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I. INTRODUCTION

Propagation and spatial evolution of light beams in non-
linear media is a central topic of nonlinear optical dynamics.
There has been continuing interest in this topic since the
initial investigations of self-trapping of light beams in non-
linear media@1,2#. Analysis of the stability and nonlinear
evolution of solitary-wave solutions of nonlinear propagation
equations is one of the most crucial parts of the problem of
self-trapping of optical beams. Exact~111!-dimensional
solitary-wave solutions to the nonlinear Schro¨dinger equa-
tion were found more than 20 years ago@3,4#. It was shown
shortly thereafter@5# that these solutions are unstable in the
case of a~111!-dimensional stripe solitary-wave propagat-
ing in a ~211!-dimensional bulk nonlinear medium. The
symmetry-breaking instability, which is due to the growth of
perturbations along the initially homogeneous coordinate
parallel to the stripe, is known as a transverse modulation
instability and goes back to papers by Bespalov and Talanov
@6# and Benjamin and Feir@7#, who discussed its manifesta-
tions for a homogeneous~plane-wave! ground state. Al-
though much theoretical work has been devoted to studying
the instability of stripe solitary waves in both focusing and
defocusing bulk media@8–12#, the transverse modulation in-
stability has only recently been observed experimentally
@13–15#.

Our topic here is a theoretical and experimental study of
this instability in bulk photorefractive media with an aniso-
tropic focusing or defocusing nonlinear response. Bright
stripe solitary solutions in focusing media decay into a line
of bright filaments, while dark stripe solitary solutions in
defocusing media are subject to a snake instability@5# and
decay into a line of optical vortices@10,11#. When the initial
conditions are not solitary solutions the beam cannot propa-
gate intact in the nonlinear medium. Wider stripe beams ra-
diate and decay into multiple stripes before the onset of the
instability seen for solitary stripes. For beams that are not too

wide the stripes interact with each other and decay into a
partially ordered pattern of filamentation. A related instabil-
ity in planar photorefractive waveguides has also been ob-
served @16#. Circular beams with full~211!-dimensional
symmetry decay into a spatially disordered pattern@17#. Ex-
periments with input speckle beams demonstrate the differ-
ence in the spatial statistics of the output field due to focus-
ing or defocusing nonlinearities. We present results
illustrating all stages of spatial evolution from symmetry
breaking and decay of a solitary stripe to generation of a
turbulent array of cylindrical filaments.

Photorefractive crystals turn out to be very convenient for
experimental study of these instabilities. Several groups have
demonstrated self-focusing and self-defocusing in photore-
fractive media@18–21#. A large steady-state nonlinear re-
sponse can be obtained with low-power visible lasers. Fur-
thermore, the magnitude and sign of the nonlinearity
~focusing or defocusing! are easily controlled with an exter-
nal voltage. The physics of light propagation in photorefrac-
tive media is considerably different than in Kerr media that
are described by the nonlinear Schro¨dinger equation. The
photorefractive nonlinearity is due to the action of a static
electric field that is generated by the optical beam. The elec-
tric field is found by solving a particular form of Poisson’s
equation for the electrostatic potentialf, with a source
charge distribution due to light-induced charge transport.
The photorefractive nonlinearity is thus nonlocal. Given the
electrostatic potential, the perturbation to the refractive index
is dni j;r i jk]f/]xk , wherer is the electro-optic tensor. The
anisotropic nature ofr results in a highly anisotropic nonlin-
ear response. These differences result in some instability sig-
natures that are not seen in Kerr media. In particular, the
pronounced striped filamentation seen at intermediate stages
of the nonlinear decay is unique to anisotropic media. None-
theless, the transverse modulation instability and the final
decay into bright and dark filaments are universal.

