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The ionization of hydrogen Rydberg atoms bycircularly polarized microwaves is studied quantum mechani-
cally in a model two-dimensional atom. We apply a combination of a transformation to the coordinate frame
rotating with the field, with complex rotation approach and representation of the atomic subspace in a
Sturmian-type basis. The diagonalization of resulting matrices allows us to treat exactly the ionization of atoms
initially prepared in highly excited Rydberg states of principal quantum numbern0'60. Similarities and
differences between ionization by circularly and linearly polarized microwaves are discussed with a particular
emphasis on the high-frequency regime and on the localization phenomenon. The dependence of the ionization
character on the initial state~circular, elliptical, or low angular momentum state! as well as on the helicity of
the polarization is discussed in detail. It is shown that, in the high-frequency chaotic regime, close encounters
with the nucleus donot play a major role in the ionization process.@S1050-2947~96!11406-2#

PACS number~s!: 32.80.Rm, 42.50.Hz, 05.45.1b, 34.50.Gb

I. INTRODUCTION

The hydrogen atom placed in an external field plays an
exceptional role in the studies of quantum-classical corre-
spondence in the vast area of quantum chaos. This system
belongs to a small class of problems in this area where ac-
curate theoretical predictions may be confronted with de-
tailed experimental studies. This unique opportunity has led
to great progress in understanding the behavior of quantally
chaotic systems for which both the experiments and the
theory have been providing new ideas and new challenges.

Despite over 20 years of intensive investigations@1#, the
theory of a highly excited hydrogen atom in the presence of
a static uniform magnetic field still brings us unexpected
predictions@2#. The ionization of highly excited hydrogen
atoms by linearly polarized microwaves~LPM! also has a
long history, which began with the pioneering experiment of
Bayfield and Koch@3#. As in the previous example, a com-
plete physical picture of the coupled atom-field dynamics in
this problem has yet to be reached. The very first model of
the ionization process has been launched@4# using Monte
Carlo classical simulations, in which the ionization threshold
was associated with the onset of classical chaos in the sys-
tem. Numerous studies performed since this early work
treated the problem either classically or quantum mechani-
cally, at various degrees of approximation. At the same time,
improved experiments provided a stimulus as well as new
puzzles for the theory~for recent reviews of the theory see
@5–11#; experimental details may be found in@12–14#!.

A typical quantity measured or calculated in the ioniza-
tion problem is a microwave field amplitude~called the ion-
ization threshold! required to produce 10% ionization yield
as a function of the field frequency for a given duration time

of the microwave pulse. Such a definition allows for a rough
separation of the microwave frequency domain into a few
regions corresponding to different ratios of the microwave
frequencyv to the Kepler frequency on the initial orbit
vK . For the scaled frequencyv05v/vK!1, the classical
ionization is due to an over-the-barrier escape~as for a static,
homogeneous electric field case—the situation realized here
in thev0→0 limit!. Furthermore, in this frequency domain,
quantum corrections due to tunneling may be taken into ac-
count by means of semiclassical methods@15#. For higher
frequencies~but still for v0,1), the quantum ionization
threshold is approximated quite well by the onset of classical
chaos and the breakup of Kol’mogorov-Arnol’d-Moser tori.
The diffusive gain of energy by the electron is the main
mechanism leading to the ionization with some additional
modifications due to classical resonances. For frequencies
v0.1, the physics of the ionization is quite different be-
cause the quantal thresholds are significantly higher than the
estimations of the classical model. This is attributed to the
phenomenon of quantum photonic localization, which is
analogous to the Anderson localization in disordered solids.
Not surprisingly, it is this frequency domain that has been
most intensively studied both experimentally and theoreti-
cally in recent years@5–9,12–14#. Needless to say, the dis-
crepancy between classical and quantum predictions of the
threshold forv0.1 is of importance for a deeper under-
standing of the semiclassical limit. Finally, one envisions a
‘‘high-frequency’’ domain where a typical multiphoton ion-
ization occurs. Certainly, in this regime, not onlyv0 but also
the ~purely quantum! number of photons needed to reach the
thresholdNf becomes an important parameter characterizing
the system.

The physics of hydrogen atom ionization bycircularly
polarized microwaves~CPM! is much less understood al-
though the first theoretical studies came about 15 years ago
@16,17#. The recent sudden growth of interest in CPM ion-
ization is certainly stimulated by the experiments carried out
for alkali atoms @18,19#. A number of classical studies
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have been reported@20–30#. In most of these works~with
important exceptions of Refs.@22,28,30,31#! a simplified
two-dimensional~2D! model of the atom has been used; i.e.,
the electronic motion plane coincided with the polarization
plane. Also the only quantum study@32# considered such a
simplified atomic model.

The first reason for considering the simplified model is
the lesson learned in the LPM ionization studies. There, sig-
nificant insight into the ionization process has been obtained
from the simplest, one-dimensional~1D! atomic model
where the electronic motion is restricted to the field axis, the
direction along which the external field is the most effective.
Similarly, for the CPM ionization problem, the simplest 2D
model is to restrict the electronic motion to the plane where
the external field acts. While the quantitative predictions ob-
tained using this simplification may differ in particular cases
from the full three-dimensional treatment, the 2D model
should allow one to gain significant insight into the mecha-
nism of ionization.

There is a basic difference between ionization by the
LPM and by the CPM. In the former case, the projection of
the angular momentum on the polarization axis is conserved,
thus the considered problem is effectively a two-dimensional
one. On the contrary, the case of the CPM ionization re-
quires, in principle, studying a fully three-dimensional~3D!
system, because no constant of motion is known to exist
apart from an approximate one in the purely perturbative
regime @33#. Such a 3D quantum study, for initial atomic
states with principal quantum number of the order of 50, and
covering a broad range of initial atomic states and micro-
wave frequencies, is not possible even with good present-day
computer resources. For that reason too, we shall limit the
present study to the 2D model, especially since, as men-
tioned above, most of the classical studies also consider the
2D model.

Following the experiments@18,19#, theoretical studies of
the CPM ionization concentrated mostly on the low-
frequency situation,v0,0.6, both classically@20,22,24–
26,28# and quantum mechanically@32#. The motion in this
regime is mainly regular@25,28#. We refer the reader to
original works for details since we shall consider here the
intermediate- and the high-frequency domains only, an inter-
esting case from the quantum chaos point of view.

The quantum study presented extends our previous analy-
sis of low-frequency ionization@32# into this new frequency
domain, the region that has been the object of extensive stud-
ies in the last few years. For that reason we present first, in
the next section, a short summary of known results for the
system studied, results obtained mainly within classical me-
chanics. Later, in subsequent sections, we present our quan-
tum treatment of the ionization in the CPM, discuss possible
approaches to calculate the ionization probability and, in par-
ticular, discuss the definition of the ionization threshold. Due
to the ambiguities of the commonly accepted microwave am-
plitude threshold for a fixed pulse duration, we define a
measure—a pulse duration threshold for a given microwave
amplitude—that we call the time threshold. The main nu-
merical results concerning the ionization thresholds for vari-
ous initial states are presented in Sec. VI. They are compared
with the classically obtained thresholds as well as with the
theoretical predictions. We discuss the origin of quantum-

classical differences and we show the importance of the time
scale over which appreciable ionization takes place. We find
also several classically scaling structures in the frequency
dependence of the thresholds~Sec. VII!. Finally Sec. VIII
contains the summary of the obtained results and the conclu-
sions.

II. PRESENT STATUS OF THE UNDERSTANDING
OF CPM IONIZATION OF THE HYDROGEN ATOM

Let us begin by introducing the necessary notation. The
hydrogen atom in the field of the circularly polarized radia-
tion is described by the Hamiltonian

H5
~pW 1AW !2

2
2
1

r
~2.1!

with the vector potentialAW :

AW ~ t !5
F~ t !

v
@2exW sin~vt !1eyW cos~vt !#. ~2.2!

The electric field readsFW 52]AW /]t5F(t)@exW cos(vt)
1eyW sin(vt)] provided F(t) changes slowly with respect to
v21; dF/dt!vF. HenceF(t) is simply the amplitude of
the electric field. In the following we will mainly consider an
interaction of atoms with the field of a constant amplitude,
F(t)5F. Since we assumeAW to be independent of the posi-
tion ~the dipole approximation! the alternative form of the
Hamiltonian is obtained in the length gauge:

H5
pW 2

2
2
1

r
1F~ t !@x cos~vt !1y sin~vt !#, ~2.3!

more commonly met in most of the studies, especially clas-
sical ones. Note that a change of the sign ofv in Eq. ~2.2!
@or in Eq. ~2.3!# is equivalent to the change from the right-
hand CPM to the left-hand CPM. We shall explore this pos-
sibility below and allowv to take both positive and negative
values in order to study both types of polarizations.

One may remove the oscillating time dependence by pass-
ing to the frame rotating with the field@34–36#, the resulting
Hamiltonian is

HR5
pW 2

2
2
1

r
1F~ t !x2vLz . ~2.4!

In the presence of the CPM, the angular momentum projec-
tion onto thez axis Lz is no longer conserved. While for a
fixed amplitude, the HamiltonianHR is time independent, the
system possesses no other exact constant of motion, except
the energy. The latter is not bounded from below due to the
kinetic energy coupling introduced by theLz term.

It is important to recognize that the energy in the rotating
frame is different from that in the laboratory frame. For ex-
ample, forF50, the degeneracy of the hydrogen atom mani-
fold with energyEn521/2n2 in the laboratory frame is par-
tially removed, the corresponding energies become
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En2vm. Note also that the change ofLz into 2Lz is
equivalent to a change of sign ofv. This symmetry reflects
the fact that the fate of the atom initially in a given
un,l ,m& state under the influence of the right-polarized mi-
crowave (v positive! is the same as that of the atom in a
un,l ,2m& initial state in the field of left-polarized radiation.

Classically the system studied has a scaling property fre-
quently employed to reduce the number of parameters. Clas-
sical dynamics depends on two among three parameters of
the problem~the initial energy, the frequency, and the micro-
wave amplitude!. Typically one sets the initial energy at
E0521/2 ~in the rotating frame!, then the microwave fre-
quency for a given initial staten0 is measured in units of the
Kepler frequency,v05v/vK5vn0

3 , while the microwave
amplitude scales asF05Fn0

4 . Other quantities should be
scaled accordingly~e.g., microwave pulse duration!, in par-
ticular the scaled angular momentumm̃5m0 /n0 , changes
between21 and 1. We shall mostly use the scaled units
below.

