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Quantum-state homodyne measurement with vacuum ports
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We show that the quantum state of ldrmode light field can be reconstructed from the difference statistics
recorded in multiport homodyning witN unused input ports. The theory is applied to balanced homodyne
six-port detection, which is shown to be suited for measuringQHenction of a single-mode radiation field.
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[. INTRODUCTION port schemes to an eight-port schef@e-11]. It was shown
by Walker [10] that balanced eight-port homodyning is
The reconstruction of the quantum state of radiation fromsuited to realize all probability operator measuii@®Ms of

the data recorded in appropriate homodyne detection habe signal mode. In particular, when two input modes are in
been a subject of increasing interest. Any knowable informathe vacuum state the POM specifiger perfect detection
tion on the quantum state can be obtained provided that thihe Q function[12—14 so that the measured joint difference-
density matrix of the radiation field be determined from thecount distribution directly yields th® function of the signal
data measured. Since the density matrix can be given in varmode. Although the input phases need not be varied, the
ous representations, a number of alternative approaches mgygtection apparatus is more complex than in optical homo-
be used to solve the prOblem of quantum-state reCOﬂStrU@yne tomography and the data obtained are more noisy be-
tion. Density matrix representations in orthonormal HiIbertca_use of the additional vacuum fluctuations that are fed in by
space bases and others based on phase space Qquafi (from the point of view of classical opticsinused input
distributions, such as the Wigner function or eunction, ports in the eight-port scheme.

ha\ﬁ] b(::-_en considered. | , fth Since the detection efficiencies are, in general, less than
e first experimental reconstruction of the quantum Stat%nity, the distributions recorded in optical homodyne tomog-

of a (single-modg radiation field was performed by Smithey : - ; -
et al. [1], using balanced homodynour-porf detection. raphy are ty.plcallly gon\_/olut|0ns of the de§|red ones. with
) : ) . Gaussian noise distributions whose widths increase with de-
The signalfield quantum state is obtained from thecreasin uantum efficiencig45]. Reconstruction of the
difference-count distributions measured for a sufficiently 949 )
(true) quantum state from the data measured therefore neces-

large number of closely packed values of tfassical . formi luti hich f I
phase difference between the interfering signal and locaiSitates performing a deconvolution, which can formally be

oscillator fields within ar interval. The method, also called ncluded in the reconstruction procedure for the density ma-
optical homodyne tomography, is based on the fact that thiiX, as has been shown for both the field-strengif7] and
Wigner function of the signal field can be obtained from thePhoton-number basel6]. Application of the results re-
measured data by means of inverse Radon transformatidiiires particular care because the deconvolution may lead to
corresponding to a three-fold Fourier transformafidh The ~ an amplification of the errors associated with the inaccura-
Fourier transform of the Wigner function then yields the den-cies in the measured data. In balanced homodyne eight-port
sity matrix (in a field-strength basisTomographic methods detection the situation is quite similar. Here, the POM speci-
can also be applied to the determination (sfbrationa)  fies a convolution of th&) function with a Gaussian noise
guantum states of moleculg3] and trapped ionf4]. Even-  distribution, which  implies measurement of an
tually, the method has been modified in order to measure the-parametrized quasidistribution, the value obeing less
photon statistics on a short-time scg. than minus ond7,17]. It should be noted that the only
Experimental progress has stimulated a number of theascheme known so far which does not require a deconvolution
retical studies of the problem. In this context, it has beerof the data measured is the recently proposed method of
shown by Kihn et al.[6,7] that there is a more direct relation reconstruction of thévibrationa) quantum state of a trapped
between the measured data and the density matrix in a fielden [4].
strength basis which only requires a twofold Fourier trans- In order to reconstruct the quantum state of multimode
formation to be performed. Later D’Arianet al. [8] had  light, methods of multiport homodyning may be applied. The
derived explicit relations between the count distributionsquantum theory of multiport homodyning was pioneered by
measured and the density matrix in the photon-number basisValker[10] and general relations between the measurements
On the other hand, it is well known that other than four-and POMs were studied. The problem of reconstruction of
port schemes may also be used to measure the quantum stite quantum state of a correlated two-mode radiation field
of light. A typical example is the combination of two four- was considered by Raymet al. [18]. An analysis of the
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problem of reconstruction of the quantum state of an arbimodes, the input and output photon operatagsand Bk,
trary N-mode radiation field by means of homodyne multi- respectively, are related to each other by unitary transforma-
port detection has been given by et al. [19,20, with  tions Uy, =|U e |expliew),