II. GENERAL EQUATIONS

We describe propagation of an optical beamB(rW) in a
photorefractive medium in the presence of an externally ap-
plied electric field and/or photogalvanic nonlinearity by the
set of equations@22,23#
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wherew is the normalized electrostatic potential induced by
the beam. The boundary conditions for the potentialw are
¹w(rW→`)→0. The differential operator¹5 ŷ]/]y1 ẑ]/]z
acts on coordinatesy andz perpendicular to the direction of
propagation of the beamx. Equations~1! imply that the
beam is propagating along one of the crystallographic axes
and that one component of the electro-optic tensor is consid-
erably larger than the rest. These assumptions correspond to
our experimental geometry and choice of strontium barium
niobate~SBN! as a photorefractive nonlinear medium. The
dimensionless coordinates (x,y,z) are related to the physical
coordinates (x8,y8,z8) by the expressionsx5uaux8 and
(y,z)5Akuau(y8,z8), where a5(1/2)kn2r 33(E ext1Eph).
Here k is the wave number of electromagnetic radiation in
the medium,Eph is the amplitude of the photogalvanic field,
andEext is the amplitude of the external field far from the
beam. BothEext andEph are directed along thez coordinate.
The electromagnetic intensityuB(rW)u2 is normalized to the
dark intensityI d . Positive values of the coupling parameter
a correspond to self-focusing and negative to self-
defocusing media,s5sgna561. The transformation from
normalized to physical coordinates implies that the width of
the solitary solutions given below scale as the square root of
the electric field directed along thez coordinate.

Besides the Kerr-type part of the material response ac-
counted for by Eqs.~1!, the photorefractive nonlinearity also
has an additive part of the response, due to diffusive charge
transport, that results in asymmetric stimulated scattering
~fanning! @24# and in the bending of the beam toward theĉ
axis of the crystal@25,26#. This part is responsible for the
photorefractive nonlinearity when both the applied electric
field and the photogalvanic contribution are equal to zero.
For typical nonlinear interactions and spatial structures of the
electromagnetic field formed in photorefractive media in this
case see Ref.@27#. The influence of the fanning terms on the
photorefractive self-focusing has been analyzed in@22,23#.
In the present paper we are interested in self-focusing and
self-defocusing properties of photorefractive nonlinearity
and the terms responsible for fanning have been removed
from Eqs.~1!.

If all functions in the system of equations~1! are assumed
to depend only on the transverse coordinatez, Eq. ~1b! can
be integrated to yield

]w

]z
5

uBu22uB`u2

11uBu2
, ~2!

where uB`u5uB(z5`)u5uB(z52`)u. Using Eq. ~2! the
parabolic equation~1a! for the electromagnetic field can be
recast in a form identical to that for a saturable Kerr nonlin-
earity
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Stripe solitary-wave solutions of Eq.~3! for which the dif-
fraction is compensated for by the nonlinearity are of the
form B(x,z)5b(z)exp(iG0x), whereG0 is a real propagation
constant. The simplest of these solutions in the focusing case
s51 is a symmetric localized bright beam with zero field at
infinity B`50 andG0512bm

22ln(11bm
2 ). Herebm5b(0) is

the maximum value of the amplitudeb(z), governed by the
relation @28#

~db/dz!252@ ln~11b2!2~b2/bm
2 !ln~11bm

2 !#. ~4!

The simplest stripe solitary-wave solution in the defocusing
cases521 is an antisymmetric beam with finite intensity at
infinity and a dark region of small intensity where the field
passes through zero and changes sign. The propagation con-
stantG0 is in this case zero and the amplitudeb(z) is de-
scribed by the relation@29#

~db/dz!252F11b22~11bm
2 !2~11bm

2 !ln
11b2
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wherebm5b(`)52b(2`).
Analysis of transverse modulation instability of the

solitary-wave solutions~4! and~5! in the framework of Eqs.
~1! has been reported in@30,13,14#. Sections III and V below
deal with the analysis of the nonlinear stage of this instability
for the focusing and defocusing cases, respectively.

