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Propagation of squeezed-light pulses in dispersive and absorbing linear dielectrics

Eduard Schmidt, Ludwig Krg and Dirk-Gunnar Welsch
Friedrich-Schiller-Universita Jena, Theoretisch-Physikalisches Institut, Max-Wien Platz 1, D-07743 Jena, Germany
(Received 10 January 1996

The behavior of short quantum light pulses propagating in dispersive and absorbing linear ground-state
dielectrics is studied, with special emphasis on squeezed pulses. The analysis is based on normally ordered
correlation functions of the electric-field strength, which are related to quantities at the entrance plane, on using
guantum Langevin equations. Using nonmonochromatic-mode expansion and restricting attention to a single-
mode pulse in a squeezed state, the influence on squeezing of the pulse propagation in the medium is discussed
in both the time and frequency domains, and it is shown that the noise reduction observable in homodyne
detection sensitively depends on the phase control used. Effects, such as squeezing enhancement associated
with pulse compression and the destructive influence of the spectral shift caused by absorption, are demon-
strated. The numerical results are supplemented by analytical estimations derived for narrow-bandwidth Gauss-
ian pulses[S1050-294{®6)00407-4

PACS numbes): 42.50—p

I. INTRODUCTION zation schemes have been developed for radiation in homo-
geneous and inhomogeneous dispersionless dielectric matter
The study of propagation of quantum light pulses throughand homogeneous dispersive dielectfit8—23, and exten-
dispersive and absorptive dielectric matter has been a subjesions to nonlinear media have been giy&d—16,21,24 In
of increasing interest. Apart from more fundamental prob-order to describe the long-distance behavior of short quan-
lems, such as the determination of multilayer dielectric-tum light pulses, a quantization scheme is desired that is
barrier traversal times of photofi&—4], there have been a consistent with the Kramers-Kronig relations and hence al-
number of open questions that are closely related to practicébws for both dispersion and absorption. The problem has
applications, such as low-noise optical communication sysbeen considered in a number of papg5-34. In particu-
tems. It is well known that the transmission of information lar, the method of Green-function expansion developed in
through fibers by means of optical pulses requires detailef34] enables one to include dispersion and absorption in the
knowledge of the influence of the medium properties on theheory and systematically treat both homogeneous and inho-
radiation[5]. In particular, linear dispersion and absorption mogeneous dielectric matter.
as well as nonlinear optical properties of the medium may Using the concepts developed [ih3,34], in the present
drastically affect the pulse properties. paper we study the propagation of short quantum light pulses
Although a number of effects can be understood, in prinin dispersive and absorptive linear dielectrics, with special
ciple, from classical optick6], quantum light pulses give rise emphasis on squeezed light pulses, the pulses being analyzed
to typical nonclassical features whose explanation requirem terms of so-called nonmonochromatic moigs,36. Re-
additional considerations. It is well known that light exhibit- stricting attention to the dielectric-matter ground state, ex-
ing nonclassical properties, such as squeezing, antibunchingressions for the normally ordered correlation functions of
or sub-Poissonian statistics, reacts very sensitively to pertuthe electric-field strength are given. The theory is used to
bations and the noise associated with them. The propagatisiudy the space-time evolution of the electric-field strength
of quantized light through dielectric matter has been studiedhoise of a quantum pulse that at the entrance plane is as-
under various aspects. In particular, the action of a wide classumed to be in a squeezed single-mode quantum state. It is
of passive optical instruments can be explained by using thehown that the electric-field strength variance observed in
model of macroscopic dielectric bodiésee, e.g.[7]). Fur-  homodyne detection sensitively depends on the local-
ther, photon tunneling through multilayer dielectric mirrors, oscillator frequency and phase control chosen. Assuming a
dispersion cancellation in two-photon interferences, and resingle medium resonance and a Gaussian spectral shape of
lated nonlocal effects have been considef@d4,8—-1].  the incoming pulse, both numerical and analytical results are
Other interesting examples are spontaneous emiqdidh  presented and the influence of dispersion and absorption on
and propagation of continuous-wave squeezed ljgBt in  the observed electric-field strength variance of the pulse is
dielectric media. In the nonlinear optical regime the generadiscussed. In particular, it is shown that effects, such as pulse
tion and propagation of squeezed quantum solitons has bedmoadening and compression, well known from classical op-
of particular interesf14—17. The use of squeezed soliton tics may also be observed in the squeezing behavior of the
pulses in optical communication systems could offer novepulse. Conditions for preserving the squeezing effect in long-
possibilities in order to improve the performance of suchdistance propagation are derived.
systems, because of the low-noise properties of the pulses The paper is organized as follows. In Sec. Il the quanti-
[17]. zation scheme is outlined. The space-time evolution of the
There have been various approaches to the problem afuantum-statistical properties of light pulses is described in
guantization of radiation in linear dielectric media. Quanti-terms of normally ordered correlation functions of the
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electric-field strength, which are expressed in terms of norregarded as a generalized mode expansion of the electric
mally ordered moments of the photonic creation and destrudield, where, owing to the propagation-assisted damping of
tion operators associated with the nonmonochromatic modese waves, the amplitude operat@rs, ) anda’(x,») de-

of the pulse at the entrance plane. In Sec. Il the theory ipend onx. They satisfy the commutation relation

applied to pulses that enter the medium in a squeezed single-

mode_ state, and an analysis of the development of _the [é(x,w),a‘r(xr,wr)]:efki(w)\xfxwg(w_wr) G)
electric-field noise in the further course of pulse propagation
is given, with special emphasis on homodyne detection. Fi-

nally, a summary and some concluding remarks are given i nd obey quantum Langevin equations, so #fat,) can

easily be related ta(x’,w), x = x’, as

Sec. IV.
Il. FUNDAMENTALS a(x,w)=e NDZ(x’ w)
. . X . ~
A. Quantization scheme i 2ki(w)J' dye*ki(“’)(xfy)e"kr(‘”)yf(y,w),
Let us consider linearly polarized radiation propagating in x!
the positivex direction in a linear dielectric whose permit- (9)
tivity
e(w)=e,(0)+ie(w) 1) where —i+2k;(w)e k@)Y f(y,w) plays the role of a
r I

Langevin operator noise source. Note that wheris far
is a complex function of frequenay. It is well known that ~ from the medium resonances, so that the damping may be
&;(w) and &;(w) describing the effects of dispersion and disregardedsi(w) — 0, ordinary mode expansion is recog-
absorption, respectively, are related to each other by thgized. The operatora(x,») anda’(x,») become indepen-
Kramers-Kronig relations, because of causality. Introducinglent ofx, a(x,®),a(x,w)~a(w),a'(w), wherea(w) and

the (Heisenberyoperator of the electric-field strength, a'(w) are the well-known photon destruction and creation
R R R operators. It is worth noting that when in the frequency in-
E(x,t)=EM(x,t) +E)(x,t), (2)  terval under consideration the losses are sufficiently small so
R R thatn,(w)/n(w)=~1 in Eq.(5), the form of the electric-field
EC)(x,t)=[E(x,1)]T, (3)  operator given above agrees with that derived in [Ref],

