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Propagation of laser pulses and coherent population transfer in dissipative three-level systems:
An adiabatic dressed-state picture
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The interaction of a pair of copropagating pulses with three-l&w¢ype atoms is discussed in terms of
time-dependent coupled and decoupled superpositiars of the lower levels. Due to the explicit time
dependence of these states there is a nonadiabatic coupling between the “bright*tstated the “dark”
state|—) in addition to the strong coupling betweés ) and the upper levela) . We show that under
quasiadiabatic conditions and in the presence of decay from the upper level this coupling can be treated
perturbatively and the Maxwell-Bloch equations can be solved analytically. With the help of such a perturba-
tion approach, coherent population transfer and formstable laser pulse propagation are FBi080-
294796)06206-3

PACS numbg(s): 42.50.Gy, 42.50.Hz, 42.65.Tq, 42.65.Dr

[. INTRODUCTION disregarded. In the present paper we show that a simpler
description of the population transfer is possible when this
The resonant interaction of time-dependent fields withdecay is taken into account. For this we employ a picture
three-levelA-type atoms has attracted some attention in rewhich uses the adiabatic coupl€tbright” ) and decoupled
cent years. There are two aspects of the problem for whick‘dark” ) superpositions of the lower levels as a basis. In this
interesting effects have been predicted and observed. Onelimsis there is a strong coupling between the bright state and
the coherent dynamical evolution of the atomic system andhe upper level with the total Rabi frequenfyand a weak
the other one is the loss-free propagation of fields. coupling between the bright and dark state characterized by a
For example, employing a so-called counterintuitive se<{formal) Rabi frequency) _ that is due to nonadiabatic cor-
guence of overlapping laser puldds, it is possible to trans- rections. We derive a simple analytical expression for the
fer population between the lower levels in a very fast anchonadiabatic losses in the liméit~0 when the ratio of the
effective way. Since the upper level remains virtually un-upper level decay rate to the total Rabi frequency) is
populated throughout the process, decay out of this statiéixed. This expression can be expanded in a Taylor series in
does not affect the transfer. This method of stimulated Rae showing that in the presence of decay the nonadiabatic
man adiabatic passa¢g8TIRAP) was first observed by Berg- losses aranot exponentially small in ¥. Hence a perturba-
mann and co-workerg2]. Since then this phenomenon has tion approach can be used to describe the population transfer
been studied intensively both experimentdl8] and theo- for finite e. The nonadiabatic losses are calculated for finite
retically [4]. values ofe and the influence of the pulse form and upper
The mechanism of population transfer is understood as ajevel decay is discussed.
adiabatic following of one instantaneous eigenstate of the Another interesting aspect of the interaction of time-
Hamiltonian in the time-dependent fields. The nonadiabaticdependent fields with\-type atoms is the quasiloss-free
ity of the process is described by a small parameteA  propagation of strong laser pulses in otherwise optically
measure for the success of the transfer are the nonadiabatlick media. It was shown by Harrigl0] that pulse pairs
losses that are, therefore, of particular theoretical intereswith arbitrary but identical envelopdsnatched pulsgsmay
For special pulse shapes, exact analytic solutions of theropagate undisturbed, if the three-level atoms are prepared
Bloch equations have been found by Carrol and Higleand  in the uncoupled coherent superposition of lower levels. For
very recently by Laine and Stenholf@]. The generalization sufficiently strong pulses the preparation of the atoms is done
to arbitrary pulse shapes is, however, not simple. It is wellat the front end of the pulses via coherent population transfer
known from the theory of adiabatic processes in two-stat¢11]. Furthermore as pointed out by Harris, matched pulses
systemd 7] that the asymptotic nonadiabatic losses may benay also be generated by the matter-field interactmnse
exponentially small in ¥ [ ~exp(—1/e)]. For this reason a matching for a variety of specific initial pulse shapes with-
perturbation ine fails to describe the asymptotic behavior. A out coherent preparation of the atofii2]. Konopnicki and
method that can be applied to a broad class of smooth pulsé&berly showed that pulse pairs with the same hyperbolic
was recently proposed by E[8]. It is based on the supera- secant envelopésimultong and total pulse area? repre-
diabatic basis technique for two-state systems introduced bgent a soliton solution which remains formstable with very
Berry [9]. small energy losselsl3]. Recently Grobe, Hioe, and Eberly
In all previous studies, decay from the upper level waspredicted another class of formstable solutions which have
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Pb,b,= ¥ Paati(Q3 pap,—C.C), 3
Py, = 10 pan, ~ 1 Q2p3p 4

Pab, = = Y1 Pab, ~1Q1(Paa=po,b) T2 b, (5)

Pab,= ~ Y1 Pab,~ 1Q2(Paa= Po,b,) TiQ1pp b,  (6)

wherel'=2y"+ y.