To study spatial dynamics of~111!- and ~211!-
dimensional beams in photorefractive media Eqs.~1! have
been solved numerically. The input electromagnetic field in
the calculations was of the form

B~x50,y,z!5B0~y,z!@11BN~y,z!#[B0~y,z!1N~y,z!,
~6!

whereB0 is a ~111!- or ~211!-dimensional ground state and
BN is an additive noise with uniform random spectrum in
Fourier space along bothy andz cooordinates. The noise has
been specified by assigning uniformly distributed random
complex numbers to all points on the computational grid and
taking the inverse Fourier transform. The relative magnitude
of noise is characterized by the parameter

e5
* uN~y,z!u2dydz
* uB0~y,z!u2dydz

, ~7!

where the integration is carried out over the computation
window 2 l y/2,y, l y/2, 2 l z/2,z, l z/2. Particular choices
of the ground stateB0 are discussed below.

III. THEORY: FOCUSING CASE

The results of the nonlinear evolution of stripe~111!-
dimensional beams can be conveniently visualized by subdi-
viding the region of initial conditions into that covering nar-
row beams with characteristic widths of the order of the
width of the solitary solution~4! and much wider beams.
Narrow beams evolve in a fashion that is very similar to the
solitary solution~4!. They are structurally stable along the
inhomogeneous coordinatez experiencing, at most, some ra-
diative decay. Their breakup is due to the transverse modu-
lation instability discussed in@30,13#.
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Figure 1 shows the results of the nonlinear evolution of a
narrow stripe Gaussian beamB0(y,z)5AI mexp(24z2/d2)
with the initial diameterd54.5, I m53, l y560, l z520, and
e5331022. The value ofl y that was used corresponds to
about four periods of modulation for the fastest growing
mode forI m53. Figure 1 shows the intensity distribution of
the beam as it propagates in the nonlinear medium for a
longitudinal propagation distance ranging fromx55 @Fig.
1~a!# to x530 @Fig. 1~f!# in increments of 5. The initial di-
ameter of the Gaussian beam was chosen to be close to that
of a solitary solution~4!, so the width of the beam remains
roughly the same. For small propagation distances~small
nonlinearities! the beam looks essentially unchanged, as seen
in Figs. 1~a! and 1~b!. At this initial stage of the breakup all
spatial harmonics of the noise are small and each is amplified
exponentially with its own growth rate. The fastest-growing
modes become noticeable first@Fig. 1~c!# and at later stages

determine the characteristic spatial scale of the breakup. At
larger propagation distances~larger nonlinearities! the beam
breaks up in a quasiperiodic series of~211!-dimensional
filaments as shown in Figs. 1~d!–1~f!.

In general there is no strict selection of a single transverse
wave number and even at the nonlinear stage several of them
~having large growth rates! are present with comparable am-
plitudes. As a result, the distance between adjacent filaments
is not exactly the same and depends on the particular distri-
bution of the noise, though the distance averaged over sev-
eral filaments is in good correspondence to that determined
by the fastest-growing modes of the transverse modulation
instability. The intensities of different filaments are also dif-
ferent. Each of the filaments is ‘‘breathing’’ and changing its
shape and amplitude with the longitudinal propagation dis-
tance. The peak intensities of the filaments oscillate between
some maximum and minimum values in an apparently non-
periodic manner.

Results of numerical analysis of spatial evolution of a
wide stripe beam are shown in Fig. 2. The initial conditions
for this case correspond to the ground state being a super-
Gaussian stripeB0(y,z)5AI mexp(24z4/d4). The other pa-

FIG. 1. Evolution of a narrow Gaussian stripe beam with
d54.5 andI m53 for propagation distancesx55 ~a!, 10 ~b!, 15 ~c!,
20 ~d!, 25 ~e!, and 30~f!. Thez coordinate is horizontal and they
coordinate is vertical.

FIG. 2. Evolution of a wide super-Gaussian stripe beam with
d54.5 andI m53 for propagation distancesx50 ~a!, 15 ~b!, and 30
~c!.
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rameters are d570, I m51, l y570, l z5200, and
e5331022. The values of the propagation distancex in
Fig. 2 are equal to~a! 0, ~b! 15, and~c! 30. The main distin-
guishing feature of Fig. 2 as compared to Fig. 1 is the loss of
structural stability along the inhomogeneous coordinatez.
The wide incident beam@Fig. 2~a!# first breaks down in a
series of intertwined stripes@Fig. 2~b!# that subsequently
evolve into a random pattern of~211!-dimensional filaments
@Fig. 2~c!# in a manner similar to that for a narrow beam.