special emphasis on the relations between the characteristic

functions of the count distributions measuralgla non- LNl R
perfect detectionand the quantum state of the correlated b= 2 Ul 3
N-mode signal field to be detected. k=1

In the present paper we show that the quantum state of a
arbitrary N-mode radiation field can be uniquely obtained
from the data measurable in balanced homodyne multiporg

detection when at leadt input ports are unuse@r N other In this way, (N+1) input modes are transformed into

th?]n vacuumkre;er(:fzqce (tquarl]ntum St‘?‘tf.s are)uﬁadsutcr:]h a (N+1) output modes. Their simultaneous detection yields
scheme any kind ot input phase variation, such as the varlagn (N+1)-fold joint count distributiorp({m,}) whose char-

tion of N phases in extended tomographic reconstruction o - ; ; -
. cteristic functiorf2({x,}) can be obtained by Fourier trans-
the quantum state of a correlatiidmode field[18—20, be- formation ({xd) y

comes superfluous. To give an example, we apply the theory

to balanced homodyne six-port detection, which represents N+1

the simplest scheme t.hat enables one to .directly measure the Q{xhH= E p({mk})ex;J( i 2 kak) ] (4

guantum state of a single-mode field, without phase varia- {mit k=1

tion. In particular, we show that for perfect detection e o

function of the field may simply be given by the difference- From standard four-port detection it is already kn.own thqt

count distribution in nonrectangular coordinates. difference-count measurements have advantages in reducing
The paper is organized as follows. In Sec. Il the theory ofthe local-oscillator noise. In the multiport scheme under

reconstruction of the quantum state of a correldtethode  Study it may therefore be advantageous to consider differ-

radiation field by means of multiport optical homodyning is €Nc€ counts by choosing a reference output channel:

briefly reviewed. Section Il is devoted to the reconstruction

of an N-mode signal field from the data measured in multi-

ote that any discrete finite-dimensional unitary matrix can
e constructed in the laboratory using devices, such as beam
plitters, phase shifters, and mirr¢&2].

m o U my

port homodyning in case of unused input ports. In Sec. IV "“olal (Uiniil? 7lal ®)
the theory is applied to balanced homodyne six-port detec-
tion. A summary and some concluding remarks are given ifl=1,...r—1r+1,... N+1, r denoting the reference
Sec. V. channel. Here and in the following scaled counts
my /(7| a|) are used, whergy, anda=|a|exple,), respec-
Il. MULTIPORT HOMODYNING tively, are the detector efficiencies and the complex ampli-

tude of the local oscillator prepared in a coherent staje

Let us consider ail-mode radiation field whose quantum The characteristic functiof) s4{{x/}) of the N-fold joint

state is given by the density operai@ror, equivalently, by  scaled difference-count distributigng({D,}) is related to
its characteristic functioh21] Q{x}), Eq.(4), as

®({a;})=Tr{@D{e;})}. (D) 0 &{X})_Q“ X ])
sd 15)— 0

Here,ﬁ({aj}) is the N-mode coherent displacement opera- mdel

tor N+1
\ xexp{ —ikzl |UkN+1|2|a'|XkJa (6)
f)({aj})zex;{gl(aja}—aréj) , 2)

wherex, =, if k#r, and

Whereé;r and éj, respectively, are the photon creation and N+1 U 2
destruction operators associated with the modes. The knowl- X, = — 'N_“le ] 7
edge of®({«;}) enables one to calculate the density opera- 1=1t#n) Ul

tor in any representation. Since the characteristic functions of - . - L
the joint count distributions measured in multiport homodyn-The characteristic function of the joint count d_|str|but|on in
ing are closely related to the characteristic functions of theEd- (6), Q(xc/ (mda))), can be cal<_:u|ated using the stan-
signal fields[10,19, multiport homodyne detection can be dard theory of photoelectric dgtectlon of Ilght. It can be
used to measure the quantum state oamode radiation shown that when the local oscillator is sufficiently strong,
field. then Eq.(6) may be written a$10,19