FIG. 1. Atomic system in bare-state representation. Two reso- It is well established that Ir.] the case o.f Cw_flelds In tW.O_
nant pulses with Rabi-frequenciés, and Q, couple upper level photon resonance, the atom-field interaction is best described
a to b, andb,. ' 2 in terms of the coupled“bright” |+)) and decoupled
(“dark” |—)) superposition states of the lower levels:

complementary pulse shapé&sliabatons[14]. 1

All these propagation phenomena have in common a qua- |+)= 6[9’1‘ |by)+ Q% |by)], (7)
siadiabatic nature of the matter-field interaction. Therefore
the above mentioned approach of Maxwell-Bloch equations i
in the b'aS|s of adiabatic dark and pnght states seems very | =)= =[Q]b)— Q4|b)], (8)
appropriate to study pulse propagation phenomena as well. Q
We will show that a perturbation in the nonadiabatic cou-
pling allows an approximate analytical solution of the non-Where
linear dynamical equations and provides a simple physical
explanation for the loss-free propagation of matched pulses,
simultons, and adiabatons. We find that in contrast 1qg e total Rabi frequency. In terms of these states the atom-
matched pulses, adiabatons decay for long propagation dig|q interaction Hamiltonian reads
tances and we point out the relation between adiabatons and
the formation of matched pulses. H=-#aQ|a)(+|+H.a. (10)

The paper is organized as follows. In Sec. Il we derive the
Maxwell-Bloch equations in terms of adiabatic dark andThe state|—) is decoupled from the interaction for which
bright states. In Sec. Ill we analyze the dynamics of thereason it is called dark state.
atomic system for a given pair of pulses under quasiadiabatic In the case of pulseg;+) and|—) are generally time-
conditions. In particular we study the dynamics of coherendependent. A description in terms of these states is neverthe-
population transfe(STIRAP). In Sec. IV we focus on the less useful. If we write the density matrix equations of the
evolution of the fields and discuss the formation and propaatomic systengwhich we call Bloch equations in the follow-
gation of matched pulses, simultons, and adiabatons. ing) in terms of| =), new terms appear due to the explicit

time-dependence. In a rotating frame we find

Q(z,)=[]Q1(z,)|?+]Q5(z,1)[?]*2 )

II. MAXWELL-BLOCH EQUATIONS IN A BASIS OF

0..=—1 —iQ —C.C. 11
ADIABATIC DARK AND BRIGHT STATES Paa Paa~10(pas—C.C), (1D

We consider here the interaction of two copropagating  P++=7 PaatiQ(par —C.C)+i(Q%p_,—c.c), (12
pulses with three-level -type atoms as shown in Fig. 1. The

propagation direction ig. For the sake of simplicity and in P =% paa—i(Q%p_,—c.c), (13
order to obtain analytical results, we restrict our model to the ] . _ _
bare essentials. We assume pulses with resonant carrier fre-  p+-=2iAp, _+iQp, —iQ*(p,.—p__), (14

quencies, ignore transverse effects and inhomogeneous . _ _
broadening, and assume a symmetric situation of equal cou- pa+=— (Y. +iA)par —1Q(paa—p++)—1Q_pa_,

pling strength and radiative decay rates. A pulse of Rabi (15
frequencyQ,(z,t) couples the transitioha)—|b;) and an- _ _ _ .
other one with Rabi frequency,(z,t) couples the Pa-=—(y.—1A)pa-+iQp,_ —iQ%ps., (16

|a)—|b,) transition. The population in the upper level) . I ,
decays radiatively into levelfh; ;) with a ratey’ and to where we have introduced the “Rabi frequency)_ of a
some other states with rate The decay rate of the optical formal nonadiabatic coupling betweeti ) and|—),
coherences is denoted by =y’ + y/2. The density matrix OFOf — OF OF

equations for the atomic system are given in a rotating frame _ 172 2771

by Q- QZ (17)

and a(space and time-dependgntetuning

. $1] Q4] 2+ 5| Q|2
Po,b, = Y Paati (prabl_ c.c), (2 A= 02 . (18

F.’aa= —Ipaa—i (QI Pab, — c.c)—i (Q’E Pab,™ cc), (1
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4 92(5,7’)29(5,7)00% | dr'mg,r')}, (24)
Q Q where we have assumed tHag /Q,—0 for t— — o,
+ lIl. POPULATION DYNAMICS

In the present section we study the dynamical evolution of
the atomic system in a given time-dependent field. Although
a generalization is straightforward, we disregard here spon-
taneous transitions into the lower levels, i.e., Bety and
assumey, = y/2. In this case we may describe the atomic
¥%volution with a Schidinger-type equation for the state am-
plitudes{c_,c,,c,}:

FIG. 2. A-system in dressed state representation.