The initial breakup into stripes@Fig. 2~b!# is due to two
reasons. First, even in the pure~111!-dimensional case
when the homogeneous coordinatey is excluded from the
analysis and the photorefractive nonlinearity is identical to a
saturable Kerr nonlinearity, any wide stripe beam breaks
down into narrower~111!-dimensional stripes. This phe-
nomenon is analogous to the decay of an arbitrary initial
condition into a set of solitons in the case of a~111!-
dimensional nonlinear Schro¨dinger equation~a nonsaturable
Kerr nonlinearity! and has been extensively investigated us-
ing the formalism of the inverse scattering method@31#.

The second and more important reason for the initial
breakup of a wide beam into stripes is due to the strongly
anisotropic response of the photorefractive nonlinearity itself
as is manifested by the structure of Eqs.~1!. Even in the case
of circularly symmetric initial conditions this anisotropy fa-
vors the decay along the coordinatez. It means that even
initially circularly symmetric beams in photorefractive media
will evolve in an anisotropic manner. To illustrate this point
we have analyzed the spatial evolution of a wide initially
circularly symmetric beam for the photorefractive nonlinear-
ity given by Eqs.~1! and the isotropic saturable Kerr nonlin-
earity described by the equation
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The initial condition for both cases corresponded to a
Gaussian beamB(y,z)5AI mexp(24y2/d224z2/d2) with
d5100 andI m51. The results of its evolution for the pho-
torefractive and the Kerr nonlinearity are presented in Figs. 3
and 4, respectively. Despite its initial radial symmetry@Figs.
3~a! and 4~a!# the light beam in a photorefractive medium
first breaks up into a series of intertwined stripes aligned
along they axis. Each of those subsequently decays into
~211!-dimensional filaments in a manner similar to the
breakup of a narrow stripe beam, resulting in the appearance
of randomly located~211!-dimensional filaments. A radially
symmetric beam in a saturable Kerr medium in the same
conditions breaks up into a set of filaments without going
through the stage of stripes since both the nonlinearity and
the initial ground state are isotropic and there is no preferred
direction for their formation. When the calculation is ex-
tended to longer propagation distances the array of filaments
is observed to dance and breath in an apparently turbulent
fashion.

IV. EXPERIMENT: FOCUSING CASE

The experimental arrangement was as described in Ref.
@13#. A 10-mW beam from a He-Ne laser (l50.6328mm)
was passed through a variable beam splitter and a system of

two cylindrical lenses controlling the size of the elliptical
beam waist. The beam was directed into a photorefractive
crystal of SBN:60~Sr0.6Ba120.6Nb2O6!, lightly doped with
0.002% by weight Ce. The beam propagated in the horizon-
tal plane perpendicular to the crystalĉ axis and was polar-
ized in the horizontal plane along theĉ axis to take advan-
tage of the largest component of the electro-optic tensor of
SBN. The crystal measured 10 mm along the direction of
propagation and was 9 mm wide along theĉ axis. A variable
dc voltage was applied along theĉ axis to control the value

FIG. 3. Evolution of a radially symmetric Gaussian beam with
d5100 and I m51 in a photorefractive medium for propagation
distancesx50 ~a!, 5 ~b!, 15 ~c!, and 25~d!.

FIG. 4. Evolution of a radially symmetric Gaussian beam with
d5100 andI m51 in a saturable Kerr medium for propagation dis-
tancesx50 ~a!, 5 ~b!, 10 ~c!, and 15~d!.
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of nonlinear coupling and the effective dark intensity was
varied by illuminating the crystal from above with incoher-
ent white light. Images of the beam at the input and output
faces of the crystal and of the far-field intensity distribution
were recorded with a charge coupled device camera. All ex-
perimental results below were recorded under steady-state
conditions. Experiments demonstrating planar self-focusing
in bulk nonlinear media were initially reported some years
ago @32#, but the instability and spatial evolution of stripe
beams demonstrated here and in@13# appear not to have been
observed previously.

