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We show that the quantum state of anN-mode light field can be reconstructed from the difference statistics
recorded in multiport homodyning withN unused input ports. The theory is applied to balanced homodyne
six-port detection, which is shown to be suited for measuring theQ function of a single-mode radiation field.
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I. INTRODUCTION

The reconstruction of the quantum state of radiation from
the data recorded in appropriate homodyne detection has
been a subject of increasing interest. Any knowable informa-
tion on the quantum state can be obtained provided that the
density matrix of the radiation field be determined from the
data measured. Since the density matrix can be given in vari-
ous representations, a number of alternative approaches may
be used to solve the problem of quantum-state reconstruc-
tion. Density matrix representations in orthonormal Hilbert
space bases and others based on phase space quasi-
distributions, such as the Wigner function or theQ function,
have been considered.

The first experimental reconstruction of the quantum state
of a ~single-mode! radiation field was performed by Smithey
et al. @1#, using balanced homodyne~four-port! detection.
The signal-field quantum state is obtained from the
difference-count distributions measured for a sufficiently
large number of closely packed values of the~classical!
phase difference between the interfering signal and local-
oscillator fields within ap interval. The method, also called
optical homodyne tomography, is based on the fact that the
Wigner function of the signal field can be obtained from the
measured data by means of inverse Radon transformation
corresponding to a three-fold Fourier transformation@2#. The
Fourier transform of the Wigner function then yields the den-
sity matrix ~in a field-strength basis!. Tomographic methods
can also be applied to the determination of~vibrational!
quantum states of molecules@3# and trapped ions@4#. Even-
tually, the method has been modified in order to measure the
photon statistics on a short-time scale@5#.

Experimental progress has stimulated a number of theo-
retical studies of the problem. In this context, it has been
shown by Kühnet al. @6,7# that there is a more direct relation
between the measured data and the density matrix in a field-
strength basis which only requires a twofold Fourier trans-
formation to be performed. Later D’Arianoet al. @8# had
derived explicit relations between the count distributions
measured and the density matrix in the photon-number basis.

On the other hand, it is well known that other than four-
port schemes may also be used to measure the quantum state
of light. A typical example is the combination of two four-

port schemes to an eight-port scheme@9–11#. It was shown
by Walker @10# that balanced eight-port homodyning is
suited to realize all probability operator measures~POMs! of
the signal mode. In particular, when two input modes are in
the vacuum state the POM specifies~for perfect detection!
theQ function@12–14# so that the measured joint difference-
count distribution directly yields theQ function of the signal
mode. Although the input phases need not be varied, the
detection apparatus is more complex than in optical homo-
dyne tomography and the data obtained are more noisy be-
cause of the additional vacuum fluctuations that are fed in by
the ~from the point of view of classical optics! unused input
ports in the eight-port scheme.

Since the detection efficiencies are, in general, less than
unity, the distributions recorded in optical homodyne tomog-
raphy are typically convolutions of the desired ones with
Gaussian noise distributions whose widths increase with de-
creasing quantum efficiencies@15#. Reconstruction of the
~true! quantum state from the data measured therefore neces-
sitates performing a deconvolution, which can formally be
included in the reconstruction procedure for the density ma-
trix, as has been shown for both the field-strength@6,7# and
photon-number bases@16#. Application of the results re-
quires particular care because the deconvolution may lead to
an amplification of the errors associated with the inaccura-
cies in the measured data. In balanced homodyne eight-port
detection the situation is quite similar. Here, the POM speci-
fies a convolution of theQ function with a Gaussian noise
distribution, which implies measurement of an
s-parametrized quasidistribution, the value ofs being less
than minus one@7,17#. It should be noted that the only
scheme known so far which does not require a deconvolution
of the data measured is the recently proposed method of
reconstruction of the~vibrational! quantum state of a trapped
ion @4#.