. - where the scattering centers that cause the losses in the me-
whereE(*)(x,t) andE(")(x,t), respectively, are the positive dium are modeled by beam splitters.
and negative frequency parts, and following REI&,34 we
E(+)
may represen’"'(x,t) as B. Radiation-field correlation functions
The study of the quantum statistics of radiation is fre-
quently based on an analysis of normally ordered electric-
field strength correlation functions available from measure-
where the abbreviation ments. Let us therefore consider correlation functions of the

type
. fiw ni(w)
K(w)=i \/4chr(w)80A () 5

has been used. Here and in the followimgw) and k(w),

EC)(x,t)= Fdw K(w)e '“teki@Xq(x w),  (4)
0

C(m'm({x,u 'tﬂ}) = < ;:/,l_:Il E(ﬂ(x,u ’t,u)}

respectively, are the complex refractive index and wave mno
number, x| TT EM(x,.t,) (10
m=m+1
N(w)=n(w)+inj(w)=ye(w), (6)

and suppose that the radiation is known at a certain entrance
plane (in the following x=0). Further, we assume that the
temperature is sufficiently low, so that the dielectric matter
does not actin the optical frequency domajiras a thermal
and A is the normalization area perpendicular to thdirec-  light source. Using Eq$2)—(4) and(9), we easily see that in
tion. Equation(2) together with Egs(3) and (4) may be the case under study E(LO) may be rewritten as

K(w)=ki(@) +iki(@)= n(w), ™

C(m’n)({xwtu})zf dw; K* (wq)exgd —ik* (w1)X; +iwqtq]- - f dwmsnK(®min)
0 0

X exgiK(®msn)Xmen—i wm+ntm+n]c(m'n)({w,u}): (1)
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where where for notational convenience the mode subscript has
e been omitted. Hence, E{L1) reads as
C<m'”)({wﬂ})=< H a'(w,) H a(w,) > (12
m+1 m m+n
Here, the operatoréi(w,)=a(x=0w,) and a'(w,)= CM™M({X,,,t, )= 1;[1 E* (X, t,) =1:n[+1 E(Xu tw)
a'(x = 0,w,) that satisfy ‘the familiar bosonic commutation . a
relation x((ehmen). (20)
[&(w),a"(0")]=8(0—w") (13

[cf. EqQ. (8), with x=x"] may be regarded as the photon Here,

creation and destruction operators associated with the mono-
chromatic modes of the incoming radiation. 1 (=
With regard to the study of light pulses, it may be useful E(x,t)= _f dw E(x,w)e” 1t (21)
to introduce photons associated with other than monochro- 27 Jo
matic waveqd 35,36, viz.,

Cj= mdw 77 (0)a(w), (14) where
0

where the7;(w) are an orthonormal and complete set of E(X,0)=27K(w) 7(w)e* X (22)
functions in thew domain, so thatc and c satisfy the
bosonic commutation relation
. may be regarded as the spectral function of the pulse at
[Cj.Cj/ 1= 6. (19 propagation length, the function;(w) being normalized to

. unity,
Inverting Eq.(14),

é(w)z}j: (@), (16) f:dw|,7(w)|2: (23

and combining Eqs(12) and(16), we find that

CMV({w,}) {E [H 7 (@)

From Eqgs(2), (10), and(20), the average of the electric-field
strength of the pulse reads as

m+n

x| II  #; (wﬂ)}rg‘“v}”), (17) (E(x,1))=E(x,t)(&)+E* (x,t)(c" (24)
mu=m+1 ~ M

where
and the pulse intensity corresponds to
m m+n
%ﬁ?>—< g G, > a9 o
- pomed L(x,H)=(EC(x,HE(x,1)) = |E(x,1)|%(ce). (25)

Ill. SQUEEZED SINGLE-MODE PULSE PROPAGATION

Similarly, the normally ordered electric-field strength vari-

_ ) ) _ ~ance is given by
To illustrate typical effects of dispersion and absorption

on the quantum statistics of short nonclassical light pulses

A. Basic equations

propagating through linear dielectrics, let us restrict attention GIA E(x 1)]%)=2|E(x t)|2<A6TA6)
to squeezed pulses. For this purpose we consider a pulse that ' '
is generated in such a way that it effectively corresponds to +{E2(x,t){((AC)?)+c.c}, (26

one excited nonmonochromatic mode, which of course con-

sists of a continuum of excited monochromatic modes. In

this case the sums in E¢L7) reduce to one term, that is to where the notatiodO = O—(O) has been introduced.

say, Light is said to be squeezed wheat chosen space-time

m m+n points (:[AE(x,t)]?:) attains negative values, that is to say,
mn _ * Atyman when the noise of the electric-field strength can be reduced

c )({w“})_[,ﬂl 7 (w")} M:l:n[u m(w,) (€T, below the vacuum level. Let us assume tghat the pulse under

(190  consideration is in a squeezed vacuum state
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|xp>:§(5)|o>, (2 electric-field strength requires careful control of the local-
A oscillator phased. When at chosen distancefrom the en-
where|0) and S(s), respectively, are the ordinary vacuum trance plane a time-independent phase of the local oscillator,

state and the squeeze operator, #,, is used, an optimal value fat, may be found from the
. requirement that the time-integrated normally ordered
S(s)=exd — 3s(¢")?+H.cl], (28)  electric-field strength variance

the complex number

| A= | ateraB 01 @0
s=|s|e'’s (29
Ewith (:[Aéd(x,t)]2:> from Eq. (38)) is minimal, which im-
plies that the total electric-field noise observed over the
whole pulse is minimal. In this cases+ 26, compensates

being the squeeze parameter. Straightforward calculatio
yields (see, e.g.[7])

(8)=0, (30)  the phase of .. dt E{(x,t),
AT ~ _ ATA _ . oo
(AcTAG)Y=(cTe)=sinr?|s|, (32) ¢S+26X=—arg{f dtE5(x,1) |, (41)
((A€)?)=(c?)=—e'*scoshs|sinhs|. (32
and Eq.(40) takes the form
Hence, from Eqs(25) and(26) we find that
(Ex)=0, y  CAE0F) ~2Wi-2costissits] [ aredcn)|
42
[(x,t)=]E(x,t)|?sint?|s], (34) “2
. ' where
(:[AE(X,1)]%)=21(x,t) — coshs|sinhs|{E?(x,t)e' #s
+c.c}. (35) W(x) =sinf?|s| f_ dt|E4(x,1)[? (43
B. Homodyne detection is closely related to the overall pulse energy. Clearly, the

