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Hydrodynamic phenomena in laser physics: Modes with flow and vortices behind an obstacle
in an optical channel
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The transverse patterns of an active resonator with cylindrical optics are investigated. This resonator con-
figuration corresponds to a “channel” form of the potential for the “photon fluid.” Simultaneous emission of
different transverse modes along the channel, periodic nucleation of vortices in the form of a vortex street
(vortices of alternating senses of rotation appearing in a flow behind an obstaxdelerated flow in a “tilted
channel,” and destabilization of the one-directional flow in the channel are demonstrated and interpreted in
terms of tilted waves and beating of channel modes, as well as in fluid terms, illustrating the fluid dynamics
correspondence of clagsiasers[S1050-29476)02407-9

PACS numbes): 42.60.Jf, 42.65-k, 61.72.Lk

I. INTRODUCTION even number of mirrors in order not to suppress helical fields
[5] which correspond to optical vortices. The oscillator con-

We report on the transverse field structures of lasers witlsists of a bismuth silicateBSO) crystal(length 5 mm, cross
cylindrical resonator optics. We use a photorefractive oscilsection 55 mn¥) as the active medium and plane mirrors
lator (PRO) as a clas#-laser model systerfi]. For its con-  (one of them movable by a piezo element, and another one
venient dynamic time scale this arrangement lends itself patiltable by a piezo elementTwo cylindrical lenseqf=10
ticularly to studies of pattern dynamics in active opticalcm, with a distance of ca. 21 cm between there used to
systems[2—4]. The cylindrical resonator optics is used to fix the frequency spacing between neighboring transverse
produce predominantly one-dimensiondlD) phenomena. modes belonging to the same longitudinal order to a little
This arrangement, although corresponding to a large-aspeanore than 3/4 of the free spectral range. This means that the
ratio system, does not allow one to realize pure 1D cases iresonator configuration is stable in one direction: nearly con-
general: besides the purely 1D pattefmsth intensity vary-  centric with a spacing between adjacent transverse modes
ing only along one direction 2D patterns were also ob- belonging to different adjacent longitudinal orders of a little
served(with intensity varying also along the other direction less than one-quarter of a free spectral range. The order of
We interpret these quasi-2D patterns as higher-order 1D Heneighboring transverse mode thus increases not towards
mite modes with internal “flows” along the “channel” di- higher frequencies but towards lower frequencies in this
rection.

This arrangement allows us to obtain controllable, di-
rected streams of the “photon fluid” and to observe various cco
hydrodynamic analogs in nonlinear optics, like the vortex
street behind an obstacle in a flow. pumpeam P8

The experimental observation of these predominantly 1D —_— QM
patterns motivated our theoretical study. We give here the ™ {Ll,
general description of photon fluid motion in this channel Fef. Out
together with results of numerical simulations. The theoreti- I:I 8BS0
cal model of a PRO with a cylindrical resonator is given in
Sec. lll. In Sec. IV experimentally observed stationary PBs
modes with internal flows of such a resonator are shown and i M
discussed. When one of the resonator mirrors is tilted in the 2 h>/
channel direction, modes with accelerating flows are ob-
tained (Sec. V). Section V gives the case of two Hermite 2 u L
modes, simultaneously emitted at different locations along ret.m H I\ N
the channel of equal frequencies, whereas in Sec. VI those > “ ” V

M

modes beat, which can be hydrodynamically interpreted as a

von Karman vortex street. The question of multimode coex-

istence is also theoretically discussed in the same section. FiG. 1. Experimental setup. The active resonator is formed by

Dark waves traveling along the channel are shown in SeGour mirrorsM1-M4 and the active BSO crystal. PBS: polarizing

VII. beam splitter. The resonator formed k1, M3, M4, andM5 has
high finesse and is used for resonator-length stabilization. The ref-

Il. EXPERIMENTAL SETUP erence signal is provided by part of the pump radiation with polar-
ization perpendicular to pump and generated field traveling oppo-
We use a ring resonatgperimeter 2 m, Fig. Llwith an  sitely to the generated field.

Det.

[}
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near-concentric configuration. It is unstakif@ane in the
other direction; thus the field is confined in one direction and

free to move in the other direction, as in a channel.
Two aperturegrectangular slit and circular inigimit the -
excitation of transverse modes. The long side of the slit lies i

parallel to the focal line of the cylindrical lensés direc- x X

tion). To reproducibly excite certain mode families, the reso- v y

nator length is actively stabilized relative to the pump (a) (b)

(=emission frequency in a fashion described [B]. The

resonator length can be controlled by the movable mirror. A

change in length shifts the modes of the resonator with re-

spect to the gain line of the active medium. Thus it is pos- FIG. 2. Hydrodynamic potentigd(r) for the PRO in a resonator

sible to separately excite particular transverse-mode familiesvith cylindrical optics(a) without and(b) with tilt of one mirror
The slit is used to control the losses of the modes inythe into thex direction.

direction (perpendicular to the focal line of the cylindrical

lense$ so that we select the highest excitable transversehe PRO, andr=(r,¢) are the polar coordinates in this

mode by this aperture. Without the iris the optical field isplane; the coordinate is directed along the optical axis of

widely extended along théunstablg x direction. The iris  the system.

was used to limit the length of the patterns. This was also The spatial coordinates are normalized to the radius of the

found to increase the gain near the optical axis. fundamental GaussiafTEM,;) mode of the resonator, and
For optical amplification in the resonator the BSO photo-the frequencies3, and Aw, in (1) are normalized to the

refractive crystal is pumped by a single-frequency Aaser  width of the TEM,, to empty resonator resonance.