HereQ;=|Q;|e'% (j=1,2). The Bloch equationd1)—(16)
correspond to the situation of a three-level system driven b
two fields. One “field” with Rabi frequency) couples the
upper levella) to the bright staté+ ), and another “field”

with Rabi frequency) _ couples the two superposition states c 0 0 i0 c
|+) and|—). This is illustrated in Fig. 2. d| S -

A problem for the solution of the Bloch equations is the gl Ca = 0 -7 iQ Ca . (29
space and time-dependent detuniig We note, however, c, 0 i0 0 C.

that the Rabi-frequencig®, and(}, of the two fields remain

real throughout the interaction process, if they are real iniswe now introduce a dimensionless utitt/T, whereT is a
tially, and if the initial values oy, andip,p, ,are real as  characteristic time of the pulses, and separate an overall time

well. Under these conditions we have dependencé(t) = Q,f(t). With this we find
0,0,-0,0, c_ 0 0 ieQ_\ [c_
- Q 19 ei Ca|=[ 0 —%/Q if() || ca
and ate, e if(t) 0 c.
(26)
A=0, (20)

Here e=(Q,T) ! is a small parameter characterizing the

and the Bloch equations simplify considerably. This is theNonadiabaticity of the interaction process afid follows

situation we will focus on in the following. from Eq. (19) with d/dt replaced byd/dt. _
The Maxwell equations for the propagation of the two For the cases in which we are interested here, the adiaba-

“fields” expressed in terms of the Rabi frequenci@sand fiCity parametere is small. For this reason one might try an

Q_ read in the slowly-varying-amplitude-and-phase ap-@Pproximate solution of Ed26) using a perturbation expan-
proximation sion in e. It is well known, however, from the theory of

adiabatic processes in two-state systems, that such a pertur-
J J bation must be handled with care. If the system starts from
—+c—>Q(z,t)= —g2NIm[pas ] (21) one of the instantaneous eigenstates of the Hamiltonian, the
at Jz . . . . .

nonadiabatic loss from this state is small beyond any order in

€ and cannot be obtained from a perturbation expan§ign

The same problem occurs here fge=0, in which case the

and

P P P three-level system can be mapped onto a two-state system
_+C_)Q_(Z’t):gz|\|_<%> (22)  [5]. The presence of the decay term in EB6) however,
gt oz at changes the situation substantially. If we et-0 keeping

19 fixed, the left-hand siddhs) of the equation of mo-
Here g=(p/h)Vhvi2e, is the strength of the atom-field t%n o?ca vanishes: ans q
coupling; ¢ being the dipole momenty the transition fre-

guency, andN is the density of atoms. As ususal for pulse- d y
propagation problems, we introduce moving coordinates €—=Co=— Q—lca+if(ﬁc+_ (27
=z and r=t—2z/c, such that the wave operator dt 0

dl dt+cal 9z becomescd/ dé.

The solution of the coupled system of dressed-state BlocMore precisely ife<y, /g or T> 'yIl we may neglect the
equations(11)—(16) and dressed-field Maxwell equations Ihs of Eq.(27) as compared to the first term on the rhs since
(21) and(22) is sufficient to determine the evolution of the ¢, changes on a time-scale of unity. This gives
two pulses() and() _ are related to the Rabi-frequencies of

the original pulses by iQof(t) 29
Ca= Cy.
YL

Ql(f,T)ZQ(g,T)Sin{fTOCdT'Q(f,T')}, (23

Substituting this result into the equation for we obtain
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d Qof2(t)  —
e—C,=— c,+ieQ_(t)c_. (29 1
dt YL ;
0.9999 o 08 b
Now again in the limite—0 the Ihs is negligible as com- | Y
pared to the first term on the rhs yielding | 0.9998 S oz ™
- -60-40-20 0 20 40 60
- -1
c oy (Y 0.9997 /v
C.=le— —C_. (30)
Qo 21
0.9996
- . . . 40 20 0 20 40 60 80 100
Substituting this result into the equation for we eventu- / _1
ally arrive at T
d 02 (t)
—C_=— 6£ ?C_ ) (31) 2.5
dt Qo f2(1)
2
that has the simple solution - Paa
1S
y [T —02(t) =
T il o ~— 1
c_(t)y=c_(—o)exp, —e~— dt — . (32
ol f2(t")
0.5
We point out that the nonadiabatic loss,—[ic_(t)/ 0 P++
c_(—=)|?, can be expanded into a power series iand is 40 20 0 20 40 60 80 100

notexponentially small in ¥. This particular property of the
dissipative system makes it possible to study the quasiadia-
batic situation using a perturbation approach in the nonadia-
batic coupling. In fact the failure of this procedure for a  FIG. 3. Coherent population transfer f6e-y, . (a) Dark-state
three-level system without decay and inhomogeneous broa@©pPulation from analytical approximatiddark ling and numerical
ening seems to be an artifact of the idealization of the trué&@culation(dashed ling (b) POP“'at'O”_'”|+> and|a). The ana-
situation. Recently Shapiro gave a description of cohererﬁ’t'ca_l apprommatl.on aljd exact numerical resultsf are almost indis-
population transfer into a flat continuum beyond the adia_tlngwshable. The inset i@ shows the form of the incident ramped
batic approximatiorf15]. Also in this case, the nonadiabatic pulses.
losses can be expanded in powerseof