. . . total noise detected in this scheme must not necessarily be
It is well known that squeezing can be measured in bal; . .
X : ' below the vacuum level, because both noise reductions and

anced homodyne detection, where the signal field and a . . .
. . .. eénhancements contribute. Observation of an electric-field

strong local oscillator are superimposed by a beam splitter .
strength noise reduced below the vacuum level at any space-

and the interfering field is measured. In particular, when %ime point requires phase control that also includes time. In
(quas)monochromatic local oscillator is used the electric- P q P . L
particular, when the phase of the local oscillatég,, is

field strength relevant for short-time detection is given byChosen in such a way that in E€B8) @ +26,, exactly
(see, e.9.[7,37,39) .
compensates the phaseEﬁ(x,t),

Eq(x,t)=exfdiogt+i0]E)(x,t)+H.c, (36 oot 20, = — A EX(.0)] 44
S Xt d\ ™ ’

where wy and 6, respectively, are the frequency and the . . - L
phase of the local oscillator. Substituting in E¢84) and then at any space-time point the minimum noise is observed,

(35) for E(x,t), Eq.(21) [together with Eq(22)], the slowly that is to say,
; ; i0 -
varying quantityEy(x,t)e'’, where CIAEL(x D)%) =2(1— coths])l 4(x.1). (45)

— iwdt
Ea(x,n)=e7E(x.D), (37 It should be noted that the electric-field strength variance in
the electric-field strength variance measufedring a suffi-  E9: (38) is based on the detection opera(86) that charac-

ciently small time intervalreads as terizes short-time measurements, such as the measurements
studied in Ref[38], and can advantageously be used in order
(:[Aéd(x,t)]z:)ZZId(x,t) to temporally resolve the properties of pulses. When the

, measuring time cannot be regarded as being short the detec-
— cosHs|sinHs| {E3(x,t)el(#s 20 + ¢.c}, tion operator is given by a time-integral over the field
(39) strengthE4(x,t) in Eq. (36). This type of detection operator
has been studied in Ref31] for measuring narrow band-
Id(x,t)=|Ed(x,t)|25inhz|s|=I(x,t). (39 width radiation propagating along attenuating and amplify-
ing optical fibers.

From Eq.(38) we expect that the normally ordered vari-  When in(balanced homodyne detection th@lifference
ance of the electric-field strength, in general, sensitively dephotocurrent signal is passed through a spectral filter onto
pends onx andt through the phase df4(x,t), which can the recorder, then spectral properties of the electric-field
drastically be changed during the propagation of the pulse imoise can be observed. In particular, integrating the spec-
the dielectric matter. Hence, control of the noise of thetrally filtered signal over the whole pulse yields a time-
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independent squeezing spectridfx,()s) closely related to
the Fourier transfornky(x, () of the electric-field strength k(w)
Ed(Xit)7 kn

1 - -
S(x, Q)= 5—(:AE4(X,Q)AE4(X, —Qg):),  (46)

where

Ey(x,Q9)= fmmdtemstl%d(x,t). (47

An explicit expression foS(x,{)) is given in Appendix A n(w)
[Eq. (A10)]. Again, S(x,Q) sensitively depends on the  Inol
local-oscillator phasé. In particular, for chosen distance

the phased, may be optimized in such a way that the inte-
grated noise

s(x):f dQ S(x,Q) (48) 0 05 1.0 15 20
- w/wo
becomes a minimum. Note that in this case the relation
S(x) = (:[AE4(x)]?%:) is valid, with (:[AE4(x)]%:) from FIG. 1. The dispersion relatiork(w) basgd on Eq.(69).
Eq. (42). To observe maximum reduction of noise in eachlkn=(wo/c) e..] and the spectral shape function of the incoming
frequency componeriEq. (A13)], the phase of the local os- pulse, 7(w), given in Eq.(49), are shown. The solid and dotted

cillator, 6, , , must be optimized for each setting frequencycurves' respectively, correspond to real and imaginary parts. The
s following parameter values are uséec. IlIC 2: e,,=1, Ag=3,

Qs separatelyEq. (A12)]. 0l we=2.5%10"Y,  ylw,=1X1073, pw2=3x10%, po

=—15x10.

C. Results

Since the(compleX c-number fieldE(x,t), Eq. (21) [to- k(w)=K(wo+Q)=k(Q)~Ko+k; Q+3k,Q?,  (50)
gether with Eq(22)], looks like the(complex electric-field
strength of a classical pulse propagating in a dispersive anghere
absorbing dielectric, we may expect that the normally or-
dered electric-field strength correlation functions as given in
Eq. (20) exhibit properties that bear resemblance to a number
of properties of a classical pulse, such as pulse broadening Q=w-w,. (52

and compression. However, with regard to phase—sensvaSing Eqs.(49) and (50) and recalling Eqs(21), (22), and

properties, such as the electric-field strength noise o 3 4 introducing the f f rof i
squeezed pulsg&q. (38)], we also expect that the properties _7)’ and Introducing f’l rame of reference, ) moving
yyith the group velocityky,~,

actually detected sensitively depend on the phase contr
used. To illustrate this, let us assume that the shape function
of the incoming pulse in the frequency domaim(w), is

ki=kj +ik;  (j=01,2, (51

t=Kky, X+ 7, (53

given by we evaluateE4(x, 7)=E4(x,t=k;,X + 7) to obtain[Appen-
7(w)= noe_p(m_wo)z (49) dix B, Egs.(B4) and(B7)]

[Fig. 1(.b)],. where w, is the center frequency ang, is a Ey(X,7) = ifm dQ Ey4(x,Q)e 197

normalization constant defined by E@3). The parameter 27) =

p is a complex numbemp= p,+ ip;, with p,>0. The real . 5

partp, corresponds to the inverse squared spectral width and =K 70 [T ex;{ _ (7= TksiX)

the imaginary parp; is responsible for a frequency chifgf. 079 N D(x) 4D(x)

Eq. (B1D]. X exi(ko+ky Sw)x+idwr],  (54)

1. i ket L
Gaussian wave packets where the abbreviations

To calculate the normally ordered variance of the electric-
field strength observed in homodyne detection, B8), let Sw=wy— wg (55
us first consider the model of a narrow-bandwidth pulse
propagating in a medium that does not give rise to higheand
than second-order dispersion and absorpfn so that the
(complex wave number can approximately be given by D(Xx)=p— 3ikox=D,(X)+iD;(x) (56
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have been used, and 7, being given in Egs(B2) and
(49).