(514 nm whose intensity is around 3 mW/énThe crystal is The fast variable of optical field is adiabatically elimi-

illuminated uniformly(within 5%). As required for gain a dc nated from the systeifi) and(2), which leads to an equation

field (5 kV) is applied across the crystal, because BSO is af complex Swift-Hohenberg typk9]:

drift-type photorefractive materigb]. 10% of the light gen-

erated is coupled out and recorded by a charge-coupled de- g R R

vice (CCD) camera. - =h(1+ HE—i(B—dV3)E—(B—dV?)%E/4

B(r) B(r)

_ H 2
IIl. MODEL OF PRO (1+i)E[E[* )

WITH CYLINDRICAL RESONATOR OPTICS .
Here p=(ns—2)/ng is the pump parameted=Aw, /4, E

We employ the theoretical model for PRO’s discussed in=E, /E \/ﬁs is the normalized optical fieldorder param-
detail in[7,8,4]. The total optical fleIdE(r t) in the resona- eter‘) and m=tyn 2 is the normalizedslow) time. The cur-
tor and the total index of refraction(r, t) are written in  vature of the resonator mirrors is taken into account by a
terms_ of the slowly varying envelopeE(r t)=E,(r,t)  spatially dependent detuning paramegér). For resonators
exp(kp r—iwpt) +E(T, t)exp(ik, - F—i o) +c.c. and  with spherical mirrorg3(r) = By(r) — 1+AwL ; for resona-
n(r, t) n(r, t)exp(q r—iQt)+c.c. Here Ep(r t) and tors with cylindrical mirrors8(r)= By(r)— 1+Awly
E,(r,t) are the envelopes of thepump and generated fieldghe mirrors focus in thg direction.
respectively,Q=w,—w,, andg=k,—k, . Using the mean An equation similar to(3) was also derived for class-
field (singIe-Iongitudinal-moa)eapproximation and neglect- lasers if9—-11]. (3) differs from the clas#-laser amplitude
ing the depletion of the pump wave leads to the followingequation in the defocusing term onlghe imaginary part of
dynamical equations for drift-type PRQ[4,4]: the nonlinear term Since PROs and clagslasers are de-

scribed by the same amplitude equati(®), one sees the
PRO-clas#\-laser analogy1]. Consequently, the results re-

E:k[_(1+iﬁ0)Er+iAwl(€2/4—r2)Er+iEpn*], ported in this article on pattern formation in PROs are di-
Jt rectly applicable also for class-lasers.
(1) The role of the spatially dependeg(r) can be under-
stood from the hydro-dynamics analogy of nonlinear optics
an [10]. The Madelung transformation bring3) to the form of
o~ n=iQn/y=ngE,E /lo]. (2)  fluid-dynamical equations for the motion of a viscous and

quantized photon fluid in a potential of forg®(r). In the
case of a cylindrical resonator the potentil) is of the
HereIO=|Ep(F)|2+|Er(F)|2, « is the photon decay ratg,is  form of a channel as illustrated by Fig(@ When the reso-
the relaxation rate of the refractive index gratinggx), ngis  nator mirrors are tilted in thex(z) plane, the potential tilts
the saturated value of the refractive index graiidgpending as illustrated by Fig. @). In this case the expression for the
on the applied dc voltage B, is the resonator frequency potential3(r) transforms tB(r) = Bo(f) —1+Aw, y*>— ax,
detuning from the gain line centeAw, is the frequency wherea is the tilt parameter.

separation of adjacent transverse-mode families of the empty The analysis of the photon flow in the channel is done by
resonator, V2= (1/r2) (4% 92 )+ (Lr)(ald,)+ 3197 is the  using the complex Swift-Hohenberg equati@SHB (3). In
Laplace operator in the plane normal to the optical axis ohumerical investigations we integrated the initial PRO equa-
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tions (1) and (2). [We integratedl1) and(2) on a 256<256 Kk
spatial grid using a split-step numerical scheme.

IV. TRANSVERSE MODES (a)
OF CHANNEL ARRANGEMENT

1- =2 p—acn+ox

A. Modes in an untilted channel

The simplest stationary solutions of the CSk8} in the
case of zero tiltinga=0) are

E(F,7)=EpHn(y)e Y2 knxx (4)

Here E,=/p, dk3 ,=1—Bo—(n+1/2)Aw, , andH, is the (b)
nth-order Hermite polynomial. The expressi@h describes
a Gauss-Hermite mode transverse to the channel with a
phase gradient ¢ =Kk, , directed along the channel.
The physical meaning of the excitation of channel modes
can be understood in the following way. The modulus of the
total wave vector of the radiation is determined by the radia-
tion frequency|k|=wy/c. The total wave vector can be de-
composed into spatial components:

K2=K2 +k2+K2, (5)

The longitudinalz component ofk is fixed due to the
longitudinal-mode selection. In the case when only one chan-
nel mode is excited, thg component ofk is also fixed. (¢) \ 1~ -0 —atont X
Then thex component ofk (along the channglis kﬁvx l\\s\;\\
=k®~kj=k3. This means thak, ,, and consequently the ! ‘
angle ofk with respect to the optical axis, depend on the
detuning B,. The angle increases with increasing negative
detuning. Further increase of negative detuning leads to ex-
citation of the next higher-order transverse mode of the chan-
nel.

