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The behavior of short quantum light pulses propagating in dispersive and absorbing linear ground-state
dielectrics is studied, with special emphasis on squeezed pulses. The analysis is based on normally ordered
correlation functions of the electric-field strength, which are related to quantities at the entrance plane, on using
quantum Langevin equations. Using nonmonochromatic-mode expansion and restricting attention to a single-
mode pulse in a squeezed state, the influence on squeezing of the pulse propagation in the medium is discussed
in both the time and frequency domains, and it is shown that the noise reduction observable in homodyne
detection sensitively depends on the phase control used. Effects, such as squeezing enhancement associated
with pulse compression and the destructive influence of the spectral shift caused by absorption, are demon-
strated. The numerical results are supplemented by analytical estimations derived for narrow-bandwidth Gauss-
ian pulses.@S1050-2947~96!00407-6#

PACS number~s!: 42.50.2p

I. INTRODUCTION

The study of propagation of quantum light pulses through
dispersive and absorptive dielectric matter has been a subject
of increasing interest. Apart from more fundamental prob-
lems, such as the determination of multilayer dielectric-
barrier traversal times of photons@1–4#, there have been a
number of open questions that are closely related to practical
applications, such as low-noise optical communication sys-
tems. It is well known that the transmission of information
through fibers by means of optical pulses requires detailed
knowledge of the influence of the medium properties on the
radiation@5#. In particular, linear dispersion and absorption
as well as nonlinear optical properties of the medium may
drastically affect the pulse properties.

Although a number of effects can be understood, in prin-
ciple, from classical optics@6#, quantum light pulses give rise
to typical nonclassical features whose explanation requires
additional considerations. It is well known that light exhibit-
ing nonclassical properties, such as squeezing, antibunching,
or sub-Poissonian statistics, reacts very sensitively to pertur-
bations and the noise associated with them. The propagation
of quantized light through dielectric matter has been studied
under various aspects. In particular, the action of a wide class
of passive optical instruments can be explained by using the
model of macroscopic dielectric bodies~see, e.g.,@7#!. Fur-
ther, photon tunneling through multilayer dielectric mirrors,
dispersion cancellation in two-photon interferences, and re-
lated nonlocal effects have been considered@2–4,8–11#.
Other interesting examples are spontaneous emission@12#
and propagation of continuous-wave squeezed light@13# in
dielectric media. In the nonlinear optical regime the genera-
tion and propagation of squeezed quantum solitons has been
of particular interest@14–17#. The use of squeezed soliton
pulses in optical communication systems could offer novel
possibilities in order to improve the performance of such
systems, because of the low-noise properties of the pulses
@17#.

There have been various approaches to the problem of
quantization of radiation in linear dielectric media. Quanti-

zation schemes have been developed for radiation in homo-
geneous and inhomogeneous dispersionless dielectric matter
and homogeneous dispersive dielectrics@18–23#, and exten-
sions to nonlinear media have been given@14–16,21,24#. In
order to describe the long-distance behavior of short quan-
tum light pulses, a quantization scheme is desired that is
consistent with the Kramers-Kronig relations and hence al-
lows for both dispersion and absorption. The problem has
been considered in a number of papers@25–34#. In particu-
lar, the method of Green-function expansion developed in
@34# enables one to include dispersion and absorption in the
theory and systematically treat both homogeneous and inho-
mogeneous dielectric matter.

Using the concepts developed in@13,34#, in the present
paper we study the propagation of short quantum light pulses
in dispersive and absorptive linear dielectrics, with special
emphasis on squeezed light pulses, the pulses being analyzed
in terms of so-called nonmonochromatic modes@35,36#. Re-
stricting attention to the dielectric-matter ground state, ex-
pressions for the normally ordered correlation functions of
the electric-field strength are given. The theory is used to
study the space-time evolution of the electric-field strength
noise of a quantum pulse that at the entrance plane is as-
sumed to be in a squeezed single-mode quantum state. It is
shown that the electric-field strength variance observed in
homodyne detection sensitively depends on the local-
oscillator frequency and phase control chosen. Assuming a
single medium resonance and a Gaussian spectral shape of
the incoming pulse, both numerical and analytical results are
presented and the influence of dispersion and absorption on
the observed electric-field strength variance of the pulse is
discussed. In particular, it is shown that effects, such as pulse
broadening and compression, well known from classical op-
tics may also be observed in the squeezing behavior of the
pulse. Conditions for preserving the squeezing effect in long-
distance propagation are derived.

The paper is organized as follows. In Sec. II the quanti-
zation scheme is outlined. The space-time evolution of the
quantum-statistical properties of light pulses is described in
terms of normally ordered correlation functions of the
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electric-field strength, which are expressed in terms of nor-
mally ordered moments of the photonic creation and destruc-
tion operators associated with the nonmonochromatic modes
of the pulse at the entrance plane. In Sec. III the theory is
applied to pulses that enter the medium in a squeezed single-
mode state, and an analysis of the development of the
electric-field noise in the further course of pulse propagation
is given, with special emphasis on homodyne detection. Fi-
nally, a summary and some concluding remarks are given in
Sec. IV.

II. FUNDAMENTALS

A. Quantization scheme

Let us consider linearly polarized radiation propagating in
the positivex direction in a linear dielectric whose permit-
tivity

«~v!5« r~v!1 i« i~v! ~1!

is a complex function of frequencyv. It is well known that
« r(v) and « i(v) describing the effects of dispersion and
absorption, respectively, are related to each other by the
Kramers-Kronig relations, because of causality. Introducing
the ~Heisenberg! operator of the electric-field strength,

Ê~x,t !5Ê~1 !~x,t !1Ê~2 !~x,t !, ~2!

Ê~2 !~x,t !5@Ê~1 !~x,t !#†, ~3!

whereÊ(1)(x,t) andÊ(2)(x,t), respectively, are the positive
and negative frequency parts, and following Refs.@13,34# we
may representÊ(1)(x,t) as

Ê~1 !~x,t !5E
0

`

dv K~v!e2 ivteikr ~v!xâ~x,v!, ~4!

where the abbreviation

K~v!5 iA \v

4pcnr~v!«0A
nr~v!

n~v!
~5!

has been used. Here and in the following,n(v) and k(v),
respectively, are the complex refractive index and wave
number,

n~v!5nr~v!1 ini~v!5A«~v!, ~6!

k~v!5kr~v!1 ik i~v!5
v

c
n~v!, ~7!

andA is the normalization area perpendicular to thex direc-
tion. Equation~2! together with Eqs.~3! and ~4! may be

regarded as a generalized mode expansion of the electric
field, where, owing to the propagation-assisted damping of
the waves, the amplitude operatorsâ(x,v) and â†(x,v) de-
pend onx. They satisfy the commutation relation

@ â~x,v!,â†~x8,v8!#5e2ki ~v!ux2x8ud~v2v8! ~8!

and obey quantum Langevin equations, so thatâ(x,v) can
easily be related toâ(x8,v), x > x8, as

â~x,v!5e2ki ~v!~x2x8!â~x8,v!