In order to reconstruct the quantum state of multimode
light, methods of multiport homodyning may be applied. The
quantum theory of multiport homodyning was pioneered by
Walker @10# and general relations between the measurements
and POMs were studied. The problem of reconstruction of
the quantum state of a correlated two-mode radiation field
was considered by Raymeret al. @18#. An analysis of the
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problem of reconstruction of the quantum state of an arbi-
trary N-mode radiation field by means of homodyne multi-
port detection has been given by Ku¨hn et al. @19,20#, with
special emphasis on the relations between the characteristic
functions of the count distributions measurable~in non-
perfect detection! and the quantum state of the correlated
N-mode signal field to be detected.

In the present paper we show that the quantum state of an
arbitrary N-mode radiation field can be uniquely obtained
from the data measurable in balanced homodyne multiport
detection when at leastN input ports are unused~or N other
than vacuum reference quantum states are used!. In such a
scheme any kind of input phase variation, such as the varia-
tion of N phases in extended tomographic reconstruction of
the quantum state of a correlatedN-mode field@18–20#, be-
comes superfluous. To give an example, we apply the theory
to balanced homodyne six-port detection, which represents
the simplest scheme that enables one to directly measure the
quantum state of a single-mode field, without phase varia-
tion. In particular, we show that for perfect detection theQ
function of the field may simply be given by the difference-
count distribution in nonrectangular coordinates.

The paper is organized as follows. In Sec. II the theory of
reconstruction of the quantum state of a correlatedN-mode
radiation field by means of multiport optical homodyning is
briefly reviewed. Section III is devoted to the reconstruction
of anN-mode signal field from the data measured in multi-
port homodyning in case of unused input ports. In Sec. IV
the theory is applied to balanced homodyne six-port detec-
tion. A summary and some concluding remarks are given in
Sec. V.

II. MULTIPORT HOMODYNING

Let us consider anN-mode radiation field whose quantum
state is given by the density operator%̂ or, equivalently, by
its characteristic function@21#

F~$a j%!5Tr$%̂D̂~$a j%!%. ~1!

Here,D̂($a j%) is theN-mode coherent displacement opera-
tor

D̂~$a j%!5expF (
j51

N

~a j â j
†2a j* â j !G , ~2!

where â j
† and â j , respectively, are the photon creation and

destruction operators associated with the modes. The knowl-
edge ofF($a j%) enables one to calculate the density opera-
tor in any representation. Since the characteristic functions of
the joint count distributions measured in multiport homodyn-
ing are closely related to the characteristic functions of the
signal fields@10,19#, multiport homodyne detection can be
used to measure the quantum state of anN-mode radiation
field.

Let us consider a multiport device and assume thatN
signal modes~channels 1, . . . ,N) and a strong local oscilla-
tor ~channelN11) of equal frequencies are mixed to obtain
(N11) output modes falling onto photodetectors whose
countsmk (k51, . . . ,N11) are recorded. Restricting atten-
tion to lossless devices that respond linearly to the input

modes, the input and output photon operatorsâk and b̂k ,
respectively, are related to each other by unitary transforma-
tionsUkk85uUkk8uexp(iwkk8),

b̂k5 (
k851

N11

Ukk8âk8. ~3!

Note that any discrete finite-dimensional unitary matrix can
be constructed in the laboratory using devices, such as beam
splitters, phase shifters, and mirrors@22#.

In this way, (N11) input modes are transformed into
(N11) output modes. Their simultaneous detection yields
an (N11)-fold joint count distributionp($mk%) whose char-
acteristic functionV($xk%) can be obtained by Fourier trans-
formation,

V~$xk%!5 (
$mk%

p~$mk%!expS i (
k51

N11

xkmkD . ~4!

From standard four-port detection it is already known that
difference-count measurements have advantages in reducing
the local-oscillator noise. In the multiport scheme under
study it may therefore be advantageous to consider differ-
ence counts by choosing a reference output channel:

Dlr5
ml

h l uau
2

uUlN11u2

uUrN11u2
mr

h r uau
~5!

