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We describe a quasiclassical approach to correct electron motion following tunneling ionization in intense
laser fields, for the presence of the Coulomb potential. The technique is applied to model the dependence of
high-harmonic generation on the ellipticity of the incident laser field. We present experimental data on the
harmonics with photon energies close to the ionization potential of an atom, identify their source, and explain
their unusual dependence on the ellipticity of the incident laser field. Our calculations are in good agreement
with experimental data.@S1050-2947~96!04107-8#

PACS number~s!: 42.50.Hz, 42.65.Ky, 32.80.Rm

Analytical theories are generally performed within the
Keldysh approximation@1#, i.e., the effect of the Coulomb
potential is neglected. However, when it comes to more
subtle aspects and to quantitative predictions, even in the
intense field limit, Coulomb effects can play an important
role, as has been found with tunneling ionization@2# or
above threshold ionization@3#. Ionization occurs via tunnel-
ing when the energy of the electron-laser interaction
Up5E2/4v2 exceeds the atomic ionization potentialI p . Cur-
rently, the only analytical technique introducing Coulomb
modifications to Keldysh theories in intense field or tunnel-
ing limit @2# corrects theprobability of tunneling ionization
in the constant electric-field approximation and does not ad-
dress subsequent electron motion, which is crucial, e.g., for
high-harmonic emission. Such a correction is introduced in
this paper.

Our theoretical analysis is based on the following con-
cept. First, the intense laser-atom interaction is analyzed in
the absence of the Coulomb potential. In the tunneling limit
the Keldysh solution can be viewed in three separate steps:
tunnel ionization, electron propagation in the continuum, and
the interaction of the returning electron with the parent ion
@3–7#; see Fig. 1. Standard perturbation techniques applied
to Keldysh theories fail mainly because it is difficult to find
approximations that remain validfor all three stagesof the
electron evolution. Hence each of the three steps should be
corrected individually utilizing different approximations.
Both tunneling to the continuum and reencounter with the
parent ion occur on a time scale much faster than one optical
laser cycle. Therefore, the quasistationary field approxima-
tion can be used to correct for the Coulomb potential, as
done for tunneling ionization in Ref.@2#. For the electron
propagation in the continuum the quasistationary approxima-
tion cannot be used. We use a semiclassical perturbation
theory similar to that introduced in@2#, but applied to the
time-dependentSchrödinger equation.

This approach can be applied to various intense field
problems, such as above-threshold ionization and high-
harmonic generation. High-harmonic generation can be cor-
rected most easily since the returning electron recombines
with the parent ion. Above-threshold ionization is more com-

plicated to correct, as the ionized electron does not recom-
bine, but can undergo complex rescattering processes at the
parent nucleus@8#.

In this paper we apply our approach to model the emis-
sion of high harmonics with photon energies close to the
ionization potential of an atomNv;I p . These ‘‘threshold
harmonics’’ were recently found to have unusual properties
@9,10#. In particular, their ellipticity dependence strongly de-
viates@9# from Gaussian, which is typical@11# for high har-
monics with photon energies well in excess of the ionization
potential. As seen in Fig. 2, quite unexpected minima in the
yield of some threshold harmonics are observed for linear
laser polarization, while slightly elliptical light provides
higher intensity of these harmonics. These surprising experi-
mental data have raised the question of the source of the
threshold harmonics@9# ~bound-bound, bound-free, or free-
free transitions!.

FIG. 1. Schematic of high-harmonic generation; thex and E
axes denote the space and energy coordinates. The dotted line and
its asymptote are the combined potential of nucleus and electric
field and the potential of the electric field, respectively; the terms
W1 , W2 , andW3 represent the different stages of electron evolu-
tion: tunnel ionization, propagation in the electric field, and recom-
bination with the parent ion.
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We identify the threshold harmonicsNv>I p , obtained in
the tunneling limit, as being due to bound-free transitions
and find that their surprising ellipticity behavior is due to an
interference between the first and second return of the elec-
tron to its parent ion. Qualitatively, the modified ellipticity
behavior can also be found for ad-function potential@6#.
However, our analysis demonstrates that, in order to obtain
quantitative agreement with experimental data, the inclusion
of the Coulomb corrections to electron propagation in the
continuum is essential. Indeed, the interference effects be-
tween the two returns are sensitive to the phase of the elec-
tron wave function, which is mainly accumulated during the
electron motion in the continuum and is significantly modi-
fied by the Coulomb potential. Our conclusions are sup-
ported by a comparison to recent experimental data on the
threshold harmonics, which we now briefly describe.

