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The transverse patterns of an active resonator with cylindrical optics are investigated. This resonator con-
figuration corresponds to a ‘‘channel’’ form of the potential for the ‘‘photon fluid.’’ Simultaneous emission of
different transverse modes along the channel, periodic nucleation of vortices in the form of a vortex street
~vortices of alternating senses of rotation appearing in a flow behind an obstacle!, accelerated flow in a ‘‘tilted
channel,’’ and destabilization of the one-directional flow in the channel are demonstrated and interpreted in
terms of tilted waves and beating of channel modes, as well as in fluid terms, illustrating the fluid dynamics
correspondence of class-A lasers.@S1050-2947~96!02407-9#

PACS number~s!: 42.60.Jf, 42.65.2k, 61.72.Lk

I. INTRODUCTION

We report on the transverse field structures of lasers with
cylindrical resonator optics. We use a photorefractive oscil-
lator ~PRO! as a class-A-laser model system@1#. For its con-
venient dynamic time scale this arrangement lends itself par-
ticularly to studies of pattern dynamics in active optical
systems@2–4#. The cylindrical resonator optics is used to
produce predominantly one-dimensional~1D! phenomena.
This arrangement, although corresponding to a large-aspect-
ratio system, does not allow one to realize pure 1D cases in
general: besides the purely 1D patterns~with intensity vary-
ing only along one direction!, 2D patterns were also ob-
served~with intensity varying also along the other direction!.
We interpret these quasi-2D patterns as higher-order 1D Her-
mite modes with internal ‘‘flows’’ along the ‘‘channel’’ di-
rection.

This arrangement allows us to obtain controllable, di-
rected streams of the ‘‘photon fluid’’ and to observe various
hydrodynamic analogs in nonlinear optics, like the vortex
street behind an obstacle in a flow.

The experimental observation of these predominantly 1D
patterns motivated our theoretical study. We give here the
general description of photon fluid motion in this channel
together with results of numerical simulations. The theoreti-
cal model of a PRO with a cylindrical resonator is given in
Sec. III. In Sec. IV experimentally observed stationary
modes with internal flows of such a resonator are shown and
discussed. When one of the resonator mirrors is tilted in the
channel direction, modes with accelerating flows are ob-
tained ~Sec. IV!. Section V gives the case of two Hermite
modes, simultaneously emitted at different locations along
the channel of equal frequencies, whereas in Sec. VI those
modes beat, which can be hydrodynamically interpreted as a
von Kármán vortex street. The question of multimode coex-
istence is also theoretically discussed in the same section.
Dark waves traveling along the channel are shown in Sec.
VII.

II. EXPERIMENTAL SETUP

We use a ring resonator~perimeter 2 m, Fig. 1! with an

even number of mirrors in order not to suppress helical fields
@5# which correspond to optical vortices. The oscillator con-
sists of a bismuth silicate~BSO! crystal~length 5 mm, cross
section 535 mm2! as the active medium and plane mirrors
~one of them movable by a piezo element, and another one
tiltable by a piezo element!. Two cylindrical lenses~f510
cm, with a distance of ca. 21 cm between them! are used to
fix the frequency spacing between neighboring transverse
modes belonging to the same longitudinal order to a little
more than 3/4 of the free spectral range. This means that the
resonator configuration is stable in one direction: nearly con-
centric with a spacing between adjacent transverse modes
belonging to different adjacent longitudinal orders of a little
less than one-quarter of a free spectral range. The order of
neighboring transverse mode thus increases not towards
higher frequencies but towards lower frequencies in this

FIG. 1. Experimental setup. The active resonator is formed by
four mirrorsM1–M4 and the active BSO crystal. PBS: polarizing
beam splitter. The resonator formed byM1,M3,M4, andM5 has
high finesse and is used for resonator-length stabilization. The ref-
erence signal is provided by part of the pump radiation with polar-
ization perpendicular to pump and generated field traveling oppo-
sitely to the generated field.
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near-concentric configuration. It is unstable~plane! in the
other direction; thus the field is confined in one direction and
free to move in the other direction, as in a channel.

Two apertures~rectangular slit and circular iris! limit the
excitation of transverse modes. The long side of the slit lies
parallel to the focal line of the cylindrical lenses~x direc-
tion!. To reproducibly excite certain mode families, the reso-
nator length is actively stabilized relative to the pump
~5emission! frequency in a fashion described in@5#. The
resonator length can be controlled by the movable mirror. A
change in length shifts the modes of the resonator with re-
spect to the gain line of the active medium. Thus it is pos-
sible to separately excite particular transverse-mode families.

The slit is used to control the losses of the modes in they
direction ~perpendicular to the focal line of the cylindrical
lenses! so that we select the highest excitable transverse
mode by this aperture. Without the iris the optical field is
widely extended along the~unstable! x direction. The iris
was used to limit the length of the patterns. This was also
found to increase the gain near the optical axis.

For optical amplification in the resonator the BSO photo-
refractive crystal is pumped by a single-frequency Ar1 laser
~514 nm! whose intensity is around 3 mW/cm2. The crystal is
illuminated uniformly~within 5%!. As required for gain a dc
field ~5 kV! is applied across the crystal, because BSO is a
drift-type photorefractive material@6#. 10% of the light gen-
erated is coupled out and recorded by a charge-coupled de-
vice ~CCD! camera.