( l51, . . . ,r21,r11, . . . ,N11, r denoting the reference
channel!. Here and in the following scaled counts
mk /(hkuau) are used, wherehk anda5uauexp(iwa), respec-
tively, are the detector efficiencies and the complex ampli-
tude of the local oscillator prepared in a coherent stateua&.
The characteristic functionVsdc($xl%) of the N-fold joint
scaled difference-count distributionpsdc($Dlr %) is related to
V($xk%), Eq. ~4!, as

Vsdc~$xl%!5VS H xk
hkuau J D

3expH 2 i (
k51

N11

uUkN11u2uauxkJ , ~6!

wherexk5xl if kÞr , and

xr52 (
l51 ~Þr !

N11 uUlN11u2

uUrN11u2
xl . ~7!

The characteristic function of the joint count distribution in
Eq. ~6!, V($xk /(hkuau)%), can be calculated using the stan-
dard theory of photoelectric detection of light. It can be
shown that when the local oscillator is sufficiently strong,
then Eq.~6! may be written as@10,19#

Vsdc~$xl%!5F~$bn%!expF2
12h

2h (
n51

N

ubnu2G , ~8!

where, for simplicity, equal detection efficiencies have been
assumed, and
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bn5 ieiwa (
k51

N11

UkN11~Ukn!* xk . ~9!

In the more general case, when theN modes belong toR
groups that may differ in frequency,R subdevices of the type
described above can be combined to transform the (N1R)
input modes into (N1R) output modes. Their simultaneous
detection then yields an (N1R)-fold joint count distribution.
The generalization of the theory to this case is straightfor-
ward @19#.

Equation~8! reveals that in the case of perfect detection
the characteristic function of the joint scaled difference-
count distribution represents, for appropriately chosen argu-
ments, nothing else than the characteristic function of the
quantum state of theN-mode signal field. To obtain
F($bn%) for arbitrary arguments, thebn5ubnuexp(iwbn

)
must be allowed to attain arbitrary complex values~note that
the xl are real quantities!. This may be achieved by appro-
priately varyingN phases in Eq.~9!, which implies~succes-
sive! measurement of a set of joint difference-count distribu-
tions @19#. The method may be regarded as an extension of
optical homodyne tomography to multimode fields.

III. QUANTUM-STATE RECONSTRUCTION
IN THE CASE OF UNUSED INPUT PORTS

Equation~8! also offers the possibility to obtain the char-
acteristic function of anN-mode signal field from the joint
difference-count distribution measured in one experiment,
provided that additional modes in reference quantum states
~also called the quantum-ruler states! are introduced. In the
simplest case unused input channels can be introduced, so
that the reference modes are in the vacuum state. Let us
suppose that the 2(N11)-port device is extended to a
2(2N11)-port device,N input channels being unused~see
Fig. 1!. Since the vacuum inputs are not correlated to each
other and to the signal input, the characteristic function of
the quantum state of the (2N)-mode radiation field can be
factored according to

F~$bn%!5F~$bns
%! )

nv5N11

2N

Fv~bnv
! ~10!

(ns51, . . . ,N, signal channels;nv5N11, . . . ,2N, vacuum
channels;$bn%5$bns

,bnv
%), whereF($bns

%) is the desired

characteristic function of the quantum state of theN-mode
signal field, and

Fv~bnv
!5expF2

1

2
ubnv

u2G ~11!

is a vacuum-input characteristic function.
Applying Eqs. ~8! and ~9!, with 2N in place ofN, and

using Eq.~10! together with Eq.~11!, we obtain the charac-
teristic function of the quantum state of theN-mode signal
field from the characteristic function of the (2N)-fold joint
scaled difference-count distribution as

F~$bns
%!5expF12h

2h (
n51

2N

ubnu2G
3expF12 (

nv5N11

2N

ubnv
u2GVsdc~$xl%!, ~12!

where

bn5 ieiwa (
k51

2N11

UkN11~Ukn!* xk ~13!

( l51, . . . ,r21,r11, . . . ,2N11). Inverting Eq. ~13! and
recalling that thexl are real, we obtain

xl5 (
n51

2N U Ulnbn

Ul 2N11
Usin~w ln2w l 2N111wbn

2wa!, ~14!

(
ns51

N

uUlns
bns

ucos~w lns
2w l 2N111wbns

2wa!

52 (
nv5N11

2N

uUlnv
bnv

ucos~w lnv
2w l 2N111wbnv

2wa!.