The details of our experimental setup and measurement
procedure are published elsewhere@9a#. In brief, we used
150-fsec Ti:sapphire laser, operating at 754 nm, focused
down with anf /30 lens to I;131015W/cm2 into a Ne gas at
100 Torr. The polarization was linear to better than 500:1 in
intensity. Ellipticity was introduced by rotating a zeroth-
order quarter wave plate placed just before the focusing lens.
Harmonics were observed by placing a channeltron electron
multiplier in the focal plane of a flat field variably spaced
grating spectrograph. Odd harmonics extending up to about
N565 were observed from Ne.

Present data differ from those previously published@9a#
for the ellipticity dependence of the near-threshold harmon-
ics in two respects. First, care has been taken to remove a
small third-order contribution from higher harmonics by in-
serting thin Al and Mg foil filters between the grating and
electron multiplier. Second, the spectrograph has been care-
fully recalibrated using the 49.5 and 72.8-eV absorption
edges of Mg and Al, respectively. This recalibration of the
spectrograph leads to the conclusion that the harmonic lines
attributed asH13, H15, andH17 in Ref. @9a# were in fact
H15,H17, andH19. The data for the ellipticity dependence
of H13–H19 is shown in Fig. 2. It should be noted that at

the wavelength used in this experiment,H13 at 21.38 eV is
just below the field-free ionization potential of neon
I p521.565 eV.

Harmonics from the 21st up to the 51st~the highest mea-
sured! exhibit a nearly Gaussian ellipticity dependence with
approximately constant width and are well described by the
models of Refs. @5,6#, as published previously. The
e-dependences of the 17th and 19th harmonics are qualita-
tively similar to each other and show a clear difference from
that of higher harmonics: they are broader and deviate con-
sistently from Gaussian. Particularly striking is the ellipticity
dependence of the threshold 13th and 15th harmonics. The
total yield has a pronounced minimum at zero ellipticity and
peaks ate'0.1.

We now proceed to modeling these experimental data.
Consider a hydrogenlike atom in an elliptically polarized la-
ser fieldE(t)5@Ex cos(vt),Ey sin(vt),0#. Initially, the elec-
tron is in the ground stateug&. In the presence of an electric
field the wave function becomesuC&5ug&1uF&. For the sake
of simplicity the ground-state depletion is neglected. Since
we are interested in the limit where the ponderomotive po-
tentialUp5E2/(4v2) is larger thanI p , ionization proceeds
via tunneling and coupling to other bound states can also be
neglected; then, the functionF traces the evolution in the
continuous spectrum.

The high-harmonic signal is determined by the quantum-
mechanical expectation value of the acceleration operator.
The intensity of thenth harmonic from a single atom is
proportional to (nv)4udnu

2, wheredn is thenth Fourier com-
ponent of the field-induced dipole moment, i.e.,
d(t)'^guduF(t)&1c.c.5(ndnexp(invt).

In the absence of the Coulomb potential the analytical
expression for the dipole moment was derived in@5#. Using
the stationary phase method to perform integration over the
initial momentap of the ionized electron, one obtains the
following expression, also given in@5#:

d~ t !5
~2p!3/2

Ai
E t

dt8E~ t8!d@p~ t,t8!2A~ t8!#

3
Û@ t,t8,p~ t,t8!#

~ t2t8!3/2
d@p~ t,t8!2A~ t !#1c.c., ~1!

where the Volkov propagatorÛ is

Û~ t,t8,p!5expF2 i E
t8

t

@p2A~ t9!#2/2dt92 i I p~ t2t8!G .
~2!

HereA(t) is the vector potential of the electric field andd~v!
is the dipole matrix element of the transition from the ground
state to the continuum state characterized by the electron
velocity v at the infinity. The canonical momentump~t,t8! is
given by the condition that an electron ionized at the moment
t8 returns to its initial position at the momentt, r (t)5r ~t8!.
For elliptically polarized light

p~ t,t8!5SEx

cosvt2cosvt8

v2~ t2t8!
,Ey

sinvt2sinvt8

v2~ t2t8!
,0D .

~3!

FIG. 2. Absolute magnitude of the dipole moment for harmonic
ordersN513–19 versus the ellipticity of the incident laser light.
The solid lines represent the numerical results; the closed circles,
squares, triangles, and diamonds denote experimental results for
N513–19 generated in neon, respectively.
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Before the effects of the Coulomb potential can be in-
cluded, the integration in Eq.~1! has to be performed ana-
lytically, to extract the ‘‘classical’’ stage of electron evolu-
tion between tunneling and recombination. This is achieved
by expanding fast oscillating classical actionS(p,t,t8)
5* t8

t dt9@p(t,t8)2A(t9)#2/2 in Eq.~2! in a Taylor series~up
to the third order! near its stationary phase points. This
method is applicable whenI p,Up , i.e., when the saddle
points of the integral Eq.~1! are close to the stationary phase
points of the classical action, so that the Taylor expansion
around the stationary phase points is accurate at the saddle
points. Integral Eq.~1! has a pole at the saddle point. Taking
into account its contribution, for low elipticity of the incident
light, E y

2!E x
2, we obtain

d~ t,ts!5(
ts

1

Ai
aion~ ts!apr~ t,ts!arec~ t !1c.c. ~4!