Already the early studies@16,17# dealing with almost
resonant microwaves (v0'1) have shown a stochastic char-
acter of ionization by CPM. This picture has been further
confirmed by the extension of the photonic localization
theory @6# to the circularly polarized microwaves. The au-
thors constructed a Kepler map for the system valid for high
frequencies and not too large initial-state eccentricities. The
analogy between the Kepler map and the standard map al-
lowed the authors to give predictions for the onset of quan-
tum ionization based on the photonic localization theory.
Soon, however, Nauenberg showed@21# that the original
map of @6# is noncanonical. He proposed a new canonical
map, which is valid~in the perturbative regime! also for low
eccentricity initial orbits. A different analytical but also per-
turbative analysis was performed by Howard@23# who, bas-
ing on the resonance overlap analysis, stressed the diffusive
character of ionization. Although Nauenberg claimed that the
motion for nearly circular orbits is ‘‘surprisingly regular,’’
Howard found numerically ‘‘important regimes of highly
chaotic near-circular orbits’’ in agreement with earlier stud-
ies @16,17#. Still, his resonance overlap analysis actually di-
verges for such orbits. This discrepancy between@21# and
@23# may be quite easily resolved by close inspection of the
papers. While Nauenberg considers circular orbits rotating in
the opposite sense to the field rotation~i.e., corresponding to
negativev, i.e., v0'21), Howard discusses positivev
only.

The strong sensitivity of the behavior of circular states
with respect to the helicity of CPM~the sign ofv) was also
observed at low frequencies@24,32#; for intermediate fre-
quencies it was further studied by some of us@30# classi-
cally. Large microwave amplitudes are required to signifi-
cantly perturb~and eventually ionize! the atom on initial
circular orbit forv,0; by comparison much weaker micro-
waves yield significant ionization for positivev.

The classical study@30# allows one to also shed some
light on the applicability of the 2D model, since both the 2D
and 3D ionization thresholds are presented there. Nauenberg
@21# pointed out that some orbits in 3D lose their stability
earlier than in 2D, which might have important consequences
for the applicability of the estimates for the ionization thresh-
old based on the 2D model. Here again, as we understand,

Nauenberg’s claim is restricted to the circular orbits rotating
in the opposite direction to the field. The numerical simula-
tions performed by us@30,38# indicate that forv.0, 2D and
3D thresholds practically coincide~compare Figs. 1 and 2 of
@30#! while for v,0, orbits inclined with respect to the po-
larization plane may ionize faster. This indicates that the 2D
model predictions for negative frequencies have to be
viewed with caution when compared with the 3D real world.
On the other hand, since microwave amplitudes necessary to
ionize the atom are much larger for negative than for positive
frequencies, the 2D model should yield reliable predictions
also for the microcanonical sample~atoms with well-defined
principal quantum number but not preselected with respect to
angular momentum, as in current experiments on the hydro-
gen atom@13#!.

This strong dependence of the ionization character on the
initial state indicates that at the microwave field amplitudes
in the vicinity of the ionization threshold, the classical phase
space is of the mixed type, similarly to the corresponding
ionization process in LPM. In the latter case, even the ex-
perimental data~obtained with the microcanonical initial en-
semble of atomic states! show pronounced classically scaling
structures that may be related to remaining regularities in the
phase space@8,9,12,14#. Similarly, a strong dependence on
the angular momentum of the initial state is predicted@6,37#.

This similarity between LPM and CPM has been con-
firmed in a very recent experimental study@39#, which com-
pared the ionization thresholds obtained for 0.5,v0,1.4.
Actually, since the initial atomic sample contained a mixture
of different (l ,m) states of the same principal quantum num-
ber, such an experiment is not sensitive to the helicity, the
threshold being due to the (l ,m) states that ionize first.

Let us come back to the case of a well-defined initial
state. Howard’s paper@23# brings an interesting discussion of
the phase-space structures. In particular he has found, sur-
prisingly, that some areas of the phase space may be totally
forbidden corresponding to nonexistent trajectories with
complex eccentricity. In such a situation he predicted that the
primary one-to-one resonance should not exist for nearly cir-
cular orbits. Unfortunately, this claim must be incorrect
since, as early as 1989, Klar@40# found an exact stable pe-
riodic orbit lying in the middle of the one-to-one resonance
zone analytically~let us note, parenthetically, that a very
similar calculation leading to the same results has been re-
peated by Howard himself@41#!. As pointed out by Klar, this
orbit, a stable fixed point in the rotating frame~as well as its
unstable image on the other side of nucleus!, may support
well localized quantum states. This idea was further devel-
oped in Ref.@42# where it has been shown, by direct integra-
tion of the time-dependent Schro¨dinger equation that a wave
packet placed on the orbit does not disperse for at least 20
Kepler periods. Although their finding was soon challenged
by others@43# claiming that the classical stability island is
too small to support quantum states, recent quantum calcu-
lations @44# have not only found the actual quantum states
localized on the classical resonance island but also accurately
determined their lifetimes due to the ionization. The exist-
ence of the wave-packet states~as they are called! has been
further confirmed by us in a full 3D quantum calculation
@45#. Referring the reader for details to these papers, let us
note here only that the results of the fully 3D calculation in
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that case are in good agreement with more easily obtained
results for the 2D simplified model. This provides an addi-
tional argument towards application of the 2D approximation
in well chosen cases. It is also worth mentioning that analo-
gous wave-packet states have been found for LPM@46,47#,
showing again the similarity between LPM and CPM excita-
tion.

It is clear, therefore, that the prediction considering the
‘‘forbidden zone’’ @23# is a fallacy based on an inadequate
choice of the Poincare´ surface of section, rather than a real
physical situation. To realize the origin of the error, one
should consider the energy in the rotating frame, Eq.~2.4!,
denoted byK in @23#. While K may take any mathematical
value, only those values are physically relevant that may be
realized via switching on the microwave amplitude from
F50 to a given value ofF ~during the switchingK is not
conserved sinceHR is time dependent!. Numerical simula-
tions performed by us indicate that most of the trajectories
starting from the initial circular state end up withK values
different from those used by Howard@23# in the region of the
phase space where no ‘‘forbidden zone’’ exists.

Another point that provoked quite a discussion in the lit-
erature concerns the mechanism leading to ionization.
Howard@23# claims that all orbits, irrespective of their initial
shape ‘‘become elongated before they ionize, demonstrating
that core effect must be considered in experiments on Ryd-
berg atoms.’’ In the same spirit he states that ‘‘in general,
higher eccentricity orbits are more easily perturbed.’’ Similar
claims may be found in@29#; the authors state that ‘‘ioniza-
tion occurs through a sequence of close encounters with the
nucleus.’’ Quite an opposite picture emerges from careful
classical simulations performed by some of us@30#. We have
found that orbits of medium eccentricity ionize first and have
shown explicit examples of trajectories that ionize without
apparent change of shape and never coming close to the
nucleus. Similar conclusions have been reached in the model
of molecular dissociation@48#, which under certain approxi-
mations reduces to the Hamiltonian equivalent to Eq.~2.4!.
The discussion that followed@49,50# clearly supports the fact
that collisions with the nucleus play a marginal role in CPM
ionization. As a matter of fact, the ‘‘exact’’ quantum results
presented in the following sections indeed prove that close
encounters with the nucleus play a minor role only.

To summarize, although the subject is infested with op-
posing statements and controversies, such as the ones de-
scribed above in some detail, the following picture of ioniza-
tion in CPM in the intermediate and high-frequency regimes
~i.e., for uv0u*0.5) clearly emerges from the earlier studies.
The classical ionization proceeds mainly by diffusion
through the mixed phase space, resembling to a large extent
the case of LPM ionization~note that here, due to conserva-
tion of Lz , collisions with the nucleus, necessarily important
for states withm50, are excluded forumu.0). Quantally,
there exist some strongly localized states, studied mostly in
the prominent one-to-one resonance zone. Thus one may ex-
pect a quantum slowdown of the ionization process due to
the phase-space structures. While the region of one-to-one
resonance has been explored in some detail, to our knowl-
edge, no reliable quantum calculations exist in the moderate-
and high-frequency regimes that are capable of providing a
comparison between the classical and quantum predictions.

The aim of this paper is therefore to provide such a compari-
son, which has already been called for in the controversial
paper of Howard@23#.

Both the classical simulations@30# and the existing quan-
tum @44,45# results indicate that to get the average trends
necessary to characterize the frequency dependence of the
ionization threshold, the application of the 2D model of the
atom is justified. We shall therefore restrict ourselves to such
a model below.

III. THE QUANTUM APPROACH

Let us consider first the two-dimensional model of hydro-
gen without any external perturbation. Its Hamiltonian~in
atomic units! is obtained from the standard three-
dimensional case by suppressing thez dependence:

H05
px
21py

2

2
2

1

Ax21y2
. ~3.1!

The quantum energies follow the Rydberg formula,
En521/2n

*
2 , where the effective principal quantum num-

ber, n*5n11/2,n50,1,2, . . . , appears rather thann itself.
The states may be characterized by two quantum numbers:
(n,m), wherem52n, . . . ,n is the eigenvalue of the angu-
lar momentum operatorLz5xpy2ypx .

In the presence of the CPM, we might use the length
gauge Hamiltonian, Eq.~2.3!; however, it turns out that the
velocity gauge is more efficient numerically. Expanding the
kinetic energy in Eq.~2.1! and removing the constantA2

term, one arrives at the Schro¨dinger equation of the form

i
]

]t
uc&5S p22 2

1

r
2
F

v
@pxsin~vt !2pycos~vt !# D uc&.

~3.2!