From Egs.(38) and (39) it is clear that the observed
space-time behavior of the electric-field strength variance of
a pulse entering the medium in a squeezed state may re-
semble(dependent upon the phase control ystbét of the
intensity. Let us first assume that the local-oscillator phase is
independent of time. We choose it according to &d), so
that for given propagation lengththe time-integrated vari-

ance(:[AEd(x)]2:>, Eq. (42) together with Eq(43), is mini-
mal. Using Eq.(54), after some calculation we obtain

D (x)

AR 2. _ -
(:TAE(x)]%) 2W(X)(1 cotis V15 )]

ow+

|

(57)

) 2
1i
2Dr(x))

xex;{ —2D,(x)

where the total-pulse intensity reads as

2,2
2l 125 oyt X
|Kol?| 70| smhz|s|exp{ 2KgiX+ 20.(%)

(58)

[see Appendix B, EqgB12)—(B14)]. Note that the approxi-
mation scheme only applies when the conditions

2

W(Xx)= D.(x)

2Kyikoi>k2,  koi>0, ky>0 (59

are satisfied, otherwise divergencies would appear. The con- Koi
ditions (59) obviously result from neglection of all the terms

FIG. 2. The dependence on the propagation lengtbf the
complex quantityD (x) defined in Eq(56) is shown. In thex region
that corresponds tD (x) inside the hatched area, with spread angle
2¢=2arctan (/cottf|s—1), Eq.(62), the normally ordered electric-
field strength variance of the overall pulse, Efl), is negative.
|D(x)| attains a minimum whe® (x) L x(x=X; in the figure, and
a minimum of the duration of the pulseg(x) [Eg. (65)], is ob-
served ax=X,.

—>|k2,/I§2i| whenx—oo, Hence, detection of negative values
of (:[AE4(x)]%) at large propagation lengthx{) re-
quires the condition

Kar

</cottf|s|—1

(63

higher than second order in frequency in the expansion of theo be satisfied. Clearly, in the limit whegm— 0 satisfaction

wave number, Eq(50).

of the condition(63) implies that(:[AEd(x)]2:> < 0 for all

Reduction of the electric-field strength noise below thevalues ofx. Rewriting Eq.(63) as
vacuum level can be observed when the second term in the

curly brackets in Eq.57) exceeds the first one, so that

(:[AE4(x)]%)<O0. It can easily be seen thaf AE4(x)]%)
as a function ofdw attains a minimum at
klix
2D(x)’

(60)

Sw= bwy=

|s| < so=arccothi(1+|ky /kyi|2) 4], (64)

we may regard this inequality as a restriction imposed on the
absolute value of. The absolute value af must not exceed

So in order to detect negative values(@f AE4(x)]%:). Note
that the value ofs, decreases with increasing value of the
second-order dispersion coefficient of the mediuky,,

which coincides with the shift of the center frequency of thewhich is responsible for dephasing, but increases with the

spectral function of the pulse at propagation lengthsee

value of the second-order absorption coefficient of the me-

Appendix B, Eq.(B6)]. Compensating this shift by control- dium, k; . It should be pointed out that fds|<s, the nor-

ling the local-oscillator frequency in such a way tkat cho-

mally ordered electric-field strength variance

sen distance) wy=wot+ dwy is valid, we can substitute <;[A|§d(x)]2;> given in Eq.(61) always evolves into nega-

dwy for dw in Eq. (57) and obtain

Dr<x>) -

TAE 2.\ _
C[AE4(x)]%) 2W(x)(1 coths| bIeH

(Fig. 7). Hence, using frequency matching, reduced electric

field strength noise can be detected. Equatiéh reveals

that thex region where(time-integratedl squeezing can be

detected is given by the condition that

</cottf|s|—1

‘Di( 62

X)
D (x)
(Fig. 2. Recalling Eq.(56), we see that|D;(x)/D,(x)|

tive values in the medium even wheat the entrance plahe
(:[AE4(0)]%) = 0.

Clearly, when the phase of the local oscillator is con-
trolled in such a way that in E¢38) ¢+ 26, ; exactly com-
pensates the phasel?—:ﬁ(x,t) at any space-time point, so that
Eqgs.(45) and (44) apply, the normally ordered electric-field
strength variance:[ AE4(x,t)]%) is always negative and
fully determined by the intensit§Fig. 8. From Eqs(39) and
(54), the duration of the pulséintensity) at propagation
lengthx is given by

2\ 1/2
2|D(x)| ) 65

T°(X):( D, (%)
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[cf. Eq. (94) for 7o=1,(0)]. When for appropriately chosen number become significarie.g., in long-distance propaga-
parameters the pulse duratieg(x) attains at certain dis- tion of extremely short pulsesin this case the calculations
tance k=X, in Fig. 2) a minimum, ordinary pulse compres- must be performed, in general, numerically, using the actual
sion is accompanied by “compression” of squeezing. Notedata for the dielectric mattéand the pulseunder study. To
that this effect can also be found in the case when the localgive an example, let us consider an effectively single-
oscillator phase is independent of time and chosen accordingsonance medium of Lorentz type whose permittivity can be
to Eq.(41) (Fig. 4). Needless to say, in any detection schemegiven by[39]
the noise reduction is lost for sufficiently large values of the
propagation length, because of absorption. w,zAs

Let us turn to the squeezing spectr@fx,(),) defined in e(w)=ex+ W= 0’ 2iye’
Eq. (46) and suppose that the local-oscillator phase is chosen '
in such a way that for given propagation lengthnd setting  herew, andy, respectively, are the resonance frequency of
frequency () maximum noise reduction is observéld.  the medium and the corresponding linewidth. Contributions
(A12)]. From Appendix C we obtain to the permittivity of other resonances may be thought of as

. to be included ine.,, so that in generat¢..#1. In the nu-
_ 2 2 _ , , ) Lo . e
S(x,Q5) = 4 Kol *| mo| *sinkf]s|exi — 2(koi + ki 6w)x] merical calculation we have restricted attention to an exactly

(69

X ex] — 2D, (X)(Sw?+ Q)] single resonance medium and assumed ¢hat1. The val-
s ues of the other parameters in E§9) and the values of the
X (cosH2Q J kjx+28wD,(x)]}—coths|) parameters of the spectral shape function of the incoming

