equations:

calculations we obtain the following two equations:

K2—17— y{[k(a+b) —v(e+1)]|xd?+28%(dk+hv)} + y¥{[(ab—ef)— 52(nl+2qr)]|x{*+ 82((d(a+Db)

+h(e+f)+m(n—1)+p(q+2r)]+ 8 n(n—1)—

+2(mn+2pr))+ 8*(n>—4r?)]}=0,

2r(g+2r)])|xs|2+ 8 (m?—p?) + 6%((d?— h?)
(4.108

2Kv— y{[v(a+Db)+k(e+)]|xd2+28%(dv—hk)} + y2{[(af+ be)+ 52(ng—2r1)]|x{*+ 82( — h(a+b) +d(e+f)

—p(n—1)+m(g+2r)]+ 84[n(q+2r)+2r(n—1)])|xg>—26*(mp— [ 2mr—np—dh]—246%*nr)} =0,

(4.10b
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FIG. 3. Boundary in thgx|<-k plane of parameter space for
nontrivial instability in the first upper branch, obtained from the two
solutions|x¢|; and|x,|, to Egs.( 4.10. The steady state is unstable
in the shaded region. Fixed parameters @re5, 6=1.

De ’Uhlhg 3

FIG. 4. Threshold for the occurrence of instability in the first
where the expressions for the quantited, ... r are re- upper branch of the steady-state solution, displayed as a surface in
ported in Appendix B. Instead of the parametercorre-  the space spanned by the parame@y8, andk. The system dis-
sponding to the incident field amplitude, we use the stationplays spontaneous oscillations for points above the plotted surface.
ary value of the cavity field modulys,|, which is linked to ~ Note the divergence for small values ©f corresponding to stable
y by the state equatiofB.6). This is possible as all field behavior even for arbitrarily large values lof
strengths can be expressed in term$xgf.

We have studied Eqg4.10 numerically. For a set of unstable intervals appear also in the upper part of the lower
fixed values for the parameter€ k,d) there is either no Positive-slope branch. Eventually, as for 5.7 in Fig. 5 the
real solution, if the system is stable, or there are two solusSystem exhibits an instability continuum from the lower to
tions for the quantities|k|; 1V_i)(i=1,2)- In the latter case the the upper po_smve-slope branches, through(lhmally un-
system disp|ays osci”atory behav|m@\>o) for Stationary Stable negathG-SlOpe branch. From these results it follows
cavity field values in the region bounded by the two solu-that the presence of moderate detunifig;1, does not sub-
tions |x¢/; and|x,|,. This boundary between stable and un_stant_lally_modlfy th_e instability cond_ltlons as well as_thel_r
stable steady states in the|-k plane of parameter space is physical mtgrpr_etanon encountered in the resonant situation
shown in Fig. 3 for fixedC and 8. Crossing the boundary at [2]. Dram_atlc differences from the_resonant case, however,
a bifurcation poin{x; , the system starts oscillating sponta- SOW Up in the mesomaser dynamics.
neously with a small amplitude at frequeney: v; /7. Thus,
the numerical solution of Eqgt.10 allows us to determine V. NONLINEAR DYNAMICS
the regions of instability of the system, as well as the oscil-
lation frequency at the instability boundary.

From Fig. 3 it is evident that oscillatory behavior can only
occur ifk exceeds a threshold value, defined by the vertex o}
the parabolic instability boundary. In Fig. 4 we show this
threshold value ofk as a function of the remaining two IXI
phase-space parametéZsand 6. Generally, for nontrivial i
temporal instabilities to occur the cooperation parame&ter b
must be large enough for multistability and the product 10}
Ck, which controls the atom-field coupliigee the rhs of
Eq. (2.13], must satisfy the inequalit€k>1. By the defi-
nitions (2.4), this inequality implies thag /N> 1/, which 3
means that the atoms can cooperatively interact with the cav- 5
ity field at a rate larger than transit broadening. With increas-
ing &, the values ok and C at which self-pulsing sets in
increase, as demonstrated in Fig. 4.