Figure 5 demonstrates the breakup of a narrow stripe
beam~compare with the theoretical Fig. 1!. In this experi-
ment the elliptical beam waist measuring about 15mm in the
horizontal direction by 2 mm in the vertical direction was
placed about 0.2 mm in front of the crystal so that the input
beam in the crystal was diverging. Figure 5 shows the near-
field distributions of the input@Fig. 5~a!# and the output
@Figs. 5~b!–5~f!# beam for different values of the applied
voltage~different values of the nonlinearity! and a fixed level
of incoherent illumination several times weaker than the
beam intensity. Figure 5~b! shows the diffractive spreading
of the output beam for zero applied voltage~zero nonlinear-
ity!. As the nonlinearity increases the beam starts to self-
focus@Fig. 5~c!# forming a self-trapped channel of light@Fig.
5~d!#. Increasing the nonlinearity unavoidably turns on the
modulation instability. For larger nonlinearities the amplified
noise grows to the extent of becoming noticeable@Fig. 5~e!#
and the two-dimensional self-trapped beam breaks up into a

sequence of filaments@Fig. 5~f!#. No artificial seeding was
added to the input beam. The instability developed from the
natural level of noise present on the beam and/or in the crys-
tal. Notice that of all possible harmonics the system chose
those with the largest growth rates. The corresponding value
of the wave number determines the spatial period of the
modulation in Fig. 5~f!. This period is equal to about
40 mm or ky /k'0.015 and is in agreement with the wave
number of the fastest-growing modes obtained from the lin-
ear stability analysis of Ref.@30#. As the voltage was in-
creased the center of the focused channel shown in Figs.
5~d!–5~f! was also displaced along theĉ axis by about two
beam diameters due to photorefractive self-bending@25,26#.

Increasing the diameter of the input beam several times
resulted in the one-dimensional~along the z axis! self-
focusing of this beam with its subsequent breakup into sev-
eral narrower bright stripes, as shown in Fig. 6~a!. For larger
values of the applied voltage~larger values of the nonlinear-
ity! each of these stripes in turn broke down into a series of
bright spots due to the development of the transverse modu-
lation instability @Fig. 6~b!# ~compare with Fig. 2!.

We have also studied the influence of the initial intensity
distribution of the light on its subsequent self-focusing. Fig-
ure 7 demonstrates the evolution of a wide beam with an
externally imposed regular intensity modulation. The initial
distribution of the field was obtained by interfering two plane
waves at a small angle. The initial intensity ratio of the
waves equal to approximately 2.2:1 created a deep sinusoidal
interference pattern at the entrance to the medium. The wave
vector of the interference pattern coincided with the direction
of the ĉ axis. The stationary energy exchange between the
two waves was insignificant due to the smallness of their
crossing angle as compared to the characteristic Debye
angle.

Figure 7~a! shows the output intensity distribution for
zero applied voltage~zero nonlinearity!. The spatial fre-
quency of the interference fringes in Fig. 7~a! is equal to
about 11 lines/mm. An increase in the voltage first resulted
in self-focusing of each of those fringes@Fig. 7~b!#, but for
still larger voltages the fringes got somewhat broader. The
same effect was observed previously in Ref.@33# using a
photorefractive crystal of BSO~bismuth-silicon oxide!. Pre-
sumably because the nonlinearity is much smaller in BSO

FIG. 5. Narrow bright stripe:~a! input ~V50! and~b!–~f! output
near-field intensity distributions for applied voltage equal to 0 V
~b!, 620 V ~c!, 900 V ~d!, 1290 V ~e!, and 1790 V~f!.