III. MODEL OF PRO
WITH CYLINDRICAL RESONATOR OPTICS

We employ the theoretical model for PRO’s discussed in
detail in @7,8,4#. The total optical fieldE(rW,t) in the resona-
tor and the total index of refractionn(rW,t) are written in
terms of the slowly varying envelopes:Ē(rW,t)5Ep(rW,t)
exp(ikW p•rW2 ivpt)1E(rW,t)exp(ikW r•rW2 iv r t)1c.c. and
nW (rW,t)5n(rW,t)exp(iqW •rW2 iVt)1c.c. Here Ep(rW,t) and
Er(rW,t) are the envelopes of the pump and generated fields
respectively,V5vp2v r , and qW 5kW p2kW r . Using the mean
field ~single-longitudinal-mode! approximation and neglect-
ing the depletion of the pump wave leads to the following
dynamical equations for drift-type PRO’s@1,4#:

]Er

]t
5k@2~11 ib0!Er1 iDv'~¹W 2/42r 2!Er1 iEpn* #,

~1!

]n

]t
52g@n2 iVn/g2nsEpEr /I 0#. ~2!

HereI 05uEp(rW)u
21uEr(rW)u

2, k is the photon decay rate,g is
the relaxation rate of the refractive index grating~g!k!, ns is
the saturated value of the refractive index grating~depending
on the applied dc voltage!, b0 is the resonator frequency
detuning from the gain line center,Dv' is the frequency
separation of adjacent transverse-mode families of the empty
resonator,¹W 25(1/r 2)(]2/] f

2 )1(1/r )(]/] r)1]2/] r
2 is the

Laplace operator in the plane normal to the optical axis of

the PRO, andrW5(r ,f) are the polar coordinates in this
plane; the coordinatez is directed along the optical axis of
the system.

The spatial coordinates are normalized to the radius of the
fundamental Gaussian~TEM00! mode of the resonator, and
the frequenciesb0 and Dv' in ~1! are normalized to the
width of the TEM00 to empty resonator resonance.

The fast variable of optical field is adiabatically elimi-
nated from the system~1! and~2!, which leads to an equation
of complex Swift-Hohenberg type@9#:

]E

]t
5p~11 i !E2 i ~b2d¹W 2!E2~b2d¹W 2!2E/4

2~11 i !EuEu2. ~3!

Here p5(ns22)/ns is the pump parameter,d5Dv'/4, E
5Er /EpA2/ns is the normalized optical field~order param-
eter!, andt5tgns/2 is the normalized~slow! time. The cur-
vature of the resonator mirrors is taken into account by a
spatially dependent detuning parameterb(rW). For resonators
with spherical mirrorsb(rW)5b0(rW)211Dv'r

2; for resona-
tors with cylindrical mirrorsb(rW)5b0(rW)211Dv'y

2, if
the mirrors focus in they direction.

An equation similar to~3! was also derived for class-A
lasers in@9–11#. ~3! differs from the class-A-laser amplitude
equation in the defocusing term only~the imaginary part of
the nonlinear term!. Since PROs and class-A-lasers are de-
scribed by the same amplitude equation~3!, one sees the
PRO–classA-laser analogy@1#. Consequently, the results re-
ported in this article on pattern formation in PROs are di-
rectly applicable also for class-A lasers.

The role of the spatially dependentb(rW) can be under-
stood from the hydro-dynamics analogy of nonlinear optics
@10#. The Madelung transformation brings~3! to the form of
fluid-dynamical equations for the motion of a viscous and
quantized photon fluid in a potential of formb(rW). In the
case of a cylindrical resonator the potentialb(rW) is of the
form of a channel as illustrated by Fig. 2~a!. When the reso-
nator mirrors are tilted in the (x,z) plane, the potential tilts
as illustrated by Fig. 2~b!. In this case the expression for the
potentialb(rW) transforms tob(rW)5b0(rW)211Dv'y

22ax,
wherea is the tilt parameter.

The analysis of the photon flow in the channel is done by
using the complex Swift-Hohenberg equation~CSHE! ~3!. In
numerical investigations we integrated the initial PRO equa-

FIG. 2. Hydrodynamic potentialb(r ) for the PRO in a resonator
with cylindrical optics~a! without and~b! with tilt of one mirror
into thex direction.
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tions ~1! and ~2!. @We integrated~1! and ~2! on a 2563256
spatial grid using a split-step numerical scheme.!

IV. TRANSVERSE MODES
OF CHANNEL ARRANGEMENT

A. Modes in an untilted channel

The simplest stationary solutions of the CSHE~3! in the
case of zero tilting~a50! are

E~rW,t!5EnHn~y!e2y2/21 ikn,xx. ~4!

HereEn5Ap, dkn,x
2 512b02(n11/2)Dv' , andHn is the

nth-order Hermite polynomial. The expression~4! describes
a Gauss-Hermite mode transverse to the channel with a
phase gradient¹W f5kWn,x directed along the channel.

The physical meaning of the excitation of channel modes
can be understood in the following way. The modulus of the
total wave vector of the radiation is determined by the radia-
tion frequency,ukW u5w0/c. The total wave vector can be de-
composed into spatial components:

kW25kn,x
2 1ky

21kz
2. ~5!