As a relevant example, in Fig. 5 we show the results for , N , , , ) )
the stability of the stationary states when the system is mul- 8 12 y
tistable and detunedd=5 and §=0.4) for different values
of the loss parametey. Instabilities on positive-slope upper  FIG. 5. Upper-branch instability boundaries in the|¢y) dia-
branches of the|k| —y) state diagram appear let=1.4; their  gram, from Eqs(4.10 with C=5,6=0.4, andk=3 (®), k=3.5
extension grows with increasing values lof while small  (*), k=5.7 (x).

To describe the dynamics of the system we numerically
integrated the MBE2.1) with atomic propagation and de-
uning effects, adapting a method devised by Risken and
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FIG. 6. Dynamical regimes for decreasing values of the driving 5 o %
field amplitudey, starting from the upper branch of théx|—y) Xy
curve forC=5,6=0.4k=5.7. S; (S;) denotes the stationary state
on the upperlower) branch;P denotes periodi¢self-pulsing re- FIG. 7. Self-pulsing regimega) Long-time behavior of the cav-
gime; P2 denotes the period-doubling regime. In the in€eis the ity field modulus|x|. (b) Power spectruniPS of cavity field (loga-
chaotic regime; see text for the route to chaos. rithmic power scalg (c) Limit cycle in the (;,P$") projection of

phase space. From Eq4C2) with C=5, k=5.7, §=0.4,
Nummedal13]. Some details are given in Appendix C. Our y=9.3659.
goal was to obtain the time evolution of the system variables
at the exit of the cavity, which corresponds to the only ex-;

perimentally accessible information. From the number of in—JUSt above the Hopf bifurcatiofi.e., withy slightly above

. s . he bifurcation valug the cavity mode amplitude relaxes to
dependent variables and parameters, which is four in both i y P

cases, we expected the possibility to observe interesting d pleady state through damped oscillations, whose broad power

namical behavior. On the other hand, we were guided by thgPectrum has a maximum justaat: v, . As the bifurcation is
previous analysis of the system’s steady state together Witﬁrossed, _the power spectrum undergoes a spe_ctacular narrow-
the results on resonant dynamics reported in R&f.There- "9 to a line atv=wv,. An example of self-pulsing behavior
fore, we present results for parameter ranges considered [f llustrated in Fig. 7. We shall see that the oscillation at
the previous sections, obtained by using the incident fiel¢’s Will survive through all dynamical regimes, with its value
amp“tudey as the Contrﬂ parameter_ More preﬂse|y' WeSIOWIy decreasing towards ]afksy decreases. The power
fixed the parameter<, k, & at values C=5, k=5.7, spectrum of system variables displays the presence of har-
5=0.4) for which we know that the system is multistable monics of the self-pulsing frequency,, whose weight
and presents nontrivial temporal instabilities on upperdrows as the periodic oscillations become more and more
branches of the|k| —y) steady-state curv@ee Fig. 5. Then  irregular.
we integrated the MBE2.1) with boundary condition$2.6) The amplitude of self-pulsing oscillations, which is small
for different values of/, choosing initial values of the cavity close to the bifurcation, initially increases as the control
mode variables very close to stationary points of theParametey decreases. Let us recall that on resond@¢éhe
(Ix|-y) diagram. oscillation amplitude eventually eithéfor smaller values
The results of the numerical simulations are summarize®f k) decreases approaching the other bifurcation point, or
in Fig. 6, where the different dynamical regimes are indi-(for higher values ok) is suddenly interrupted by the occur-
cated for decreasing values of the control paramgiedfor  rence of a precipitation on the lower positive-slope branch,
y=11.897 the linear analysis of Sec. IV predicts the stabilitywhere another stationary state is available. Hence, self-
of upper-branch stationary states. Accordingly, we find thapulsing and precipitation exhaust the dynamical effects oc-
after a short transient the system approaches the predictedirring on resonance. This is not the case in the presence of
steady stateg; in Fig. 6). The trajectories approach a fixed atomic detuning.
point, which is the simplest attractor in the phase space as- The self-pulsing regime lasts until the control parameter
sociated with the system. Ag reaches the predicted insta- reaches a valug=9.359, where a subharmonic bifurcation
bility boundary for the Hopf bifurcationy=11.896, the sys- or period doubling occurgP2 in Fig. 6. An example of
tem spontaneously develops undamped oscillatisedf-  period doubling behavior is illustrated in Fig. 8. The power
pulsing behavior, i.e., a periodic regime R in Fig. 6)  spectrum shows the characteristic structure with all harmon-
described by a limit cycle in phase space. At this instabilityics of the frequency/2, while the line atv= v, remains the
threshold the value of the frequency of self-pulsing oscilla-dominant one. Asy is further decreased, these period-
tions turns out to be in excellent agreement with the predicdoubled oscillations persist down t0=8.70. Only in the
tion of the linear stability analysis. This value;=wv,7 final portion of this interval, for some values gfbetween
=0.72, is within the atomic linewidth %/set by the inverse 8.79 and 8.74, another frequenay<wv, appears in the
transit time, as expected for a single-mode instability. If onegpower spectrum. However, this new frequency is commen-
displaces the system from steady state in the stable regicsurate with the old ones, the ratio being a rational number
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FIG. 8. Period-doubling regime. Same plots as in Fig. 5 for FIG. 10. Route to chaos. Same plots as in Figs. 5-7, for