/vt

= Q%)
1—|C_(00)|2=1—8Xp{—’yf_mdt/w]. (36)

A. Coherent population transfer for T> yjl

We now discuss the coherent population transfer fromye note that according to Eq23) and (24) for a complete
level |b;) to |b,) by a counterintuitive pulse sequence for

oI \ opulation transfer fronfb,) to |b,) with a counterintuitive
characteristic times large compared to the decay time fror&ulse sequence
the excited state. If the atomic system is initially|by) and '
the two overlapping pulses are applied such that is o T
switched on and off firstcounterintuitive sequengg —) is f dtQ_(H)=>. (37)
identical to|b,) for t=—c and to|b,) for t=+o. In the o
adiabatic limite— 0 the system stays in the dark state and all
population is transferred frofb,) to |b,).

For T> yjl the history of the transition process is given
by Egs.(28)—(32):

One recognizes from E@35) that in the case of a popu-
lation transfer slower than the coherence decay, the popula-
tion in the dark state decreases smoothly and monotonically
from unity to its final value. During this process, population

Q) is built up in the excited and bright states proportional to the
cy(t)=— c_(t), (33)  Rabi frequency of the nonadiabatic coupling. We have illus-
Q) trated this in Fig. 3 for the example of ramped pulses

_ Q,=Qsin3arctant/10)+ /4], Q,=cod3arctanft/10)

()= Py, Q_(1) e (D) (3a /4, such that2=10y and Q_=0.05y/[1+(0.1yt)2].
* Q% Shown are the populations in all levels according to Eqs.

(33)—(35) and following from a numerical calculation.
t 03t
c_(t)= exp[ ~ 7L f_wdt' W} . (35) B. Coherent population transfer for T<y[*

If the characteristic pulse time is on the order of, or short
The asymptotic nonadiabatic loss, i.e., the amount of popueompared to, the upper level decay time, we can no longer
lation not transfered, is neglect the time-derivatives in ER6). We may, however,
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solve the equations of motion perturbatively in the nonadia-

batic coupling. In lowest order and with the initial condition
c_(—«)=1, we find 0.9995
0.999

t
c,(t)=1+iJ' dt’'Q_(t")c (1), (38 QU 0.9985
o 0.998
0.9975 ¥
-10 -5 0 5 10

wherec, follows from

d i1Q(1) 0 t [arb.units]
¢ —y c ,
a( : :(QtL 0 )( ) +i9(t)(l). (39) 0.0025 .
- o - 0.002
]
These equations can be solved analytically only for S 00015
Q) =const. We will therefore restrict ourselves in the follow- 0.001
ing to this case. We find for the amplitudes of the adiabatic 0.0005
dressed states ;
R 0 5 10
t (arb.units]

ca(t)=—§fomdgﬂ_(t—§)e‘ 72¢s5in( Q' €),  (40) :

} .
0.8
c+(t)=if deQ_(t—¢) "
0 0.4
) v 0.2 '
xe~ 728 cog Q' &)+ WS”’KQ'@}- (41 0
5 10

-10 -5 0

t [arb.units]

10%p4 4

t o
c,(t)=l—J dTQ,(T)J déQ_(7—&)
- 0 FIG. 4. Coherent population transfer fo y~*. Shown are the
populations in the dark state), the upper leve(b), and the bright

, (42 state(c) following from analytical approximatioridark ling and

numerical calculatioridashed ling

Xe™ /¢

cog Q' &)+ %sin(ﬂ’g)

where Q' =[Q?—(y,/2)?]¥2. To discuss the history of the v Q) Q1) 52
population transfer we consider the examp{e=10, c.(t)=i HTH _QZ_( 1- 62) (44
Q_=0.5/(1+1t?), and y=102 (now all in arbitrary time

units). In Fig. 4 we have plotted the population in the adia- 02 02 )
batic dark and bright states and in the upper level according c ()=1— ft . “(7) B ~(t) B &)
to the results from first order perturbation and following - Y1) 00z 202 0?)
from an exact numerical calculation. In contrast to the case (45)
studied in the preceding subsection, the population now un-

dergoes a large excursion away from the dark state and evem the limit t— +o only the first two terms irc_ survive.
tually returns to it. One also recognizes that almost all of thisThis yields an expression for the asymptotic nonadiabatic
population is driven into levela) while the bright state re- loss which is identical to the result of the last subsection in
mains virtually empty. The physical mechanism of this pro-lowest order of the nonadiabatic coupling:

cess is a Raman-type transition betwger and|a) via the

two “fields” Q and()_. Most of the population is thereby = 02(1)

trapped in a superposition statg( ()| —)—Q _|a)) that rep- c(®0)=1-v Jlxdt a0z - (46)
resents the uncoupled dressed state (first-orde) supera-

diabatic basi$16]. In Table | we have com i
. . . pared the asymptotic values of
ExpandingQ_(7—¢) in Egs. (40~(42) into powers of . 5ccording to Eq(46) with exact numerical results for the