V*¢T:h((aknir‘g()jl(zg|t'reosfpot;]§3 I:)elg f|§vr\]/aas|ingltc;1r::;gmtoh:e_ ?23223! FIG. 3. (a) Solutions of the linearized version 8) in the form

. . of modes with accelerating flowthe indices indicate the transverse
the Madelung transformatiofi3] leads to the following re- rder of modes with floyw The plot may be considered also as the

lation petwegn the gradient of the phase, an(_j the velocity Oxmde tuning curve for the zero-tilt caée=0). (b) An illustration
flow: v=2dV¢=2dk, . In the PRO case this means that ;¢ »celeration of flow in geometrical optics(c) The tuning dia-
every local(alongx) perturbation of a mode moves with the g3 [analog of (a)] for the resonator configuration used in the
velocity v=2dk; , along the channellsee also Eq(7) be-  experimentsthe near-concentric case

low]. This can be seen by rewriting3) in terms of
x-dependent channel modég(x, 7):
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for experiments differs from that in Fig.(&. A near-
concentric configuration was used in the experiments. As a

2 2
ﬁ_ 2dk, ﬁ:p(1+i)fn+id i fzn +d%k2, ﬁ_fzn consequence, the neighboring higher-order transverse mode
Jt ©oox X 7 oox is located not to the rigtias in Fig. 3a)] but to the left. This

—(1+D)T|f,/2f 6) changes the mode tuning diagram significarftbee Fig.
nen 3(0)].

Here T=/%H2(y)exp(-2y?)dy, and E(F,7) The pure modes with flow exist only in an infinitely long

=f,(X,)Hp(Y)exp(—y?+ik, X). channel. In the case of a finite length of the channel the

Every longitudinal modulation of this channel mode in the traveling waves reflect from the ends of the channel, result-
first approximation moves along the channel axis, as detefd in standing waves. The standing wave-traveling wave
mined by the left-hand sidé.HS) terms of(6). Due to the competmon. depe_nds on the spauql Sitke Iength. of the
RHS terms 0f(6) the perturbation is additionally affected by channel as investigated ip9]. Following the analysis of9]
diffusion, diffraction, and nonlinear saturation during the it can be expected that in a relatively short channel a stand-
propagation. However, in the leading order the perturbatiotd wave alongx will be excited, while in a long but finite
moves along the channel with constant velogity 2dk,, , . channel the traveling wave dominates, but with nonzero
This is why we call(4) modes with flow(or tilted modes standing-wave componentsource and sinkat the channel

The mode tuning curve is given in Fig(s3, which sum-  €nds. Thus, in general, the resulting field is
marizes the above. The tuning curve in Figa)3s valid for ) . _

a single-longitudinal-mode PRO. However, the tuning curve  E(F,t)=H,(y)e Y f,.(x)ekn+f, _(x)e *nxX]. (7)
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This shows “ripples” along the mode with flow. The pres- of the following figures 8o)—5(d) was recorded with a larger
ence of ripples allows one to measure the velocity of the flowtilt angle than the figure before it. The patterns show the
in the mode. above vertical dark stripes whose mutual distances decrease
with the distance from the optical axis, corresponding to in-
B. Modes in a tilted channel creasing flow velocity. They also show that the maximum of
the intensity is shifted away from the optical axis with in-

The case of nonzero tilt of the chanriel#0) can modify creasing tilt angle

the modes in two aspects(l) the flow within the mode
accelerates along thedirection and(2) two different trans-
verse modes with flows can be simultaneously excited in the
channel. We calculated numerically modes with flow and modes
Acceleration can be understood from geometrical opticswith accelerating flow in the channel configuration of the
the angle of a light ray with respect to the optical axis in-PRO. The integration for a tilted channel of finite length
creases on each reflection from the tilted mirror, as illustrategiields “downhill” as well as “uphill” flow (Fig. 6). For
in Fig. 3(b). The solution of Eq(6) in the leading order also small values of tiltw, bistability between uphill and downhill

D. Numerical results

yields modes with accelerating flow: modes with flow was observdih the limiting case of zero
5 tilt (a=0) the bistability of left and right traveling modes is
dk x=1-Bo—Aw, (1/2=n)+ax, (8)  evident, because of symmetry consideratjokigith increas-
S N ing tilt, only the downhill wave remains. The ripples in Fig.
which is plotted in F_|g. G.i)' . indicate the remnants of the mode with opposite flow,
The acceleration in a tilted channel can also be interprete hich appear due to reflection from the boundaries at the
by considering that the resonator length is now a function o nds of the channel. The flow velocities within the funda-