The longitudinal z component ofkW is fixed due to the
longitudinal-mode selection. In the case when only one chan-
nel mode is excited, they component ofkW is also fixed.
Then the x component ofkW ~along the channel! is k n,x

2

5kW22k y
22k z

2. This means thatkx,n , and consequently the
angle of kW with respect to the optical axis, depend on the
detuningb0. The angle increases with increasing negative
detuning. Further increase of negative detuning leads to ex-
citation of the next higher-order transverse mode of the chan-
nel.

The gradient of the field phase along the channel
¹W f5(kn,x,0) corresponds to a flow along the mode. Indeed,
the Madelung transformation@13# leads to the following re-
lation between the gradient of the phase, and the velocity of
flow: vW 52d¹W f52dkWn,x . In the PRO case this means that
every local~alongx! perturbation of a mode moves with the
velocity vW 52dkWn,x along the channel@see also Eq.~7! be-
low#. This can be seen by rewriting~3! in terms of
x-dependent channel modesf n(x,t):

] f n
]t

22dkn,x
] f n
]x

5p~11 i ! f n1 id
]2f n
]x2

1d2kn,x
2 ]2f n

]x2

2~11 i !Gu f nu2f n. ~6!

Here G5*2`
` H n

4(y)exp(22y2)dy, and E(rW,t)
5 f n(x,t)Hn(y)exp~2y21 ikn,xx!.

Every longitudinal modulation of this channel mode in the
first approximation moves along the channel axis, as deter-
mined by the left-hand side~LHS! terms of~6!. Due to the
RHS terms of~6! the perturbation is additionally affected by
diffusion, diffraction, and nonlinear saturation during the
propagation. However, in the leading order the perturbation
moves along the channel with constant velocityv52dkn,x .
This is why we call~4! modes with flow~or tilted modes!.

The mode tuning curve is given in Fig. 3~a!, which sum-
marizes the above. The tuning curve in Fig. 3~a! is valid for
a single-longitudinal-mode PRO. However, the tuning curve

for experiments differs from that in Fig. 3~a!. A near-
concentric configuration was used in the experiments. As a
consequence, the neighboring higher-order transverse mode
is located not to the right@as in Fig. 3~a!# but to the left. This
changes the mode tuning diagram significantly@see Fig.
3~c!#.

The pure modes with flow exist only in an infinitely long
channel. In the case of a finite length of the channel the
traveling waves reflect from the ends of the channel, result-
ing in standing waves. The standing wave–traveling wave
competition depends on the spatial size~the length of the
channel! as investigated in@9#. Following the analysis of@9#
it can be expected that in a relatively short channel a stand-
ing wave alongx will be excited, while in a long but finite
channel the traveling wave dominates, but with nonzero
standing-wave components~source and sink! at the channel
ends. Thus, in general, the resulting field is

E~rW,t !5Hn~y!e2y2@ f n1~x!eikn,xx1 f n2~x!e2 ikn,xx#. ~7!

FIG. 3. ~a! Solutions of the linearized version of~3! in the form
of modes with accelerating flow~the indices indicate the transverse
order of modes with flow!. The plot may be considered also as the
mode tuning curve for the zero-tilt case~a50!. ~b! An illustration
of acceleration of flow in geometrical optics.~c! The tuning dia-
gram @analog of ~a!# for the resonator configuration used in the
experiments~the near-concentric case!.
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This shows ‘‘ripples’’ along the mode with flow. The pres-
ence of ripples allows one to measure the velocity of the flow
in the mode.

B. Modes in a tilted channel

The case of nonzero tilt of the channel~aÞ0! can modify
the modes in two aspects:~1! the flow within the mode
accelerates along thex direction and~2! two different trans-
verse modes with flows can be simultaneously excited in the
channel.

Acceleration can be understood from geometrical optics:
the angle of a light ray with respect to the optical axis in-
creases on each reflection from the tilted mirror, as illustrated
in Fig. 3~b!. The solution of Eq.~6! in the leading order also
yields modes with accelerating flow:

dkn,x
2 512b02Dv'~1/22n!1ax, ~8!

which is plotted in Fig. 3~a!.
The acceleration in a tilted channel can also be interpreted

by considering that the resonator length is now a function of
the x coordinate. Consequently,kz and k x,n

2 are also func-
tions of x:

kz~x,a8!5
2pq

L2a8x
.
2pq

L
~11a8x/L !. ~9!

HereL is the resonator length andq is the longitudinal-mode
number.~9! is inserted into~5!, wherek andky arex inde-
pendent. The result is

kx
2~x,a8!5k22ky

22S 2pq

L D 22 8~pq!2

L3
a8x. ~10!

This leads to the same expression~8!. The relation of the
actual tilting anglea ~and the normalized one,a! can be
obtained by comparing~8! and ~10!.

Similarly to the case of zero tilt, two counterpropagating
traveling waves are excited for a channel of finite length.
One of the traveling waves travels uphill and the other down-
hill in the channel. This results again in a standing wave with
nonequidistant nodes~dark vertical stripes!. The distance be-
tween nodes is inversely proportional to the local flow ve-
locity.