The Hamiltonian in Eq.~3.2! is an oscillatory function of
time. Therefore one may use the Floquet theory@51# fre-
quently applied to ionization problems in both the optical
and microwave regimes. We adopt here another approach
and, as in Sec. II, we remove the oscillatory time dependence
by passing to the rotating frame. Under the unitary transfor-
mationU5exp(ivLzt), Eq. ~3.2! becomes

i
]

]t
uc̃&5S p22 2

1

r
1
F

v
py2vLzD uc̃&, ~3.3!

whereuc̃&5Uuc&. Since the Hamiltonian is now time inde-
pendent, we may look for the eigenvalues and eigenvectors
of the corresponding time-independent Schro¨dinger equa-
tion. In the following, we pass to the scaled semiparabolic
coordinates defined asu5A(r1x)/L, v5A(r2x)/L, al-
ready used successfully in the treatment of the hydrogen
atom in a static magnetic field@1,52#. These coordinates al-
low one to remove the Coulomb singularity and facilitate
accurate classical simulations of the problem@22,27,30#. The
Schrödinger equation takes the form of the generalized ei-
genvalue problem:
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S pu21pv
2

2L2 2
2

L
2

F

vL
~vpu1upv!2

v

2
~u21v2!~upv2vpu! D uc̃&5E~u21v2!uc̃&. ~3.4!

All terms in the equation above have the form of a polyno-
mial in coordinates and momenta. This form suggests the use
of the harmonic oscillator basis for an efficient diagonaliza-
tion of the problem. The scale parameterL may be chosen at
will and is related to the common frequency of oscillators in
u andv coordinates. Introducing standard creation and anni-
hilation operators,

u5
1

A2
~a†1a!, v5

1

A2
~b†1b!, ~3.5!

pu5
1

iA2
~a†2a!, pv5

1

iA2
~b†2b!, ~3.6!

allows for a simple calculation of matrix elements in Eq.
~3.4!. However, the matrix representation of the
Lz5(upv2vpu)/2 operator becomes complex. Therefore, it
is more convenient to introduce circular creation and annihi-
lation operators for atomic variables that obey the circular
symmetry invoked by the field,

A†5
1

A2
~a†1 ib†!, A5

1

A2
~a2 ib !, ~3.7!

B†5
1

A2
~a†2 ib†!, B5

1

A2
~a1 ib !. ~3.8!

Expressed in terms of these operators,Lz reads

Lz5
1

2
~upv2vpu!5

1

2
i ~ab†2a†b!5

1

2
~A†A2B†B!

~3.9!

and is diagonal in the circular oscillator basis,unA ,nB&. The
meaning of the scale parameterL is now clear. By choosing
L5n in the absence of the microwave field, one notices that
the stateunA ,nB& is an eigenvector of the Hamiltonian cor-
responding to the energyE521/2(n11/2)22mv, where
m5 1

2(nA2nB) andn5 1
2(nA1nB) @53#. Therefore, this is the

eigenstate of the field-free 2D hydrogen in the rotating
frame. The oscillator basis is equivalent to the so-called Stur-
mian basis in the original Cartesian coordinates withL being
the parameter of the Sturmian basis~for the detailed discus-
sion, see@52#!. The basis set, for arbitraryL, will be denoted
as $un,m&L%. It is a discrete basis that includes exactly the
coupling to the atomic continuum.

In the chosen basis$un,m&L% the relation of the eigenval-
uesEi and eigenvectorsuc̃ i&5(n,manmun,m&L of Eq. ~3.4!
to Floquet eigenstates becomes transparent. In the laboratory
frame thei eigenvector becomes

uc i~ t !&5exp$2 iL zvt%uc̃ i&5(
n,m

anmexp$2 imvt%un,m&L .

~3.10!

Indeed, Eq.~3.10! shows a periodic time behavior character-
istic for a Floquet eigenstate. It may be verified after straight-
forward algebra@38# that, starting from the usual Floquet
Hamiltonian@51# corresponding to Eq.~3.2! and passing to
the similar oscillator representation, one obtains the Floquet
matrix in the oscillator-Floquet basis$un,m&LuK&% (K enu-
merates the photon blocks!, which has a block diagonal
structure due to the selection rule,m1K5M5const. Eigen-
values of differentM ,M 8 blocks differ by the value
(M2M 8)v, as in a typical periodic Floquet structure.
Therefore, the diagonalization of Eq.~3.4! is equivalent to
finding all independent eigenvalues and eigenvectors of the
Floquet Hamiltonian. However, the above-mentioned selec-
tion rule appears only in the circular polarization and it is a
direct manifestation of the well-knownDm51 selection rule
for the absorption of a circularly polarized radiation. This
rule is still valid for our Sturmian basis$un,m&L% since it has
the same angular properties as the usual atomic wave func-
tions.

In the presence of an electromagnetic field, the system
supports no bound states but rather resonances, due to the
coupling to the continuum. To find these resonances and the
corresponding wave functions, we use the well-known com-
plex rotation technique@54#. In short, one rotates the coordi-
nates and momenta according torW→rWexp(iu), pW

→pWexp(2iu). The matrix representing the Hamiltonian in
Eq. ~3.4! then becomes complex symmetric and explicitly
dependent on the rotation angleu. The rotation does not
affect energy values of the bound states while rotating struc-
tureless continua by the angle 2u in the complex plane. Pro-
vided the rotation angle is not too small, the resonances in
the continuum become ‘‘exposed’’ by the rotation and ap-
pear as complex eigenvaluese i5Ei2 iG i /2. For a suffi-
ciently large basis set, an interval ofu values exists for
which positions of resonances in the complex plane are in-
dependent of the rotation angle and the scale parameterL.
Consequently,Ei is interpreted as the resonance position and
G i as its width~the inverse of its lifetime!. Moreover, the
corresponding wave functions are square integrable.

The diagonalization of Eq.~3.4! yields exact~within nu-
merical errors! eigenvalues and eigenvectors of the hydrogen
atom coupled to the monochromatic electromagnetic field,
i.e., the eigenstates of the atom dressed by the field~Floquet
eigenstates! for a given value of the microwave amplitude
F. Such a fairly standard approach to treat nonperturbatively
the ionization of hydrogen atoms driven by a periodic wave,
originates, as far as we could trace, from the work of Chu
and Reinhardt@55#, and has been used intensively for both
the linearly and circularly polarized radiations@56,57#. How-
ever, these studies were mostly related to the ionization from
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low-lying atomic initial states. In the microwave regime, the
same technique was adopted for the LPM by Buchleitner and
Delande@9–11# for both 1D and fully 3D situations~effec-
tively 2D due to conservation ofLz — see the Introduction!.
Our contribution to the method includes its adaptation for the
2D hydrogen atom in the CPM, and also the application of a
simple algebra of harmonic oscillators, which allows for an
efficient and straightforward matrix evaluation.

IV. IONIZATION PROBABILITY

In the case where the amplitude changes in time, results
obtained for variousF values correspond to instantaneous
dressed states. Clearly, finding the Floquet states does not
provide the exact solution of the full time-dependent Schro¨-
dinger equation for arbitrary microwave pulseF(t). Two
possible ways of generating an approximate solution out of
the results obtained for diagonalizations of the Floquet ma-
trix are used quite commonly.

First, let us assume that the atom is in a stateuw0& before
the microwave radiation is turned on. For sufficiently slowly
varying microwave pulseF(t), the atom has enough time to
adjust to the changes in field amplitude—this is nothing but
the adiabatic approximation. Under this approximation, it is
sufficient to follow the single dressed~Floquet! state, which
is a smooth continuation of the initial stateuw0&. Such an
approach will be referred to as a single Floquet state approxi-
mation~SFSA!. The energy of the state and its width change
with F(t), providing in this way the information about the
nonresonant decay of the atomic population to the con-
tinuum. Therefore, the probability of ionization after the mi-
crowave pulse of a durationT is given simply by

P512expH 2E
0

T

G@F~ t !#dtJ , ~4.1!

whereG is the width of the important single Floquet state.
In the presence of quantum resonances~between field-

shifted states! a real population transfer to other states may
occur and the SFSA becomes questionable. Such resonances
appear as avoided crossings between energy levels asF(t)
changes in time. It is well known from the Landau-Zener
theory that even in the presence of avoided crossings, the
single-state approximation may work in two extreme cases,
either for a very slow adiabatic passage or for a fast diabatic
passage. The characteristic time scale is set by the inverse
size of the avoided crossing gap~minimal distance between
levels!, t51/De. If a change inF sufficient to pass the
avoided crossing occurs in timeDt, then the adiabatic pas-
sage is realized fort!Dt. The diabatic transition occurs in
the opposite limiting case, i.e., for very narrow avoided
crossings.

It is now apparent that the relative sizes of avoided cross-
ings encountered during changes ofF(t) are very important.
For classically regular systems, the avoided crossings are
generically much smaller in size than the mean level spacing.
Thus, in the semiclassical limit, one expects that the SFSA
can work for the classically regular regime in the situation
where avoided crossings are passed diabatically while, in
between subsequent avoided crossings, the single level is
adiabatically followed~since the size of a typical avoided

crossing is much smaller than the mean level spacing!. Such
a mixed adiabatic-diabatic picture has been commonly as-
sumed for the ionization from low-lying states@56,57#. Here
we relate it to the character of the classical dynamics in the
semiclassical limit appropriate for the microwave ionization
from highly excited initial states.

On the other hand, for classically chaotic systems,
avoided crossings of arbitrary size appear abundantly in a
typical spectrum@58#. Thus, one expects a breakdown of the
SFSA when the ionization is classically chaotic. In excep-
tional cases, for initial states being strongly localized~on the
classical structures in phase space!, the SFSA may still work
satisfactorily. Its unpleasant feature is, however, that little
control over the buildup of the error is possible, except by
comparison with the direct time-dependent solution of the
Schrödinger equation. Typical microwave pulses used in ex-
periments@12–14,59–62# have a time duration ranging from
a few hundred up to thousands of field cycles. For such long
times, a direct integration of the time-dependent Schro¨dinger
equation is not feasible. In most of the experimental setups,
the microwave pulse has the ‘‘flattop’’ shape~with turn-on
phase, constantF amplitude dominant phase, and the pulse
turn off!. Hence it is reasonable to model this situation by a
rectangular pulse of a constant amplitudeF during the pulse
duration T @9#. In this rectangular pulse shape approach
~RPSA!, a single diagonalization is enough to obtain the ion-
ization probability as

P512(
i
Re~^c̃ i uw0&

2!exp~2G iT!, ~4.2!

where the sum is over dressed states. The scalar product
should be calculated without complex conjugation~as appro-
priate for complex symmetric matrices!. As discussed in de-
tail by Buchleitner@9,11#, this expression is exact in the limit
of long microwave pulses after averaging over the initial
phase of the microwave field.