; 2
the x coordinate. Consequentlk, andkj, are also func- mentalH, mode are plotted in Fig. 7 for different values of

tions ofx: tilt. With small deviations near the two ends of the channel
27q 27q the relationship fits satisfactorily with the square-root depen-
= ~— ! dence(8).
ke(x, @)= === —— (1+a'x/L). (9) (8)
HerelL is the resonator length amgiis the longitudinal-mode V. TWO MODES IN THE CHANNEL
number.(9) is inserted intd(5), wherek andk, arex inde- The previous section deals with relatively small tilts of
pendent. The result is the channel. This causes acceleration of flow in a single
27q\2  8(wq)? mode. Larger angles of tilt lead to simultaneous excitation of
ki(x,a')sz—ki—(—> ———=—a'x. (10 two different channel modes with flows. This situation is
L L schematically shown in Fig. 8, where TEMand the first

transverse mode TE} are simultaneously excited. The si-
multaneous excitation can be interpreted by considering that
the tilt of the channel results in different lengths of the reso-
. . . nator along the channel and thus different resonance condi-
Similarly to the case of zero tilt, two counterpropagating.. .
. . - tions. If the difference of resonator length corresponds to the
traveling waves are excited for a channel of finite length. : .
. : frequency separation between transverse modes, then the si-
One of the traveling waves travels uphill and the other down- oo ; ) .
i . o . .. multaneous excitation of neighboring transverse modes is
hill in the channel. This results again in a standing wave with

o i . : _ possible.
noneqU|d|stanf[ n_ode(siark vertical _strlpe)s The distance be A corresponding experimentally recorded pattdthe
tween nodes is inversely proportional to the local flow ve- d d third-ord d ith fl itted simul
locity. second- and third-order modes with flow emitted simulta-

neously is shown in Fig. 9.
. ) For investigation of this multimode case,
C. Experimental observations Eq. (38 is rewritten in mode decomposition:
In the experiment a narrow slit along theaxis was used E(F,7) Z1_, fo(x, )An(y)explk,x), where A.(y) are
in order to increase the losses of higher-order transversenvelopes of Hermite modes. Differently from the usual
modes(in the y direction, which allows us to excite only mode expansion, the coefficierfigare functions not only of
one mode with flow. Figure(4) shows the stationary pattern time 7, but also of coordinate&. Equation(3) for the non-
of the zero-order mode emitted from a resonator with ondilted channel transforms to
tilted mirror. The presence of the ripples allows the measure- 5

This leads to the same expressi@). The relation of the
actual tilting anglea (and the normalized oney) can be
obtained by comparin@) and (10).

2
ment_ of _flow velocity. Thg velocity incre_ases from Ieft_to ﬂ_ dk., ﬁ=p(l+i)fn+id J fzn +d2kﬁx d f2n
right in Fig. 4@). The velocity was determined by measuring ar 7 OX X " OX
the distances between adjacent nodes and bright maxima of -
intensity of Fig. 4a), and is given in Fig. &), which con- _ ; *
firms thek 2=x proportionality, with the slope proportional (1+|)k|;:o iamnficfi - (1)

to the tilt anglea.

A series of recordings similar to Fig. 4 but with different Here T'ynn= /" .AAALALdy are the transverse-mode
tilt angles is shown in Fig. 5, where Fig(a is recorded cross- and auto-correlation coefficientsl) is a 1D system
without tilt. The bright spot marks the optical axis. Each oneof coupled complex Ginzburg-Landau equations.
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FIG. 4. (a) Pattern of the fundamental mode in a resonator with a slightly tilted mirror. Minima and maxima of intensity maitied.
k2 as a function ofk measured fronta), indicating an accelerated flow.

In the case of only two transverse modes, the properties gfhase differences. Depending on the actual phase difference
solutions of(11) depend mainly on the values of cross cor- between the two modes the black stripe of themode can
relation coefficients between the two modes. The modesnd in the center between these moffelg. 10b)] or con-
compete if the normalized cross correlation of the modes isinue towards the left mode upward or downwdfeigs.
large: G;;=T}ij; /\Tiii VT'jj;; >3 and coexist if G;<3  10(&) and 1dc)].

(see alsq14]). We calculatedTable ) the cross-correlation
coefficientsG;; of the first ten modes. As seen, neighboring VI. NONSTATIONARY CHANNEL PATTERNS
modes with flows never do coexist. . )
This is in accordance with the experimental observations, ' the different transverse modes are of different frequen-

showing that two different modes with flows are always WeII,CieS.’ honstationary patterns oceur. To iIIustratg such dynam-
separated along the axis and have only a small zone of ics in the case of two modes with flow we multiply the mode

: Kok~
overlap along the axis as Fig. 9 illustrates. The interference ampllitkudf_si from(12) and (13) by phase factorg™ox"" 17
pattern of two modes without flow is plotted in Fig. 10 as @nd€" " 2. In this case, vortice¢phase singularities of

calculated by approximating the mode overlap by a tantih€ field appear in the overlap zone. Figuresdland 11b)
function: and show snapshots during a beat period calculated for an

interference pattern of the zero- and the first-order transverse
_1 _ -y? - modes. Both figure§11(a) and 11b)] show the following
Aolxy)=zli+tani=x)JHo(y)e ™, Holy)=1, 12)  from right to left. A straight dark stripe of the first-order

mode deforms into a wavy line whose amplitude increases

A(X,y)= %[1+tant(x)]H1(y)e‘y2, Hy(y)=Yy. tpwards the zero-order mode. The stripe breaks up into vor-
(13)  tices near the zero-order mode. The wavelength of the wavy

dark line and the distance between two neighboring vortices

Figure 10 shows the merging of black stripes in the overdepend on the relative flow velocity of the modes, which is

lap region between two transverse modes at three differemgroportional tok,,— Ky .
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()

FIG. 5. (a) Pattern like Fig. 4a) but without mirror tilt. (b)
—(d): The same as ifia) but with increasing tilt angle fronb) to
(d). @,=0.7, a;=1.4, ay=2.2 (arbitrary units.