2 iA2ki~v!E
x8

x

dy e2ki ~v!~x2y!e2 ikr ~v!y f̂ ~y,v!,

~9!

where 2 iA2ki(v)e2 ikr (v)y f̂ (y,v) plays the role of a
Langevin operator noise source. Note that whenv is far
from the medium resonances, so that the damping may be
disregarded,« i(v) → 0, ordinary mode expansion is recog-
nized. The operatorsâ(x,v) and â†(x,v) become indepen-
dent ofx, â(x,v),â†(x,v)→â(v),â†(v), whereâ(v) and
â†(v) are the well-known photon destruction and creation
operators. It is worth noting that when in the frequency in-
terval under consideration the losses are sufficiently small so
thatnr(v)/n(v)'1 in Eq. ~5!, the form of the electric-field
operator given above agrees with that derived in Ref.@31#,
where the scattering centers that cause the losses in the me-
dium are modeled by beam splitters.

B. Radiation-field correlation functions

The study of the quantum statistics of radiation is fre-
quently based on an analysis of normally ordered electric-
field strength correlation functions available from measure-
ments. Let us therefore consider correlation functions of the
type

C~m,n!~$xm ,tm%!5K F )
m51

m

Ê~2 !~xm ,tm!G
3F )

m5m11

m1n

Ê~1 !~xm ,tm!G L ~10!

and suppose that the radiation is known at a certain entrance
plane ~in the following x50). Further, we assume that the
temperature is sufficiently low, so that the dielectric matter
does not act~in the optical frequency domain! as a thermal
light source. Using Eqs.~2!–~4! and~9!, we easily see that in
the case under study Eq.~10! may be rewritten as

C~m,n!~$xm ,tm%!5E
0

`

dv1K* ~v1!exp@2 ik* ~v1!x11 iv1t1#•••E
0

`

dvm1n K~vm1n!

3exp@ ik~vm1n!xm1n2 ivm1ntm1n#C
~m,n!~$vm%!, ~11!
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where

C~m,n!~$vm%!5K F )
m51

m

â†~vm!GF )
m5m11

m1n

â~vm!G L . ~12!

Here, the operatorsâ(vm)[â(x50,vm) and â†(vm)[
â†(x 5 0,vm) that satisfy the familiar bosonic commutation
relation

@ â~v!,â†~v8!#5d~v2v8! ~13!

@cf. Eq. ~8!, with x5x8# may be regarded as the photon
creation and destruction operators associated with the mono-
chromatic modes of the incoming radiation.

With regard to the study of light pulses, it may be useful
to introduce photons associated with other than monochro-
matic waves@35,36#, viz.,

ĉ j5E
0

`

dv h j* ~v!â~v!, ~14!

where theh j (v) are an orthonormal and complete set of
functions in thev domain, so thatĉ j and ĉ j

† satisfy the
bosonic commutation relation

@ ĉ j ,ĉ j 8
†

#5d j j 8. ~15!

Inverting Eq.~14!,

â~v!5(
j

h j~v!ĉ j , ~16!

and combining Eqs.~12! and ~16!, we find that

C~m,n!~$vm%!5(
$ jm%

F )
m51

m

h jm
* ~vm!G

3F )
m5m11

m1n

h jm
~vm!GG$ jm%

~m,n! , ~17!

where

G$ jm%
~m,n!5K F )

m51

m

ĉjm
† GF )

m5m11

m1n

ĉjmG L . ~18!

III. SQUEEZED SINGLE-MODE PULSE PROPAGATION

A. Basic equations

To illustrate typical effects of dispersion and absorption
on the quantum statistics of short nonclassical light pulses
propagating through linear dielectrics, let us restrict attention
to squeezed pulses. For this purpose we consider a pulse that
is generated in such a way that it effectively corresponds to
one excited nonmonochromatic mode, which of course con-
sists of a continuum of excited monochromatic modes. In
this case the sums in Eq.~17! reduce to one term, that is to
say,

C~m,n!~$vm%!5F )
m51

m

h* ~vm!GF )
m5m11

m1n

h~vm!G ^~ ĉ†!mĉn&,
~19!

where for notational convenience the mode subscript has
been omitted. Hence, Eq.~11! reads as

C~m,n!~$xm ,tm%!5F )
m51

m

E* ~xm ,tm!GF )
m5m11

m1n

E~xm ,tm!G
3^~ ĉ†!mĉn&. ~20!

Here,

E~x,t !5
1

2pE0
`

dv E~x,v!e2 ivt, ~21!

where

E~x,v!52pK~v!h~v!eik~v!x ~22!

may be regarded as the spectral function of the pulse at
propagation lengthx, the functionh(v) being normalized to
unity,

E
0

`

dvuh~v!u251. ~23!

From Eqs.~2!, ~10!, and~20!, the average of the electric-field
strength of the pulse reads as

^Ê~x,t !&5E~x,t !^ĉ&1E* ~x,t !^ ĉ†& ~24!

and the pulse intensity corresponds to

I ~x,t ![^Ê~2 !~x,t !Ê~1 !~x,t !&5uE~x,t !u2^ĉ†ĉ&. ~25!

Similarly, the normally ordered electric-field strength vari-
ance is given by

^:@DÊ~x,t !#2:&52uE~x,t !u2^D ĉ†D ĉ&

1$E2~x,t !^~D ĉ!2&1c.c.%, ~26!

where the notationDÔ 5 Ô2^Ô& has been introduced.
Light is said to be squeezed when~at chosen space-time

points! ^:@DÊ(x,t)#2:& attains negative values, that is to say,
when the noise of the electric-field strength can be reduced
below the vacuum level. Let us assume that the pulse under
consideration is in a squeezed vacuum state
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uC&5Ŝ~s!u0&, ~27!

where u0& and Ŝ(s), respectively, are the ordinary vacuum
state and the squeeze operator,

Ŝ~s!5exp@2 1
2 s~ ĉ

†!21H.c.#, ~28!

the complex number

s5usueiws ~29!

being the squeeze parameter. Straightforward calculation
yields ~see, e.g.,@7#!