(66) pulse,n(w), given in Eq.(49) have been chosen as follows:
Ae=3, w/we=25X10"", ylo,=1X10"3  p,w;
[Eq. (C5)]. We see thas(x,(2,) depends on the coefficients =3X 10, pjwj=—1.5x10%. The resulting dependence on
k;j only through the imaginary parts; arising from absorp- frequency of the wave numbek(w), can then be found
tion. In particular, the quadratic dependence on frequency dfom Eq.(7) together with Eqs(6) and(69) [Fig. 1(a)]. The
the imaginary part of the wave numb@oefficientk,) can  function »(w) spectrally extends over a relatively large re-
give rise to anx-dependent change of the width of the gion wherek;(w)<0 [Fig. 1(b)]. The numerical results are
squeezing spectrum observed. The effect is similar to thatompared with those obtained in the Gaussian wave-packet
reported in Ref[13] for the squeezing spectrum of continu- approximation, using(w) according to Eq(69) and making
ous radiation. Further, there are regions of frequency foin Eq. (50) the identifications
which the noise can be enhanced and others where it can be
reduced. In particular wheAw=0 is valid (that is to say, ko=k(wy), k1=k’(w)|w:w0, k2=k”(w)|w:wo,
wy= wg), Wings of enhanced noise are observed for frequen- (70
cies satisfying the condition
which particularly implies that the value &f in the inequal-
o |>arccosl(lcotHs|) 67 W (64) is given bys,=8.2x 102,
s 2ky;x ’ In the figures, X,7) refer to a moving reference frame
[Eqg. (53)]. The values ok and 7, respectively, are given in
the height of the wings being proportional to €x@koXx  units of the initial-pulse  duration 74=7,(=0)
—(2p,+kyx)Q2] (Fig. 11). The effect obviously comes =(2|p|?p,) Y2 [cf. Egs.(65) and (B10)] and the dispersion
from the linear dependence on frequency of the imaginaryength Ld=7-(2)/|k2|, see, e.9.[6]. In Fig. 3 the evolution of
part of the wave numbecoefficientky;). It is closely related  the pulse intensity given in Eq(39) [l4(x,7)=14(x,t
to thex-dependent shift of the center frequency of the spec=k, x+ 7)] is shown. The evolution of the observed nor-
tral function of the pulsgsee Appendix B, Eq(B6)] and  mally ordered electric-field strength variance given in
quite similar to that found fo(:[AE4(x)]?%:), Eq. (57), in Eq. (38 [(:[AE4(x,7)1%)=(:[AE4(X,t=kqx+7)]%)] is
the case whemy=w, (6w=0). Hence, shifting the local- shown in Fig. 4 for the case when the local-oscillator phase
oscillator frequencywy towards o+ dw,, with dw, from  is independent of time and chosen according to(Ef).. The
Eq. (60), the effect can be suppressed. In this case,(&8). “compression” of squeezing in Fig. 4 corresponds to the
obviously reads as compression of the pulse intensity in Fig. 3. Restricting at-
o 1o tention to a time-independent local-oscillator phage from
S(x,Q¢) = 4| Ko|?| 70| *sint?|s| (1 cothis]) Sec. Il B we know that choosing, according to Eq(41)

2,2 ensures observation of maximum noise reduction in the
Xexp{—ZkOier 2D1|( )—2Dr(X)Q§ , sense that the time-integrated normally ordered variance
X
r

(69) (:[AEd(x)]25> _is minimal. In Figs. 6 and 7, respecti\_/ely,
the so-optimized 6,, Eq. (41), and the resulting

. ) . (:[AE4(x)1%), Eq. (42), are shown as functions of the

which (for [s|>0) is seen to be always negative. propagation lengtix. Note thaté, does not depend on the

absolute value of squeezing parameteFrom Fig. 7 we see

that, in agreement with the Gaussian wave-packet approxi-

The Gaussian wave-packet approximation fails whermation, (:[ AE4(x)]?:) is negative in the wholex region,
higher than second order frequency derivatives of the waverovided that|s|<s, (strong second-order absorptjoWe

2. Numerical results
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FIG. 5. The local-oscillator frequenay, required for frequency
/7o matching is shown as a function of the propagation lengtl
=wo+ Swy, With dw, from Eq. (71) or, in the Gaussian wave-
FIG. 3. The pulse intensity4(x,7), Eg. (39), is shown as a packet approximation, from E¢60). The values of the pulse and
function of = for various values of the propagation lengthwhere  medium parameters are given in Fig. 1. The dotted curve corre-
70=(2|p|?/p;) Y2 andL 4= 73/|k,|. The values of the pulse and me- sponds to the Gaussian wave-packet approximation, Sec. Il C 1.
dium parameters are given in Fig. 1. The dotted curves correspond
to the Gaussian wave-packet approximation, Sec. Ill C 1. noise reduction requires careful phase control, because in the
vicinity of the minimum of(:[ AE4(x)]?:) the phased, sen-
further see that in the case whish>s, (weak second-order sitively depends orx.
absorption the region where negative values of InFigs. 4 and 7 frequency matching is assumed, that is to
(:[AE4(x)]%) can be observed is limited:[ AE4(x)]?:) say, for chosen propagation lengtithe optimal value of the
starts from positive values at=0, evolves into negative local-oscillator frequencywy given by wy=wo+ dwy is
values with increasing, and attains again positive values in used, where
the further course of pulse propagation. In the Gaussian
wave-packet approximation the region of negative values of _JAQO[E4(x,Q)]
(:[AE4(x)]?:) is limited by the hatched area in Fig. 2. Com- T TTAOELx, Q)]
paring Figs. 6 and 7 we see that observation of maximum
Eq(x,Q) being the Fourier transform dEy(x,7) [cf. EqQ.
(B4)]. Note that in the Gaussian wave-packet approximation

(7D

z/L4 Eq. (71) reduces to Eq:60). An example for the dependence
on x of dw, is given in Fig. 5. According to Eq41) [to-
1 oo gether with Eqs(37), (21), and(22)] the phased, depends
on the chosen local-oscillator frequency. The effect of fre-
Lose guency matching on the phasgg is illustrated in Fig. 6.
Appropriate local-oscillator phase control at any space-
1 0.42 time point would of course enable one to observe always
negative values of:[ AE4(x,t)]%:). As already mentioned,
T 0.28 when the phase.+ 26, ; exactly compensates the phase of
Vizr Eﬁ(x,t) [Eq. (44)], then the minimum noise is observed and
10.9) 1 0.14 Eq. (45 applies (Fig. 8). In this case the evolution of
1 (:[AE4(x,1)]%) in space and time is fully determined by
0 0 that of the intensity. In particular, there is a one-to-one cor-
-1 , ‘ ‘ . respondence between classical pulse compression and com-
4 —2 0 2 4 pression of the electric-field strength noise. In this region

substantially enhanced squeezing can be observed. Figure 8
also illustrates the limits of application of the Gaussian
FIG. 4. The normally ordered electric-field strength varianceWave-packet approximation. The asymmetries and substruc-
(:[Aéd(x,r)]2:>, Eq. (39) together with Eq.(39), is shown as a tures in the pulse pr_oflle obwously arise from higher than
function of 7 for various values of the propagation lengthand ~ Second-order terms in the expansion of the complex wave
|s|=8%1072, where V(x,r)=(:[AEd(x,r)]2:>/(2cotHs,|), o num_ber, _whlch are omitted in the Gaussian wave-packet ap-
=(2|p|¥p,)Y2 and Ly=72/|k,|. The local-oscillator frequency Proximation.
and phase are chosen according to Figs. 5 dayl Gespectively. In Fig. 9 the squeezing spectrugfx,(;), Eq.(A10), is
The values of the pulse and medium parameters are given in Fig. shown for the case when the local-oscillator frequency and
The dotted curves correspond to the Gaussian wave-packet approgthase, respectively, are chosen according to E4B. and
mation, Sec. Il C 1. (41) [Figs. 5 and €)]. The situation corresponds to that in