C. Experimental observations

In the experiment a narrow slit along thex axis was used
in order to increase the losses of higher-order transverse
modes~in the y direction!, which allows us to excite only
one mode with flow. Figure 4~a! shows the stationary pattern
of the zero-order mode emitted from a resonator with one
tilted mirror. The presence of the ripples allows the measure-
ment of flow velocity. The velocity increases from left to
right in Fig. 4~a!. The velocity was determined by measuring
the distances between adjacent nodes and bright maxima of
intensity of Fig. 4~a!, and is given in Fig. 4~b!, which con-
firms thek x

2.x proportionality, with the slope proportional
to the tilt anglea.

A series of recordings similar to Fig. 4 but with different
tilt angles is shown in Fig. 5, where Fig. 5~a! is recorded
without tilt. The bright spot marks the optical axis. Each one

of the following figures 5~b!–5~d! was recorded with a larger
tilt angle than the figure before it. The patterns show the
above vertical dark stripes whose mutual distances decrease
with the distance from the optical axis, corresponding to in-
creasing flow velocity. They also show that the maximum of
the intensity is shifted away from the optical axis with in-
creasing tilt angle.

D. Numerical results

We calculated numerically modes with flow and modes
with accelerating flow in the channel configuration of the
PRO. The integration for a tilted channel of finite length
yields ‘‘downhill’’ as well as ‘‘uphill’’ flow ~Fig. 6!. For
small values of tilta, bistability between uphill and downhill
modes with flow was observed@in the limiting case of zero
tilt ~a50! the bistability of left and right traveling modes is
evident, because of symmetry considerations#. With increas-
ing tilt, only the downhill wave remains. The ripples in Fig.
6 indicate the remnants of the mode with opposite flow,
which appear due to reflection from the boundaries at the
ends of the channel. The flow velocities within the funda-
mentalH0 mode are plotted in Fig. 7 for different values of
tilt. With small deviations near the two ends of the channel
the relationship fits satisfactorily with the square-root depen-
dence~8!.

V. TWO MODES IN THE CHANNEL

The previous section deals with relatively small tilts of
the channel. This causes acceleration of flow in a single
mode. Larger angles of tilt lead to simultaneous excitation of
two different channel modes with flows. This situation is
schematically shown in Fig. 8, where TEM00 and the first
transverse mode TEM01 are simultaneously excited. The si-
multaneous excitation can be interpreted by considering that
the tilt of the channel results in different lengths of the reso-
nator along the channel and thus different resonance condi-
tions. If the difference of resonator length corresponds to the
frequency separation between transverse modes, then the si-
multaneous excitation of neighboring transverse modes is
possible.

A corresponding experimentally recorded pattern~the
second- and third-order modes with flow emitted simulta-
neously! is shown in Fig. 9.

For investigation of this multimode case,
Eq. ~3! is rewritten in mode decomposition:
E(rW,t) ( n5o

` f n(x,t)An(y)exp(ikn,xx), where An(y) are
envelopes of Hermite modes. Differently from the usual
mode expansion, the coefficientsf n are functions not only of
time t, but also of coordinatex. Equation~3! for the non-
tilted channel transforms to

] f n
]t

22dkn,x
] f n
]x

5p~11 i ! f n1 id
]2f n
]x2

1d2kn,x
2 ]2f n

]x2

2~11 i ! (
klm50

`

Gklmnf kf l f m* . ~11!

Here Gklmn5*2`
` AkAlAm*An* dy are the transverse-mode

cross- and auto-correlation coefficients.~11! is a 1D system
of coupled complex Ginzburg-Landau equations.

54 883HYDRODYNAMIC PHENOMENA IN LASER PHYSICS: . . .



In the case of only two transverse modes, the properties of
solutions of~11! depend mainly on the values of cross cor-
relation coefficients between the two modes. The modes
compete if the normalized cross correlation of the modes is
large: Gi j5G i i j j /AG i i i i AG j j j j .

1
2, and coexist if Gi j,

1
2

~see also@14#!. We calculated~Table I! the cross-correlation
coefficientsGi j of the first ten modes. As seen, neighboring
modes with flows never do coexist.

This is in accordance with the experimental observations,
showing that two different modes with flows are always well
separated along thex axis and have only a small zone of
overlap along thex axis as Fig. 9 illustrates. The interference
pattern of two modes without flow is plotted in Fig. 10 as
calculated by approximating the mode overlap by a tanh
function:

A0~x,y!5 1
2 @11tanh~2x!#H0~y!e2y2, H0~y!51,

~12!

A1~x,y!5 1
2 @11tanh~x!#H1~y!e2y2, H1~y!5y.

~13!

Figure 10 shows the merging of black stripes in the over-
lap region between two transverse modes at three different

phase differences. Depending on the actual phase difference
between the two modes the black stripe of theH1 mode can
end in the center between these modes@Fig. 10~b!# or con-
tinue towards the left mode upward or downward@Figs.
10~a! and 10~c!#.