^ĉ&50, ~30!

^D ĉ†D ĉ&5^ĉ†ĉ&5sinh2usu, ~31!

^~D ĉ!2&5^ ĉ2&52eiwscoshususinhusu. ~32!

Hence, from Eqs.~25! and ~26! we find that

^Ê~x,t !&50, ~33!

I ~x,t !5uE~x,t !u2sinh2usu, ~34!

^:@DÊ~x,t !#2:&52I ~x,t !2coshususinhusu$E2~x,t !eiws

1c.c.%. ~35!

B. Homodyne detection

It is well known that squeezing can be measured in bal-
anced homodyne detection, where the signal field and a
strong local oscillator are superimposed by a beam splitter
and the interfering field is measured. In particular, when a
~quasi!monochromatic local oscillator is used the electric-
field strength relevant for short-time detection is given by
~see, e.g.,@7,37,38#!

Êd~x,t !5exp@ ivdt1 iu#Ê~1 !~x,t !1H.c., ~36!

where vd and u, respectively, are the frequency and the
phase of the local oscillator. Substituting in Eqs.~34! and
~35! for E(x,t), Eq. ~21! @together with Eq.~22!#, the slowly
varying quantityEd(x,t)e

iu, where

Ed~x,t !5eivdtE~x,t !, ~37!

the electric-field strength variance measured~during a suffi-
ciently small time interval! reads as

^:@DÊd~x,t !#
2:&52I d~x,t !

2coshususinhusu$Ed
2~x,t !ei ~ws12u!1 c.c.%,

~38!

I d~x,t !5uEd~x,t !u2sinh2usu5I ~x,t !. ~39!

From Eq.~38! we expect that the normally ordered vari-
ance of the electric-field strength, in general, sensitively de-
pends onx and t through the phase ofEd(x,t), which can
drastically be changed during the propagation of the pulse in
the dielectric matter. Hence, control of the noise of the

electric-field strength requires careful control of the local-
oscillator phaseu. When at chosen distancex from the en-
trance plane a time-independent phase of the local oscillator,
ux , is used, an optimal value forux may be found from the
requirement that the time-integrated normally ordered
electric-field strength variance

^:@DÊd~x!#2:&5E
2`

`

dt^:@DÊd~x,t !#
2:& ~40!

„with ^:@DÊd(x,t)#
2:& from Eq. ~38!… is minimal, which im-

plies that the total electric-field noise observed over the
whole pulse is minimal. In this casews12ux compensates
the phase of*2`

` dt Ed
2(x,t),

ws12ux52argF E
2`

`

dt Ed
2~x,t !G , ~41!

and Eq.~40! takes the form

^:@DÊd~x!#2:&52W~x!22 coshususinhusuU E
2`

`

dt Ed
2~x,t !U,

~42!

where

W~x!5sinh2usu E
2`

`

dtuEd~x,t !u2 ~43!

is closely related to the overall pulse energy. Clearly, the
total noise detected in this scheme must not necessarily be
below the vacuum level, because both noise reductions and
enhancements contribute. Observation of an electric-field
strength noise reduced below the vacuum level at any space-
time point requires phase control that also includes time. In
particular, when the phase of the local oscillator,ux,t , is
chosen in such a way that in Eq.~38! ws12ux,t exactly
compensates the phase ofEd

2(x,t),

ws12ux,t52arg@Ed
2~x,t !#, ~44!

then at any space-time point the minimum noise is observed,
that is to say,

^:@DÊd~x,t !#
2:&52~12cothusu!I d~x,t !. ~45!

It should be noted that the electric-field strength variance in
Eq. ~38! is based on the detection operator~36! that charac-
terizes short-time measurements, such as the measurements
studied in Ref.@38#, and can advantageously be used in order
to temporally resolve the properties of pulses. When the
measuring time cannot be regarded as being short the detec-
tion operator is given by a time-integral over the field
strengthÊd(x,t) in Eq. ~36!. This type of detection operator
has been studied in Ref.@31# for measuring narrow band-
width radiation propagating along attenuating and amplify-
ing optical fibers.

When in ~balanced! homodyne detection the~difference!
photocurrent signal is passed through a spectral filter onto
the recorder, then spectral properties of the electric-field
noise can be observed. In particular, integrating the spec-
trally filtered signal over the whole pulse yields a time-
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independent squeezing spectrumS(x,Vs) closely related to
the Fourier transformÊd(x,Vs) of the electric-field strength
Êd(x,t),

S~x,Vs!5
1

2p
^:DÊd~x,Vs!DÊd~x,2Vs!:&, ~46!

where

Êd~x,Vs!5E
2`

`

dt eiVstÊd~x,t !. ~47!

An explicit expression forS(x,Vs) is given in Appendix A
@Eq. ~A10!#. Again, S(x,Vs) sensitively depends on the
local-oscillator phaseu. In particular, for chosen distancex
the phaseux may be optimized in such a way that the inte-
grated noise

S~x!5E
2`

`

dVs S~x,Vs! ~48!

becomes a minimum. Note that in this case the relation
S(x) 5 ^:@DÊd(x)#

2:& is valid, with ^:@DÊd(x)#
2:& from

Eq. ~42!. To observe maximum reduction of noise in each
frequency component@Eq. ~A13!#, the phase of the local os-
cillator, ux,Vs

, must be optimized for each setting frequency

Vs separately@Eq. ~A12!#.

C. Results

Since the~complex! c-number fieldE(x,t), Eq. ~21! @to-
gether with Eq.~22!#, looks like the~complex! electric-field
strength of a classical pulse propagating in a dispersive and
absorbing dielectric, we may expect that the normally or-
dered electric-field strength correlation functions as given in
Eq. ~20! exhibit properties that bear resemblance to a number
of properties of a classical pulse, such as pulse broadening
and compression. However, with regard to phase-sensitive
properties, such as the electric-field strength noise of
squeezed pulses@Eq. ~38!#, we also expect that the properties
actually detected sensitively depend on the phase control
used. To illustrate this, let us assume that the shape function
of the incoming pulse in the frequency domain,h(v), is
given by

h~v!5h0e
2p~v2v0!2 ~49!

@Fig. 1~b!#, wherev0 is the center frequency andh0 is a
normalization constant defined by Eq.~23!. The parameter
p is a complex number,p5 pr1 ipi , with pr.0. The real
partpr corresponds to the inverse squared spectral width and
the imaginary partpi is responsible for a frequency chirp@cf.
Eq. ~B11!#.