/70
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0 0.14 0.28 0.42 0.56 0.70 o ) .
FIG. 7. The time-integrated intensity/(x), Eq. (43), and the

x/Ld time-integrated normally ordered electric-field strength variance
(:[A I%d(x)]z:), Eq. (42) together with Eq(43), for different abso-
FIG. 6. The local-oscillator phasé,, Eq. (41), yielding the |yie values of the squeezing parameteare shown as functions of
time-integrated normally ordered electric-field strength variancgyq propagation lengthx, whereV(x):<:[A|§d(x)]2:>/(2cotﬂs|)
(:[AEq(x)]%), Eq.(42) together with Eq(43), is shown as afunc-  ang | =72/|k,|. The local-oscillator frequency and phase are
tion of the propagation lengthx, where 6,=2[6x+(kor  chosen according to Figs. 5 anda respectively. The values of
+8wky)x] and Lg=75/|ko|. (&) wg=wo+ Swy, With Sw, from  the pulse and medium parameters are given in Fig. 1. The dotted

Eqg. (71) or, in the Gaussian wave-packet approximation, from Ed.curves correspond to the Gaussian wave-packet approximation,
(60) (Fig. 5. () wq=wg. The values of the pulse and medium gec. |1 C 1.

parameters are given in Fig. 1. The dotted curves correspond to the
Gaussian wave-packet approximation, Sec. Il C 1.

Fig. 4. Owing to the choice of the local-oscillator phase,
integration ofS(x,{)) over all frequencies yields the time-
integrated normally ordered electric-field strength correlation
function (:[ AE4(x)]?:) shown in Fig. 7. From inspection of
Fig. 9 we see that only in the region in which maximum L
noise reduction can be observed are nearly all the frequency
componentgthat are relevant for the pulssqueezed. For
fixed local-oscillator phase, such a uniform behavior of the
frequency components is of course not possible in an ex-
tendedx region, because of dispersion-assisted dephasing.
Optimizing the local-oscillator phase for each frequency
component separatelfeq. (A12)] enables one to suppress
this dephasing and at any space-time point maximum noise Y{z.7)
reduction can be observe#ig. 10.
The effect of frequency detuning between local oscillator 1
and pulse is demonstrated in Fig. 11. As already mentioned, o

:E/Ld

T 0.70

+ 0.28

owing to frequency-dependent absorption xalependent -1

shift of the center frequency of the spectral function of the 4 5 0 > 4
pulse is observed. Hence, tuning the local-oscillator fre-

guency to the center frequency of the incoming pulse, in the 7/70

further course of pulse propagation detuning necessarily ap-
pears. The enhanced noise observed in this @hsavings in A 5 ) ! '
Fig. 11 can be suppressed in a detection scheme, wherelAEa(x.7)]%), Eq.(45), is shown as a function o’fff’zr various
frequency matching is used, so that at chosen propagatioffiues of the pmpazgat'on length, and |S‘2:8X1}20 » Where
lengthx the local oscillator-frequency equals the actual cen-Y.(%: 7 =(:[AEa(x,7)]%)/(2coths)), 7o=(2|p|*/p;)"* and L4=

r fr n f th ral function of th . 10). 75/|ks|. The phase of the local oscillatof, ,, is chosen in such a
ter frequency of the spectral function of the puieg. 10 way that in Eq.(38) ¢s+ 26, exactly compensates the phase of

IV. SUMMARY AND CONCLUSIONS _Eg(x,t) [Eqg. (44)], and in any space-time point th_e minimum noise
is observed. The values of the pulse and medium parameters are
In this paper we have considered the propagation of shodiven in Fig. 1. The dotted curves correspond to the Gaussian wave-
guantum light pulses in dispersive and absorbing linear dipacket approximation, Sec. Ill C 1.

FIG. 8. The normally ordered electric-field strength variance
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FIG. 11. The squeezing spectrus(x,), Eq.(A13), is shown
for various values of the propagation lengthand|s| = 2, where
FIG. 9. The squeezing spectrux,(ls), Eq.(A10), is shown ) —(2p,) 12 andLy=72/|k,|. The local-oscillator phase is cho-
for various values of the propagation lengthand|s|=8x10"%,  gen according to EqA12), so that at any space-frequency point
where Qo= (2p,)~? and Lq=15/|k,|. The local-oscillator fre-  minimum noise is observed, however without frequency matching
quency and phase are chosen according to Figs. 5 @\dréspec- (= w;). The values of the pulse and medium parameters are

tively. The values of the pulse and medium parameters are given igjven in Fig. 1. The dotted curves correspond to the Gaussian wave-
Fig. 1. The dotted curves correspond to the Gaussian wave-packghcket approximation, Sec. Il C 1.

approximation, Sec. Il C 1.
been applied to single-mode pulses that enter the medium in
electrics that are not thermally excited in the optical fre-& Squeezed vacuum state. The development of the normally

quency region of the pulses. The space-time evolution of th@rdered electric—figld strength varian_ce ip the further_ course
quantum-statistical properties of the pulses has been d&f Pulse propagation has been studied in both the time and
scribed in terms of normally ordered correlation functions ofifeduency domains, with special emphasis on homodyne de-
the electric-field strength, which can be expressed in terms dfction- It has been shown that owing to the dependence on
normally ordered moments of the photonic creation and delf€duency of the complex wave number determining disper-
struction operators associated with the nonmonochromatigion @nd absorption the result of detection can sensitively

modes of the pulses at the entrance plane. The theory h pend on the local-oscillator phase and frequency control.
Using a model permittivity that is based on a single me-

dium resonance of Lorentz type and assuming for the incom-
ing pulse a Gaussian spectral shape function, both analytical
z/La and numerical results have been presented in order to ana-
1 070 lyze the effects of dispersion and absorption on the electric-
field strength noise observed in homodyne detection. A num-
ber of effects, such as pulse broadening and compression,
T 042 well known from classical optics have been shown to be also
observable with regard to the electric-field strength noise. In
particular, ordinary pulse compression can be accompanied
7 014 by “compression” of squeezing, so that enhanced squeezing
can be observed, the compression distance coinciding with

0 / 0
05 \_/ the classical one.
' When the local-oscillator phase is time independémat

-0 P— —— is to say, it does not vary with time on a time scale given by
6 4 2 0 2 4 6 the duration of the pulse under consideratjaihe optimal
Q. /% phase for detection of squeezing can be determined from the
requirement that the total electric-field strength noise de-