(b)

FIG. 6. Modes with downhill(a) and uphill (b) flow in the
channel of finite lengthl ..n=8, the spatial coordinate is normal-
ized to the width of the fundamental Gaussian channel make
obtained by numerical integration @) and(2). A slit parallel tox
was introduced to restrict the generation to the fundamental mode
Hg of width dy=1.75. The mode with flow into the opposite direc-
tion to the dominating one is also present. This results in the ripples
along the mode. Parameters are0.075,n,=4 (p=0.5), y=0.01,

Aw,; =1, andBy=—0.75.

The frequency with which vortices move through a fixed
point on the vortex trajectory, corresponding to the beat fre-
quency of the two modes, is shown as measured as a func-
tion of resonator mirror tilt angle in Fig. 13. Near a particular
tilt angle « it is possible to completely stop the motion of
the vortices, which implies phase locking of the two modes.
For angles smalleflargep than aq the direction of vortex

Motion of the wavy dark line and periodic generation of
vortices occur if the overlapping modes have different fre-
guencieswy and w;. Then the pattern moves essentially
along thex direction corresponding to the difference fre-
guency between the modes. The vortices in addition are
moving outward in they direction. The vortices generated
alternate in topological charge. Positively charged vortices
move upward, negatively charged ones downward.

A. Vortex street

The periodic nucleation of vortices described is shown
experimentally in two snapshoffigs. 12a) and 1Zb)] for

the case of fundamental and first-order mode emitted. In this

O An8%
A
0.5 ESEA
N
a
X
X
0 VYXXI 1 1 1 1
-4 -2 2 4

case the mode overlap in space is much larger than in the F|G. 7. The variation of the flow velocity along ti, mode for
pattern of Fig. 9. The vortice8narked by rectanglg¢snove different tilts o. The parameters are as in Fig(écept for tiltsa).
away from the wavy black stripe on the right, alternately toCircles are for zero til=0, triangles«=0.1, squaresy=0.2, and
either the upper or lower part of the left side of the picture.crossesp=0.3.
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TEMoo Mo

FIG. 9. PRO emission pattern consisting of the secdieft)
B and third-(right) order one-dimensional transverse modes.

_ _ To stress the similarity with the hydrodynamic vortex
_ FIG. 8. Fundamental and first transverse modes emitted from gtreet further, the velocity-field corresponding to Fig(a)2
tilted channel resonator. obtained by the Madelung transformatifi8] of the optical

o _ field is shown in Fig. 1&). Vortices are marked by dots.
motion is to the right(left). The anglea, does not corre-  The ingredients of this experimental realization of vortex
spond to an untilted resonator. Frequency pulling of modegpstacle flow in a laser are as follows.
by the gain line determines the beat frequency. . (1) Two modes are emitted spatially separated but with
Figure 14 shows the intensity measured at two locationggme spatial overlap.

on the upper trajectory as a function of time while the reso- ) The \aves corresponding to these modes are tilted

With respect to the optical axis by different amou(dgfer-

the signals before and after the transition througlimarked ent flow velocities in the modgsThis creates the vortices as

Pnyoﬁc)mclearly shows the reversal of direction of the vortexa result of three-beam interferenEs]. The observation of

Figure 15 shows a snapshot series of the field corresponé{-Ortices hefe IS thus a def_inite experimental proof of the ex-
ing to Figs. 12a) and 12b) using interference with part of istence of tilted wavel7] In lasers. . : .
the pump beanil5]. These interferograms represent a posi- (3 The modes have different optical frequencies. This
tively charged vortex as a fork in the interference fringesrgsults in the dyngmlcs of the fI_ow. Itis .conce|vable that the
which opens upward and a negatively charged vortex at glfferent frequenqes and the dn‘ferent. tilts of the mode_s re-
fork opening downward. As apparent, Consecutive|y genersult in the fOlIOWII’lg way. One mode is detuned negatlvely
ated vortices alternate in topological charge. and consequently tilted and not frequency pulled. The other

We find it remarkable that this optical analog of vortex mode is detuned positiveluntilted wave fronts are parallel
creation behind an obstacle in a flqwortex streetcan be to the mirrors, and consequently frequency pylleh a
realized with only two modes. The “obstacle” here is rep- plane resonator with one tilted mirror the modes—in addi-
resented by the dark line of the Hermite 01 mode. Here théion to tilt—have the freedom to adjust their positions later-
photon density is zero as at the location of a real obstacle ially (in order to adjust their emission frequency to the center
a flow. This dynamic vortex street of an active lasing reso-of the gain ling; thus it is not completely evident in detail
nator reminds us of the static one in a diffraction patternhow the relative tilt and frequency difference comes about
behind a needlg12]. (probably due to nonlinear interaction of the two active