1. Gaussian wave packets

To calculate the normally ordered variance of the electric-
field strength observed in homodyne detection, Eq.~38!, let
us first consider the model of a narrow-bandwidth pulse
propagating in a medium that does not give rise to higher
than second-order dispersion and absorption@6#, so that the
~complex! wave number can approximately be given by

k~v!5k~v01V![k~V!'k01k1V1 1
2k2V

2, ~50!

where

kj5kjr1 ik j i ~ j50,1,2!, ~51!

V5v2v0 . ~52!

Using Eqs.~49! and ~50! and recalling Eqs.~21!, ~22!, and
~37!, and introducing the frame of reference (x,t) moving
with the group velocityk1r

21 ,

t5k1rx1t, ~53!

we evaluateEd(x,t)[Ed(x,t5k1rx 1t) to obtain@Appen-
dix B, Eqs.~B4! and ~B7!#

Ed~x,t!5
1

2pE2`

`

dV Ed~x,V!e2 iVt

5K0h0A p

D~x!
expF2

~t2 ik1ix!2

4D~x! G
3exp@ i ~k01k1rdv!x1 idvt#, ~54!

where the abbreviations

dv5vd2v0 ~55!

and

D~x!5p2 1
2 ik2x5Dr~x!1 iD i~x! ~56!

FIG. 1. The dispersion relationk(v) based on Eq.~69!
@kn5(v0 /c)A«`# and the spectral shape function of the incoming
pulse,h(v), given in Eq.~49!, are shown. The solid and dotted
curves, respectively, correspond to real and imaginary parts. The
following parameter values are used~Sec. III C 2!: «`51, D«53,
v r /v052.531021, g/v r5131023, prv0

2533101, piv0
2

521.53102.
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have been used,K0 and h0 being given in Eqs.~B2! and
~49!.

From Eqs. ~38! and ~39! it is clear that the observed
space-time behavior of the electric-field strength variance of
a pulse entering the medium in a squeezed state may re-
semble~dependent upon the phase control used! that of the
intensity. Let us first assume that the local-oscillator phase is
independent of time. We choose it according to Eq.~41!, so
that for given propagation lengthx the time-integrated vari-
ancê :@DÊd(x)#

2:&, Eq.~42! together with Eq.~43!, is mini-
mal. Using Eq.~54!, after some calculation we obtain

^:@DÊd~x!#2:&52W~x!H 12cothusuADr~x!

uD~x!u

3expF22Dr~x!S dv1
k1ix

2Dr~x!
D 2G J ,

~57!

where the total-pulse intensity reads as

W~x!5A 2p3

Dr~x!
uK0u2uh0u2sinh2usuexpF22k0ix1

k1i
2 x2

2Dr~x!
G

~58!

@see Appendix B, Eqs.~B12!–~B14!#. Note that the approxi-
mation scheme only applies when the conditions

2k2ik0i.k1i
2 , k0i.0, k2i.0 ~59!

are satisfied, otherwise divergencies would appear. The con-
ditions ~59! obviously result from neglection of all the terms
higher than second order in frequency in the expansion of the
wave number, Eq.~50!.

Reduction of the electric-field strength noise below the
vacuum level can be observed when the second term in the
curly brackets in Eq.~57! exceeds the first one, so that
^:@DÊd(x)#

2:&,0. It can easily be seen that^:@DÊd(x)#
2:&

as a function ofdv attains a minimum at

dv5dvx[2
k1ix

2Dr~x!
, ~60!

which coincides with the shift of the center frequency of the
spectral function of the pulse at propagation lengthx @see
Appendix B, Eq.~B6!#. Compensating this shift by control-
ling the local-oscillator frequency in such a way that~at cho-
sen distancex) vd5v01dvx is valid, we can substitute
dvx for dv in Eq. ~57! and obtain

^:@DÊd~x!#2:&52W~x!S 12cothusuADr~x!

uD~x!u D ~61!

~Fig. 7!. Hence, using frequency matching, reduced electric-
field strength noise can be detected. Equation~61! reveals
that thex region where~time-integrated! squeezing can be
detected is given by the condition that

U Di~x!

Dr~x!
U,Acoth4usu21 ~62!

~Fig. 2!. Recalling Eq. ~56!, we see thatuDi(x)/Dr(x)u

→uk2r /k2i u whenx→`. Hence, detection of negative values
of ^:@DÊd(x)#

2:& at large propagation length (x→`) re-
quires the condition

U k2rk2i
U,Acoth4usu21 ~63!

to be satisfied. Clearly, in the limit whenpi→0 satisfaction
of the condition~63! implies that^:@DÊd(x)#

2:& , 0 for all
values ofx. Rewriting Eq.~63! as

usu,s05arccoth@~11uk2r /k2i u2!1/4#, ~64!

we may regard this inequality as a restriction imposed on the
absolute value ofs. The absolute value ofs must not exceed
s0 in order to detect negative values of^:@DÊd(x)#

2:&. Note
that the value ofs0 decreases with increasing value of the
second-order dispersion coefficient of the medium,k2i ,
which is responsible for dephasing, but increases with the
value of the second-order absorption coefficient of the me-
dium, k2i . It should be pointed out that forusu,s0 the nor-
mally ordered electric-field strength variance
^:@DÊd(x)#

2:& given in Eq.~61! always evolves into nega-
tive values in the medium even when~at the entrance plane!

^:@DÊd(0)#
2:& > 0.

Clearly, when the phase of the local oscillator is con-
trolled in such a way that in Eq.~38! ws12ux,t exactly com-
pensates the phase ofEd

2(x,t) at any space-time point, so that
Eqs.~45! and ~44! apply, the normally ordered electric-field
strength variancê :@DÊd(x,t)#

2:& is always negative and
fully determined by the intensity~Fig. 8!. From Eqs.~39! and
~54!, the duration of the pulse~intensity! at propagation
lengthx is given by

t0~x!5S 2uD~x!u2

Dr~x! D 1/2 ~65!

FIG. 2. The dependence on the propagation lengthx of the
complex quantityD(x) defined in Eq.~56! is shown. In thex region
that corresponds toD(x) inside the hatched area, with spread angle
2w52arctan (Acoth4usu21), Eq.~62!, the normally ordered electric-
field strength variance of the overall pulse, Eq.~61!, is negative.
uD(x)u attains a minimum whenD(x)'x(x5x1 in the figure!, and
a minimum of the duration of the pulse,t0(x) @Eq. ~65!#, is ob-
served atx5x2 .
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@cf. Eq. ~94! for t0[t0(0)#. When for appropriately chosen
parameters the pulse durationt0(x) attains at certain dis-
tance (x5x2 in Fig. 2! a minimum, ordinary pulse compres-
sion is accompanied by ‘‘compression’’ of squeezing. Note
that this effect can also be found in the case when the local-
oscillator phase is independent of time and chosen according
to Eq.~41! ~Fig. 4!. Needless to say, in any detection scheme
the noise reduction is lost for sufficiently large values of the
propagation length, because of absorption.