~15!

FIG. 1. Scheme of balanced multiport homodyning with unused
input ports. The photodetectorsPDi ( i51, . . . ,2N11) are used to
record the joint-difference count statisticsDsdc($Dlr %) in the output
channels (l51, . . . ,r21,r11, . . . ,N11, r denoting the reference
channel!.
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We see that in Eq.~14! the values of theubns
u andwbns

can

be varied freely. For chosen values ofubns
u and wbns

the

conditions~15! that ensure that thexl are real can always be
satisfied, because they are simply the conditional equations
for the values ofubnv

u andwbvs
.

In other words, there is a one-to-one correspondence be-
tween the (2N)-fold joint difference-count distribution and
the quantum state of anN-mode signal field in a detection
scheme withN unused input channels. The result reveals that
at least one local oscillator per group of~equal-frequency!
signal modes and one unused input port per signal mode are
required to reconstruct the quantum state of a multimode
signal field from the joint difference-count distribution mea-
sured in the experiment. Clearly, both the number of local
oscillators and the number of the unused input ports may be
increased and the quantum state of the signal field may of
course be reconstructed from an appropriately chosen joint
difference-count distribution recorded in such an extended
measurement scheme.

A typical example is the measurement of theQ function.
When a single-mode signal field and a vacuum field are su-
perimposed by a~1/2:1/2! beam splitter, the joint probability
distribution of the field strengths in the two output modes is
known to be related to theQ function of the signal field. For
this reason, balanced homodyne eight-port detection has
commonly been regarded as the method that is most ad-
equate to direct measurement of theQ function @12–14#. On
the other hand, from the classical theory a 333 coupler is
already known to be the minimum required in order to de-
termine the complex amplitude of a single-mode signal field
@10#. Similarly, from the quantum theory a six-port scheme is
expected to also be the minimum required for the detection
of the single-mode quantum state in terms of the
Q function.

IV. BALANCED SIX-PORT HOMODYNE DETECTION

Let us consider a homodyne six-port detection scheme of
the type shown in Fig. 2 . Wesuppose that the beam-splitter
coupling ratios and optical path lengths are chosen in such a
way that the output and input photon operators are related to
each other through the unitary transformation matrix@10#

U5
1

A3 S f f* 1

f* f 1

1 1 1
D , f5expS 2 i

2p

3 D . ~16!

A practical realization of this transformation is considered in
the Appendix@23#. We further assume that in balanced de-
tection the difference counts m135m12m3 and
m235m22m3 are recorded, so that the joint difference-count
distributionpdc(m13,m23) is obtained. Introducing the scaled
difference counts

D135
m13

huau
, D235

m23

huau
~17!

@cf. Eq. ~5!#, the characteristic function of the joint scaled
difference-count distributionpsdc(D13,D23) is defined by

Vsdc~x1 ,x2!5(
D13

(
D23

psdc~D13,D23!e
iD13x11 iD23x2

5(
m13

(
m23

pdc~m13,m23!

3expS i m13

huau
x11 i

m23

huau
x2D , ~18!

where, for simplicity,h15h25h35h has been assumed.
Applying Eq. ~12! together with Eq.~13! ~note that

N51) and recalling the unitary matrix~16!, we may relate
the characteristic function of the quantum state of the signal
field,F(b1), to the characteristic function of the joint scaled
difference-count distribution,V sdc(x1 ,x2), as follows:

F~b1!5expF12h

2h
~ ub1u21ub2u2!G

3expS 12 ub2u2DVsdc~x1 ,x2!, ~19!

where

b15
1

3
ieiwa@~f*21!x11~f21!x2#, ~20!

b25
1

3
ieiwa@~f21!x11~f*21!x2#. ~21!

Comparing Eqs.~20! and ~21!, we find thatub2u5ub1u, and
hence Eq.~19! simplifies to

F~b1!5expS 12 ub1u2DexpS 12h

h
ub1u2DVsdc~x1 ,x2!.

~22!