TABLE |. Normalized cross-correlation coefficients of the first ten Hermite mdftesn n=0 to 9:

Gij=Tijj /T V55
0 1 2 3 4 5 6 7 8 9

0 1.0 0.577 0.468 0.412 0.376 0.350 0.330 0.314 0.301 0.290
1 0.577 1.0 0.631 0.523 0.465 0.427 0.399 0.377 0.360 0.345
2 0.468 0.631 1.0 0.656 0.552 0.494 0.455 0.426 0.404 0.386
3 0.412 0.523 0.656 1.0 0.673 0.571 0.513 0.474 0.445 0.423
4 0.376 0.465 0.552 0.673 1.0 0.684 0.585 0.528 0.489 0.460
5 0.350 0.427 0.494 0.571 0.684 1.0 0.693 0.595 0.539 0.501
6 0.330 0.399 0.455 0.513 0.585 0.693 1.0 0.700 0.604 0.548
7 0.314 0.377 0.426 0.474 0.528 0.595 0.700 1.0 0.706 0.611
8 0.301 0.360 0.404 0.445 0.489 0.539 0.604 0.706 1.0 0.711
9 0.290 0.345 0.386 0.423 0.460 0.501 0.548 0.611 0.711 1.0
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(b)

FIG. 11. (a) Pattern calculated for the modes of Fig.(d0but
with nonzero mutual velocitytilt). (b) The same taken one-half
of a beat period later.

B. Lateral destabilization of flow

If two modes cross-correlate weaklgaij<§, then they
can be excited simultaneously in the whole length of the
channel, as follows fron{11). In the single-longitudinal-

© mode case such a situation is impossible, since all neighbor-

FIG. 10. (a) Calculated intensity pattern in the overlap region iNg transverse modes overlap too mu@dtable ) and com-
between zero{left) and first-(right) order transverse modes. The pete. However, using different longitudinal-mode families
two modes have the same frequency and tilb) and(c): The  such a situation can be realized. As seen from Fig. 3 the
same as irfa) but each taken one-quarter of the beat period after theeonfiguration used in the experiments allows one to make the
preceding panel. modes TEM, and TEM,, coincide in optical frequency.
These two modes overlap weakly, and as follows from Table

modes. The observed dynamics, and in particular the ap! €an coexist along the whole channel. .
pearance of vortices, in any case shows that a difference COrresponding recordings in Fig. 16 give a series of snap-

between the two modes in tilt and optical frequency exists irp10tS With a slightly tilted mirror. The motion shown can be
the experiment. explained by the beating between the fundamental mode and
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beat frequency {(Hz)
o
[ ]

5 A 10 15 20
change of tilt angle (p rad)

FIG. 13. Frequency of vortex nucleation in Figs(d2and 12b)
as function of tilt angle of one resonator mirror. At #it(=«) the
motion of vortices goes to zero, indicating mode locking.

Sec. IV. This pattern is similar to a Hermite moét ;.
Although there is no focusing along tledirection, the finite
aperture of the resonatdFresnel number5-10 lifts the

(b)

e merdg ' Aractat mmmmmmammnaaa transverse-modgalong thex direction frequency degen-
SRR DBttt eracy. Only a plane resonator of infinite Fresnel number
«---;} FAALTIN ST would have modes degenerate in frequency. Hermite modes
DI A ) ;
SRR E S PO RRES Hn, m, induced by the aperture were observed up to the ninth
R R R R i I I A R T ’ ; 3
BEBRRRERE RIS LAttt order(i.e.,Hg o). The transverse-mode spacing between such
IIIIIIiiIanI “7 priiers e neighboring modes was then 10% of the free spectral range.
R R R Y NSAP IO caaa i . . . . -
Tttt m Y v LS e On the right-hand side of Fig. 17 the intensity contour is
- - .- A A R L EE R . . . .
D B D D PP RN essentially straight, as the amplitude of the seconidrfer-
At A AY AY YW A S S At - . .
ing) mode is very small. The upper and lower edges of the
(c) pattern on the left side resemble a sinusoidal wave which is

traveling to the left. The upper and lower edges of the pattern
FIG. 12. (a) and (b): Snapshots of the vortex creation in the are deformed here in the same way as the dark central stripe.
overlap region between fundamental and first-order transvers&he motion of the profile and the wavy shape on the left side
modes. The wavy black line on the right splits into vorticesrked  of the picture are due t() the fundamental-mode amplitude
by rectanglesmoving to the left(experimental (c) Velocity field  jncreasing towards the left, although it is everywhere much
corresponding to Fig. 14), calculated by means of the Madelung smaller than the amplitude of the first-order mode, &&d
transformation. Vortices marked by dots. the difference in tilt between the first- and zero-order mode.

a weak fourth-order transverse mode whose frequency is
close to the frequency of the fundamental mode in this par-
ticular resonator and whose center is beyond the left edge of
the pictures. The pattern shown is similar to a wave moving
to the left on a rope with a fixed right end. This pattern 7T
corresponds to the destabilization of a one-dimensional chan-z
nel flow in the transverse direction.

The amplitude of the fourth-order mode beating with the
fundamental mode increases towards the left end of the pic-
ture, but it is still smaller there than the amplitude of the
fundamental mode. The right end of the fundamental mode
stays time independently at iysposition, because at this end
the field of the fourth-order mode is negligibly small.