FIG. 6. Intermediate-width bright stripe: output near-field inten-
sity distributions for applied voltage equal to~a! 1000 V and~b!
2000 V.
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than in the SBN used here, the subsequent spatial dynamics
shown in Figs. 7~c! and 7~d! were not observed in Ref.@33#.
A further increase in the voltage~the nonlinearity! resulted in
the breakup of each of the fringes~bright stripes! into two
fringes and their subsequent focusing@Fig. 7~c!#. At still
larger values of the applied voltage the transverse modula-
tion instability already visible in@Fig. 7~c!# broke up each of
the bright stripes into a set of~211!-dimensional filaments
@Fig. 7~d!#. The final number of bright stripes in Fig. 7~c! is
twice that of the initial fringes in Fig. 7~a!, demonstrating
that the initial spatial scale in Fig. 7~a! is not optimum for the
self-focusing. Similar experiments with the spatial frequency
of the interference pattern about twice higher than in Fig. 7
resulted in a one-to-one correspondence between the initial
and the final number of bright stripes.

The evolution of a wide initially radially symmetric beam
~with characteristic diameter of about 1.5 mm) is shown in
Fig. 8. The beam was, in this case, directed onto the crystal
bypassing the system of cylindrical lenses. The registration
system remained the same. Figure 8~a! shows the output in-
tensity distribution in the central portion of the beam in the
absence of applied voltage. A small horizontal modulation
on the beam~less than 10%! is due to striations in the crystal.
Increasing the value of the applied voltage resulted in self-
focusing of each line. A further increase in the applied volt-
age resulted in increasing modulation depth of the lines. At
larger values of the applied voltage each of the bright stripes
breaks down into filaments following the same scenario as
seen in Figs. 5–7. The final state~compare with Fig. 3! is a
spatially disordered array of hundreds of bright filaments. It
is worth noting that the filaments look approximately circular
despite the anisotropy described by Eq.~1a!. This is indica-
tive of the global nature of Eq.~1b! for the potential.

V. THEORY: DEFOCUSING CASE

The dark stripe solitary solution~5! has infinite energy
due to the nonzero value of the field at infinity. This creates

obvious problems with experimental observations. Experi-
mental studies of spatial dynamics of a dark stripe beam
~intensity notch! in defocusing media have relied on embed-
ding it in a wider bright beam@34,19,21#. Since the bright

FIG. 7. Wide beam with externally imposed interference pat-
tern: output near-field intensity distributions for applied voltage
equal to~a! 0 V, ~b! 450 V, ~c! 1500 V, and~d! 2000 V.

FIG. 8. Wide radially symmetric Gaussian beam: output near-
field intensity distributions for~a! 0 V, ~b! 600 V, ~c! 1200 V, and
~d! 1500 V, which show the central 0.83 0.8 mm2 region of the
beam.

FIG. 9. Evolution of the dark stripe solitary solution~5! embed-
ded in a wide Gaussian beam with diameterd5100 and
I m5ub`u253 for propagation distances from~a! x50 to ~h!
x535 changing in increments of five. Thez coordinate is vertical
and they coordinate is horizontal.
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envelope experiences defocusing, the background parameters
for the dark stripe are continuously changing with the propa-
gation distance. The intensity of the spreading bright beam
can be kept at a high enough level only for a limited dis-
tance. Eventually, when it goes below the saturation intensity
the nonlinearity essentially switches off. Furthermore, the
bright beam has a finite transverse size. As a consequence of
the above, the transverse instability growth rates calculated
for, e.g., the solitary solution~5! embedded in a wider defo-
cusing beam are somewhat lower than for the same solitary
solution in its ‘‘pure’’ form. The qualitative physics of the
breakup and the spatial dynamics remain essentially the
same.

As in the case of focusing media it is convenient to sepa-
rate the parameter region into that covering the evolution of
narrow and wide striped beams. Typical results for evolution
of a narrow dark striped beam are presented in Fig. 9. The
ground state for this case has been chosen to have the form

B0~z!5b~z!exp~24z2/d2!, ~9!