The RPSA, Eq.~4.2!, may only partially approximate the
real physical processes where the pulse changes smoothly in
time. Still one expects this approach to work quite well for a
chaotic system when the classical ionization is mainly diffu-
sive. In that case, the actual wave function, e.g., in the ‘‘flat-
top’’ region of the pulse, is a linear combination of many
Floquet states; i.e., its span on the dressed eigenbasis is large
@63#. Clearly, in such a situation the application of the SFSA
is invalid. As discussed in the resonance overlap analysis by
Howard @23# and shown numerically @30# in the
intermediate- and high-frequency regimes we are interested
in, the classical ionization has mainly a diffusive chaotic
character. Thus, the use of the RPSA seems to be the only
possible computational approach in this region.

V. THE IONIZATION THRESHOLD

Experimental results are typically plotted@12–14# using
the scaled variables~see Sec. II!. We shall follow the same
convention, adapted to the 2D model:n* rather thann itself
is appropriate for scaling. Namely, we usev05vn

*
3 and the

scaled microwave amplitudeF05Fn
*
4 to characterize the

ionization process. Similarly, pulse duration will be mea-
sured directly in the number of cycles of the microwave
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field. Results represented in the scaled variables allow for a
direct comparison of data obtained for initial states with dif-
ferent principal quantum number. Since the scaling is not
preserved quantum mechanically, the experimental and theo-
retical results for the ionization yield depend on the initial
state for the same scaled parameters—this difference should,
however, vanish in the classical limit.

The commonly accepted definition of the ionization
threshold is the so-called amplitude 10% threshold,
F~10%!, i.e., the value of the microwave amplitude for
which 10% of atoms become ionized. The dependence of the
F~10%! threshold on scaled frequencyv0 proved to be a
useful characteristic@12#. Recently, such curves showing
changes of theF~10%! versusv0 have been extensively
studied classically for the CPM ionization@30# for various
initial orbits characterized by their eccentricities.

On the other hand, the amplitude thresholdF~10%! is
unfortunately quite an ambiguous measure in theoretical
studies. The ionization yield is not a monotonic function of
F as exemplified in Fig. 1 where we present the yield as a
function of the microwave amplitudeF for rectangular
pulses of different durations. The essential point is that for
any pulse duration, severalF0 may yield the same ionization
probability. As shown in the figure, the local maxima and
minima occur for different probability values, so a simple
change from 10% to, say, 50% ionization does not help. This
feature is not typically observed in the experiment due to
variations of the amplitude with respect to the cavity axis as
well as other effects that smear out most of the structures.
The nonmonotonic ionization probability dependence onF
may be linked to the influence of avoided crossings, as dis-
cussed in detail in@10,63,64# and is not an artifact of the
approach used~a similar nonmonotonic behavior often
termed ‘‘stabilization window,’’ is found in ionization stud-
ies by strong short laser pulses@65#!.

From the theoretical point of view, it is advantageous to
have an unambiguous definition of the threshold. It directly
follows from the ionization probability formula, Eq.~4.2!,

that the ionization probability is a strictly monotonic func-
tion of the pulse durationT ~the realistic values of the field
amplitude are orders of magnitude smaller than those needed
for a saturation of bound-free transitions, which may lead to
Rabi-like oscillations and a nonmonotonic time dependence!.
We therefore propose and hereafter use mostly the definition
of the 10% threshold defined as a pulse durationT~10%! ~in
microwave cycles! for which the 10% ionization probability
is obtained for given values of the scaled frequency and the
microwave amplitude.

The time threshold has additional advantages, both prac-
tical and of fundamental interest. The latter, as we shall ex-
emplify below, stems from the fact that the classical-
quantum correspondence strongly depends on the pulse
duration. This is an aspect of the problem that remained al-
most unexplored in most of the studies of the microwave
ionization ~see, however, Refs.@27,59–62#!. In practical
terms, the time 10% threshold is advantageous because it is
much easier to find than the field 10% threshold. In order to
determine the 10% time threshold for a given initial state,
frequency, and microwave amplitude, it is sufficient to per-
form only a single diagonalization. This should be compared
with several attempts at differentF0 values required to esti-
mate the amplitude 10% threshold. Since initial principal
quantum numbers of the order of 50 or more are used ex-
perimentally, the corresponding matrices are quite large~see
below! and a search for the amplitude threshold becomes
very CPU time expensive. We present below both the
T~10%! as well as traditionalF~10%! thresholds; in the latter
case the attempt has been made to smooth the nonmonotonic
structures by averaging over a range of field values.

An example of the time thresholdT~10%! is presented in
Fig. 2, for the same ‘‘testing’’ case of the circular state as in
Fig. 1 for a rectangular pulse of amplitudeF050.1. Here, we
compare also the SFSA to the exact results based on Eq.
~4.2!. Large differences~sometimes orders of magnitude! be-
tween predictions of both methods are present for intermedi-
ate (v0,3) frequencies where the classical motion is mainly
a nonperturbative chaotic diffusion. This exemplifies the fail-

FIG. 1. Probability of ionization at scaled frequencyv051 as a
function of the scaled microwave amplitudeF0 for the circular state
u24,24& for the duration of the rectangular pulseT5500 microwave
cycles ~filled circles connected by solid line!, T52000 ~dashed
line!, and T55000 ~dotted line!. Note the abundance of local
maxima of the ionization curve as a function ofF0 .

FIG. 2. Comparison of SFSA~open triangles! and RPSA~filled
circles! for the circular stateu24,24& in theT~10%! ~time! threshold
vs scaled frequencyv0 at scaled microwave fieldF050.1. Note the
strong discrepancy between the two approaches for low frequencies
~short times! with better agreement for high frequencies and long
T~10%!.

54 697TWO-DIMENSIONAL QUANTUM HYDROGEN ATOM IN . . .



ure of SFSA in this domain. Apart from the resonance struc-
tures, to be discussed in detail below, longer and longer
pulses are needed to obtain the 10% ionization yield as the
microwave frequency is increased. This behavior reflects the
similar increase of the corresponding classical curve for the
fixed pulse duration@30#. At higher frequency,v0.3, the
agreement between the RPSA and the SFSA is better: this
reflects the perturbative character of the ionization in this
limit for F050.1 ~the overlap of the initial state on the most
important Floquet state is larger than 0.92! and the quite
regular classical dynamics@30#.

At this value ofF0 , pulses shorter than 100 microwave
cycles suffice to yield 10% ionization forv0,2. On the
other hand, for high frequencies, the required pulse duration
may well exceed 106 cycles. This is an illustration of the fact
that, when the atomic response strongly varies with fre-
quency, one should adjust the microwave amplitude to the
studied frequency interval so as to remain within a reason-
able, experimentally accessible, range of pulse durations. Let
us mention that in some experiments@59,62# the pulse dura-
tion may be changed by several orders of magnitude.

VI. RESULTS OF NUMERICAL SIMULATIONS
FOR A RECTANGULAR PULSE

The results presented up until now served to illustrate our
approach and to test possible approximations. They prove
that, in the chaotic regime we are interested in, the RPSA is
the only possible and at the same time quite a reasonable
approximation for long ‘‘flattop’’ microwave pulses. To
simulate ionization of Rydberg states of principal quantum
numbern'60 typically met in the experiments@12–14,59#,
the results forn524 shown above are not truly convincing.
In this section, we presentT~10%! thresholds obtained for
n548 and 64, and the comparison with the corresponding
classical simulations. It is thus probably a good point now to
discuss some technical details of the calculations. A more
detailed description can be found in an earlier analysis of the
LPM ionization by the same approach@11#.

The Sturmian basis $un,m&L , n50,1, . . . ; m
52n, . . . ,n% is complete. However, for practical purposes,
we have to limit the size of the basis set. Typically we take
the basis vectors up to somenmax. In the ideal case~and it
was the case for the results presented up until now! nmax
should be chosen sufficiently big so that any further increase
would not affect the results. The value of the Sturmian pa-
rameterL is chosen typically in such a way that one of the
Sturmian functions coincides with the initial state studied.

Real experiments@12,13# do not measure the absolute
ionization yield. Both the stray electric fields present in the
experimental setup and the method of detection do not allow
one to differentiate between real ionization and excitation of
the atom to a very high Rydberg state~with, e.g., principal
quantum numberN589 or 114 depending on the experiment
@13#!. Thus, to simulate a genuine experimental situation,
one should count such a high excitation case as ‘‘ioniza-
tion.’’ Fortunately one may use properties of the Sturmian
basis to perform such a selection in a very effective and only
slightly nonrigorous way as shown in Ref.@11#. Up to a
given nmax, the Sturmian basis faithfully represents only a
finite region of the configuration space. Discrete states that

extend further, when represented in the ‘‘too small’’ basis,
act like continuum states. The effect is clearly seen when
diagonalizing the complex rotated atomic Hamiltonian in the
absence of any perturbation. The relatively low-lying states
are well converged and lie~as they should! on the real axis,
the continua are rotated~as they should! by the angle 2u
@54#, but the ionization threshold is shifted to smaller ener-
gies. It is easy to show~by looking at the Sturmian functions
in the coordinate representation@11#! thatN'ALnmax is the
effective principal quantum number at which the shifted
threshold appears. Therefore, limiting thenmax value, one
may very efficiently realize a high-N cutoff and at the same
time limit the size of diagonalized matrices.

For the atom in a given initial stateun0 ,m0&, it is elemen-
tary to find out how many photons are required for the ion-
ization in the perturbative picture. Since we are beyond the
perturbative limit, it is necessary to include all basis states
that may be reached by a few photons more than the minimal
required number. Due to theDm561 selection rule, it is
sufficient to form the matrix among the basis states acces-
sible from the initial angular momentumm0 value by, say,
up toK photons, i.e., to restrict the basis states to the interval
m06K. Still the size of resulting matrices may well be up to
25 000. By changing the rotation angleu and the number of
photonsK, we were able to verify the convergence of our
results.