Let us consider a multiport device and assume tdat N
signal modegchannels 1. .. ,N) and a strong local oscilla- Qed XN =0({Bexd — 1‘_”2 1822
tor (channeIlN+1) of equal frequencies are mixed to obtain sdc LA " 29 ="
(N+1) output modes falling onto photodetectors whose
countsm, (k=1,... N+1) are recorded. Restricting atten- where, for simplicity, equal detection efficiencies have been
tion to lossless devices that respond linearly to the inpuassumed, and

. (8
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{ D)) IIl. QUANTUM-STATE RECONSTRUCTION
Pede Ir IN THE CASE OF UNUSED INPUT PORTS

* Equation(8) also offers the possibility to obtain the char-
acteristic function of arN-mode signal field from the joint
difference-count distribution measured in one experiment,
PDona1 provided that additional modes in reference quantum states
(also called the quantum-ruler statese introduced. In the
simplest case unused input channels can be introduced, so
that the reference modes are in the vacuum state. Let us
suppose that the RA(+1)-port device is extended to a
2(2N+1)-port deviceN input channels being unusésee

Fig. 1). Since the vacuum inputs are not correlated to each
other and to the signal input, the characteristic function of

PD,; PDy

the quantum state of the B-mode radiation field can be
factored according to

2N
OB =B} Il ®uBn) (10)
ny,2=N+1
(]kk/
(ng=1, ... N, signal channelsn,=N+1, ... ,N, vacuum
channelsy{Bn}={Bn,Bn 1), Where®({B,}) is the desired

characteristic function of the quantum state of fitanode
signal field, and

unused ports

(11)

1
(Dv(ﬁnv) = eXF{ - §|ﬁnv|2

local oscillator

is a vacuum-input characteristic function.
signal fields Applying Egs.(8) and (9), with 2N in place ofN, and
using Eq.(10) together with Eq(11), we obtain the charac-
FIG. 1. Scheme of balanced multiport homodyning with unusedi€ristic function of the quantum state of tiemode signal
input ports. The photodetectoPD; (i=1,...,N+1) are used to  field from the characteristic function of the K2-fold joint
record the joint-difference count statistibgy{{D;,}) in the output ~ Scaled difference-count distribution as

channels=1,...r—1r+1,... N+1,r denoting the reference N
channel. ® _ 1- 7;2 ’
{8 =exn = =2 Bl
N+1
. 2N
Bo=ie€'*e X Ui 2(Upn)* Xk ) 1
" = xexps ;\Hl |Bn )2 |Qsad{xi}), (12
=

In the more general case, when tNemodes belong t&R ~ where

groups that may differ in frequencl subdevices of the type

described above can be combined to transform the R) o

input modes into i+ R) output modes. Their simultaneous Bn=ie'¢« k§_ll Ui+ 1(Ugn) * X (13

detection then yields arN(+ R)-fold joint count distribution. -

The generalization of the theory to this case is straightfor,, _ _ ;

ward [19], U=1,...r=1r+1,... ,N+1). Inverting Eqg. (13 and
Equation(8) reveals that in the case of perfect detection

2N+1

recalling that thex; are real, we obtain

the characteristic function of the joint scaled difference- 2N U3

count distribution represents, for appropriately chosen argu- = LI P _ _

ments, nothing elsepthan the chafa?ctep:istic %/unction of t%e X nZ‘l Uion+1 Sin(@n = @raveat @g,~ 0o, (19
quantum state of theN-mode signal field. To obtain