£ one can evaluate the integrals. A scaling analysis Showéxample of Fig. 4 for values of/Q ranging from 0.1 to

tha_t ‘.”‘” but the first few terms are higher order in the adia'lofe. We note the excellent agreement even for very small
baticity parametee. Keeping only the lowest order terms we o, ing rates. A substantial deviation from the exact result
find the simple analytlc expressions for the history of theoccurs only if the nonadiabatic loss according to ) is
dressed-state amplitudes: less than the value following from the superadiabatic ap-
. proach of Ref[8] for y=0. The exponentially small diabatic
ea(t)= — Q_(1) s Q_(t) (43  l0ssin this case is (842)e™2~4.83x 10 °. The regime
a Q QO 02 of very small decay, such thaty, <Qexp{—2/e}, cannot be
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TABLE I. 1 —c_(%). Hence the dark state remains decoupled throughout the inter-
_ _ action. The reduced set of Bloch equations for the nonvan-
¥/ analytical from Eq(46) numerical ishing density matrix elements reads
10! 1.9635x 1073 1.9788x10°3 S ;
=— —iQ —c.c), 52
1072 1.9635x 10 1.9807x 104 Paa= = YPaa~ 1{l{pas ) (62
—3 —5 —5 . .
107 1.9635X% 107 1.9819X% 107 pr+=+iQ(pys—c.c), (53
1074 1.9635x 1076 1.9919x 1078
1075 1'9635X1077 20926)(1077 pa+: - ’YLpa+_iQ(paa_p++)l (54)
1076 1.9635x10°8 3.1009x 108

and the total Rabi frequency evolves according to

described by the present approach, since then the major con- 5

tributions to the nonadiabatic losses are nonpolynomial in C(;_gﬂ(f’ 7)==9"NImlpqa.].
e. For most practical applications the upper level decay is,

however, larger than the critical value at which the validity For a two-level system interacting with a single field, a

(55

of the perturbation approach breaks down. couple of soliton solutions that preserve the initial pulse
shape and display anomalously small energy loss are known.
IV. PULSE PROPAGATION The most famous one is the McCall-Hahnr-hyperbolic

secant pulse of self-induced transparehty]:

A. Adiabatic limit, Q_=0 P parefity

The dark staté—), Eq. (8), is truly decoupled from the Q " E +i 56

laser fields if it is not explicitly time-dependent, that is, if (&,7) T sec T (56)
() _=0. One can easily see that this is the case when

whereé=z and 7' =t—2z/v. v is the group velocity of the

Ql Qz pulses
o (47)
Q, Q, 11
-_- 2N T2
This condition implies that the two pulses can have arbitrary v C (1+g"NT). 57

strength but need to have identical shapes.

If the medium is initially prepared in a coherent superpo-This means, if the atomic system is initially prepared in the
sition of lower levels, such that__(0)=1, pulse pairs that bright state|+), a pair of pulses with the same hyperbolic
fulfill the condition _(0,7)=0 will propagate loss free secant shape and a total pulse area of &ill propagate
through the medium which is optically thick for each of the formstable through the three-level medium. The correspond-
individual pulses. Since the system stays in the dark stat#®ng dynamics of the atomic system in the absence of decay is

|—) we havep,, =p,_=0 and hence given by
J T
cog £ =0, (49) Paa—p++=25ech =| —1, (59
0 ' T '
c&—gﬂ_(g,r)zo. (49 Par=—lsec T tan T (59

This is the situation ofmatched pulsediscovered by Harris If we transform Eqs(56)—(59) back into the original basis

[10]. It was also shown by Harris and LUd1] that the we obtain thesimultonsolutions first found by Konopnicki

pulses self-generate the required atomic coherence if thend Eberly[13],

atom is initially in one of the lower state}; ,). The physi-

cal mechanism of this preparation is a coherent population N Q1 7’

transfer at the front end of the pulses. Q67 = ?sec+?}, (60
For a pulse pair with identical shappQ _(0,7)=0] and

all initial population in statefa) and|+) instead of — ), the @y 7’

propagation problem reduces to that of a two-level atom in a Oy(§,7')= 7SGC+? :

single field of Rabi frequency). Since the dark state is

decoupled from the coherent interaction and can only b@vheream are arbitrary real constants Withf+a§=1. The

(61)

reached by spontaneous transitions fri@j, we have corresponding solutions of the Bloch equations are
pa-=0 (50 - -
and Pab, ,= _ial'ﬁec+? tan}{? , (62
(9 2 T’
ca—gﬂ,(g,r)zo. (51) Pb,b,= aﬂ(l—secﬁ TD (63
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T’ =
= (64) P+
Equation(67) has the immediate consequence that the total