y=28.9322. y=8.6844. The power spectruth) shows the coexistence of pe-
riod doubling and quasiperiodicity due to the presence of a new and

(v /v,=3/2). More preciselyy, appears to be locked with incommensurate frequencgee text
v4/2, in such a way that the power spectrum shows a series
of lines at all multiples of a basic frequency system variables as well as the trajectories in phase space
v1/6=(v4/2)/3=v,/4, as shown in Fig. 9. become unpredictable. The main indication of the occurrence

At y=8.70, while the system still exhibits period- of deterministic chaos comes from the power spectrum,
doubling behavior, a frequency, appears in the power which suddenly broadens to a continuum of frequencies
spectrum, but this time frequency locking does not occumhile its profile becomes very noisy. The only clear trace of
(v1/v,<3/2), so that quasiperiodicity is introduced in the all past dynamical regimes survives in some sharp lines at
dynamics. As shown in Fig. 10, besides the dominant lines at; and a few of its harmonics an@ccasionally subhar-
harmonics ofv,/2 (period-doubling structude the power monics, where the values of, are close to 0.5, i.e.,
spectrum displays an emerging substructure wittand the  v,=1/27. The route of the system to chaos appears to be via
combination tones betwean/2 andv, (quasiperiodic struc- the onset of an incommensurate frequemgy which desta-
ture). This process builds up rapidlysee Fig. 10 for bilizes the period-doubling regime described by the frequen-
y=8.6844), until suddenly, ag is decreased very slightly ciesv; andv,/2. The problem of better characterizing and
(see Fig. 11 fory=8.6843), the system apparently enters aproving the existence of a chaotic regime will be addressed
chaotic regime C in Fig. 6), corresponding to the motion on in Sec. VI.
a strange attractor in phase space. The time evolution of the The chaotic behavior is observed in the range
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FIG. 9. Frequency locking regime. Same plots as in Figs. 5 and FIG. 11. Chaos. Same plots as in Figs. 5—-8)fer8.6843. Note
6 for y=8.7617. Note the period-six oscillations, due to the pres-the dramatic change in the power spectr(bnwith respect to the
ence of a new and commensurate frequefsee text previous ong8(b)].
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modulus of the atomic Bloch vector is conserved, the atomic
linewidth is determined by transit broadening, and dissipa-
tion enters the nonlinear system only via the cavity decay.

The steady-state analysis shows the occurrence of multi-
stability and nontrivial temporal instabilitie@{opf bifurca-
tions) on upper branches of the state diagram of cavity field
versus incident field amplitude. Starting from these results,
and by using the external coherent field amplitude as a con-
trol parameter, we have investigated the time evolution of
the system variables at the cavity exit, which are the experi-
mentally relevant quantities.