whereb(z) is given by Eq.~5!. The electromagnetic field~9!
is the dark stripe solitary-wave solution~5! imbedded in a
wide Gaussian beam with diameterd. Figure 9 demonstrates
the spatial dynamics of the beam~9! with d5100,
I m5ub(6`)u2 5 3, ande5331022. As it propagates the

wide bright envelope experiences self-defocusing. The dark
stripe in the center first expands a bit@Figs. 9~b! and 9~c!#,
but otherwise remains unchanged. There is some small
amount of radiative decay in Fig. 9~b!–9~f! with radiated
waves seen as dark stripes on a brighter background that
originate near the center of the beam and move outward. At
larger propagation distances@Figs. 9~d! and 9~e!# the devel-
opment of the snake instability results in the periodic bend-
ing of the dark channel along the initially homogeneous co-
ordinatey. The dark line of zeros of the field breaks down

FIG. 10. ~a! Real and~b! imaginary parts of the field for Fig.
9~h! and ~c! their product.

FIG. 11. Evolution of the dark stripe~10!. All parameters are as
in Fig. 9; x50 ~a!, 5 ~b!, 10 ~c!, and 15~d!.

FIG. 12. Evolution of the wide dark stripe embedded in a
Gaussian beam withd5100, I m53, ande5331022. The propa-
gation distance changes from~a! x50 to ~h! x535.

FIG. 13. ~a! Real and~b! imaginary parts of the field for Fig.
12~h! and ~c! their product.
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into a set of optical vortices or wave-front dislocations that
become more and more pronounced@Figs. 9~f!–9~h!#.

These dislocations are shown in Fig. 10 by plotting the
product of the real and the imaginary part of the electromag-
netic field for the conditions of Fig. 9~h!. Dark intertwined

lines correspond to zeros of either the real or the imaginary
part, the points of their intersection are zeros of the total
field. Figure 10 shows the central part of the beam in Fig. 9
along thez coordinate.

Figure 11 shows the spatial evolution of a dark stripe
beam with the initial ground state given by the relation

B0~z!5ub~z!uexp~24z2/d2!. ~10!

The dark stripe beam~10! has the same intensity profile as
the previously discussed beam~9!. The only difference be-
tween them is that the field in Eq.~9! passes through zero
and changes sign, whereas for Eq.~10! it just touches zero
without acquiring an additionalp phase shift. Spatial evolu-
tion of these fields is very different. Namely, the dark stripe
beam ~9! has a solitary-wave structure, whereas the beam
~10! is very far from it. The dark stripe beam~10! cannot
preserve its structural integrity along the coordinatez even
when transverse effects due to the coordinatey are ne-
glected. As seen in Fig. 11, the dark notch@Fig. 11~a!# de-
cays into an intensity maximum surrounded by two minima,
which in turn are surrounded by two intensity maxima when
one goes from the center to the periphery of the beam. The
intensity of the field does not reach zero even in the minima
@Fig. 11~b!#. This scenario may be visualized as the decay of
the intensity notch~5! into a pair of gray stripe beams@35#
plus some amount of radiating waves that travel away from
the center and spread out@Figs. 11~b! and 11~c!#. The initial
stages of the evolution shown in Fig. 11 are in good agree-
ment with the experimental observations of Ref.@19#.

Figure 12 shows results of the spatial evolution of a wide
stripe beam. The input distribution of the field is given by the
equation

B0~z!5AI mexp@24z2/d21 ipu~z!#F~z!, ~11!

FIG. 14. Dark stripe: output near-field intensity distributions for
applied voltages of~a! 0 V, ~b! 620 V, ~c! 900 V, ~d! 1290 V, and
~e! 1790 V.

FIG. 15. Two dark stripes embedded in a bright beam: output
near-field intensity distributions for~a! 1700 V and~b! 2000 V.
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whereF(z)512exp(2100z2/d2) andu is the step function
u(z.0)51 andu(z,0)50. The electromagnetic field~11!
is a wide beam with a Gaussian intensity profile and diam-
eterd having a dark Gaussian notch in the center with five
times smaller diameter. The relative phase of the left and
right halves of the beam is shifted by 180° so that the field
passes through zero at the center and changes sign. The pa-
rameters for Fig. 12 areI m53, d5100, ande5331022.
The Gaussian intensity notch in the center of the beam~11!
is several times wider than the solitary wave solution~5!.
This notch @Fig. 12~a!# cannot exist as a whole and after
some initial self-focusing@Fig. 12~b!# decays into several
narrower dark stripes@Fig. 12~c!# that propagate away from
the center of the beam@Figs. 12~d! and 12~e!#. Each of the
narrow stripes starts to bend due to the development of the
snake instability@Fig. 12~f!# and subsequently breaks up into
a set of vortices@Figs. 12~g! and 12~h!#. This breakup is most
easily noticeable on several stripes closest to the center of the
beam. Figure 13 confirms the existence of the vortices by
plotting the real@Fig. 13~a!# and imaginary@Fig. 13~b!# parts
of the electromagnetic field and also their product@Fig.
13~c!#.