We have seen that the dark state of thesystem is de- Rabi frequency is undisturbed,
coupled from the interaction with the fields if both pulses
have the same shape. There are two cases in which a form- i _

- . o ; ¢z Q(§7)=0. (70)

stable pulse propagation is possible. If initially all population 23
is in the dark state it is completely hidden from the fields and_ o ) .
the pulses “see” no atoms at all. The strength and the formfhis means that under quasiadiabatic conditions, the total

of the pulses are irrelevant as long as they are matched. Th&nergy” of the pulses remains the same for propagation
propagation of thesenatched pulsess completely unaf- distances large _compareq tp .the one-photon ab;orptlon
fected by losses from the excited state. In the complementargndth of the medium. In this limit the photons are redistrib-
case where all initial population is in the subsystem formedHtéd between the fields by stimulated Raman scattering and
by the bright staté+) and the upper stat@), the system the effect of d|$5|pat|_on on the total flelq is negligible.
reduces to a two-level—single-field problem. For such a sys- N order to determine the field dynamics we have to solve
tem formstable propagation is possible, if the conditions fothe remaining equations of motion fd_, p,-, and
self-induced transparency in the adiabatic dressed state ba$is - -

) M =0, (69)

Pb.b,= alaz( 1—sech

are fulfilled. This means both pulses must have a hyperbolic (1)
: d d [ pg”
secant shape and the total field must have a pulse area of 7 — 2N | P2
\ c-Q_(§,7=9g°N (7D
2. In contrast to matched pulses, thesmultonsare af- 23 ar\ Q
fected by the decay from the upper level. Eventually all
population will end up in the dark state due to spontaneou&”
transitions and the matched-pulse situation is reached. J
P (n)=—yipl +iQp (72)
B. Quasiadiabaticity, |2 _|<Q T
We now consider the case of a nonvanishing but small I L
nonadiabatic coupling. For slowly varying pulse shapes, such AP+ (N =1Qpam+iQ_. (73

that

As we have shown in Sec. lll, the optical coherence can be
eliminated adiabatically if the characteristic time of changes

the fields, in particular if)_, is long compared to the
ecay time of the upper level. Note that no assumption about
the strength of the coupling is required. This yields

1Q_|<Q or [0,0,-0,0,]<03, (65)
the coupling between the dark and bright dressed states ‘
weak compared to the coupling ¢f-) to the upper level

|a). As shown in Sec. Ill, we may treat th@ -coupling
perturbatively in this case. We recognize from E(kl)— i0
(16) and (22) that condition(65) can only be maintained, if pH=—/p (74)
initially all population is in the decoupled state: YL
p__(0)=1. (66) Secor)d, we introduce a nonlinear time-stretch similar to that
used in Ref[14],
This can be realized either by preparing the atoms in a co-
herent superposition of the bare states with weights given by T= iz 7 d=' 02(0,7'), (75)

the Rabi-frequencies or by adjusting the pulse shapes at the 05) -«

front end according to the initial atomic configuration. The

second situation is the favorable one, if the energy splittingvhere(, is some appropriately chosen average value of the
between the lower states is larger than the thermal energyotal Rabi frequency. If the total Rabi frequency is constant
such that only one of them, s#ly, ), is populated initially. In ~ for a long time period, one could take this value €. T is

this case one has to ensure thit is switched on first since @ nonlinear but monotonic function ef Using(70) and(74)
then|—) is identical to|b,). Note that in any case the atoms the equations of motion in terms @f can be written as

must be initially in a pure state. 5

If the conditions given in Eq965) and(66) are fulfilled, 9 _. 9 N 9 W
the set of coupled nonlinear Maxwell-Bloch equations may CéiF(g'T) Iﬂozyl <?Tp+7(T)’ (78
be solved analytically by a perturbation expansion in
e~|Q_|/Q. Since initially all population is in—), only J 5 .
coherences between the stafes) and|—) and between ﬁp+7(T)=—y—p+f(T)+|QoF(§,T), (77)
|a) and|—) are built up in first order of. We therefore -
have whereF (£, T)=Q_(&,T)/Q?(0,T). Thus by applying a per-
1) _ turbation approach in the nonadiabatic coupling and a non-
pa+=0, (67) linear time-stretch we have transformed the original set of

i coupled nonlinear equations into a pair of linear, first-order,
Paa=0, (68) partial differential equations with constant coefficients. We



54 PROPAGATION OF LASER PULSES AND COHEREBN .. 801
can very easily solve these equations by a Fourier- ]
transformation with respect td. Note thatF as well as W\/ o
p._ are quadratically integrable ih. We eventually arrive 08
at
06
iwQ3 w? 3 g £=0 2
_ 2 0 YL s & 50 100
F&w) F(Omexp{ IN 0T o7y T 0l w22 e |- S 4
(79 . 0
The first term in the exponent of E({8) describes a disper- ’
sive propagation of the “pulse’F. The second term de-
scribes an absorption of the high-frequency components of 30 100 150 200
F. If all relevant Fourier-frequencies are sufficiently small, ;
such thatw<Q2/y, , the absorption term and the nonlinear \/\/\/ N\ Q,
correction to the dispersion can be neglected. In this case, 0.8
Eq. (78) describes the propagation of the “pulsé® in a
linear dispersive medium. Hende propagates formstable o 06 o
with a group velocity <3 S om g
c 04 100
t ! 1+ gN 79
v ¢ A (79 0.2 &
g°N ¢ 0 50
F(&T)=F|0T— =% = |. (80) 50 10 ! 200
Q5 ¢ T/70