®({B,}) for arbitrary arguments, th58n=|ﬁn|exp@<pﬂn) N

must be allowed to attain arbitrary complex valdeste that nzzl |U|nﬁns| cog Ping Pron+1t PBn, Pa)

the x, are real quantities This may be achieved by appro- : "

priately varyingN phases in Eq(9), which implies(succes-
sive) measurement of a set of joint difference-count distribu- =— 2 |U|nv,3nv|C05( Pin,~ PIan+1T g~ @)
tions[19]. The method may be regarded as an extension of NN '

optical homodyne tomography to multimode fields. (15
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We see that in Eq(14) the values of th¢,8ns| andgg can
be varied freely. For chosen values |an$| and ¢,z the

BS,
conditions(15) that ensure that the are real can always be (
satisfied, because they are simply the conditional equations
for the values of ,Gnvl andeg . umused port

Vg 2

In other words, there is a one-to-one correspondence be-
tween the (N)-fold joint difference-count distribution and )
the quantum state of aN-mode signal field in a detection  signai field
scheme wittN unused input channels. The result reveals that
at least one local oscillator per group @qual-frequency
signal modes and one unused input port per signal mode are
required to reconstruct the quantum state of a multimode
signal field from the joint difference-count distribution mea-
sured in the experiment. Clearly, both the number of local
oscillators and the number of the unused input ports may be
increased and the guantum state of the s_lgnal e ma_y .Of FIG. 2. Scheme of balanced six-port homodyning for the detec-
course be reconstructed from an appropriately chosen Jou'g

local oscillator
3

Dsac(Dr3, Das)

. A . on of the Q function. Three input field¢signal, local oscillator,
difference-count distribution recorded in such an extende acuum are combined by three symmetric beam splitters BS

measurement scheme. , =1,2,3 and a (- w/2) phase shifter, where twl/2:1/2 beam

A typical example is the measurement of @efunction.  gpjitters (BS, and BS) and one(2/3:1/3 beam splitter(BS,) are
When a single-mode signal field and a vacuum field are sugsed. The joint difference statistics is recorded by the detectors
perimposed by #1/2:1/2 beam splitter, the joint probability pp in the output channels.
distribution of the field strengths in the two output modes is
known to be related to th@ function of the signal field. For _ .
this reason, balanced homodyne eight-port detection has Qsdc(xl,xz):DE DE Pegd D 13,Dp5) €' P11 1D23x2

commonly been regarded as the method that is most ad- 13 23

equate to direct measurement of @dunction[12-14. On

the other hand, from the classical theory @ 3 coupler is :2 2 Pgd(My3,My3)

already known to be the minimum required in order to de- M13 M23

termine the complex amplitude of a single-mode signal field Mia Mays

[10]. Similarly, from the quantum theory a six-port scheme is X exp{ i Wxﬁ i sz , (18

expected to also be the minimum required for the detection

g‘futsgioimgle-mode guantum state in terms of thewhere, for simplicity,7,= 7, 75= 7 has been assumed.

Applying Eqg. (12) together with Eq.(13) (note that
N=1) and recalling the unitary matri¢.6), we may relate

IV. BALANCED SIX-PORT HOMODYNE DETECTION the characteristic function of the quantum state of the signal

field, ®(B1), to the characteristic function of the joint scaled

Let us consider a homodyne six-port detection scheme dfiifference-count distributior() ¢4{x;,X,), as follows:
the type shown in Fig2 . Wesuppose that the beam-splitter
coupling ratios and optical path lengths are chosen in such a 1
way that the output and input photon operators are related to ®(B1) ZGXI{ 5
each other through the unitary transformation majti®]

1
¢ o* 1 XeXF{§|ﬂz|2)Qsd&X1,Xz)l (19

2
u=—[ ¢* ¢ 1], ¢=exp<—i—). (16)
J3 111 3 where

7 2 2
. (1B11*+1821%)

A practical realization of this transformation is considered in Blzliei"’a[(d)* —1)x;+(p—1)%5], (20)
the Appendix[23]. We further assume that in balanced de- 3
tection the difference counts m;z=m;—m; and
m,3=m,—m; are recorded, so that the joint difference-count
distribution py{m,3,M,3) is obtained. Introducing the scaled
difference counts