VI. NONSTATIONARY CHANNEL PATTERNS

If the different transverse modes are of different frequen-
cies, nonstationary patterns occur. To illustrate such dynam-
ics in the case of two modes with flow we multiply the mode
amplitudes from~12! and ~13! by phase factorseik0,xx2 iv1t

andeik1,xx2 iv2t. In this case, vortices~phase singularities of
the field! appear in the overlap zone. Figures 11~a! and 11~b!
and show snapshots during a beat period calculated for an
interference pattern of the zero- and the first-order transverse
modes. Both figures@11~a! and 11~b!# show the following
from right to left. A straight dark stripe of the first-order
mode deforms into a wavy line whose amplitude increases
towards the zero-order mode. The stripe breaks up into vor-
tices near the zero-order mode. The wavelength of the wavy
dark line and the distance between two neighboring vortices
depend on the relative flow velocity of the modes, which is
proportional tok2,x2k1,x.

FIG. 4. ~a! Pattern of the fundamental mode in a resonator with a slightly tilted mirror. Minima and maxima of intensity marked.~b!
k x
2 as a function ofx measured from~a!, indicating an accelerated flow.
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Motion of the wavy dark line and periodic generation of
vortices occur if the overlapping modes have different fre-
quenciesv0 and v1. Then the pattern moves essentially
along thex direction corresponding to the difference fre-
quency between the modes. The vortices in addition are
moving outward in they direction. The vortices generated
alternate in topological charge. Positively charged vortices
move upward, negatively charged ones downward.

A. Vortex street

The periodic nucleation of vortices described is shown
experimentally in two snapshots@Figs. 12~a! and 12~b!# for
the case of fundamental and first-order mode emitted. In this
case the mode overlap in space is much larger than in the
pattern of Fig. 9. The vortices~marked by rectangles! move
away from the wavy black stripe on the right, alternately to
either the upper or lower part of the left side of the picture.

The frequency with which vortices move through a fixed
point on the vortex trajectory, corresponding to the beat fre-
quency of the two modes, is shown as measured as a func-
tion of resonator mirror tilt angle in Fig. 13. Near a particular
tilt angle a0 it is possible to completely stop the motion of
the vortices, which implies phase locking of the two modes.
For angles smaller~larger! than a0 the direction of vortex

FIG. 5. ~a! Pattern like Fig. 4~a! but without mirror tilt. ~b!
–~d!: The same as in~a! but with increasing tilt angle from~b! to
~d!. ab50.7,ac51.4,ad52.2 ~arbitrary units!.

FIG. 6. Modes with downhill~a! and uphill ~b! flow in the
channel of finite length~l chann58, the spatial coordinate is normal-
ized to the width of the fundamental Gaussian channel mode!, as
obtained by numerical integration of~1! and~2!. A slit parallel tox
was introduced to restrict the generation to the fundamental mode
H0 of width dy51.75. The mode with flow into the opposite direc-
tion to the dominating one is also present. This results in the ripples
along the mode. Parameters area50.075,ns54 ~p50.5!, g50.01,
Dv'51, andb0520.75.

FIG. 7. The variation of the flow velocity along theH0 mode for
different tiltsa. The parameters are as in Fig. 6~except for tiltsa!.
Circles are for zero tilta50, triangles,a50.1, squares,a50.2, and
crosses,a50.3.
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motion is to the right~left!. The anglea0 does not corre-
spond to an untilted resonator. Frequency pulling of modes
by the gain line determines the beat frequency.

Figure 14 shows the intensity measured at two locations
on the upper trajectory as a function of time while the reso-
nator mirror tilting is reduced. The phase difference between
the signals before and after the transition througha0 ~marked
by A! clearly shows the reversal of direction of the vortex
motion.

Figure 15 shows a snapshot series of the field correspond-
ing to Figs. 12~a! and 12~b! using interference with part of
the pump beam@15#. These interferograms represent a posi-
tively charged vortex as a fork in the interference fringes
which opens upward and a negatively charged vortex at a
fork opening downward. As apparent, consecutively gener-
ated vortices alternate in topological charge.

We find it remarkable that this optical analog of vortex
creation behind an obstacle in a flow~vortex street! can be
realized with only two modes. The ‘‘obstacle’’ here is rep-
resented by the dark line of the Hermite 01 mode. Here the
photon density is zero as at the location of a real obstacle in
a flow. This dynamic vortex street of an active lasing reso-
nator reminds us of the static one in a diffraction pattern
behind a needle@12#.

To stress the similarity with the hydrodynamic vortex
street further, the velocity-field corresponding to Fig. 12~a!
obtained by the Madelung transformation@13# of the optical
field is shown in Fig. 12~c!. Vortices are marked by dots.

The ingredients of this experimental realization of vortex
obstacle flow in a laser are as follows.

~1! Two modes are emitted spatially separated but with
some spatial overlap.

~2! The waves corresponding to these modes are tilted
with respect to the optical axis by different amounts~differ-
ent flow velocities in the modes!. This creates the vortices as
a result of three-beam interference@16#. The observation of
vortices here is thus a definite experimental proof of the ex-
istence of tilted waves@17# in lasers.

~3! The modes have different optical frequencies. This
results in the dynamics of the flow. It is conceivable that the
different frequencies and the different tilts of the modes re-
sult in the following way. One mode is detuned negatively
and consequently tilted and not frequency pulled. The other
mode is detuned positively~untilted wave fronts are parallel
to the mirrors, and consequently frequency pulled!. In a
plane resonator with one tilted mirror the modes—in addi-
tion to tilt—have the freedom to adjust their positions later-
ally ~in order to adjust their emission frequency to the center
of the gain line!; thus it is not completely evident in detail
how the relative tilt and frequency difference comes about
~probably due to nonlinear interaction of the two active

FIG. 8. Fundamental and first transverse modes emitted from a
tilted channel resonator.