Sampling the system with decreasing valuey oive first
found the onset of spontaneous undamped oscillatisel$-
pulsing occurring at the instability threshold, the oscillation
frequency corresponding to that predicted by the stability
analysis. This frequency is equal to the control frequency of
relaxation oscillations observed when the system is displaced
from a stable stationary state. Self-pulsing originates from a
cooperative behavior of the mesoscopic atomic system,
which leads to an oscillatory energy exchange between at-
oms and cavity field occurring at a rate larger that the inverse
atomic transit time . In this case the system can self-
organize and develop periodic oscillations at frequencies that
POUt_ A S A A S are smaller than, or comparable, tor1in particular, for

decreasing values of, the self-pulsing frequency,; de-
creases slowly, approaching the value7l/2

In contrast to the resonant case, where only self-pulsing
and (for proper values ok) precipitation to a lower stable
state can take place, the self-pulsing behavior leads to a sub-
harmonic bifurcationperiod doubling. Near the end of the
period-doubling regime, another oscillation frequency,
v,<vq, iS generated for some values pf but is always
locked to the first frequency, so that the dynamics remains
periodic. At the very end of the period-doubling regime, a
frequencyv, is generated again, but this time it is incom-
mensurate tov,. Thus period doubling, which gives the
dominating periodic structure of the power spectrum of sys-

FIG. 12. Precipitation from upper to lower positive-slope branchtem variables, coexists with quasiperiodicity, which gives a
of the (x| —y) diagram.(a) Time evolution of cavity field modulus substructure of lines at the combination tonesvgf2 and
|x|. (b) Trajectory of the representative point in th;el(P?”‘) pro- v,. This situation leads to a very sharp transition to a chaotic
jection of phase space. Same parameters as in Figs. 5-9, excagigime, observed via a dramatic change in the power spec-
y=8.0063. trum, which develops a broad frequency continuum with a

very noisy profile. Eventually the irregular oscillations make
8.68=y=8.58. For lower values of (see Fig. 12 the the system precipitate to the stationary state available on the
strong irregular oscillations make the system escape from thiew power branch of the stationary diagram.
basin of attraction of the strange attractor, and approach a Several remarks are in order concerning our results. The
simple fixed point. In relation to theX| —y) state diagram, mesomaser has been shown to be an interesting example of a
we can say that the time evolution of the system ends witlpassive atomic system exhibiting nonlinear oscillations and
the precipitation from unstable stationary states on theleterministic chaos. It is also quite different from most dy-
positive-slope upper branch, down to stable states on theamical systems exhibiting Maxwell-Bloch or Lorentz
positive-slope lower branch§( in Fig. 6). chaos. First of all, while the system is autonomous, the
atomic variables depend on both time and space. This has
consequences for the investigation of chaos. The question of
the occurrence of deterministic chaos should be answered by

We have investigated the dynamics of a passive, coheithe evaluation ofat least the maximal Lyapunov exponent,
ently driven, mesoscopic micromaserrmesomaserGener-  which is positive if nearby orbits in phase space diverge
alizing our previous treatmept,2] we have included atomic exponentially. This extreme sensitivity of the system to ini-
detuning in the MBE with atomic propagation, describing thetial conditions is a signature of chaotic dynamics. The point
system dynamics in the semiclassical approximation. Iris that the related algorithms have been developed for ordi-
these equations atomic relaxation is neglected, which is reazary autonomous systems. We are presently working on a
sonable for a beam of Rydberg atoms. As a consequence, tigeneralization that may be suitable to our system whose dy-

IXI

VI. CONCLUSIONS
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namics depend on both time and space variables. main those discussed in the analysis of the resonant case
Another remarkable difference with systems described1,2]. Problems are effects of the atomic velocity distribu-

semiclassically by MBE is the absence of atomic relaxationtion, also investigated by Rosenberger and Kim in the optical

which is well justified for Rydberg atoms in the microwave case[9] and by Oraevski and co-workers for maser amplifi-

regime. Multistability and instabilities were predicted eveners[12], and inhomogeneous broadening induced by stray

in optical domain[8,9] for beams of two-level atoms cross- fields. Since multistability appears to be experimentally ac-

ing a resonator. In that regime, however, spontaneous emisessible, and actually is under experimental investigation, we

sion may only be neglected for extremely fast atomic beamsare confident that dynamical effects may be observed in the

and the uniform field limit must be assumed, whereas in thdaboratory as well.