FIG. 10. The squeezing spectrustx, (1), Eq.(A13), is shown tected is minimal. _The so-optimized_ phase var_ies with the
for various values of the propagation length where 0, length of propagation of the pulse in the medium. In this
—(2p,) "2 and Ly=172/|k,|. Frequency matching is considered SCcheme, the region of propagation length in which total-pulse
(Fig. 5) and the local-oscillator phase is chosen according to EgSdueezing can be observed is limited, in general, by an upper
(A12), so that at any space-frequency point minimum noise is oband lower boundary and decreases with increasing strength
served. Note that in this cas®(x,Q)/S(0,0) is independent of Of squeezing of the incoming pulse. In particular, long-
|s|. The values of the pulse and medium parameters are given ifistance detection of total-pulse squeezing is, in general, not
Fig. 1. The dotted curves correspond to the Gaussian wave-packppssible. Only in the case when the absolute value of the
approximation, Sec. Ill C 1. squeezing parameter of the incoming pulse does not exceed a

1 0.56

S(z,0%) 1028

5(0,0)
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critical value can squeezing be detected, without restriction APPENDIX A: SQUEEZING SPECTRUM
of the length of propagation. The critical value is determined : '

by two rival effects. Dispersion tries to decrease it, because Using Eqs.(36) and (4), we find that
of dephasing, whereas frequency-dependgéigher-ordey A o K)o i (0 ) 02

absorption has the tendency to enlarge it, since it selectively Ea(X.t)= fo do K(w)e (e 07 ed 0% (w) +H.c,
removes sideband components from the pulse which are then (A1)
missing in the dephasing process. On the other hand,

frequency-dependent absorption has also the tendency & that Eq(47) takes the form

shift the center frequency of the spectral function of the pulse . .

during propagation in the medium. In this case, detection OEd(x 0 ):f dteiﬂstéd(x t)=27-rJ do

maximum noise reduction requires the local-oscillator fre- © = > J-« ' 0

guency to be tuned to the center frequency of the pulse at a
chosen length of propagation in the medium.

It should be noted that effects that may arise from input— % Sk (@)x—i0 At
output couplings have been ignored throughout the paper. K (w)e Aw—wgtQgal(w)],
Their inclusion in the theory requires consideration of the (A2)
boundary conditions at the surfaces of discontinuign-
trance and exit plang¢sind can be performed by applying the where
correct input-output relations given in R¢#0] in place of - _ ik (Qx-+i02
Eqg. (9). As a consequence of using modified input—outputEd(X'QS)_27T[K+(QS)e e A wgt{Ly)
relations, a spectral function of the puldg(x,w), is ob- LK* —ik* (Qox—ioat, . _
tained that may differ from that in ER2). Clearly, knowing K=(@ye o (wg— Q9] (A3)
the spectral function, all the calculations may be performeqN ith
in a similar way as in this paper.

X[K(w)eM X 15—+ wg+0g)a(w)

K+(Q2g)=0(wg* QK (wg* ), (A4)
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meinschaft. We are grateful to T. Gruner for valuable discusf ®(x), unit step functioh We now calculateS(x,(}s) de-

sions. fined by Eq.(46). From the above we obtain

1 . .
S(x,Qg) = ECAEd(x,QS)AEd(x, —Qy):)
=27(K, (D) K_(Qg)expfi[k (Qg) +k_(Qg)Ix+2i O Aa(wy+ Qg) Ad(wyg—Qs))
+ Kt(Qs)Kt(Qs)exq_ i [ki(Qs) + kt(Qs)]x_ 2i 0}<AéT(wd+ Qs)AaT(wd_Qs»
K4 (Qg)]2e 27+ QIXART (wg+ Qo) Ad(wy+ Q) +|K_(Qo)]%e 27O ART(wy— Qo) Ad(wg— Qy))),

(A6)
|
(Ad(w)Aa(0"))=—7(w)n(o")e *scoshs|sinHs|,

where (A8)
¥+(Q)=Im{k. (Qs)}. (A7) (AdT(w)AA(w'))=7*(0)n(w')sint|s|.  (A9)

Recalling Egs(19), (31), and(32), we obtain Finally, combining Eqs(A6), (A8), and(A9) yields

|
S(x, Q) =27 |[K (29[| 74 (Qg) [P 27+ X+ [K_ () |? 7 (Qg)|?e~ 27~ (@9X]sint?|s|

—4mRe(K  (Qg) 7 (Q)K_(Qg) 7 (Qg)exp{i[k (Qg) +k_(Qg)Ix+i(ps+26)})cosHs|sinNs|,

(A10)
where

7+(Qs) = n(wg* Q). (Al11)

When the phas@xvﬂs is chosen to minimiz&(x,{)) at any space-frequency point,
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@5t 26y 0. = —argK . (Qg) 7. (Q)K_(Qg) 7 (Q5)expfi[K (Qg) +K_(Qg)]X}), (A12)
then Eq.(A10) reduces to
S(x, Q)= 271 [K.. (Q)|? 7. (Qg) P& 27+ 0P [K_(Q9) |*] 7 () [Pe 272 sintP|s|
— 47K (Qg) 74+ (Q)K_(Qg) 7-(Qo)[exp{ —[ v+ (2s) + y-(Qg) Ix}coshis|sints]. (A13)

APPENDIX B: PROOF OF EQ. (57)
Using Egs.(21), (22), and(37), we may write

Ed(X,t)=ei“’dtf:dw K(w)n(w)exdik(w)x—iwt]= jw dQ K(wg+ Q) p(we+Q)exdik(weg+ Q)X—i(Q—dw)t],
—wp

(B1)
wheredw = wy — wg, EQ.(55). Recalling Egs(49) and (50), assuming
K(wg+Q)~K(wg)=Ky, (B2)
and extending thé) integral to—o°, from Eq.(B1) we obtain
|
L[ Eq(X,7)|?
Ed(x,t)=K0770e'kon dQ exp{—pﬂz [EqCx. )]
- Kol
_ 1\ [D(x)] o
+i| ki Q+ ko Q| x—=i(Q—dw)t|, (B3)
2 r{ 7D, (X) — 27D;(x)kyix— D (x) k22
XEX - 2
which may be rewritten as, on using EG3) [E4(X,7) 2[D(x)|
=Eq(x,t=ky,x+7)], (B8)
1 (= _ior In particular, forx=0 (entrance planefrom Eq. (B7) we
Eqy(x,7)= Zf_mdQ Ey(x,Q)e 10, (B4) g DO P q
where 7?1
E4(0,7) ~ex — 5 ?-Ha' , (B9)
Eq(x,Q)=27K o 70exd i (ko + Swky,)X] °
x exf — Ky (Q + Sw)x where
1 2 2|p|?| 22
—(p— 3ikpX)(Q+ Sw)?]. (B5) TO:( p ) (B10)
Pr
From Eq.(B5) the absolute value dE4(x,(}) is easily seen
to attain the maximum &the center frequengy and
O =dbw,— dw, (B6) pi
SO = B11
a 2|p|2 ( )