FIG. 9. PRO emission pattern consisting of the second-~left!
and third-~right! order one-dimensional transverse modes.

TABLE I. Normalized cross-correlation coefficients of the first ten Hermite modes~from n50 to 9!:
Gi j5G i i j j /AG i i i i AG j j j j .

0 1 2 3 4 5 6 7 8 9

0 1.0 0.577 0.468 0.412 0.376 0.350 0.330 0.314 0.301 0.290
1 0.577 1.0 0.631 0.523 0.465 0.427 0.399 0.377 0.360 0.345
2 0.468 0.631 1.0 0.656 0.552 0.494 0.455 0.426 0.404 0.386
3 0.412 0.523 0.656 1.0 0.673 0.571 0.513 0.474 0.445 0.423
4 0.376 0.465 0.552 0.673 1.0 0.684 0.585 0.528 0.489 0.460
5 0.350 0.427 0.494 0.571 0.684 1.0 0.693 0.595 0.539 0.501
6 0.330 0.399 0.455 0.513 0.585 0.693 1.0 0.700 0.604 0.548
7 0.314 0.377 0.426 0.474 0.528 0.595 0.700 1.0 0.706 0.611
8 0.301 0.360 0.404 0.445 0.489 0.539 0.604 0.706 1.0 0.711
9 0.290 0.345 0.386 0.423 0.460 0.501 0.548 0.611 0.711 1.0

886 54M. VAUPEL, K. STALIUNAS, AND C. O. WEISS



modes!. The observed dynamics, and in particular the ap-
pearance of vortices, in any case shows that a difference
between the two modes in tilt and optical frequency exists in
the experiment.

B. Lateral destabilization of flow

If two modes cross-correlate weakly,Gi j,
1
2, then they

can be excited simultaneously in the whole length of the
channel, as follows from~11!. In the single-longitudinal-
mode case such a situation is impossible, since all neighbor-
ing transverse modes overlap too much~Table I! and com-
pete. However, using different longitudinal-mode families
such a situation can be realized. As seen from Fig. 3 the
configuration used in the experiments allows one to make the
modes TEM00 and TEM04 coincide in optical frequency.
These two modes overlap weakly, and as follows from Table
I can coexist along the whole channel.

Corresponding recordings in Fig. 16 give a series of snap-
shots with a slightly tilted mirror. The motion shown can be
explained by the beating between the fundamental mode and

FIG. 10. ~a! Calculated intensity pattern in the overlap region
between zero-~left! and first- ~right! order transverse modes. The
two modes have the same frequency and tilt.~b! and ~c!: The
same as in~a! but each taken one-quarter of the beat period after the
preceding panel.

FIG. 11. ~a! Pattern calculated for the modes of Fig. 10~a! but
with nonzero mutual velocity~tilt !. ~b! The same taken one-half
of a beat period later.
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a weak fourth-order transverse mode whose frequency is
close to the frequency of the fundamental mode in this par-
ticular resonator and whose center is beyond the left edge of
the pictures. The pattern shown is similar to a wave moving
to the left on a rope with a fixed right end. This pattern
corresponds to the destabilization of a one-dimensional chan-
nel flow in the transverse direction.

The amplitude of the fourth-order mode beating with the
fundamental mode increases towards the left end of the pic-
ture, but it is still smaller there than the amplitude of the
fundamental mode. The right end of the fundamental mode
stays time independently at itsy position, because at this end
the field of the fourth-order mode is negligibly small.

Vertical dark stripes in the picture indicate again the ex-
istence of two waves, a right traveling wave and a left trav-
eling wave of the fundamental mode~see Sec. IV!, which
interfere.

A pattern similar to Fig. 16, resulting from beating be-
tween zero- and first-order transverse modes is shown in Fig.
17. A dark vertical interference stripe divides the picture.
The stripe is a part of a standing-wave pattern as explained in

Sec. IV. This pattern is similar to a Hermite modeH1,1.
Although there is no focusing along thex direction, the finite
aperture of the resonator~Fresnel number55–10! lifts the
transverse-mode~along thex direction! frequency degen-
eracy. Only a plane resonator of infinite Fresnel number
would have modes degenerate in frequency. Hermite modes
Hnx ,my

induced by the aperture were observed up to the ninth
order~i.e.,H9,0!. The transverse-mode spacing between such
neighboring modes was then 10% of the free spectral range.

On the right-hand side of Fig. 17 the intensity contour is
essentially straight, as the amplitude of the second~interfer-
ing! mode is very small. The upper and lower edges of the
pattern on the left side resemble a sinusoidal wave which is
traveling to the left. The upper and lower edges of the pattern
are deformed here in the same way as the dark central stripe.
The motion of the profile and the wavy shape on the left side
of the picture are due to~1! the fundamental-mode amplitude
increasing towards the left, although it is everywhere much
smaller than the amplitude of the first-order mode, and~2!
the difference in tilt between the first- and zero-order mode.