Here aion , apr , andarec(t) are the amplitudes of tunneling
ionization, propagation after tunneling and spontaneous re-
combination, andts5ts(t) are determined by the solution of
the stationary phase equation for the major component of the
classical action: 1/2@px(t,t85ts)2Ax(t85ts)#

250. There is
more than one solution of this equation, corresponding to
different moments of birthts yielding the same moment of
return t. However, due to fast spreading of the electronic
wave packet only thosets that are within few laser cycles
from the momentt are essential. Up to numerical constants
O~1! the three amplitudes in Eq.~4! are

aion~ ts!5S 1

11vy
2~ ts!/2I p

D 1/2~2I p!1/2
3expF2

1

3

@2I p1vy
2~ ts!#

3/2

Ex~ ts!
G , ~5!

apr~ t,ts!5S 2p

t2ts
D 3/2~2I p!

1/4

Ex~ ts!

3expF2 i E
ts

t

dt8$ 1
2 @p~ t,t8!2A~ t8!#21I p%G ,

~6!

arec~ t !5d* @v#5
Cv~ t !

@ I p1v~ t !2/2#3
, ~7!

whereC is a numerical constant~see, e.g.,@5#!. The elipticity
dependence ofd(t) enters Eqs.~5!–~7! through the velocity
of the electron at the moment of returnv(t)5p(t,ts)2A(t)
and the initial transversal energyv y

2(ts)/2, which the elec-
tron must have at the moment of birthts in order to return to
the parent ion at the momentt:

vy
2~ ts!

2
5

Ey
2

2v2 S cosvts2 sinvt2sinvts
v~ t2ts!

D 2. ~8!

The whole process described by Eqs.~5!–~7! is depicted
schematically in Fig. 1. In linearly polarized field the first
term Eq.~5! coincides with the tunneling amplitude derived
by Keldysh@1#. It decreases with increasing elipticity, since

the electron must now be born with substantial transversal
energy to ensure its return to the nucleus.

The second term describes the electron propagation in the
electric field. It is governed by the exponential phase factor,
which traces the electron energy along the path given by
classical mechanics. The classical part of the electron trajec-
tory is determined by the conditionsvx(ts)50 and
r (t)5r (ts). The requirement for zero initial velocityvx de-
fines the initial positionx(ts)5I p/Ex and the initial energy
2I p of the ionized electron; see Fig. 1.@Quantum-
mechanical propagation under the potential barrier up to the
point x(ts) is contained in Eq.~5!#. The preexponential fac-
tor in Eq.~6! describes transversalspreading~proportional to
E1/2t/I p

1/4! of the electron wave packet and its longitudinal
stretching@proportional to (Et)1/2# by the electric field. Scal-
ing for the transversal spreading is exactly what one obtains
using tunneling time and the energy-time uncertainty rela-
tion.

We can now use these results to include the modifications
to high-harmonic generation in the presence of the Coulomb
potential. We first discuss the corrections to the quantum-
mechanical processes of ionization and recombination@Eqs.
~5! and ~7!, respectively# and then to the propagation@Eq.
~6!#.

Tunneling ionization in strong fields has been extensively
discussed in literature@2#. The inclusion of the Coulomb
potential results in multiplying the tunneling amplitude
aion(ts), Eq. ~5!, by a preexponential factor

ACn* lm$4@2I p1vy
2~ ts!#

3/2/Ex~ ts!%
2n*2m2 l ,

where n* is the effective principal quantum number and
Cn* lm is the numerical factor given in Ref.@2#.

The recombination amplitude, Eq.~7! in the Keldysh ap-
proximation, is given by the dipole matrix elementd~v! be-
tween the atomic ground state and a plane wave~not scat-
tered by the Coulomb potential!. The main aspects of the
Coulomb corrected matrix element can be derived based on
symmetry considerations. The matrix elementd~v! is a vec-
tor, and due to the spherical symmetry of the ground-state
wave function its direction is determined by the velocity di-
rection of the incoming wave, which at infinite distance from
the Coulomb center is a plane waveuv&. Consequently,d~v!
must reverse the sign for left- and right-incoming waves
d~2v!52d~v! and can be casted in a general formd~v!
5vf (v), where the scalarf (v) depends onuvu and contains
the Coulomb corrections.