FIG. 2. Scheme of balanced six-port homodyning for the detec-
tion of theQ function. Three input fields~signal, local oscillator,
vacuum! are combined by three symmetric beam splitters BSi ~i
51,2,3! and a (2p/2) phase shifter, where two~1/2:1/2! beam
splitters ~BS1 and BS3! and one~2/3:1/3! beam splitter~BS2! are
used. The joint difference statistics is recorded by the detectors
PDi in the output channels.
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From inspection of Eqs.~20! and ~21! we see that variation
of x1 andx2 along the real axis corresponds to variation of
b1 over the whole complex plane. As expected, the quantum
state of the signal field is uniquely related to the joint
difference-count distribution measured in the six-port junc-
tion.

The measured joint difference-count distributions can be
related to s-parametrized quasidistributions of the signal
field, P(a1 ;s), with s<21. For this purpose we express the
quasidistributions in terms of their characteristic functions
F(b1 ;s),

P~a1 ;s!5
1

p2E d2b1F~b1 ;s!exp~a1b1*2a1*b1!,

~23!

and recall thatF(b1 ;s) andF(b1)[F(b1 ;0) are related to
each other as@24#

F~b1 ;s!5expS 12 sub1u2DF~b1!. ~24!

Combining Eqs.~22! and ~24! yields

F~b1 ;s!5expF12 ub1u2S s1
22h

h D GVsdc~x1 ,x2!, ~25!

which reveals that

FS b1 ;s52
22h

h D5Vsdc~x1 ,x2!. ~26!

In other words, the characteristic function of the joint
difference-count distribution is~for appropriately trans-
formed and scaled variables! the characteristic function of
the signal-field quasidistribution P(a1 ;s), with
s52(22h)/h. In particular, when perfect detectors are
used (h51) the characteristic function of theQ function
(s521) is observed. Inverting Eq.~18!, we may write

psdc~D13,D23!5h2uau2pdc~m13,m23!

5
1

4p2E dx1E dx2

3expS2 i
m13

huau
x12 i

m23

huau
x2DV sdc~x1 ,x2!.

~27!

Note that in Eq.~18! D13 andD23 are effectively continuous
variables, because of the strong local oscillator, which im-
plies that the sums may be regarded as integrals. We now
substitute in Eq. ~27! for Vsdc(x1 ,x2) the function
F@b1 ;s52(22h)/h# @Eq. ~26!# and invert Eq.~20!,

x15
i

uau ~Af*a*b12Afab1* !, ~28!

x25
i

uau ~Afa*b12Af*ab1* !, ~29!

in order to change the variables of integration
(x1 ,x2→Re$b1%,Im$b1%). Noting that dx1dx2
54(A3/2)d2b1 and recalling Eq.~23!, we easily find that
Eq. ~27! can be rewritten to obtain the result that

pdc~m13,m23!5
A3

2h2uau2

3PS a152
m13

ha*
Af2

m23

ha*
Af* ;s52

22h

h D . ~30!

Equation ~30! reveals that the measurement of the joint
difference-count distribution in balanced six-port homodyne
detection is equivalent to the measurement of the quasi-
distribution P@a1 ;s52(22h)/h# of the signal field. The
joint difference statistics as a function of the difference
eventsm13,m23 directly yields a representation of the corre-
sponding quasidistribution in terms of nonorthogonal coordi-
nates in phase space. This quasidistribution approaches the
Q function as the detection efficiency tends to unity
{ P@a1 ;s52(22h)/h#→P(a1 ;21)5Q(a1) for h→1%.
The distributionP@a1 ;s52(22h)/h# can be expressed in
terms of theQ function as

PS a1 ;s52
22h

h D
5

h

p~12h!
E d2a18Q~a18!expS 2

hua12a18u
2

12h D .
~31!

It is worth noting thatP@a1 ;s52(22h)/h# is the same
quasidistribution as in the more complex eight-port scheme,
where the signal field, the local-oscillator, and two vacuum
fields ~arising from two unused input channels! are superim-
posed and two difference signals of the four output fields are
recorded@7,17#. Consequently, our result shows that two
channels in such a detection scheme are superfluous.