FIG. 12. ~a! and ~b!: Snapshots of the vortex creation in the
overlap region between fundamental and first-order transverse
modes. The wavy black line on the right splits into vortices~marked
by rectangles! moving to the left~experimental!. ~c! Velocity field
corresponding to Fig. 11~a!, calculated by means of the Madelung
transformation. Vortices marked by dots.

FIG. 13. Frequency of vortex nucleation in Figs. 12~a! and 12~b!
as function of tilt angle of one resonator mirror. At tiltA ~>a0! the
motion of vortices goes to zero, indicating mode locking.

FIG. 14. Intensity measured at two points on the vortex trajec-
tories of Fig. 12~a! while changing the tilt of one resonator mirror.
At tilt A ~>a0! the direction of motion of the vortices reverses.
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We could not reproduce numerically the dynamics ob-
served experimentally~the series of snapshots in Figs. 16
and 17! which show the lateral destabilization of the funda-
mental mode with flow along the stream. The lateral desta-
bilization in Figs. 16 and 17 is different from that predicted
theoretically~Figs. 14 and 15! and from what one may ex-
pect from the hydrodynamical analogy. This difference fol-
lows from the peculiarities of the tuning curve of our reso-
nator: as seen from Fig. 3~c! the fundamentalH0 mode is

very close in frequency to theH4 mode, which results in a
beat between these two modes. We note that such a situation
never occurs in hydrodynamics, nor in the numerical integra-
tion of PRO equations~1! and~2!, where the modesH0 and
H4 are never neighboring ones in the single-longitudinal-
mode approximation.

C. Numerical results

Solutions containing modes from two neighboring mode
families may exist if modes with left and right flow direc-
tions are considered. Linear stability analysis of~11! shows
that the resonantly tuned modeH1(12b023/2Dv'

50⇒k1,x50) is unstable with respect to simultaneous exci-
tation of the left and right flowingH0 modes. This means
that instead of a pure resonantly tunedH1 mode, the
‘‘dressed’’ H18 mode is emitted:

E~x,y,t!5A0~y!@ f 0
1 exp~ ik0x!1 f 0

2 exp~2 ik0x!#

6 i f 1A1~y!. ~14!

Here u f 0
1u5u f 0

2u25p/(3G0000) and u f 1u
25p/G1111. Such a

numerically calculated dressedH18 mode is shown in Fig. 18,
and contains vortices with alternating topological charge.

The dressedH18 mode is stationary, since time depen-
dence is absent in~14!. The value of detuning corresponding
to the stationaryH18 mode is marked in Fig. 3~a! by an arrow.

When the resonator is tuned towards the higher transverse
modes ~to the right from the arrow, 12b023/2Dv'

FIG. 15. ~a! and ~b!: Interferograms corresponding to Fig.
12~a!. The ‘‘forks’’ correspond to a vortex. Direction of fork gives
the sign of the topological charge of the vortices.~a! and ~b! are
taken at different times.

FIG. 16. Snapshots of patterns of a wave of large wavelength
traveling along the fundamental mode.

FIG. 17. Snapshots of patterns of a wave traveling along the
first-order transverse mode with large amplitude on the left side and
small amplitude on the right side. The pattern is due to the simul-
taneous emission of the fundamental mode~outside the picture on
the left!. In ~b! the wave has traveled the distance of one-half of one
wavelength with respect to~a!.
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.0⇒k1,xÞ0! the dressed mode~similar to the pure mode
with flow! starts to move. The three-mode solution of~11!
takes the following form:

E~x,y,t!5A0~y!$ f 0
1 exp@ i ~k01k1!x2 ivt#

1 f 0
2 exp@2 i ~k01k1!x2 ivt#%

6 i f 1A1~y!exp~ ik1x!. ~15!

Inserting~15! into ~11! one obtainsdk1
2512b023/2Dv'

@coinciding with ~8! for the pure mode with flow#,
dk0

25Dv' , v52dk0k1 , and the mode coefficientsf n coin-
cide with those for stationary dressed modes~14!. The~phase
and group! velocity of propagation of the dressed mode
along the channel isv5v/k052dk1 and thus equals that of
the pure mode with flow. Since the intensity of the dressed
mode is modulated along thex axis ~e.g., Fig. 18!, the inten-
sity pattern also moves then as a traveling dressed mode,
differently from the pure mode with flow, where only the
nonzero phase gradientkx indicates the flow in the mode.

The motion of dressed modes occurs when one~or two!
participating pure modes are off resonance. For the detunings
towards the higher-order transverse modes@to the right of the
arrow in Fig. 3~a!# theH0 modes are off resonance, and thus
they are frequency pulled@see~15!#. This results in a trans-
lational motion of the dressed mode. For detunings towards
the lower-order modes, theH1 mode is off resonance. This
results in an oscillatory motion of the dressed mode~not yet
investigated in detail!.

Increase of negative detuning leads to emission of dressed
modes of higher order. As seen from Fig. 3~a!, if the nth-
order mode is emitted, then all modes of order from 0 ton
may also be emitted. All of these modes~of order from 0 to
n! result in annth-order dressed modeHn , which travels
with the velocity of the purenth-order mode with flow@8#.