with Sw, from Eq. (60), which reveals that the center fre-

quency of the spectral function of the pulse, ER2), is  yespectively, are the duration and chirp of the incoming
shifted towardsoo + dwy, because of the dependence on fre-j e,

guency of the absorption. Evaluating the integral in &8 We evaluatef”., dr Eﬁ(x 7) to obtain

yields
) 2 _ k2.2 2w
E —K \/Tn r{_(T_ikliX)z f%dTEd(X’T)_WKonO\/\Wx)
d(X,7)=Ko7o D) 4D(x) X exf] 2i (Ko + dwki)X—28w?D(X)],
Xexfdi(ko+ dwky )X+idwr], (B7) oo

with D(x) from Eq. (56), and hence so that Eq.(41) takes the form
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VD(x 7+ (Qg)= noexd — p(dw = Q)] (C2
cps+20xzarg{K2—;4—2(kOr+ Swky )X+ 2(50)2D;(X). oo °
0’/0

(B13)
Evaluating the integral” ., dr |Eq4(x,7)|? yields
[ arax =ik y o
k2.x?
xex;{ — 2KgiX+ 2D,(x)}'
(B14)

Combining Egs(42), (43), (B12), and(B14), we finally ar-
rive at Eq.(57) [together with Eq(58)].

APPENDIX C: PROOF OF EQ. (66)

To apply Eq.(A13) to Gaussian wave packets considered

in Appendix B, we first recall Eqs(B2) and (49), so that
Egs.(A4) and(All) read as

K+ (£2g) =Ko, (CD

[w=wy— wg, EQ.(55)]. Next, Eq.(A7) together with Eq.
(A5),

Yi(Qs):Im{kt(Qs)}:Im{k(w0+5wtﬂs)}y (C3
may be rewritten as, on using EGO),
Y+ (Qg) =koi t Ky (8= Qo) + 3ka( S0+ Q)2 (C4

Finally, using Eqs(C1), (C2), and(C4), from Eq.(A13) we
find that

S(x,Q2s) =4m|Ko|?| 70| *sint?|s|exy — 2(Ko; + kyj 6w)x]
x exd — 2D, (x)(Sw?+ Q32)]
X (cosH2Q J kyijx+28wD,(x)]}—coths|),
(CH
where, according to Eq56),

D, (X)=p, + zkaiX. (C6)

[1] E. Yablonovitch and K.M. Leung, Physid«5B, 81 (1991).

[2] R.Y. Chiao, Phys. Rev. A48, R34 (1993.

[3] R.Y. Chiao, P.G. Kwiat, and A.M. Steinberg, Quantum Semi-
class. Opt7, 259 (1995.

[4] AM. Steinberg and R.Y. Chiao, Phys. Rev. &1, 3525
(1995.

[5] M.J. Adams and I.D. Henning)ptical Fibres and Sources for
CommunicationgPlenum Press, New York, 1990

[6] S.A. Akhmanov, V.A. Vysloukh, and A.S. ChirkifQptics of
Femtosecond Laser Pulsgg&merican Institute of Physics,
New York, 1992.

[7] W. Vogel and D.-G. WelschlLectures on Quantum Optics
(Akademie Verlag, Berlin/’VCH Publishers, New York, 1994

[8] J.D. Franson, Phys. Rev. 46, 3126(1992.

[9] A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Phys. Rev. Lett.
68, 2421(1992.

[10] A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, Phys. ReW3\
6659(1992.

[11] J. Jeffers and S.M. Barnett, Phys. Rev4A 3291(1993.

[12] S.M. Barnett, B. Huttner, and R. Loudon, Phys. Rev. L&#.
3698(1992.

[13] J. Jeffers and S.M. Barnett, J. Mod. Ogf, 1121(1994.

[14] Y. Lai and H.A. Haus, Phys. Rev. AQ, 844 (1989; 40, 854
(1989.

[15] P.D. Drummond and S.J. Carter, J. Opt. Soc. Am4,B565
(1987.

[16] H.A. Haus and Y. Lai, J. Opt. Soc. Am. B 386(1990.

[17] P.Q. Drummond, R.M. Shelby, S.R. Friberg, and Y. Yama-

moto, Nature365, 307 (1993.
[18] L. Knoll, W. Vogel, and D.-G. Welsch, Phys. Rev.36, 3803
(1987); also see Ref(7].

[19] R.J. Glauber and M. Lewenstein, Phys. RevA3\467(1991)).

[20] H. Khosravi and R. Loudon, Proc. R. Soc. London SeA38
337(1991); 436, 373(1992.

[21] P.D. Drummond, Phys. Rev. A2, 6845(1990.

[22] B. Huttner, J.J. Baumberg, and S.M. Barnett, Europhys. Lett.
16, 177 (199)).

[23] P.W. Milonni, J. Mod. Opt42, 1991(1995.

[24] J. Abram and E. Cohen, Phys. Rev.44, 500 (199J.

[25] G.S. Agarwal, Phys. Rev. A1, 230(1975.

[26] M. Fleischhauer and M. Schubert, J. Mod. C§8&, 677(1991).

[27] B. Huttner and S.M. Barnett, Europhys. L€el8, 487 (1992);
Phys. Rev. A46, 4306(1992.

[28] L. Knoll and U. Leonhardt, J. Mod. Op8&9, 1253(1992.

[29] D. Kupiszewska, Phys. Rev. A6, 2286(1992.

[30] S.-T. Ho and P. Kumar, J. Opt. Soc. Am.1B, 1620(1993.

[31] J.R. Jeffers, N. Imoto, and R. Loudon, Phys. Rew# 3346
(1993.

[32] T. Gruner and D.-G. Welsch, Phys. Rev.54, 3246(1995.

[33] S.M. Barnett, R. Matloob, and R. Loudon, J. Mod. Of2,
1165(1995.

[34] T. Gruner and D.-G. Welsch, Phys. Rev.58, 1818(1996.

[35] U.M. Titulaer and R.J. Glauber, Phys. Rav5 1041(1966.

[36] K.J. Blow, R. Loudon, S.J.D. Phoenix, and T.J. Shepherd,
Phys. Rev. A42, 4102(1990.

[37] D.F. Walls and G.J. Milburn,Quantum Optics(Springer-
Verlag, Berlin, 1994

[38] W. Vogel, Phys. Rev. Let7, 2450(1991); Phys. Rev. A51,
4160(1995.

[39] R. Loudon, J. Phys. &8, 233(1970.

[40] T. Gruner and D.-G. Welsch, Phys. Rev.(# be publisheg