Let us turn to the squeezing spectrumS(x,Vs) defined in
Eq. ~46! and suppose that the local-oscillator phase is chosen
in such a way that for given propagation lengthx and setting
frequencyVs maximum noise reduction is observed@Eq.
~A12!#. From Appendix C we obtain

S~x,Vs!54puK0u2uh0u2sinh2usuexp@22~k0i1k1idv!x#

3exp@22Dr~x!~dv21Vs
2!#

3„cosh$2Vs@k1ix12dvDr~x!#%2cothusu…

~66!

@Eq. ~C5!#. We see thatS(x,Vs) depends on the coefficients
kj only through the imaginary partskji arising from absorp-
tion. In particular, the quadratic dependence on frequency of
the imaginary part of the wave number~coefficientk2i) can
give rise to anx-dependent change of the width of the
squeezing spectrum observed. The effect is similar to that
reported in Ref.@13# for the squeezing spectrum of continu-
ous radiation. Further, there are regions of frequency for
which the noise can be enhanced and others where it can be
reduced. In particular whendv50 is valid ~that is to say,
vd5v0), wings of enhanced noise are observed for frequen-
cies satisfying the condition

uVsu.
arccosh~cothusu!

2k1ix
, ~67!

the height of the wings being proportional to exp@22k0ix
2(2pr1k2ix)Vs

2] ~Fig. 11!. The effect obviously comes
from the linear dependence on frequency of the imaginary
part of the wave number~coefficientk1i). It is closely related
to thex-dependent shift of the center frequency of the spec-
tral function of the pulse@see Appendix B, Eq.~B6!# and
quite similar to that found for̂ :@DÊd(x)#

2:&, Eq. ~57!, in
the case whenvd5v0 (dv50). Hence, shifting the local-
oscillator frequencyvd towardsv01dvx , with dvx from
Eq. ~60!, the effect can be suppressed. In this case, Eq.~66!
obviously reads as

S~x,Vs!54puK0u2uh0u2sinh2usu~12cothusu!

3expF22k0ix1
k1i
2 x2

2Dr~x!
22Dr~x!Vs

2G ,
~68!

which ~for usu.0) is seen to be always negative.

2. Numerical results

The Gaussian wave-packet approximation fails when
higher than second order frequency derivatives of the wave

number become significant~e.g., in long-distance propaga-
tion of extremely short pulses!. In this case the calculations
must be performed, in general, numerically, using the actual
data for the dielectric matter~and the pulse! under study. To
give an example, let us consider an effectively single-
resonance medium of Lorentz type whose permittivity can be
given by @39#

«~v!5«`1
v r
2D«

v r
22v222igv

, ~69!

wherev r andg, respectively, are the resonance frequency of
the medium and the corresponding linewidth. Contributions
to the permittivity of other resonances may be thought of as
to be included in«` , so that in general«`Þ1. In the nu-
merical calculation we have restricted attention to an exactly
single resonance medium and assumed that«`51. The val-
ues of the other parameters in Eq.~69! and the values of the
parameters of the spectral shape function of the incoming
pulse,h(v), given in Eq.~49! have been chosen as follows:
D«53, v r /v052.531021, g/v r5131023, prv0

2

533101, piv0
2521.53102. The resulting dependence on

frequency of the wave number,k(v), can then be found
from Eq. ~7! together with Eqs.~6! and~69! @Fig. 1~a!#. The
function h(v) spectrally extends over a relatively large re-
gion wherekr9(v),0 @Fig. 1~b!#. The numerical results are
compared with those obtained in the Gaussian wave-packet
approximation, usingk(v) according to Eq.~69! and making
in Eq. ~50! the identifications

k05k~v0!, k15k8~v!uv5v0
, k25k9~v!uv5v0

,
~70!

which particularly implies that the value ofs0 in the inequal-
ity ~64! is given bys058.231022.

In the figures, (x,t) refer to a moving reference frame
@Eq. ~53!#. The values ofx andt, respectively, are given in
units of the initial-pulse duration t0[t0(50)
5(2upu2/pr)1/2 @cf. Eqs.~65! and ~B10!# and the dispersion
lengthLd5t0

2/uk2u, see, e.g.,@6#. In Fig. 3 the evolution of
the pulse intensity given in Eq.~39! @ I d(x,t)[I d(x,t
5k1rx1t)# is shown. The evolution of the observed nor-
mally ordered electric-field strength variance given in
Eq. ~38! @^:@DÊd(x,t)#

2:&[^:@DÊd(x,t5k1rx1t)] 2:&# is
shown in Fig. 4 for the case when the local-oscillator phase
is independent of time and chosen according to Eq.~41!. The
‘‘compression’’ of squeezing in Fig. 4 corresponds to the
compression of the pulse intensity in Fig. 3. Restricting at-
tention to a time-independent local-oscillator phaseux , from
Sec. III B we know that choosingux according to Eq.~41!
ensures observation of maximum noise reduction in the
sense that the time-integrated normally ordered variance
^:@DÊd(x)#

2:& is minimal. In Figs. 6 and 7, respectively,
the so-optimized ux , Eq. ~41!, and the resulting
^:@DÊd(x)#

2:&, Eq. ~42!, are shown as functions of the
propagation lengthx. Note thatux does not depend on the
absolute value of squeezing parameters. From Fig. 7 we see
that, in agreement with the Gaussian wave-packet approxi-
mation, ^:@DÊd(x)#

2:& is negative in the wholex region,
provided thatusu,s0 ~strong second-order absorption!. We
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further see that in the case whenusu.s0 ~weak second-order
absorption! the region where negative values of
^:@DÊd(x)#

2:& can be observed is limited:̂:@DÊd(x)#
2:&

starts from positive values atx50, evolves into negative
values with increasingx, and attains again positive values in
the further course of pulse propagation. In the Gaussian
wave-packet approximation the region of negative values of
^:@DÊd(x)#

2:& is limited by the hatched area in Fig. 2. Com-
paring Figs. 6 and 7 we see that observation of maximum

noise reduction requires careful phase control, because in the
vicinity of the minimum of^:@DÊd(x)#

2:& the phaseux sen-
sitively depends onx.