VI. EXPERIMENT: DEFOCUSING CASE

The experimental setup for studying propagation of light
beams in a defocusing medium was essentially the same as
in the focusing case~see Sec. IV and Ref.@14#!. To create a
dark stripe parallel to they axis a glass plate was introduced
in half of the beam before the system of two cylindrical
lenses. Interference of a reference beam with the light passed
through the crystal was used to adjust the tilt of the glass
plate to ensure a phase shift of approximately 2pn1180°
between the two halves of the main beam passing through

the crystal. The same arrangement was used to visualize ze-
ros of the electromagnetic fields generated as the result of
decay of the dark stripe~see@36#!. The results below were
recorded under steady-state conditions.

Figure 14 shows output intensity profiles of a dark stripe
beam for different values of the applied voltage~different
values of the nonlinearity! and a fixed level of incoherent
illumination. The vertical size of each picture in Fig. 14 is
about 200mm. Figure 14~a! shows the diffractive spreading
of the dark stripe embedded in the wider beam and the beam
itself for zero applied voltage. As the nonlinearity increases
the main beam experiences self-defocusing and the dark
stripe starts to self-focus@Fig. 14~b!#. A further increase in
the nonlinearity results in the appearance of characteristic
snake distortions on the dark stripe due to the transverse
modulation instability@Fig. 14~c!#. For still larger nonlineari-
ties the initially continuous dark stripe breaks down into a
series of isolated zeros of the electromagnetic field, seen in
Figs. 14~d! and 14~e!. The existence of the zeros~optical
vortices or wave-front dislocations@36#! was confirmed ex-
perimentally by interferometric measurements. The spacing
of the zeros seen in Fig. 14~e! is about 40mm, which is in
reasonable agreement with the calculated wave numbers of
the fastest-growing instability modes of a linearized problem
for the solitary-wave solution~5! @14#.

We have also shown experimentally that a wider dark
stripe decays by the formation of multiple narrower self-
focused dark filaments that subsequently start snaking and
decay into a series of vortices. An example of such a situa-
tion is given in Fig. 15, showing two broken dark stripes
embedded in a wide bright beam. The dark stripes have par-
tially decayed into rows of optical vortices.

From the results for both focusing and defocusing nonlin-
ear media it is evident that the asymptotic state of wide

FIG. 16. Propagation of a speckle beam for
focusing and defocusing nonlinearities. The top
figure shows the output near field for zero non-
linearity and the left- and right-hand columns
show the output near field for focusing and defo-
cusing nonlinearity, respectively. Thez coordi-
nate is horizontal in the figures.
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beams propagated through nonlinear media is spatially dis-
ordered. Any initially regular structure breaks up into an ar-
ray of bright or dark filaments. It is thus natural to ask what
happens to the spatial statistics when the initial optical field
is spatially irregular. To investigate this question we directed
a speckle beam through the photorefractive crystal for both
focusing and defocusing nonlinearities. As seen on the left-
hand side of Fig. 16 for a focusing nonlinearity, regions of
the incident beam that were initially relatively bright become
brighter, leading eventually to a random array of filaments.
In the defocusing case bright regions tend to spread out ini-
tially, while for higher nonlinearity we observe multiple dark

stripes. In both cases the asymptotic spatial statistics are spe-
cific to the sign of the nonlinearity, but independent of the
precise realization of the initial conditions.
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