Coexistence of only two modes from the neighboring
mode families may occur when the channel is not perfectly
parallel. Due to imperfections in the channel~linear! cou-
pling between the modes occurs, violating the mode coexist-
ence condition given above~Gi j,

1
2!. Figure 19 shows the

result of the integration of the PRO equations~1! and~2! for
a channel with widening. In the wider region of the channel

the initially parallel stream of the photon fluid destabilizes,
and this leads to the appearance of optical vortices in the
widened part of the channel. This means that in the narrow
part of the channel the pure fundamental modeH0 is emitted,
and in the wide part the dressed modeH18 is excited.

Finally, a tilted channel of finite length was numerically
investigated. Conditions were as in Fig. 6, except for the
detuningb0: the detuning was chosen such that the funda-
mental modeH0 was emitted in the left part, and the mode

FIG. 18. Stationary dressedH18 mode ~Gaussian1first-order
transverse mode! in an infinitely long channel as obtained from the
numerical integration of~1! and~2! with periodic boundaries along
x. Parameters arens54 ~p50.5!, g50.01,Dv'51, b0520.5, and
the length of the integration region alongx is l chann510. Negative
detuningb0,20.5 results in translational motion of the intensity
distribution along the channel.

FIG. 19. Transverse instability of the stream and formation of
vortices in the widening of the channel as obtained from the nu-
merical integration of~1! and~2! with periodic boundaries alongx.
Parameters arens54 ~p50.5!, g50.01, b0520.30, andDv'51
~the inverse width of the channel!, which is a function ofx:
Dv'515120.25 cos~2px/ l chann!.

FIG. 20. Transverse instability of the stream and formation of
vortices in the tilted channel of finite length, as obtained from the
numerical integration of~1! and ~2!. Parameters are as in Fig. 6,
except for a slit. The slit was absent, which allowed excitation of
the higher-order modes and thus the transverse instabilities of the
photon flow.
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H18 in the right part of the channel. As seen from Fig. 20 the
photon fluid accelerates along the tilted channel, until it de-
stabilizes and breaks into optical vortices.

VII. TRAVELING WAVES

As follows from @9# perturbations travel along thex di-
rection with the velocity 2dk. Such behavior is typical for
systems dominated by traveling waves@18,19#. The spatial
perturbations~dark solitons, vortices! move with the mean
flow of the traveling waves.

As follows from ~6! ~see also@9#! thex- and t-dependent
part of such solutions can be described with a spatially trav-
eling envelopea(x2vt) by

A~x,t !5A0a~x2vt !eikxxe2 ivt ~16!

with v52dkx . Such periodically horizontally moving pat-
terns of the kind~16! were experimentally observed with all
transverse modes. Figure 21 uses the third-order mode as an
experimental example. It is a series of snapshots within one

period in which the motion is periodic. As can be seen, an
intensity minimum moves to the left. The intensity maximum
reaches the left end of the picture in Fig. 21~e!. At this time
the right part of the mode has the lowest intensity. After this
the intensity drops in the left part and the intensity of the
right part rises again to a maximum. This evolution repeats
periodically. Some vertical dark stationary stripes@Fig.
21~d!# similar to the stripes in Fig. 4 can be seen as an
intensity modulation. These stripes indicate an acceleration
of the flow to the left obeying~10!.

A periodic motion of a dark stripe similar to Fig. 21 was
recently shown for a similar case of a photorefractive oscil-
lator with spherical mirrors@20#. In this case the moving
pattern arose from the zero- and first-order Hermite modes
with a periodic modulation of the amplitudes caused by non-
linear mode interaction. The traveling dark wave of Fig. 21
can be interpreted similarly.

It could otherwise also be a dark solitary wave as found in
our numerical integrations of~3!. We give one realization of
such a pattern in Fig. 22. There appear dips~the ‘‘dark soli-

FIG. 21. Snapshots of the third-order transverse mode with flow from the right to the left periodic in time. A dark structure moves
periodically from right to left. The dark vertical stripe and the other stationary vertical stripes of smaller contrast indicate a standing wave
due to simultaneous emission of the wave with opposite tilt. For details, see the text.
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tary waves’’! of the field at one end of the channel, which
move together with the flow. The velocity of the dark soli-
tary waves corresponds to the flow velocity, as the numerical
investigations show.

VIII. CONCLUSION

Optical flow phenomena have been demonstrated on a
photorefractive oscillator which is equivalent to a class-A
laser near threshold. The observed patterns can be interpreted
in a mode picture or alternatively in a hydrodynamics anal-
ogy. The effect of tilting one resonator mirror on the beat
between two adjacent modes in space and the optical spec-
trum, on the relative velocity between these transverse
modes, and on the pattern formation in the overlap region
was investigated. Periodic vortex creation in the overlap re-
gion between modes constitutes an example of real vortex
flow in an optical system of the kind of ‘‘vortex creation
behind an obstacle.’’ Transverse destabilization of one-
dimensional flow is found in the case of different field am-
plitudes of spatially separated modes.

Dark waves traveling in a single mode show agreement
with solutions of the complex Swift-Hohenberg equation for
the PRO and for class-A lasers, for which stationary and
periodic solitary patterns were found. Those solitary waves
can be described by standing waves with a traveling enve-
lope.
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