In Figs. 4 and 7 frequency matching is assumed, that is to
say, for chosen propagation lengthx the optimal value of the
local-oscillator frequencyvd given by vd5v01dvx is
used, where

dvx5
*dVVuEd~x,V!u
*dVuEd~x,V!u

, ~71!

Ed(x,V) being the Fourier transform ofEd(x,t) @cf. Eq.
~B4!#. Note that in the Gaussian wave-packet approximation
Eq. ~71! reduces to Eq.~60!. An example for the dependence
on x of dvx is given in Fig. 5. According to Eq.~41! @to-
gether with Eqs.~37!, ~21!, and ~22!# the phaseux depends
on the chosen local-oscillator frequency. The effect of fre-
quency matching on the phaseux is illustrated in Fig. 6.

Appropriate local-oscillator phase control at any space-
time point would of course enable one to observe always
negative values of̂:@DÊd(x,t)#

2:&. As already mentioned,
when the phasews12ux,t exactly compensates the phase of
Ed
2(x,t) @Eq. ~44!#, then the minimum noise is observed and

Eq. ~45! applies ~Fig. 8!. In this case the evolution of
^:@DÊd(x,t)#

2:& in space and time is fully determined by
that of the intensity. In particular, there is a one-to-one cor-
respondence between classical pulse compression and com-
pression of the electric-field strength noise. In this region
substantially enhanced squeezing can be observed. Figure 8
also illustrates the limits of application of the Gaussian
wave-packet approximation. The asymmetries and substruc-
tures in the pulse profile obviously arise from higher than
second-order terms in the expansion of the complex wave
number, which are omitted in the Gaussian wave-packet ap-
proximation.

In Fig. 9 the squeezing spectrumS(x,Vs), Eq. ~A10!, is
shown for the case when the local-oscillator frequency and
phase, respectively, are chosen according to Eqs.~71! and
~41! @Figs. 5 and 6~a!#. The situation corresponds to that in

FIG. 3. The pulse intensityI d(x,t), Eq. ~39!, is shown as a
function of t for various values of the propagation lengthx, where
t05(2upu2/pr)1/2 andLd5t0

2/uk2u. The values of the pulse and me-
dium parameters are given in Fig. 1. The dotted curves correspond
to the Gaussian wave-packet approximation, Sec. III C 1.

FIG. 4. The normally ordered electric-field strength variance
^:@DÊd(x,t)#

2:&, Eq. ~38! together with Eq.~39!, is shown as a
function of t for various values of the propagation lengthx, and
usu5831022, where V(x,t)5^:@DÊd(x,t)#

2:&/(2cothusu), t0
5(2upu2/pr)1/2, and Ld5t0

2/uk2u. The local-oscillator frequency
and phase are chosen according to Figs. 5 and 6~a!, respectively.
The values of the pulse and medium parameters are given in Fig. 1.
The dotted curves correspond to the Gaussian wave-packet approxi-
mation, Sec. III C 1.

FIG. 5. The local-oscillator frequencyvd required for frequency
matching is shown as a function of the propagation lengthx; vd

5v01dvx , with dvx from Eq. ~71! or, in the Gaussian wave-
packet approximation, from Eq.~60!. The values of the pulse and
medium parameters are given in Fig. 1. The dotted curve corre-
sponds to the Gaussian wave-packet approximation, Sec. III C 1.
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Fig. 4. Owing to the choice of the local-oscillator phase,
integration ofS(x,Vs) over all frequencies yields the time-
integrated normally ordered electric-field strength correlation
function ^:@DÊd(x)#

2:& shown in Fig. 7. From inspection of
Fig. 9 we see that only in thex region in which maximum
noise reduction can be observed are nearly all the frequency
components~that are relevant for the pulse! squeezed. For
fixed local-oscillator phase, such a uniform behavior of the
frequency components is of course not possible in an ex-
tendedx region, because of dispersion-assisted dephasing.
Optimizing the local-oscillator phase for each frequency
component separately@Eq. ~A12!# enables one to suppress
this dephasing and at any space-time point maximum noise
reduction can be observed~Fig. 10!.

The effect of frequency detuning between local oscillator
and pulse is demonstrated in Fig. 11. As already mentioned,
owing to frequency-dependent absorption anx-dependent
shift of the center frequency of the spectral function of the
pulse is observed. Hence, tuning the local-oscillator fre-
quency to the center frequency of the incoming pulse, in the
further course of pulse propagation detuning necessarily ap-
pears. The enhanced noise observed in this case~the wings in
Fig. 11! can be suppressed in a detection scheme, where
frequency matching is used, so that at chosen propagation
lengthx the local oscillator-frequency equals the actual cen-
ter frequency of the spectral function of the pulse~Fig. 10!.

IV. SUMMARY AND CONCLUSIONS

In this paper we have considered the propagation of short
quantum light pulses in dispersive and absorbing linear di-

FIG. 6. The local-oscillator phaseux , Eq. ~41!, yielding the
time-integrated normally ordered electric-field strength variance
^:@DÊd(x)#

2:&, Eq. ~42! together with Eq.~43!, is shown as a func-
tion of the propagation lengthx, where ũx52@ux1(k0r
1dvk1r)x] and Ld5t0

2/uk2u. ~a! vd5v01dvx , with dvx from
Eq. ~71! or, in the Gaussian wave-packet approximation, from Eq.
~60! ~Fig. 5!. ~b! vd5v0 . The values of the pulse and medium
parameters are given in Fig. 1. The dotted curves correspond to the
Gaussian wave-packet approximation, Sec. III C 1.

FIG. 7. The time-integrated intensityW(x), Eq. ~43!, and the
time-integrated normally ordered electric-field strength variance
^:@DÊd(x)#

2:&, Eq. ~42! together with Eq.~43!, for different abso-
lute values of the squeezing parameters are shown as functions of
the propagation lengthx, whereV(x)5^:@DÊd(x)#

2:&/(2cothusu)
and Ld5t0

2/uk2u. The local-oscillator frequency and phase are
chosen according to Figs. 5 and 6~a!, respectively. The values of
the pulse and medium parameters are given in Fig. 1. The dotted
curves correspond to the Gaussian wave-packet approximation,
Sec. III C 1.