Vertical dark stripes in the picture indicate again the ex-
istence of two waves, a right traveling wave and a left trav-
eling wave of the fundamental modsee Sec. Iy, which
interfere. Time (1s/div) —

A pattern similar to Fig. 16, resulting from beating be-
tween zero- and first-order transverse modes is shown in Fig. FIG. 14. |nten5ity measured at two points on the vortex trajec-
17. A dark vertical interference stripe divides the picture.tories of Fig. 12a) while changing the tilt of one resonator mirror.
The stripe is a part of a standing-wave pattern as explained iat tilt A (=qp) the direction of motion of the vortices reverses.

it:

(arb. un

Intensity
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(@)

(b)

FIG. 15. (8 and (b): Interferograms corresponding to Fig.
12(a). The “forks” correspond to a vortex. Direction of fork gives
the sign of the topological charge of the vorticés. and (b) are (b)
taken at different times.

FIG. 17. Snapshots of patterns of a wave traveling along the

We could not reproduce numerically the dynamics ob_first-ordert_ransverse mode Wit_h large amplitude_ on the left sid_e and
served experimentallythe series of snapshots in Figs. 16 small amplltydg on the right side. The patterp is due tp the simul-
and 17 which show the lateral destabilization of the funda- taneous emission of the fundamental mrﬁ_det5|de the picture on
mental mode with flow along the stream. The lateral destat-he lef). In (b) _the wave has traveled the distance of one-half of one
bilization in Figs. 16 and 17 is different from that predicted wavelength with respect t@).
theoretically(Figs. 14 and 1pand from what one may ex-
pect from the hydrodynamical analogy. This difference fol-
lows from the peculiarities of the tuning curve of our reso-

nator: as seen from Fig.(@ the fundamentaH, mode is

very close in frequency to the, mode, which results in a
beat between these two modes. We note that such a situation
never occurs in hydrodynamics, nor in the numerical integra-
tion of PRO equationg§l) and(2), where the modekl, and

H, are never neighboring ones in the single-longitudinal-
mode approximation.

C. Numerical results

Solutions containing modes from two neighboring mode
families may exist if modes with left and right flow direc-
tions are considered. Linear stability analysis(bf) shows
that the resonantly tuned moddd,(1—B,—3/2Aw,
=0=k,,=0) is unstable with respect to simultaneous exci-
tation of the left and right flowingd, modes. This means
that instead of a pure resonantly tunéti mode, the
“dressed” H; mode is emitted:

E(X,y,7)=Ag(y)[fg explikox)+fy exp(—ikex)]
+if AL(Y). (14

(b)

Here |f§|=|fo|?=p/(3T op09 and |f;|?=p/T';1;; Such a
numerically calculated dressét] mode is shown in Fig. 18,
and contains vortices with alternating topological charge.
The dressecH; mode is stationary, since time depen-
dence is absent ifL4). The value of detuning corresponding
to the stationaryH; mode is marked in Fig.(&) by an arrow.
FIG. 16. Snapshots of patterns of a wave of large wavelength When the resonator is tuned towards the higher transverse
traveling along the fundamental mode. modes (to the right from the arrow, +8,—3/2Aw,

(c)
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(2)

FIG. 18. Stationary dresseH; mode (Gaussiar-first-order
transverse moden an infinitely long channel as obtained from the
numerical integration ofl) and(2) with periodic boundaries along
x. Parameters am;,=4 (p=0.5), y=0.01,Aw, =1, B,=—0.5, and (b)
the length of the integration region alongs | .4,=10. Negative
detuning 8,<—0.5 results in translational motion of the intensity
distribution along the channel.

>0=k;,#0) the dressed modésimilar to the pure mode FIG. 19. Transverse instability of the stream and formation of
with flow) starts to move. The three-mode solution(bf) vortices in the widening of the channel as obtained from the nu-
takes the following form: merical integration of1) and(2) with periodic boundaries along
Parameters are;=4 (p=0.5, y=0.01, B8,=—0.30, andAw, =1
E(X,y,T)IAO(y){fg exfdi(ko+tky)x—iwT] (the inverse width of the channelwhich is a function ofx:

Aw, =1=1-0.25 co$2 X/ | chann-
+fo exd —i(kot+ky)x—iwr]}

+if 1AL (y)exp(ikoX). (15  the initially parallel stream of the photon fluid destabilizes,
and this leads to the appearance of optical vortices in the

Inserting(15) into (11) one obtaingik?=1—B,—3/2Aw, widened part of the channel. This means that in the narrow
[coinciding with (8) for the pure mode with floly Ppart of the channel the pure fundamental mbéldds emitted,
dk3=Aw, , ®=2dkyk,, and the mode coefficients, coin-  and in the wide part the dressed mddg is excited.
cide with those for stationary dressed mo@k$. The(phase Finally, a tilted channel of finite length was numerically
and group velocity of propagation of the dressed mode investigated. Conditions were as in Fig. 6, except for the
along the channel is= w/k,=2dk, and thus equals that of detuningf,: the detuning was chosen such that the funda-
the pure mode with flow. Since the intensity of the dressednental modeH, was emitted in the left part, and the mode
mode is modulated along theaxis (e.g., Fig. 18, the inten-
sity pattern also moves then as a traveling dressed mode,
differently from the pure mode with flow, where only the
nonzero phase gradieky indicates the flow in the mode.