In order to evaluate the ionization probability, Eq.~4.2!,
the eigenvalues and eigenvectors that have non-negligible
overlap with the initial state are needed. We used the Lanc-
zos diagonalization method adapted for complex symmetric
matrices@66#, which allows one to obtain a subset of eigen-
values and eigenvectors around a given value of the energy.
We started the process around the field-free energy and con-
tinued the Lanczos scheme until the eigenvectors found ex-
hausted the norm of the initial state up to 0.995. Typically a
small percentage of all eigenvectors was sufficient to satisfy
this criterion.

Finally let us describe briefly the classical calculations
performed in@30#, but with two modifications. First, we have
included in the calculations the ‘‘effective threshold’’ crite-
rion for the ionization to enable comparison with quantum
data. Thus we counted as ‘‘ionized’’ any trajectory with final
~unscaled! energy greater than21/2N2. Second, we have
determined classicallyT~10%! instead ofF~10%! thresholds.
The classical results were obtained for a rectangular pulse
and for the 2D model of the atom.

As the problem studied is two dimensional, the quantum
dynamics is strongly dependent on the geometrical properties
of the initial atomic state~in agreement with classical me-
chanics, similarly sensitive@30#!. We cannot discuss all the
possible initial states for obvious reasons and we have to
restrict ourselves to some illustrative examples. Hence to in-
troduce some systematics into the presentation, first we show
results for the elongated states~smallm0) using as an ex-
amplem050. Then we consider states of ‘‘average’’ ellip-
ticity (m05n0/2), and finally the circular states (m05n0).

A. Elongated states

Let us consider first the minimal angular momentum
states,m050. Such states are extremely important for the
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LPM ionization, where they are most vulnerable to perturba-
tion and among states of different angular momenta, they
ionize at lowest amplitudes of the microwave pulse@9–11#.
For such states, a simplified 1D model can be used in which
the motion of the electron is restricted to the field axis. The
behavior of this model has been studied in great detail for the
LPM ionization @5–7#. In particular, a lot of attention has
been paid to the differences between classical predictions
and quantum results; these differences are commonly inter-
preted as a manifestation of the quantum localization phe-
nomenon, being the quantum chaos analog of the Anderson
localization in disordered solids. It is interesting to see
whether similar differences are present also for the CPM
ionization case.

Figure 3 shows the timeT~10%! thresholds found for
moderate frequencies for different values of the microwave
amplitudeF0 in comparison with the corresponding classical
simulations. For low frequencies, quantum results decrease
with frequency~as seen for the smallest amplitude data!—
this is a signature of the small frequency behavior studied
earlier @24,32# where the motion becomes regular~see dis-
cussion in@32#!.

For a given scaled field value, the results are presented in
the interval ofv0 where quantum 10% ionization occurs for
times between 10 and say 108 field cycles. The upper limit is
sufficiently high to make experimental verification of our
calculations plausible. On the other hand, the resonance
widths corresponding to such long interaction times are quite
small. They are in fact on the border of the numerical accu-
racy in the double precision arithmetics. The lines crossing
the upper border of the figure indicate the frequency regime
in which we could not, for that reason, determine the widths
accurately. Since the correspondingT~10%! are outside the
experimental range, they are not of major interest: in such a

regime, the atom will be observed as stable against the ion-
ization.

With increasingF0 , the curves typically shift to higher
frequencies, indicating that the ionization yield decreases
with v0 for fixed values of the microwave pulse amplitude
and its duration. By comparison, the corresponding classical
time thresholds~shown as dotted lines! are almost insensitive
to the frequency change in the presented frequency interval
shown. In effect, the agreement between the classical and
quantum predictions is strongly dependent on the frequency
but also, importantly, on the time needed for reaching the
threshold. The classical and quantum thresholds agree quite
well, especially for low frequencies (v0,1), when 10% ion-
ization is reached in less than 100 microwave cycles. At
higher frequencies, classical and quantum results differ by
orders of magnitude in values ofT~10%!.

These results may be confronted with the prediction of the
localization theory as based on the so-called Kepler map@6#.
The applicability of the Kepler map for the 2D CPM ioniza-
tion case is limited to the regime

v0@1; um̃u5
um0u
n0

,S 2v0
D 1/3, ~6.1!

where m̃5m0 /n0 is the scaled angular momentum taking
values between21 and 1@6#. Clearly, the second condition
may be important for elliptical states discussed later. For the
present case ofm050 only the frequency condition is rel-
evant.

If the photonic localization takes place, then the maximal
excitation, up to exponential corrections, is given by the lo-
calization length~in number of photons! @6#,

L'3.33n0
2H2F0

2v0
210/3, ~6.2!

where

H511
m̃ 2

2
11.09v0

1/3m̃ ~6.3!

@see Eq.~63! and Eq.~71! of @6# with appropriate identifica-
tion of symbols; in particular notice the difference of the
factor A2 in Eq. ~6.3! due to the similar difference in the
definition of the microwave amplitude#. Now let us assume
that F0 is sufficiently small to limit the excitation to the
region below the effective ionization threshold. Hence, due
to the photonic localization, the correspondingT~10%! is
almost infinite: for such small fields, 10% ionization is never
reached. The increase ofF0 will lead to the decrease of
T~10%! through all orders of magnitude, and finally the other
extreme limit ~the fast ionization limit! is reached where a
significant ionization occurs faster than the time necessary
for the localization to build up.

This variation ofT~10%! is thus a sensitive test of the
relevance of the localization theory. Curves representing
time thresholds over all possible time scales are plotted in
Fig. 3. As before, the sharp growth ofT~10%! with fre-
quency and its shift towards higher frequencies with increas-
ing F0 is in a qualitative agreement with the photonic local-
ization theory @6# and the corresponding decrease of the
localization length, Eq.~6.2!. It is worth noting that, for the

FIG. 3. Length of the rectangular pulse~in microwave cycles!
leading to 10% ionization, i.e., theT~10%! threshold~according to
the definition adopted in the text! vs the scaled frequencyv0 for the
initial elongated staten0548, m050 illuminated by a circularly
polarized microwave, for different scaled amplitudesF0 . Filled
symbols connected by solid lines~to guide the eye! represent the
quantum results for the ‘‘effective ionization threshold,’’N5120.
Open symbols connected by dashed lines give results of classical
simulations corresponding to the same effective threshold. Tri-
angles, circles, and diamonds correspond, respectively, to
F050.025,0.03,0.04.
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smallest amplitudeF050.025 presented in Fig. 3, the in-
crease inT~10%! due to ‘‘localization’’ occurs already for
values ofv0 slightly smaller than unity.

In a typical laboratory measurement or numerical experi-
ment, the variations of theF~10%! threshold are quite small;
they change at most by a factor of 2. On the contrary, the
T~10%! threshold can cover easily a range of several orders
of magnitude. This general phenomenon was demonstrated
in the LPM @10#, but is also observed in our calculations in
the CPM. This is simply due to the difference in properties
of the measure chosen to define the threshold. Note that the
ionization yield is determined by a sum of weighted factors
exp$2Gi(F)T% @in Eq. ~4.2!#, where widthsG i are strongly
nonlinear functions ofF. A small increase of the microwave
amplitude may strongly increase the widths; therefore a nec-
essary decrease of the interaction time so as to keep their
product constant may be large. Also, since several terms con-
tribute to the sum in Eq.~4.2!, the ionization as a function of
time does not follow the exponential rule for the decay out of
the initial state; in the classically chaotic regime the decay
takes rather an algebraic, much slower character@62#. The
sensitivity of theT(10%) to changes ofF0 suggests it to be
a more informative measure of the ionization than the ampli-
tude threshold.

For the sake of further tests of the localization theory
predictions, we present the data for stronger fields and higher
frequencies in Fig. 4. Again a similar behavior, i.e., the rea-
sonable classical-quantum predictions agreement at lower
frequencies with strong disagreement for higher frequencies,
is found. Similar results are observed for the higher micro-
wave amplitudeF050.1 ~not shown!.

Figure 4 illustrates results for an initial elongated state,
n0564,m050. For an appropriate comparison with the clas-
sical simulation, we adjustednmax in such a way that the
quantum results for bothn0548 and 64 correspond to the
same classical cutoff limit. This is fulfilled whenN5120
~160! for n0548 ~64!, corresponding tonmax5300 ~400!.

Note that typically points ofT~10%! for n0564 are closer to
the classical results than those obtained forn0548. This is
expected on semiclassical grounds and is in agreement with
the photonic localization theory, which predicts the decrease
of the quantum threshold proportional ton0

21/2 @67#. In addi-
tion, Fig. 4 shows also data obtained forn0548 and larger
nmax5480, corresponding to an effective ionization cutoff
N'151. While overall results depend weakly on the cutoff
value, for some frequencies discrepancies arise. They typi-
cally occur when the shift of the cutoff leads to a change in
the number of photons needed for the ionization.

A sensitive verification of the photonic localization theory
requires a comparison of thequantitativepredictions of the
theory with our numerical results. This is difficult because
the photonic localization theory may be used for estimation
of the threshold only if the effective threshold is not too high
and no significant real ionization occurs~see remarks in the
Appendix of@67#!. As formulated in@6#, the photonic local-
ization theory gives estimates forF~10%! threshold. In order
to test it on a real system, we will focus now on the
F~10%! ionization threshold.

The prediction is@6,67#

F~10%!5
v0
7/6

A8n0H
A12

n0
2

N2. ~6.4!

Recall thatN is the principal quantum number corresponding
to the effective ionization threshold. For elongated states
studied in this subsection,m̃5m0 /n0 is equal to 0 andH is
just equal to 1. Hence, we are left with three parameters:
n0 , F0 , and v0 . First, we fix n0548 and study the
F~10%! threshold as a function ofv0 . The result in the
high-frequency domain is shown in Fig. 5. Apart from the
existence of strong fluctuations, there is a general increasing
trend withv0 . The prediction of the photonic localization
theory, shown as a solid line, has the same trend but obvi-
ously largely overestimates theF~10%! threshold. The dot-

FIG. 4. T~10%! thresholds forF050.05 and elongated state
n0564,m050 ~triangles connected by line!, n0548,m050 ~filled
circles connected by line!, open circles connected by dot-dashed
line correspond to threshold obtained for a higher effective cutoff.
The results of classical simulations are represented by open small
squares connected by dotted line. Possible classically scaling struc-
tures appear atv0'2.1 and 2.7.