1
Ba=3i€ (¢ L)xyH+ (" —1)X,]. (21)

Comparing Egs(20) and (21), we find that| 8,|=|8,|, and
My My3 hence Eq(19) simplifies to
15=— 7+ Dag=—— (17
7l al 7l al L .
— 2 2
[cf. Eq. (5)], the characteristic function of the joint scaled CD(’Bl)_eXF<§|’81| )exp( 7 |8l )QSdC(Xl’XZ)'
difference-count distributiopgy{ D 13,D53) is defined by (22
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From inspection of Eq920) and(21) we see that variation in order to change the variables of integration
of X, andx, along the real axis corresponds to variation of (x;,Xx,—Re{B1},Im{B1}). Noting that  dx;dx,
B, over the whole complex plane. As expected, the quanturs=4(,/3/2)d?B, and recalling Eq(23), we easily find that
state of the signal field is uniquely related to the jointEg. (27) can be rewritten to obtain the result that
difference-count distribution measured in the six-port junc- A
tion. _

The measured joint difference-count distributions can peac Mis:Mz3) = 279°al?
related to s-parametrized quasidistributions of the signal )
field, P(aq;s), with s<—1. For this purpose we express the _ Mg — My — = 277
quasidistributions in terms of their characteristic functions <Plag= 7]“*\/5 na* ¢7is= n | (30
®(B1:9),

Equation (30) reveals that the measurement of the joint
1 difference-count distribution in balanced six-port homodyne
P(a1;5)=—zJ d?B,®(B1;s)exp a8 —at B1), detection is equivalent to the measurement of the quasi-
7 23) distribution P[ 1 ;5= —(2— 5)/ 5] of the signal field. The
joint difference statistics as a function of the difference
and recall thatb (3, :s) and®(B,)=®(;;0) are related to events.m13,m23.di_rec_tly yielc_js a representation of the corre-
each other af24] spondllng qua3|d|str|but|0n_|n terms <_Jf nonqrthogonal coordi-
nates in phase space. This quasidistribution approaches the

1 Q function as the detection efficiency tends to unity
<D(B1:S)=9XD(ES|B1|2><I>(B1)- 24 {Play;s=—(2—n)/7n]—P(a;;—1)=Q(ay) for n—1}.
The distributionP[ a1 ;5= —(2— )/ ] can be expressed in
Combining Egs(22) and(24) yields terms of theQ function as
1 2 P( G
-n oq,S= —
q’(31§5):exl{§|51|2( s+t T) }Qsdc(xlvxz)u (25 ! Ui
12
i _ 7| gearotahexd — Mzl
which reveals that = - ﬂ)f d alQ(al)exp( 1 .
2—7 (3D
@ B1:5=— —— | =Qsad X1.X2). (26) , , _
n It is worth noting thatP[ aq;s=—(2— %)/ 7] is the same

- _ .. quasidistribution as in the more complex eight-port scheme,
In other words, the characteristic function of the joint\yhere the signal field, the local-oscillator, and two vacuum
difference-count distribution is(for appropriately trans-  e|4s (arising from two unused input channgtre superim-
formed and scaled variablethe characteristic function of ,5eq and two difference signals of the four output fields are
the  signal-field — quasidistribution P(ay;s),  with  yecorded[7,17). Consequently, our result shows that two

s=—(2—»)/». In particular, when perfect detectors are channels in such a detection scheme are superfluous.
used (p=1) the characteristic function of th@ function

(s=—1) is observed. Inverting E¢18), we may write V. SUMMARY AND CONCLUSIONS
Psad D13,D29) = 7°| | *pad M3, My) Based on the quantum theory of multiport homodyne de-
tection we have studied the quantum state measurement of
1 dx. [ dx N-mode signal fields by recording KB-fold joint
C 4q? 1 2 difference-count distributions, in place of tomographic sets

of N-fold joint difference-count distributions. Considering a
. Mg . M3 signal field consisting oN modes of equal frequencies, we
Xexp —i——X;— i —Xo | ¢qd X1,X5). A . : "
© p( la|™t  7|al 2) sad X1.,X2) have shown that the entire information required to obtain the
27) quantum state of the signal field can be extracted from a
(2N)-fold joint difference-count distribution measured in