These solutions of the nonlinear Maxwell-Bloch equations in

the quasiadiabatic limit are thadiabatonsintroduced by
Grobe, Hioe, and Eberly in Ref14]. They are not restricted
to certain types of pulse shapes as long as cond{&hnis

fulfilled. It should be noted, however, that E§O) describes

FIG. 5. Propagation of an adiabaton for different propagation
distances within the medium in units @h=(g?N/Qqc) ! for
¥, 1Q9=0.1. The time r is measured in units ofry=Q,".
Q,(0,7)=0.5Qexd —(7—50)%/100], Q3=02-02, and Q(0,7)

formstable propagation with respect Toand not to the ac- =Qoeexd—((7—125)/100§°]. Analytical results are shown ite),

tual time 7. Only if Q is constant over a period of time long Nnumerical results irtb).

compared to the extention of the adiabaton is the propagation

formstable in the usual sense. In this case, the pulse enveropagation distances the absorption term in &) cannot

lopes have a complementary shapé= const- 3. be neglected and the adiabaton decays. Eventually the
For Q= const, an analytic solution of the Maxwell-Bloch fields” F or Q_ die away, such that

equations(71)—(73) is also possible for characteristic pulse

times of the order of, or short compared to, the upper level

decay time. In this case, we can simply Fourier-transform the

corresponding equations and find

&6 9

Q, Q, (82

for £¢—w.

This means that the interaction with the medium generates
pulses with identical pulse shape— a process first discov-
ered by Harrig12]. This correlation phenomenon has inter-
esting consequences also for the quantum fluctuations of the
fields[18].

In Fig. 6, we illustrate the long time behavior of the adia-
baton for the example discussed in Fig. 5 but for a larger
We again recognize the presence of a dispersive and a highlecay rate. Again, the solution from E(1) and from a
frequency-absorption term. The formstable adiabaton soluaumerical beam-propagation code are shown.
tion is obtained when the relevant Fourier-frequencies are We have seen that a perturbative solution of the nonlinear
small compared t§) andQ?/y, . Maxwell-Bloch equations for quasiadiabatic fields predicts

In Fig. 5, an example of an adiabaton with complemen-the existence of quasiformstable solutions for a constant total
tary pulse envelopes is displayed. We show the analyticaRabi frequency. The question arises, however, what is the
result according to Eq(81) and a numerical calculation. One origin of this formstable propagation? We have already seen
can recognize a formstable propagation over many onethat from the point of view of the dressed-state Bloch equa-
photon absorption lengthg, =y, c/g?N= (v, /Q0)&,. tions, the original system is identical to a three-level

There are two mechanisms that limit the lifetime of anA-system driven by the two field? and()_ . We now note
adiabaton. First, since its group velocity is smaller tadout  that the first-order field equations also correspond to this
the total field propagates with the speed of light, the adiabasituation, if {1=const, and if losses are neglected. In this
ton will eventually reach the back end of the pulses wherecase, the loss-free propagatiffior y, =0 the loss term in
the adiabatic conditiori65) is violated. Second, for longer Eg. (78) vanishe$ of ) _ can be understood as electromag-

i w(Q%2— w?)
(0%- 0?2+’

Q(g,w):Q(O,w)exp[ —gZN[

2
n wz’)’i
e

] . (81



802 MICHAEL FLEISCHHAUER AND AARON S. MANKA 54

| —2) is the first-order superadiabatic dark state of the sys-

1
Qs tem. One easily sees that in this state, the source terms in the
0.8 equations of motion of) and() _ vanish. Using the pertur-
bative results of Sec. I1(43)—(45), and lettingy— 0 we find
S 06 £=0 1 2 o \*
g o 00 2o (%) e
04 - 2 2 !
” Q°+0°
50
0.2 100 Q which is indeed unity up to corrections of fourth order in
! Q_/Q. Thus we can understand the formstable propagation
50 700 750 200 of adiabatons as electromagnetically induced transparency in
the adiabatic dressed basis.
1
Qo
V. SUMMARY
0.8
In the present paper, we have discussed the interaction of
o 06 1 e=o a pair of pulses with a resonant three-levelsystem under
% conditions of quasiadiabaticity. For the description of the
04 interaction process, we introduce the basis of adiabatic dark
A, and bright states. This basis transformation turns the original
02 100 three-level system with bichromatic fields into a different
1 - . -
three-level system with two field couplings. Here one cou-
50 00 750 00 pling, characterized by the total Rabi frequency of the origi-
/7o nal fields, is strong, while the other coupling is weak since it