FIG. 5. F~10%! threshold for the elongated state
n0548, m050 (n0564, m050) represented by filled circles~open
triangles! as a function of the scaled field frequency~interaction
time 500 field cycles!. The solid~dashed! line is the prediction of
the photonic localization theory@6# and the dotted~dot-dashed! line
half this value. The localization theory predicts the correct func-
tional dependence, but with a wrong coefficient.
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ted line, equal to half the theoretical prediction, is in good
overall agreement with the numerical results. Similar results
are obtained for a different initial staten0564, as is also
shown in Fig. 5.

In the second test,v0 is fixed and theF~10%! threshold
versusn0 is plotted. For this purpose, we takev052.1 and
change the size of the basis so that the ration0 /N is kept
fixed. The result is shown in Fig. 6. Again, the general trend
is well predicted by the photonic localization theory~solid
line!, but the exact value is significantly different. The dotted
line is half of the theoretical prediction, and as before it is in
good agreement with our data. Quite similar behavior, with
the same factor 0.5, is recorded at frequencyv052.8, as is
also shown in Fig. 6.

In the third and final test, we fix bothv0 and n0 and
change only the effective cutoff,N @compare Eq.~6.4!#. The
results obtained forF~10%! are summarized in Fig. 7. As in
the previous figures the prediction of the localization theory
significantly overestimates the threshold for large-N values;
the factor 0.5 improves the agreement considerably. Close
inspection of Figs. 5 and 6 reveals, however, that the values
of v0 andn0 chosen to coincide with other figures are not
the best. Atv052.1 andn0548, F~10%! curves in both
figures have local maxima, so the factor 0.5 may not work
very well. Therefore, we have also attempted to fit the pro-
portionality factor in theN→` limit. The result, represented
as a dot-dashed line, agrees with the numerical data quite
well.

Note that while both Fig. 5 and Fig. 6 show quite large
fluctuations about the average behavior, these fluctuations
are practically absent in Fig. 7. This shows that the origin of
fluctuations is not due to the size of the effective cutoff.
What is more, the fluctuations are present in theF~10%!
dependence onn0 ~i.e., on the effective\), while all classi-
cal parameters are kept constant. Thus the fluctuations as a
function ofn0 are of a quantum origin. We believe that they
are due to quantum interferences between different ionizing

paths leading to the continuum and the effect is, to some
extent, statistical. Semiclassically the change of\ is equiva-
lent to a different level of coarse graining of the phase space,
thus these fluctuations may also reflect transport properties
from the initial state to the continuum on a changing with
n0 resolution level. Certainly, observed fluctuations deserve
a more detailed study, which is, however, beyond the scope
of the present paper. Let us mention here only that similar
fluctuations are observed@45# for the individual widths of the
well-localized so-called wave-packet states~mentioned al-
ready in Sec. II! both for the linear and the circular polariza-
tions.

In conclusion, the photonic localization theory is in good
qualitative agreement with our numerical results for elon-
gated states. Further work is needed to understand the factor
of 2 discrepancy. The numerical value of this factor will be
dependent on the pulse duration~note that we use pulses of
500 microwave periods! and it will increase for longer inter-
action times. Since photonic localization theory is valid,
strictly speaking, for infinite interaction times, the appropri-
ate correction factor may be larger. Also, in Eq.~6.3!, the
factorH is estimated using them0 value of the initial state.
However, during the excitation process, the atom absorbs a
few circularly polarized photons and the value ofm0 in-
creases. Using a corrected value form0 in Eq. ~6.3! de-
creases the prediction of the photonic localization theory by
approximately 20% and consequently reduces the observed
discrepancy.

Even with this correction, our numerical results cannot be
claimed to be consistent quantitatively with the photonic lo-
calization theory. The difference factor of 1.8–2 is quite
huge and comparable in size to the total difference between
the classical simulations and experimental data for LPM in
the corresponding frequency regime. There, the localization
theory seems to reproduce experimental data in their average
trend to much higher accuracy~of the order of 10%!. Thus
this quantitative failure of the theory for elongated states in

FIG. 6. F~10%! threshold for the elongated staten0 , m050 as
a function of the principal quantum numbern0 ~interaction time 500
field cycles!. Filled circles~triangles! represent the data for scaled
frequencyv052.1 (v052.8). The predictions of the photonic lo-
calization theory@6# are shown by solid~dashed! lines while the
dotted~dot-dashed! lines give half of the theoretical prediction. The
localization theory predicts the correct functional dependence; note
that the ‘‘correction factor’’ is the same for both frequencies.

FIG. 7. The dependence of theF~10%! threshold on the effec-
tive ionization thresholdN for n0548 atv052.1 ~filled circles!.
The prediction of the photonic localization theory@67# is shown by
a solid line; the dashed line gives half of this value. The dot-dashed
line is a result of a fit of the constant factor in the localization
theory prediction to numerical value for largeN and in an excellent
way describes the variation of theF~10%! threshold for the whole
interval ofN values shown.
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CPM microwaves is quite surprising bearing in mind that
Howard classical resonance analysis@23# suggests a close
similarity between atomic response to LPM and CPM for
elongated states. Again, the failure of this picture may be due
to the fact that in CPM, the electron picks up some angular
momentum every time a photon is absorbed. This effect is
not taken into account in the resonance overlap analysis. As
we shall see below in quantum calculations and as already
noted in classical simulations@30#, states~orbits! of medium
eccentricity have the lowest ionization threshold. Thus ab-
sorption of photons in CPM, decreasing the eccentricity of
initially elongated states, speeds up the classical diffusion.
This effect is taken into account only partially by the photo-
nic localization theory.

B. Angular momentum dependence of the threshold

In most of the experiments@12–14#, while the initial prin-
cipal quantum numbern0 is well defined, the atoms are not
preselected with respect to the initial angular momentum
quantum numbers. This implies that the threshold is domi-
nated by the states ionizing in the smallest microwave field.
In the case of the LPM ionization, these are the elongated
states. Do these states ionize first also in the CPM ioniza-
tion? In view of quite opposite pictures emerging from clas-
sical calculations@23,30# it is quite interesting to address this
issue quantum mechanically.

The quantum results are presented in Fig. 8, which shows,
for a fixed value ofF0 andv0 , the thresholds obtained for
all m0 states in then0548 manifold. Notice a broad mini-
mum aroundm0'n0/2, indicating that indeed elliptical
states with moderatem0 values are most important for the
threshold determination in agreement with classical simula-
tions @30#. While the state-to-state inspection of the data re-
veals a sensitivity of the ionization efficiency on the choice
of F0 andv0 values used for the comparison~this is due to
the presence of structures in the threshold as a function of
v0 and the abundance of local maxima in the ionization yield
as a function ofF0—compare with Fig. 1!, a common over-

all behavior is observed in a broad range of bothF0 and
v0 .

Such behavior is not unexpected: the classical 1:1 reso-
nance analysis@17,23# shows that the size of the classical
resonance islandincreaseswhen the eccentricitydecreases,
indicating that the CPM acts more efficiently when the elec-
tron follows a trajectory close to a circle—not a surprising
result. However, the same analysis shows that higher-order
resonances are less pronounced for low eccentricity. In other
words, for states with low eccentricity, the first resonant pho-
tons are more easily absorbed, but the following ones are less
efficient. It is this balance between the efficiency of the
atom-photon interaction~which favors low eccentricity! and
nonlinearity ~which favors high eccentricity! which is re-
sponsible for the observed phenomenon.

The increase of the ionization efficiency withm0 for a
fixed microwave amplitude and frequency is also predicted
by the photonic localization theory@6#. Forv0'2, the angu-
lar momentum condition for the applicability of the theory is
satisfied for almost allm̃ values, up tom̃ close to 1~corre-
sponding to circular states!. The localization length, Eq.
~6.2!, is determined by the product ofHF0 , whereH in-
creases monotonically withm̃ @compare with Eq.~6.3!#.
Thus, for fixedF0 andv0 , the localization length increases
with m̃. A quantitative test is presented in Fig. 9. The solid
line is the prediction of the photonic localization theory,
which is greatly different from the numerical data. However,
the qualitative trend is well verified~for negative and posi-
tive m̃). Correction by a factor 0.5, as before, yields~dashed
line! a reasonable agreement with the data. A comparison
with Fig. 5 shows that atv052.1 the fluctuations in the
quantum numerical data are not ‘‘favorable’’ and the factor
0.5 does not work too well. Therefore, we have fitted the
correction factor so that the numerical value and the modi-
fied prediction of the localization theory@6# exactly coincide
at m̃50. Such a modification yields a dot-dashed line in
excellent agreement with numerical data forum̃u,0.2.

FIG. 8. The dependence of theT~10%! threshold for ionization
on the initial angular momentumm0 for then0548 manifold. The
filled ~open! triangles correspond to thresholds obtained at
v052.1 andF50.04 (F50.05) while circles present the data for
F50.04 and a smaller frequencyv051.9. The lowest threshold
values are obtained form0'n0/2.

FIG. 9. The dependence of theF~10%! threshold for ionization
on the initial angular momentumm0 for the n0548 manifold at
v052.1. The prediction of the photonic localization theory@6# is
shown by the solid line; the dashed line gives half this value. The
dot-dashed line is a result of a fit of the constant factor in the
localization theory prediction to the numerical value atm050 and
in an excellent way describes variation of theF~10%! threshold for
um0u,10 ~corresponding to scaled angular momentumum̃u,0.2).
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Two important factors are to be noticed. First, the fluctua-
tions are much smaller than in Figs. 5 and 6. This lack of
fluctuations may be explained by correlations between
F~10%! values for closem0 quantum numbers. The origin of
this correlation is mainly classical—the angular momentum
in the CPM ionization problem is not conserved and the
classical phase space is ‘‘shared’’ by different initialm0 val-
ues. The situation is completely different in this respect from
a more familiar interaction with the LPM, which conserves
m. While paths leading to ionization of variousm0 states are
different, which is reflected by the change ofF~10%! with
m0 , some correlations between ionization yields for little
differing values ofm0 are to be expected. In fact we have
verified, by calculating then0 dependence ofF~10%! for
m052 ~not shown!, that the structures observed in Fig. 6 are
exactly reproduced form052, the only difference being the
lower average behavior that is consistent with Fig. 9.