Theabsolute yieldof any given harmonic depends on the
exact form off (v). However, in first approximation, theel-
lipticity dependenceis independent of the particular form of
f and is due to the vector part of the dipole moment, as
discussed below. For every given harmonicNv the station-
ary phase~saddle! point of the corresponding Forier integral
of Eq. ~4! is realized whenI p1v2(t)/2'Nv @5# and hence
f (v) can be taken out of the integral at this stationary phase
~saddle! point. We performed calculations withf (v)51 and
f (v)5C/(2I p1v2)3 and found a negligible difference be-
tween the two models for the ellipticity dependence, while in
the absolute yield the difference was quite significant.

The propagation of the electron in the presence of the
Coulomb potential is corrected in the following way. The
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exponent inapr contains the classical expression for the en-
ergy of a free electron in an electric field exp[iS(ts ,t)]. Here
S5* ts

t dt8H(t8) is the classical action andH is the Hamil-

tonian. This correspondence suggests the use of time-
dependent quasiclassical perturbation theory to include
the effect of the Coulomb potential. The exponent in Eq.
~6! is modified to S1DS5* ts

t dt8$1/2@p(t,ts)2A(t8)#2

1I p21/r (t8)%. The energy change due to the Coulomb po-
tential is evaluated along the electron trajectoryr (t8) in the
electric field; Coulomb modifications to the electron path are
small and can be neglected to first approximation. To evalu-
ate the role of this correction for threshold harmonics let us
find the derivative of the potential-energy contribution to the
classical action. Using the relationr (t)5r (ts), the
derivative is [I p21/r (ts)](12dts/dt), where
1/r (ts)'1/x(ts)5Ex(ts)/I p . For threshold harmonics the
moments of birth correspond to cosvts'1, Ex(ts)'Ex .
Consequently, the presence of the Coulomb potential results
in an effective reduction of the ionization potential in the
exponent of Eq.~6! to I c5I p2Ex/I p . Note that the Stark
shift of the ground state also has to be included. In the qua-
sistatic approximationDI p'0.5aE x

2 cos2vt, wherea is the
static polarizability,a'2.7 for Ne.

Applying the corrected Coulomb potential in Eq.~6! and
replacing f (v) with a constant, numerical Fourier transfor-
mation of Eq.~4! yields the dipole moment of thenth har-
monic udn~e!u2. The parametere5uEy/Exu denotes the ellip-
ticity of the laser field. In the following, we compare the
theoretical results to the experimental data described earlier
in the paper. The parameters for the numerical evaluation are
I p521.56 eV, 754-nm laser wavelength, and laser intensity
I5431014 W/cm2. According to the propagation results of
Ref. @12#, in our experimental conditions this intensity opti-
mizes the single-atom response and the phase-matching con-
ditions in laser-produced plasma with rapidly changing den-
sity ~propagating plasma front!.

In terms of harmonic ordersI p lies betweenN513 and
15. Figure 2 shows the comparison of theoretical and experi-
mental data for the total emission of harmonic orders
N513–19. For each harmonic an individual scaling factor
has been introduced to match the overall magnitude of the

theoretical and the experimental data. Good agreement is ob-
tained for all curves. The ellipticity dependence of the 13th
and the 15th harmonic provides an important test for the
Coulomb correction we introduce. It is found that inclusion
of the Coulomb correction is essential to obtain the dip in the
ellipticity dependence forN513,15. Repetition of the calcu-
lation with I p instead ofI c shifts the dip toN517.

The different ellipticity behavior forN513,15 results
from an interference effect. Classically, these harmonics are
generated by an electron born close to the peak of the electric
field, which returns to its parent ion with low kinetic energy.
The first and the second return succeed immediately. During
the second return the sign of the electron momentum and of
the dipole moment is reversed. Superposition of the two re-
turns results in a negative interference of the dipole moments
and therewith, in a suppression of high-harmonic emission in
the direction parallel to the main polarization axis of the
laser field. Hence, for increasing ellipticity, the perpendicular
component can dominate the parallel component of harmonic
emission resulting in an increase of the total high-harmonic
emission.

Concluding, we have introduced an approach to account
for the effect of the Coulomb potential on the electron evo-
lution in intense laser fields after tunneling ionization. This
formalism has been applied to study the ellipticity depen-
dence of high-harmonic generation. We have presented ex-
perimental data on the ellipticity dependence of the threshold
harmonicsN513–19, generated in neon with a 754-nm,
150-fsec laser pulse. Our approximate approach has been
supported by a comparison to these experimental data. We
explained the physics responsible for unusual ellipticity de-
pendence of the threshold harmonics and found that inclu-
sion of the Coulomb potential is essential in order to obtain
quantitative agreement with experimental data.
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