is due to nonadiabatic corrections. We show that in the pres-
ence of decay from the upper level, this nonadiabatic cou-
FIG. 6. Decay of adiabaton of Fig. 5 for large upper level decaypling can be treated perturbatively, which allows for an ap-
v, 1Q0=2.5. Analytical results are shown i@ and numerical proximate analytical solution of the nonlinear Maxwell-
results in(b). Bloch equations.
In the first part of the paper, we present the dynamics of
the coherent population transfer between the lower levels by

|+) to the additional levela). In Fig. 7, we show a typical a counterintuitive sequence of pulses. We show that in the

linear susceptibility spectrum for EIT in A-system with a adiabatic limit 6_)0.’ Whgree is the small adiabaticity pa- .
strong constant driving field. One recognizes a transparenc@ameterv the nona_d|abat|c loss from the dark_ state scales like
dip on resonance and a corresponding large linear dispersiofi?1 /{2, wherey, is the decay rate of the optical coherence.
The absence of absorption and the linear dispersion are r& contrast to a purely Hamiltonian system, here the nona-
Sponsib]e for the formstable propagationﬂ)]‘_ with a group diabatic loss is not exponentlally small ineland hence a
velocity v <c. The perfect transparency is associated with aPerturbation approach is feasible. We give simple analytical

population trapping in a coherent superposition of theexpressions for the dynamical behavior of the state ampli-
“lower” levels that in our case is tudes as well as for the asymptotic nonadiabatic losses. For

transfer times long compared to the upper level decay, the
i dark state population decreases smoothly and monotonically
|-2)= W(Ql —)—Q_la)), @3 from unity to its asymptotic value. For shorter transfer times
- the dark state amplitude undergoes a large excursion. This
behavior can be understood as a Raman-transition between
the adiabatic dressed-states. When the nonadiabatic coupling
is turned on, population is driven out of the dark state into
the upper level. Since the transfer time is short compared to
the decay from this state, the population has no time to decay
and will be driven back to the dark state when the nonadia-
batic coupling is turned off while the total field is still
present. The perturbation approach breaks down for rela-
tively large adiabaticity parameters, namely if
(1/e)exp[—2/e} becomes comparable tg, /). We note
that the validity condition is practically always fulfilled for
€<0.1.
Next we study the propagation of pulse pairs in three-
FIG. 7. Typical spectrum of realdark line and imaginary level A-media. The adiabatic dark state is truly deCOUpled
(dashed ling part of linear probe-field susceptibility for EIT in from the interaction with the two fields if the two pulses are
three-levelA -system. The driving field Rabi frequency is equal to in two-photon resonance and have identical shdpes are
the upper level decay ratg matched. The nonadiabatic coupling vanishes in this case

netically induced transparend§IT) [19] on the|+)—|—)
transition due to the strong coupling of the “upper” level
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and the problem reduces to a two-level system interacting) _ that can be much less than 20]. Since we are dealing
with one field plus one uncoupled state. There are then twavith pulses,{) _(t) is not monochromatic. Its off-resonant
possibilities for a formstable loss-free propagation of thecomponents experience an absorption that increases gqua-
pulse pair. If all population is initially in the dark state, it dratically with the detuning. This absorption process eventu-
will remain there and thenatched pulseEL0] do not interact  ally leads to the decay of the adiabatons leaving the pulses in
with the atoms. If in the opposite case no population is ini-a configuration with matched pulse shapes.
tially in the dark state, a formstable propagation with very In conlcusion, we show that the adiabatic dressed state
small losses is possible if the conditions for self-inducedpicture is an appropriate tool to obtain analytic results for the
transparency17] of the total fieldQ) are fulfilled. The cor- interaction of time dependent fields with three-level atoms
responding solutions are ttsmultonsfound in Ref.[13]. under quasiadiabatic conditions. It also provides simple ex-
When the relative change of the two pulse shapes is sloylanations for several quasiadiabatic phenomena, such as the
on a time scale set by the inverse total Rabi frequency, thereoherent population transfer and its limitations or the form-
is a nonvanishing but weak nonadiabatic coupling. When thatable propagation of matched pulses, simultons, and adiaba-
pulse shapes are such that the atoms are initially in the darons.
state, the nonadiabatic “field’{)_ propagates quasiform-
stable over many one-photon absorption lengths. These are
the adiabatonsolutions introduced in Ref7]. The physical
origin of the quasiformstable propagation of adiabatons is The authors would like to thank M. Elk, J.H. Eberly, S.E.
electromagnetically induced transpareri@®] in adiabatic  Harris, and F.T. Hioe for stimulating discussions. One of us
dressed states. Th@ositive linear dispersion associated (A.S.M.) acknowledges the National Research Council for
with the induced transparency results in a group velocity fofinancial support.
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