Second, the localization theory clearly breaks down
aroundm̃50.5, whereas the prediction Eq.~6.1! is supposed
to be valid everywhere. Obviously, the conditions in Eq.
~6.1! are not sufficiently restrictive. As a matter of fact, the
Kepler map relies on the approximation that most of the
energy exchange takes place in the vicinity of the perihelion.
For states with not small angular momentum, this cannot be
true. Hence, the applicability of the Kepler map is at best
restricted to small angular momentumm̃!1 and high fre-
quency.

Our quantum results are in this respect in good agreement
with a classical study of Nauenberg@21# who, as mentioned
in the Introduction, constructed a better, canonical map after
noting difficulties with the original Kepler map of Ref.@6#. It
would be most interesting, therefore, to compare quantum
results with predictions of the photonic localization theory
based on the canonical Kepler map of Nauenberg instead of
the standard Kepler map of@6#. For a high eccentricity, a
small microwave amplitude and a high frequency, the
Nauenberg Kepler map is close to the standard Kepler map
and no significant difference is likely to take place. On the
contrary, at medium and low eccentricities the two maps are
significantly different. The breakdown of the photonic local-
ization theory aroundm̃50.5 may be due to either a break-
down of the classical standard Kepler map or a failure of the
localization picture itself. This interesting alternative is left
for the future studies since a generalization of the theory of
@6# for a map of a different functional form is unfortunately
not straightforward. The results presented indicate that some
effort should be taken in this direction.

C. Elliptical states

Since states withm0'n0/2 are ‘‘the first to ionize’’
among different angular momentum states, it is worthwhile
to investigate their properties in more detail. As an example,
we have chosen the statesn0548, m0524 and n0564,
m0532. Recall that, according to the convention adopted
here, positivev0 correspond to positivem0 states in right-
polarized microwaves~or 2m0 states in left-polarized mi-
crowaves!. Figure 10 presents the moderate-frequency be-
havior for then0548, m0524 state. As for the elongated
states, one observes the decrease of the threshold with scaled
frequency for low frequencies (v0'0.6). For higher fre-

quencies,T~10%! is again an increasing~on average! func-
tion of v0 . Note that the microwave amplitudesF0 leading
to comparableT~10%! for a given scaled frequency are
smaller for elliptical states than those used in Fig. 3. This
confirms the fact that elliptical states ionize much faster than
elongated states in a broad frequency range. A comparison
with the corresponding classical simulation reveals again that
for effectively weaker pulses, corresponding to longer
T~10%!, the quantum ionization proceeds much slower than
its classical counterpart. On the other hand, one may notice,
again by comparison between Fig. 3 and Fig. 10, that the
classical-quantum disagreement is less pronounced and less
sharp for elliptical states than for the elongated states. This is
confirmed further in the higher-frequency interval—compare
Fig. 4 and Fig. 11.

The thresholds obtained for these elliptical states are very
comparable~within 10%! to the ones obtained numerically

FIG. 10. T~10%! threshold for elliptical staten0548, m0524.
The filled symbols correspond to quantum results, while the small
open symbols stand for classical simulations.F050.015, 0.025, and
0.04 data are represented by squares, circles, and triangles, respec-
tively. The large open circles connected by a dot-dashed line
correspond to a higher-lying initial staten0564, m0

532—comparison with filled circles allows for locating classically
scaling structures.

FIG. 11. Same as Fig. 10 but forF050.05. Filled circles,
n0564, m0532; open circles, n0548, m0524; diamonds,
n0548, m0524 for higher effective cutoff; squares connected by a
dotted line, classical simulation results.
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for elongated states in LPM@9,11# at similar frequency and
interaction time. They are also in good agreement with the
recent experimental results@39# obtained using a statistical
‘‘microcanonical’’ mixture of initial states. Our calculations
show that the experimentally measured threshold is due to
intermediatem0 states. They also suggest that a significantly
higher threshold should be observed using either a pure elon-
gated or circular initial state.

A still higher frequency range is represented in Fig. 12.
Note that the overall behavior of the threshold is quite simi-
lar to that observed for lower frequencies~and lower field! in
Fig. 11. Namely, there is an apparent agreement between
classical and quantum predictions for frequencies at which a
given amplitudeF0 yields the ionization quite fast on time
scales of the order of few tens of the microwave period. For
higher frequencies, the discrepancy between classical and
quantum predictions appears. This behavior, as before, is
qualitatively but not quantitatively~using a similar analysis
as for the elongated states! consistent with the photonic lo-
calization theory@6#.

Finally, Fig. 13 completes the study of elliptical states
showing the ionization under the opposite polarization. The
comparison of the amplitudesF0 needed to produce similar
T~10%! for right-hand and left-hand polarization in a similar
absolute frequency range shows the asymmetry between the
two possible polarizations. This asymmetry is of a classical
origin—a phenomenon like this has been observed in the
diffusive regime in the classical studies@30#. Note the strong
increase ofT~10%! for lower frequencies—we are approach-
ing the limit of low frequencies with a relatively high thresh-
old for the left-hand CPM@24,26,32#.

It follows naturally that, as discussed on classical grounds
in @30#, close encounters with the nucleus~which are the
main classical mechanism for the ionization in the LPM!
play a small role for the CPM. The right-polarized micro-
wave acting on the positivem0 states only supplies the elec-
tron with additional angular momentum~due to the
Dm511 selection rule!. Therefore, the electron feels a cen-
trifugal barrier and never comes close to the nucleus. For the
opposite polarization of microwaves, when the angular mo-
mentum may diminish, the ionization is much less effective,

which is definite proof that collisions with the nucleus are
not important. No singularity of any type is observed in Fig.
8 nearm050, which again proves that encounters with the
nucleus are not relevant for the ionization in the CPM.

D. Circular states

Finally, let us present results for circular states. As we
have seen on the example presented in Fig. 8, these states
may ionize at much higher microwave amplitudes than ellip-
tical or elongated states. Thus the results presented below are
of no relevance for the ionization threshold of atoms not
preselected with respect to the angular momentum. However,
efficient methods have been proposed@68# and confirmed
experimentally@69# for preparing atoms in initial circular
states. One may therefore envision a CPM ionization experi-
ment in which atoms in circular states are prepared before
entering the microwave cavity.

Figure 14 showsT~10%! thresholds obtained for different
values ofF0 for circular statesn0548,m0548 for moderate
positive scaled frequencies. With increasingF0 , the curves
shift to higher frequencies, indicating that the ionization
yield decreases~in this frequency range! with v0 . This
agrees with the classical amplitude thresholdF~10%! behav-
ior, which, for circular states, increases also with frequency
@30#. The dashed lines indicate classical time thresholds and
show that the agreement between the classical and quantum
predictions is strongly dependent on the time needed for
reaching the threshold. For a strong field~at a given fre-
quency!, when 10% ionization is reached within up to ap-
proximately twenty cycles, the classical and quantum thresh-
olds agree quite well. However, the quantum threshold rises
much more sharply with the frequency and when the classi-
cal diffusion is slow~classical threshold of the order of a
thousand cycles!, the quantum threshold may exceed the
classical value by several orders of magnitude.

The effect looks similar for different frequencies, but oc-
curs simply at different microwave amplitudes. There is no
quantitative difference between frequencies less and bigger
thanv051— ‘‘a starting point’’ for quantum localization in

FIG. 12. Same as Fig. 11 but forF050.1. Filled circles,
n0564, m0532; open circles, n0548, m0524; diamonds,
n0548,m0524 for higher effective cutoff; squares connected by a
dotted line, classical simulation results.

FIG. 13. T~10%! threshold for the elliptical staten0548,
m0524 in left-hand CPM~or m05224 in right-hand polarized
radiation!. The filled ~open! symbols connected by lines give the
quantum ~classical! results. The circles, diamonds, and triangles
correspond toF050.04, 0.05, and 0.1, respectively.
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the LPM studies@6,12#. One should, however, keep in mind
that we are considering a situation that is outside the region
of applicability of the photonic localization theory@see Eq.
~6.1! above#. The observed behavior therefore may be quite
different.

Looking along the vertical axis on the plot, it is clear that,
for a given frequency, the changes ofF0 will determine
whether the agreement between classical and quantum re-
sults occurs. For relatively small fields, there will be differ-
ences whereas for strong fields—leading to fast
diffusion—we will find agreement between classical and
quantum results. The region of slow classical diffusion is
infested with remnants of regularities observed at still
smaller microwave amplitudes~they create the obstacles
slowing the diffusion!. The classical transport in this case
goes through several bottlenecks as studied in@70#. Thus a
different mechanism leading also to quantum slowdown of
the ionization process suggests itself. It has been proposed
@71,72# that the finiteness of\ leading to the ‘‘coarse grain-
ing’’ of the phase space will ‘‘fill’’ the gaps in broken tori
and effectively slow down the quantum excitation leading to
the discrepancies between classical and quantum mechanical
results~or experimental results! observed in the LPM experi-
ments@71#. Due to the structure of the classical phase space,
this explanation of the origin of classical-quantum differ-
ences seems to be quite appropriate for the case of the CPM
ionization of circular states.

Similar behavior occurs at larger scaled frequencies as
shown in Fig. 15 forF050.07 and in Fig. 16 forF050.1.
Both these figures show results for a larger initial principal
quantum numbern0564. The comparison with correspond-
ing plots for elongated and in particular elliptical states re-
veals that the classical-quantum differences are more pro-
nounced for circular states. This phenomenon may be
understood qualitatively in terms of the dimensional argu-
ment. Extreme angular momentum states,un0 ,m05n0&, in
right-hand polarized microwaves couple dominantly to
n8,m8 states with largem8 ~remember theDm511 selec-
tion rule for absorption!. Hence the problem becomes effec-

tively one dimensional. The situation is quite different if
m0!n0 since many more atomic states become coupled to-
gether, and we have a truly two-dimensional picture. The
higher density of states for the elliptical initial state~not of
all the atomic states, but of those important ones actively
involved in the ionization process! means that the effective
\ becomes smaller. That means that the semiclassical limit is
realized faster for the elliptical initial states and the quantum
effect of gluing the holes in the regular phase space struc-
tures is smaller for these states.