Note that in Eq(18) D,; andD s are effectively continuous 2(2N+1)-port homodyne detection, where the input con-
variables, because of the strong local oscillator, which imSiStS 0f N signal modes, one local oscillator mode, axd

plies that the sums may be regarded as integrals. We noff@des in appropriately chosen reference quantum states.
substitute in EqQ. (27) for Q.udX;,%,) the function This scheme has the minimum numbers of reference and
. sad X1,

®[By:5=—(2— 1)/ 7] [Eq. (26)] and invert Eq/(20), L;)r(;%l[g;cillator inputs that are required in order to solve the
i We have applied the method to balanced homodyne six-
XFm(WCY*Bl—\/Eaﬁ’I)' (28)  port detection. Combining a single-mode signal field, a

(strong local oscillator, and a vacuum input by a linear loss-
less apparatus, we have shown that the joint difference-count

- *xp _ (1%, % measurement yields the quasidistributioP(«;,;s),
X2 || (Voa* pr= V¢ apl), @9 s=—(2— #)/ 5, of the signal field, which for perfect detec-
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tion (»=1) is the Q function. It is worth noting that this R,T;T3—iR;R; R;R,T3—iR3T; T,T;

measurement scheme is fully equivalent to balanced homo-

dyne eight-port detection. This shows that one input channel  y—=| R,R;T;—iR; T3 R;R,R;—iT ;T3 Rs3T,

(and hence one output channél the eight-port scheme is

superfluous for measuring the quantum state of a single- T,T, R, T, R,

mode field. (A5)
Applications of the method to reconstruction of the quan-

tum state of multimode light through unused input ports maywhereT; andR;, respectively, are the transmittance and re-

closely follow the line shown for single-mode light. In par- flectance of theth beam splitter BS(i =1,2,3). Using two

ticular, the theory reveals that a ten-port scheme already ex1/2:1/2 beam splitters (BSand BS) and a(2/3:1/3 beam

hibits the minimum number of ports required to measure thesplitter (BS), that is to say,|T;|%/|R;|?=|T3|?/|Rs|?=1

quantum state of two correlated modes of equal frequency iand |T,|?/|R,|2=2, and assuming thate =0 and

terms of the two-mod&) function. i

goT_=7r/2, Eqg.(A5) reduces to
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APPENDIX: TRANSFORMATION MATRIX
OF THE SIX-PORT SCHEME This choice of the beam splitter parameters ensures that in

Let us consider the unitary transformation correspondini)alance‘,j detection all the input channels have equal weight.
to the six-port scheme in Fig. 2. Each of the symmetric beamitroducing the matrix
splitters combines two input modésperatorsa; anda,) to

give two output modesgoperatorsh, andb,) as U'=PUP, (A7)
E)l: Rél+TAa2, Where
b,=Ta; +RZ (A1) Lo
=Ta &, .
2 1 2 pP= 0 i 0 , (A8)
whereT andR, respectively, are the&eomplex transmittance 0 0 —1

and reflectance of the beam splitter,
we easily see thdi’ takes the forn{16) (note thatJ, P, and
U’ are unitary matrices
With regard to the measurement under consideration, the
matricesU andU’ are, of course, equivalent to each other.

T=|T|e'*T, R=|R|e'*R, (A2)

which satisfy the conditions

|T|?+|R|?=1, (A3) Multiplications by phase factors of the rows and columns of
U introduce phase shifts of the output and input fields, re-

1 spectively. The phase shifts of the output fields are irrelevant

T~ PR™ iEW- (A4) since they are not recorded by the photodetectors. The mul-

tiplications by phase factors of the second and third columns
Applying the beam splitter relation®\1) step by step to of U introduce an irrelevant phase shift of the vacuum input
the scheme under study and taking into account thend a phase shift of the local oscillator. The latter simply
(— m/2) phase shifte(see Fig. 2, the transformation matrix gives rise to a redefinition of th@bsolut¢ phaseep,, of the
U defined in Eq(3) is derived to be complex numbew in Eq. (30).
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