V. SUMMARY AND CONCLUSIONS

Based on the quantum theory of multiport homodyne de-
tection we have studied the quantum state measurement of
N-mode signal fields by recording (2N)-fold joint
difference-count distributions, in place of tomographic sets
of N-fold joint difference-count distributions. Considering a
signal field consisting ofN modes of equal frequencies, we
have shown that the entire information required to obtain the
quantum state of the signal field can be extracted from a
(2N)-fold joint difference-count distribution measured in
2(2N11)-port homodyne detection, where the input con-
sists ofN signal modes, one local oscillator mode, andN
modes in appropriately chosen reference quantum states.
This scheme has the minimum numbers of reference and
local-oscillator inputs that are required in order to solve the
problem.

We have applied the method to balanced homodyne six-
port detection. Combining a single-mode signal field, a
~strong! local oscillator, and a vacuum input by a linear loss-
less apparatus, we have shown that the joint difference-count
measurement yields the quasidistributionP(a1 ;s),
s52(22h)/h, of the signal field, which for perfect detec-
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tion (h51) is theQ function. It is worth noting that this
measurement scheme is fully equivalent to balanced homo-
dyne eight-port detection. This shows that one input channel
~and hence one output channel! in the eight-port scheme is
superfluous for measuring the quantum state of a single-
mode field.

Applications of the method to reconstruction of the quan-
tum state of multimode light through unused input ports may
closely follow the line shown for single-mode light. In par-
ticular, the theory reveals that a ten-port scheme already ex-
hibits the minimum number of ports required to measure the
quantum state of two correlated modes of equal frequency in
terms of the two-modeQ function.
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APPENDIX: TRANSFORMATION MATRIX
OF THE SIX-PORT SCHEME

Let us consider the unitary transformation corresponding
to the six-port scheme in Fig. 2. Each of the symmetric beam
splitters combines two input modes~operatorsâ1 and â2) to
give two output modes~operatorsb̂1 and b̂2) as

b̂15Râ11Tâ2 ,

b̂25Tâ11Râ2 , ~A1!

whereT andR, respectively, are the~complex! transmittance
and reflectance of the beam splitter,

T5uTueiwT, R5uRueiwR, ~A2!

which satisfy the conditions

uTu21uRu251, ~A3!

wT2wR56
1

2
p. ~A4!

Applying the beam splitter relations~A1! step by step to
the scheme under study and taking into account the
(2p/2) phase shifter~see Fig. 2!, the transformation matrix
U defined in Eq.~3! is derived to be

U5S R2T1T32 iR1R3 R1R2T32 iR3T1 T2T3

R2R3T12 iR1T3 R1R2R32 iT1T3 R3T2

T1T2 R1T2 R2

D ,
~A5!

whereTi andRi , respectively, are the transmittance and re-
flectance of thei th beam splitter BSi ( i51,2,3). Using two
~1/2:1/2! beam splitters (BS1 and BS3) and a~2/3:1/3! beam
splitter (BS2), that is to say,uT1u2/uR1u25uT3u2/uR3u251
and uT2u2/uR2u252, and assuming thatw

Ri
50 and

w
Ti

5p/2, Eq. ~A5! reduces to

U5
1

A3 S f 2 if* 21

2 if* 2f i

21 i 1
D , f5expS 2 i

2p

3 D .
~A6!

This choice of the beam splitter parameters ensures that in
balanced detection all the input channels have equal weight.
Introducing the matrix

U85PUP, ~A7!

where

P5S 1 0 0

0 i 0

0 0 21
D , ~A8!

we easily see thatU8 takes the form~16! ~note thatU, P, and
U8 are unitary matrices!.

With regard to the measurement under consideration, the
matricesU andU8 are, of course, equivalent to each other.
Multiplications by phase factors of the rows and columns of
U introduce phase shifts of the output and input fields, re-
spectively. The phase shifts of the output fields are irrelevant
since they are not recorded by the photodetectors. The mul-
tiplications by phase factors of the second and third columns
of U introduce an irrelevant phase shift of the vacuum input
and a phase shift of the local oscillator. The latter simply
gives rise to a redefinition of the~absolute! phasewa of the
complex numbera in Eq. ~30!.
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