As discussed above, on the averageT~10%! increases
quite sharply withv0 for a givenF0 in a whole interval
corresponding to classically diffusive motion~i.e., up to
v0'323.5, beyond which the classical ionization thresh-
olds increases sharply!. To compare ionization at different
frequencies on the same time scale, we have checked that in

FIG. 14. T~10%! threshold for the initial circular staten0548,
m0548 illuminated by a right-hand CPM for different scaled am-
plitudesF0 . The filled ~open! symbols connected by lines give the
quantum~classical! results. The squares, circles, diamonds, and tri-
angles represent the data obtained forF050.02,0.03,0.04, and
0.07, respectively.

FIG. 15.T~10%! threshold forF050.07 obtained for right-hand
CPM ionization of circular staten0548, m0548 ~filled triangles,
cutoff N5120) and n0564, m0564 ~filled circles, cutoff
N5160).

FIG. 16. Same as Fig. 15, but for stronger amplitude,F050.1.
The open diamonds represent the quantum data obtained also for
the n0548, m0548 state, but for higher effective cutoff,
N'151—for some frequencies the shift of the cutoff strongly af-
fects the value ofT~10%!. Note the classically scaling structure at
v0'2.8. Classical prediction is given by open circles connected by
dotted line.

54 705TWO-DIMENSIONAL QUANTUM HYDROGEN ATOM IN . . .



the whole ‘‘chaotic’’ frequency region, the ionization pro-
cess is quite similar statistically. For this purpose we used
the width functionW(w0) defined as@63#

W~w0!5expH 2(
i
Re~^c̃ i uw0&

2!lnRe~^c̃ i uw0&
2!J

~6.5!

closely related to the entropy and being a measure of the
span of the initial state over the Floquet eigenstates. For the
same purpose one may simply count the number of Floquet
states~ordered in the descending order with respect to their
overlap on the initial state! needed to exhaust the norm of
uw0& up to say 99%. For similar values of the ionization
probability and for a given pulse length~500 microwave
cycles!, the width function has similar values in the whole
range of frequencies betweenv050.6 and 2.6 and is a
strongly increasing function of the ionization probability
value chosen for comparison. In particular,W'e3 for a
20% ionization during 500 microwave cycles corresponding
to about 80 Floquet states needed to exhaust the norm of the
initial state. For 1% ionization, we obtainW'e1.5 with
roughly 15 important Floquet states~note that theW func-
tion, while being roughly proportional to the number of im-
portant Floquet states in the expansion of the initial state,
underestimates this number quite strongly!. These numbers
start to decrease significantly only for high frequencies when
we come close to the classically forbidden region.

Finally, let us discuss the case of oppositely polarized
microwaves presented in Fig. 17 as a function of ‘‘negative’’
frequency. One observes a very fast increase of the threshold
time with absolute frequency value, even sharper than that
demonstrated in Fig. 14. However, the microwave ampli-
tudes used are roughlyone order of magnitudehigher than
the corresponding values needed for right-polarized micro-
waves in the same frequency interval. This reflects the strong

asymmetry between right-hand and left-hand polarized mi-
crowaves. Comparing the values of the field necessary to
obtain reasonableT~10%! ~see also Fig. 13!, one notices that
the asymmetry is much more pronounced for circular than
for elliptical states~as expected since there should be no
asymmetry of this kind for elongated states!. Let us repeat
that the effect~occurring at high frequencies, in contrast to
the asymmetry of another origin at low frequencies
@24,26,32#! is of a purely classical origin and has been dis-
cussed in detail in@30#. Also note the very good agreement
between the classical and quantum predictions forv0,1.

One should remember, however, that the quantitative pre-
dictions for the asymmetry may be dimension dependent and
may be much smaller for a real 3D atom. It is precisely for
circular orbits and negative frequencies where Nauenberg
@21# observed the 3D atom to be less stable. Similar behavior
was seen in classical simulations@30#. Still the asymmetry
persists in the classical calculations also in the 3D model
@30# and it should manifest itself quantum mechanically.

VII. CLASSICALLY SCALING STRUCTURES

While the classical time thresholds are quite smooth, the
quantum results reveal several frequency-dependent struc-
tures. Some of them may be associated with incidental inter-
mediate quantum resonances or the threshold effects~with
increasing frequency fewer and fewer photons are required
for ionization!. These structures would not, however, scale
classically. Therefore, they would occur at different values of
the scaled frequencyv0 .

The comparison of the thresholds obtained for different
n0 reveals on the other hand a number of classically scaling
structures, i.e., resonant features centered on thescaledfre-
quencyv0 . Arguably the most prominent example appears
for the circular states; note the structure present at frequency
v052.8 in Fig. 16. This local inhibition of ionization@mani-
fested by the corresponding increase ofT~10%!# persists also
for different ‘‘effective ionization thresholds’’—compare re-
sults for n0548 andN5151. Interestingly, even classical
simulations show a slight slowdown of the ionization time in
the vicinity of that frequency, confirming the classical nature
of the resonance~although the effect is much weaker classi-
cally!. For lower microwave amplitudes~compare Fig. 15! in
the vicinity of v052.8, the ionization is practically totally
suppressed for bothn0548 and 64.

Figure 15 yields another example. Note the locally in-
creasedT~10%! atv052.1 appearing forF050.025 for both
n0548 and 64 circular states. The presence of such struc-
tures is dependent onF0—it disappears for higher amplitude
F050.04 whenT~10%! is much smaller. Such behavior is
consistent with the proposed classical origin of the
structure—for stronger microwave amplitude the remnants
of regularity in the classical phase space become weaker and
less significant.

Similarly, classically scaling structures appear for ellipti-
cal states as exemplified in Fig. 11 and Fig. 12 or for elon-
gated states~compare Fig. 4!. In the latter case, however, a
slight shift inv0 of the resonance position withn0 may be
observed. As before, we believe that the observed structures
are of classical origin and are related to structures in the

FIG. 17. Same as Fig. 15, but for left-polarized CPM~or right-
polarized CPM for n0548, m05248 state!. Filled triangles,
F050.15; filled circles,F050.3; the corresponding classical simu-
lations are represented by open symbols. The required microwave
amplitudes to obtain reasonableT~10%! values are much larger
than those corresponding to right-polarized CPM—compare figures
above.
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phase space, or more precisely, they correspond to localiza-
tion of the Floquet states@contributing to the expansion in
Eq. ~4.2! in the dominant way# on the classical phase-space
structures. The detailed study of the localization properties of
Floquet states is beyond the scope of this paper and will be
studied in@73#.

VIII. SUMMARY AND CONCLUSIONS

We have presented extensive results for the ionization
threshold dependence of the two-dimensional hydrogen atom
illuminated by circularly polarized microwaves at realistic
initial principal quantum numbersn0'50260 and for differ-
ent initial angular momentam0 . The results have been com-
pared, whenever it was possible@i.e., for parameters within
limits given by Eq.~6.1!#, with the predictions of the photo-
nic localization theory@6,67#. For elongated, high eccentric-
ity states, quite nice qualitative agreement of our numerical
results with that theory has been observed. However, theo-
retical predictions for theF~10%! threshold are systemati-
cally 2 times larger than the numerical results. In our opin-
ion, a revision of the localization theory is needed. The
localization theory seems to work quantitatively well for
LPM @6,67#. The discrepancy observed for CPM indicates
that the apparent similarity of atomic response to LPM and
CPM for elongated states@23# may be valid in the perturba-
tive regime only~i.e., only locally when the excitation of the
atom is quite small!.

It is worth stressing that the presented comparison with
the photonic localization theory is the most complete to date.
The dependence of theF~10%! prediction, Eq.~6.4!, on all
the parameters of the problem (v0 , n0 , N) has been tested,
confirming the functional form of Eq.~6.4! up to a constant
discussed above.

The comparison of the ionization threshold dependence
on the angular momentum with the predictions of the theory
based on the Kepler map has shown significant differences,
which, in our opinion, suggest that the regime of validity of
the Kepler map approach and the photonic localization
theory is more limited in the parameter space then antici-
pated originally@6#. This is in agreement with the classical
discussion presented by Nauenberg@21#. His improved ca-
nonical Kepler map cannot be easily incorporated into the
photonic localization theory to obtain the corrected quantum
predictions. Such a development of the theory is therefore
badly needed.

We have shown also, by a detailed study of classical-

quantum correspondence for circular states~for which the
photonic localization theory cannot be applied!, the presence
of strong localizationlike behavior in that case. We argue
that the localization observed can be qualitatively explained
by a quantum enhanced slowdown of the diffusion by rem-
nants of regularities—the picture originally developed for the
LPM ionization @71,72#. This is in agreement with the fact
that the presence of classical-quantum differences is strongly
dependent on the time scale on which the ionization occurs
and only weakly on the frequency of the CPM. Note that
such a picture can coexist with the photonic localization
point of view. Further work is needed to clarify these points.

The asymmetry between thresholds observed for the left-
hand polarized and right-hand polarized radiation and the
fact that states of medium eccentricity are easiest to ionize
confirm that the collisions with nucleus play a minor role in
the CPM ionization of elliptical and circular states. This sug-
gests that experimental verification of the results presented,
for states of low eccentricity, may be carried out on an alkali
rather than a hydrogen atom. Our viewpoint here is opposite
to that expressed by Howard@23#. The existing experiments
for rubidium in LPM @59–61# allow for both state selective
preparation of the initial state and changes of the interaction
time over several orders of magnitude. The only necessary
modification is therefore the change of the microwave polar-
ization.

The explanation of classical-quantum discrepancies as re-
sulting from a quantum suppression of classical diffusion
due to a partial localization on remnants of classical regulari-
ties is further confirmed by several observed classically scal-
ing structures. We leave to a subsequent study a detailed
analysis of these structures as well as the discussion of lo-
calization properties of important Floquet states in such
cases.
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