The motion of dressed modes occurs when @retwo)
participating pure modes are off resonance. For the detunings
towards the higher-order transverse modesghe right of the ( a )
arrow in Fig. 3a)] the Hy, modes are off resonance, and thus
they are frequency pulleibee(15)]. This results in a trans-
lational motion of the dressed mode. For detunings towards
the lower-order modes, thd; mode is off resonance. This
results in an oscillatory motion of the dressed méalat yet
investigated in detail

Increase of negative detuning leads to emission of dressed
modes of higher order. As seen from Fidajg if the nth-

order mode is emitted, then all modes of order from Gto

may also be emitted. All of these modg@s order from 0 to (b) @ﬂ AN
n) result in annth-order dressed modd,, which travels — ©
with the velocity of the purenth-order mode with flow8]. ©

Coexistence of only two modes from the neighboring

mode families may occur when the channel is not perfectly g 20. Transverse instability of the stream and formation of
parallel. Due to imperfections in the chanriéhean cou-  yortices in the tilted channel of finite length, as obtained from the
pling between the modes occurs, violating the mode coeXisthumerical integration of1) and (2). Parameters are as in Fig. 6,
ence condition given abOVéﬁij<%)- Figure 19 shows the except for a slit. The slit was absent, which allowed excitation of
result of the integration of the PRO equatidfiy and(2) for  the higher-order modes and thus the transverse instabilities of the
a channel with widening. In the wider region of the channelphoton flow.
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(b) e (e)

FIG. 21. Snapshots of the third-order transverse mode with flow from the right to the left periodic in time. A dark structure moves
periodically from right to left. The dark vertical stripe and the other stationary vertical stripes of smaller contrast indicate a standing wave
due to simultaneous emission of the wave with opposite tilt. For details, see the text.

H; in the right part of the channel. As seen from Fig. 20 theperiod in which the motion is periodic. As can be seen, an
photon fluid accelerates along the tilted channel, until it deintensity minimum moves to the left. The intensity maximum

stabilizes and breaks into optical vortices. reaches the left end of the picture in Fig.(@1 At this time
the right part of the mode has the lowest intensity. After this
VII. TRAVELING WAVES the intensity drops in the left part and the intensity of the

right part rises again to a maximum. This evolution repeats
periodically. Some vertical dark stationary strip€sig.
21(d)] similar to the stripes in Fig. 4 can be seen as an
intensity modulation. These stripes indicate an acceleration
of the flow to the left obeying10).

A periodic motion of a dark stripe similar to Fig. 21 was
recently shown for a similar case of a photorefractive oscil-

As follows from [9] perturbations travel along the di-
rection with the velocity k. Such behavior is typical for
systems dominated by traveling wavds3,19. The spatial
perturbations(dark solitons, vorticesmove with the mean
flow of the traveling waves.

As follows from (6) (see alsd9]) the x- andt-dependent
part of such solutions can be described with a spatially trav

eling envelopea(x—ot) by lator with spherical mirrord20]. In this case the moving
pattern arose from the zero- and first-order Hermite modes
A(X,t)=Aga(x—uvt)ekxe ot (16) with a periodic modulation of the amplitudes caused by non-

linear mode interaction. The traveling dark wave of Fig. 21
with v=2dk,. Such periodically horizontally moving pat- can be interpreted similarly.
terns of the kind16) were experimentally observed with all It could otherwise also be a dark solitary wave as found in
transverse modes. Figure 21 uses the third-order mode as aor numerical integrations @B). We give one realization of
experimental example. It is a series of snapshots within onsuch a pattern in Fig. 22. There appear dip& “dark soli-
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VIIl. CONCLUSION

Optical flow phenomena have been demonstrated on a
photorefractive oscillator which is equivalent to a cléss-
laser near threshold. The observed patterns can be interpreted
in a mode picture or alternatively in a hydrodynamics anal-
ogy. The effect of tilting one resonator mirror on the beat
between two adjacent modes in space and the optical spec-

t trum, on the relative velocity between these transverse
modes, and on the pattern formation in the overlap region
was investigated. Periodic vortex creation in the overlap re-
gion between modes constitutes an example of real vortex
flow in an optical system of the kind of “vortex creation
behind an obstacle.” Transverse destabilization of one-
dimensional flow is found in the case of different field am-
plitudes of spatially separated modes.

Dark waves traveling in a single mode show agreement
with solutions of the complex Swift-Hohenberg equation for
the PRO and for clasa- lasers, for which stationary and
periodic solitary patterns were found. Those solitary waves
can be described by standing waves with a traveling enve-
lope.

FIG. 22. Periodic dynamics of the flow along the untilted chan-
nel as obtained by numerical integration (). Parameters are
p=1.5 andBy=—1.5; the other parameters are as in Fig. 6. The
coordinate along the channel is the horizontal one; time is the ver-
tical coordinate and changes oukt=120 from top to bottom. ACKNOWLEDGMENTS

tary waves’) of the field at one end of the channel, which  This work was supported by Deutsche Forschungsge-
move together with the flow. The velocity of the dark soli- meinschaft under Grant No. We743-9/1 and E. O. Goebel
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