mesomaser suitable conditions exist automatically. An inter-

esting connection with the optical domain is provided by the ACKNOWLEDGMENTS

recently demonstratenhicrolaser[14], which is the optical

analog of the micromaser, because in that system the atomic We thank Professor. A. Giorgilli and Professor L.A. Lu-
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to investigate the concept of a coherently driveasolaser

which could be configurated as a microlaser operating with APPENDIX A

higher atomic fluxes and with a lower finesse, in order to

favor collective atomic behavior in an intermediate-coupling In this appendix we report expressions for the quantities

regime. J;,J{ (i=1,2) which appear in the eigenvalues equations
As for the feasibility of an experimental observation of (4.5 and the characteristic equati¢h7) of the linear stabil-

the effects described in this paper, the main difficulties reity analysis of the system:

31(X06 Xae M 0) = 22 ( Sxyert Mepe) [ (COX — & M) — NSINGX ]+ | X2e— 8(X1Xs —B)i (1—e M co)
S1N2s81 1\ N S S 1s sN2s )\()\2+X2)
2 N2
X1s ) . N X s
——=| 1+ ﬁ—e XsinX + 5(x13x25—)\6)( 1- Zme sz) , (A1)
N Xos — N N 1 N N Xis—'— & .
J2(Xgs %25, N, 8) = == (X1~ OXos) [ASINX — (COX— €7 M) ]+ ={ Xog( \X15F OXps) + 2028 =——| (1~ e~ co)
A A A+ X
XaXos| 3 N xsink+ sxe vsinX— 503+ 89| 1-2 ~AsinX A2
N X2 e Si e si (X1s ) FJrxze Si , (A2)
3} (15, Xas N, 8) = Ji (Xos X1 N = 8)  (1=1,2). (A3)
|
APPENDIX'B e (X2+7?)sincrcosX — 2X2cosrsineX
The coefficientsa,b, ... r in Egs.(4.10 are defined as =y it X2—77  (B9)
follows:
a=1-coscoX — X2sincrsineX, (B1) | =sincv(1+cosX) —sincX, (B7)
b=coX—cow, (B2 m=X2cossincX, (B8)
1 T ZincySi o i
d= ———=[2X*/?sincrsineX X?cosrsineX — v?sincrcosX
X —v n=1-2 , (B9)
o X2—?
—(X?+7?)(1—cosXcow)], (B3)
_ p=X?psincvsineX, (B10)
R . 1-cow
e=?{smc:zco§(+ sch( — X?—1 1 (B4)
14
1 _
- g==(1—cow)(1+coxX), (B11
f=v(sincy—sincX), (B5) v
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(= p— v(1—cosrcosX) ' (B12 (L i)v(z_,_)z W OWED - 8uED. (€29
X?2=v? gt oz
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In order to integrate numerically the MBR2.1) with
atomic propagation and detuning effects, it is convenient to
introduce real and imaginary parts of the field and polarizape boundary condition€.6) become
tion variables, setting

(C2¢

X=X, +iXy, (Cla u(0t)=v(0)=0, w(Ot)=—-1. (C3)

_ By the definitions(C1), the modulus of the atomic Bloch
u=iv vector, which is constant in the absence of atomic relaxation,

rr=— €10 s how unitary:

ul+o?+wi=1. (C9

N

r;= (C1o
In fact, the space and time evolution of the Bloch vector can
be described by two angles on the unitary Bloch splfgeoe
lar and azimutha] thereby reducing the number of equations
from five to four, which is of course the number of indepen-
dxl(ﬁ o 1 dent system variables. However, the presence of angles turns
— = _Efxl(t)_y_4cf u(z_,t)d#, (C2a out to complicate the numerical integration of the MBE. So
dt 0 we preferred to integrate the set of E¢82), for which the
o relation (C4) provides a check at each numerical step.

dx,(t) — 1 To integrate the MBEC2) numerically, we have adapted

dt = —Efxz(t) _4Cj U(Z’t)d#’ (C2p a method originally developed by Risken and Nummedal for

the analysis of laser dynamif3]. It uses a finite-difference

( P 4) scheme, which is second-order accurate in both space and

The MBE (2.1) are transformed into the following set of
coupled partial-derivative, integro-differential equations:

0

— 4 i u(z—'t)le(ﬁw(z—,ﬁJr sv(zt), (C20 time. The steps of the scaled time and space grids are taken
ot equal to guarantee the stability of the solution.
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