FIG. 8. The normally ordered electric-field strength variance
^:@DÊd(x,t)#

2:&, Eq. ~45!, is shown as a function oft for various
values of the propagation lengthx, and usu5831022, where
V(x,t)5^:@DÊd(x,t)#

2:&/(2cothusu), t05(2upu2/pr)1/2, and Ld5
t0
2/uk2u. The phase of the local oscillator,ux,t , is chosen in such a
way that in Eq.~38! ws12ux,t exactly compensates the phase of
Ed
2(x,t) @Eq. ~44!#, and in any space-time point the minimum noise

is observed. The values of the pulse and medium parameters are
given in Fig. 1. The dotted curves correspond to the Gaussian wave-
packet approximation, Sec. III C 1.
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electrics that are not thermally excited in the optical fre-
quency region of the pulses. The space-time evolution of the
quantum-statistical properties of the pulses has been de-
scribed in terms of normally ordered correlation functions of
the electric-field strength, which can be expressed in terms of
normally ordered moments of the photonic creation and de-
struction operators associated with the nonmonochromatic
modes of the pulses at the entrance plane. The theory has

been applied to single-mode pulses that enter the medium in
a squeezed vacuum state. The development of the normally
ordered electric-field strength variance in the further course
of pulse propagation has been studied in both the time and
frequency domains, with special emphasis on homodyne de-
tection. It has been shown that owing to the dependence on
frequency of the complex wave number determining disper-
sion and absorption the result of detection can sensitively
depend on the local-oscillator phase and frequency control.

Using a model permittivity that is based on a single me-
dium resonance of Lorentz type and assuming for the incom-
ing pulse a Gaussian spectral shape function, both analytical
and numerical results have been presented in order to ana-
lyze the effects of dispersion and absorption on the electric-
field strength noise observed in homodyne detection. A num-
ber of effects, such as pulse broadening and compression,
well known from classical optics have been shown to be also
observable with regard to the electric-field strength noise. In
particular, ordinary pulse compression can be accompanied
by ‘‘compression’’ of squeezing, so that enhanced squeezing
can be observed, the compression distance coinciding with
the classical one.

When the local-oscillator phase is time independent~that
is to say, it does not vary with time on a time scale given by
the duration of the pulse under consideration!, the optimal
phase for detection of squeezing can be determined from the
requirement that the total electric-field strength noise de-
tected is minimal. The so-optimized phase varies with the
length of propagation of the pulse in the medium. In this
scheme, the region of propagation length in which total-pulse
squeezing can be observed is limited, in general, by an upper
and lower boundary and decreases with increasing strength
of squeezing of the incoming pulse. In particular, long-
distance detection of total-pulse squeezing is, in general, not
possible. Only in the case when the absolute value of the
squeezing parameter of the incoming pulse does not exceed a

FIG. 9. The squeezing spectrumS(x,Vs), Eq. ~A10!, is shown
for various values of the propagation lengthx, and usu5831022,
where V05(2pr)

21/2 and Ld5t0
2/uk2u. The local-oscillator fre-

quency and phase are chosen according to Figs. 5 and 6~a!, respec-
tively. The values of the pulse and medium parameters are given in
Fig. 1. The dotted curves correspond to the Gaussian wave-packet
approximation, Sec. III C 1.

FIG. 10. The squeezing spectrumS(x,Vs), Eq. ~A13!, is shown
for various values of the propagation lengthx, where V0

5(2pr)
21/2 and Ld5t0

2/uk2u. Frequency matching is considered
~Fig. 5! and the local-oscillator phase is chosen according to Eq.
~A12!, so that at any space-frequency point minimum noise is ob-
served. Note that in this caseS(x,Vs)/S(0,0) is independent of
usu. The values of the pulse and medium parameters are given in
Fig. 1. The dotted curves correspond to the Gaussian wave-packet
approximation, Sec. III C 1.

FIG. 11. The squeezing spectrumS(x,Vs), Eq. ~A13!, is shown
for various values of the propagation lengthx, andusu 5 2, where
V05(2pr)

21/2 andLd5t0
2/uk2u. The local-oscillator phase is cho-

sen according to Eq.~A12!, so that at any space-frequency point
minimum noise is observed, however without frequency matching
(vd5v0). The values of the pulse and medium parameters are
given in Fig. 1. The dotted curves correspond to the Gaussian wave-
packet approximation, Sec. III C 1.
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critical value can squeezing be detected, without restriction
of the length of propagation. The critical value is determined
by two rival effects. Dispersion tries to decrease it, because
of dephasing, whereas frequency-dependent~higher-order!
absorption has the tendency to enlarge it, since it selectively
removes sideband components from the pulse which are then
missing in the dephasing process. On the other hand,
frequency-dependent absorption has also the tendency to
shift the center frequency of the spectral function of the pulse
during propagation in the medium. In this case, detection of
maximum noise reduction requires the local-oscillator fre-
quency to be tuned to the center frequency of the pulse at a
chosen length of propagation in the medium.

It should be noted that effects that may arise from input–
output couplings have been ignored throughout the paper.
Their inclusion in the theory requires consideration of the
boundary conditions at the surfaces of discontinuity~en-
trance and exit planes! and can be performed by applying the
correct input-output relations given in Ref.@40# in place of
Eq. ~9!. As a consequence of using modified input-output
relations, a spectral function of the pulse,E(x,v), is ob-
tained that may differ from that in Eq.~22!. Clearly, knowing
the spectral function, all the calculations may be performed
in a similar way as in this paper.
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APPENDIX A: SQUEEZING SPECTRUM

Using Eqs.~36! and ~4!, we find that

Êd~x,t !5E
0

`

dv K~v!eik~v!xe2 i ~v2vd!t1 iuâ~v!1H.c.,

~A1!

so that Eq.~47! takes the form

Êd~x,Vs!5E
2`

`

dt eiVstÊd~x,t !52pE
0

`

dv

3@K~v!eik~v!x1 iud~2v1vd1Vs!â~v!

1K* ~v!e2 ik* ~v!x2 iud~v2vd1Vs!â
†~v!#,

~A2!

where

Êd~x,Vs!52p@K1~Vs!e
ik1~Vs!x1 iuâ~vd1Vs!

1K2* ~Vs!e
2 ik2

* ~Vs!x2 iuâ†~vd2Vs!#, ~A3!

with

K6~Vs!5Q~vd6Vs!K~vd6Vs!, ~A4!

k6~Vs!5k~vd6Vs! ~A5!

@Q(x), unit step function#. We now calculateS(x,Vs) de-
fined by Eq.~46!. From the above we obtain

S~x,Vs!5
1

2p
^:DÊd~x,Vs!DÊd~x,2Vs!:&

52p„K1~Vs!K2~Vs!exp$ i @k1~Vs!1k2~Vs!#x12iu%^Dâ~vd1Vs!Dâ~vd2Vs!&

1K1* ~Vs!K2* ~Vs!exp$2 i @k1* ~Vs!1k2* ~Vs!#x22iu%^Dâ†~vd1Vs!Dâ
†~vd2Vs!&

1uK1~Vs!u2e22g1~Vs!x^Dâ†~vd1Vs!Dâ~vd1Vs!&1uK2~Vs!u2e22g2~Vs!x^Dâ†~vd2Vs!Dâ~vd2Vs!&…,

~A6!

where

g6~Vs!5Im$k6~Vs!%. ~A7!

Recalling Eqs.~19!, ~31!, and~32!, we obtain

^Dâ~v!Dâ~v8!&52h~v!h~v8!eiwscoshususinhusu,
~A8!

^Dâ†~v!Dâ~v8!&5h* ~v!h~v8!sinh2usu. ~A9!

Finally, combining Eqs.~A6!, ~A8!, and~A9! yields

S~x,Vs!52p@ uK1~Vs!u2uh1~Vs!u2e22g1~Vs!x1uK2~Vs!u2uh2~Vs!u2e22g2~Vs!x#sinh2usu

24p Re„K1~Vs!h1~Vs!K2~Vs!h2~Vs!exp$ i @k1~Vs!1k2~Vs!#x1 i ~ws12u!%…coshususinhusu,

~A10!

where

h6~Vs!5h~vd6Vs!. ~A11!

When the phaseux,Vs
is chosen to minimizeS(x,Vs) at any space-frequency point,

54 853PROPAGATION OF SQUEEZED-LIGHT PULSES IN . . .



ws12ux,Vs
52arg„K1~Vs!h1~Vs!K2~Vs!h2~Vs!exp$ i @k1~Vs!1k2~Vs!#x%…, ~A12!

then Eq.~A10! reduces to

S~x,Vs!52p@ uK1~Vs!u2uh1~Vs!u2e22g1~Vs!x1uK2~Vs!u2uh2~Vs!u2e22g2~Vs!x#sinh2usu

2 4puK1~Vs!h1~Vs!K2~Vs!h2~Vs!uexp$2@g1~Vs!1g2~Vs!#x%coshususinhusu. ~A13!

APPENDIX B: PROOF OF EQ. „57…

Using Eqs.~21!, ~22!, and~37!, we may write

Ed~x,t !5eivdtE
0

`

dv K~v!h~v!exp@ ik~v!x2 ivt#5E
2v0

`

dV K~v01V!h~v01V!exp@ ik~v01V!x2 i ~V2dv!t#,

~B1!

wheredv 5 vd 2 v0 , Eq. ~55!. Recalling Eqs.~49! and ~50!, assuming

K~v01V!'K~v0![K0 , ~B2!

and extending theV integral to2`, from Eq. ~B1! we obtain

Ed~x,t !5K0h0e
ik0xE

2`

`

dV expF2pV2

1 i S k1V1
1

2
k2V

2D x2 i ~V2dv!t G , ~B3!

which may be rewritten as, on using Eq.~53! @Ed(x,t)
[Ed(x,t5k1rx1t)#,

Ed~x,t!5
1

2pE2`

`

dV Ed~x,V!e2 iVt, ~B4!

where

Ed~x,V!52pK0h0exp@ i ~k01dvk1r !x#

3exp@2k1i~V1dv!x

2~p2 1
2 ik2x!~V1dv!2#. ~B5!

From Eq.~B5! the absolute value ofEd(x,V) is easily seen
to attain the maximum at~the center frequency!

V5dvx2dv, ~B6!

with dvx from Eq. ~60!, which reveals that the center fre-
quency of the spectral function of the pulse, Eq.~22!, is
shifted towardsv01dvx , because of the dependence on fre-
quency of the absorption. Evaluating the integral in Eq.~B4!
yields

Ed~x,t!5K0h0A p

D~x!
expF2

~t2 ik1ix!2

4D~x! G
3exp@ i ~k01dvk1r !x1 idvt#, ~B7!

with D(x) from Eq. ~56!, and hence

uEd~x,t!u2

5
puK0u2uh0u2

uD~x!u
exp@22k0ix#

3expF2
t2Dr~x!22tDi~x!k1ix2Dr~x!k1i

2 x2

2uD~x!u2 G .
~B8!

In particular, forx50 ~entrance plane! from Eq. ~B7! we
find that

Ed~0,t!;expF2
t2

2 S 1t02 1 ia D G , ~B9!

where

t05S 2upu2

pr
D 1/2 ~B10!

and

a52
pi

2upu2
, ~B11!

respectively, are the duration and chirp of the incoming
pulse.

We evaluate*2`
` dt Ed

2(x,t) to obtain

E
2`

`

dt Ed
2~x,t!5pK0

2h0
2A 2p

D~x!

3exp@2i ~k01dvk1!x22dv2D~x!#,

~B12!

so that Eq.~41! takes the form
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ws12ux5argFAD~x!

K0
2h0

2 G22~k0r1dvk1r !x12~dv!2Di~x!.

~B13!

Evaluating the integral*2`
` dt uEd(x,t)u2 yields

E
2`

`

dtuEd~x,t!u25puK0u2uh0u2A 2p

Dr~x!

3expF22k0ix1
k1i
2 x2

2Dr~x!
G .

~B14!

Combining Eqs.~42!, ~43!, ~B12!, and~B14!, we finally ar-
rive at Eq.~57! @together with Eq.~58!#.

APPENDIX C: PROOF OF EQ. „66…

To apply Eq.~A13! to Gaussian wave packets considered
in Appendix B, we first recall Eqs.~B2! and ~49!, so that
Eqs.~A4! and ~A11! read as

K6~Vs!5K0 , ~C1!

h6~Vs!5h0exp@2p~dv6Vs!
2# ~C2!

@dv5vd2v0 , Eq. ~55!#. Next, Eq.~A7! together with Eq.
~A5!,

g6~Vs!5Im$k6~Vs!%5Im$k~v01dv6Vs!%, ~C3!

may be rewritten as, on using Eq.~50!,

g6~Vs!5k0i1k1i~dv6Vs!1 1
2k2i~dv6Vs!

2. ~C4!

Finally, using Eqs.~C1!, ~C2!, and~C4!, from Eq.~A13! we
find that

S~x,Vs!54puK0u2uh0u2sinh2usuexp@22~k0i1k1idv!x#

3exp@22Dr~x!~dv21Vs
2!#

3„cosh$2Vs@k1ix12dvDr~x!#%2cothusu…,

~C5!

where, according to Eq.~56!,

Dr~x!5pr1
1
2k2ix. ~C6!
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