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The properties and stability of a trapped Bose-Einstein condensate are strongly influenced by attractive
interactions between the particles. We describe the spatial distribution, stability, and collisional loss rates for a
weakly interacting gas in the mean-field limit. We show how the condensate contracts and becomes unstable as
the number of condensate atoms increases. We further show how the number of atoms is limited by the
collisional loss rates associated with the contraction of the condensate; this loss is in addition to the particle
ejection decay indentified by Kaganet al. @S1050-2947~96!09607-2#

PACS number~s!: 03.75.Fi, 05.30.Jp, 31.70.Hq, 34.50.Pi

The recent production of trapped atomic vapors of87Rb
@1#, 7Li @2#, and 23Na @3# at the temperatures and densities
necessary to give Bose-Einstein condensation~BEC! in the
ground state of a magnetic trap have generated significant
interest in this area of physics. BEC generates a wave func-
tion with a macroscopic phase and makes possible many
novel matter wave and light scattering experiments. Unlike
the related case of superfluid helium, the interactions be-
tween particles in an alkali vapor are weak and the conden-
sate wave function may be modeled in detail@4–6#. For 87Rb
and23Na, the scattering lengths are known to be positive and
therefore to lead to condensates in which the mean interac-
tion is repulsive. This in turn leads to stable condensate wave
functions that are larger than the bare ground state of the
harmonic trap and can be modeled well by a mean-field
equation@4#. For 7Li, the scattering length is known to be
negative@2#, which produces a net attractive interaction be-
tween the particles: a particularly interesting regime for
BEC. In fact, a homogeneous condensate with negative scat-
tering length is predicted to be unstable@7#. If, however, the
condensate is spatially confined, it may be stable provided
that the number of atoms it contains is sufficiently small@8#.
Other discussions of the negative scattering length case have
addressed the general issues of energetic stability and the
possibility of a transition to a denser phase@5,9,10#. In this
paper, we show explicitly how the mean-field solution for
the trapped condensate becomes unstable as the number of
condensed particles increases. We also show how two- and

three-body collisional decay processes strongly limit the ap-
proach to this unstable regime for a case of experimental
interest@2#.

The instability and increased decay rates both arise due to
the presence of a negative scattering length. The mean attrac-
tion brings the condensate into a region where quantum fluc-
tuations are an essential aspect of its behavior, as the nega-
tive self-energy becomes comparable in magnitude to the
ground-state kinetic energy. Furthermore, as atoms are added
to the ground state of the trap, the self-consistent ground
state contracts and the density of atoms increases very rap-
idly. This enhances the effect of a number of inelastic two-
and three-body collisional processes, leading to greater trap
loss for the low-temperature fraction of the cloud. The re-
moval of low-energy atoms is an effective heating mecha-
nism and must be balanced by the evaporative cooling in
order to maintain a steady state. Kagan, Shlyapnikov, and
Walraven @10# have indentified a fundamental loss rate of
particles from a negative scattering length condensate that
will add to the rates we find here. This rate is initially ex-
ceedingly small but has a very rapid onset close to the edge
of stability of the condensate. It’s presence does not require
us to modify the nature of the conclusions we shall make.

In the region of stability, at the very low temperatures
reached in the experiment, the condensate can be described
using mean-field theory. All the particles in the condensate
then have the same wave functionc~r ,t), which is found
using the following nonlinear Schro¨dinger equation, i.e., the
Ginzburg-Pitaevskii-Gross equation@12#,
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where r5(x,y,z) is the displacement from the trap center
andm is the atomic mass, and for our case the trap potential
may be written asV~r !5m(v x
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mean number of condensate atoms is denoted byN, and
U054p\2a/m describes the elastic ground-state collisions
in terms of thes-wave triplet scattering lengtha. The value
of a for 7Li was taken to be227.3a0, wherea0 is the Bohr
radius, as reported in@2#. In the experiments to date, the
gases are effectively dilute, i.e., the number of particles in a
volumea3 is very small~;1025!. This means that the deple-
tion of the condensate purely due to interactions should be
correspondingly small. There will, of course, be thermal ex-
citations present, but they should have a very modest effect
on the condensate in the cases studied. The experimental
configurations in both@1# and@2# exhibit cylindrical symme-
try (vx5vy), and so Eq.~1! can be solved in two dimen-
sions. The details of this solution, in both time-dependent
and time-independent form, have been described elsewhere
@4,6#.

In Fig. 1 we illustrate the density of the wave function at
y50 in the lithium trap. The harmonic trap frequencies used
were 163 Hz in the radial direction and 117 Hz in the axial
direction, corresponding to the experimental parameters in
@2#. Figure 2 shows the rapid increase in peak density as the
condensate contracts with increasing population.

When the condensate size is smaller than the extent of the
harmonic ground state, the lowest-energy solution is nearly
isotropic. The initial effect of adding atoms to the condensate
is, therefore, to reduce the asymmetry associated with the
anisotropic potential. As the number of atoms is increased
further, the cloud approaches spherical symmetry and the
chemical potential goes down. As this happens the fluctua-

tions previously ignored in the mean-field description will
become increasingly important and the condensate will be
limited in the number of atoms it contains@10#.

Beyond approximately 1300 atoms, it is no longer pos-
sible to find stable numerical solutions to the time-dependent
nonlinear Schro¨dinger equation for this potential. This corre-
sponds to the point where the attractive interaction between
the particles overwhelms the effective repulsive interaction
@8,5,13#. The condensate in this region is to a very good
approximation spherical. This means we can use the methods
we have described elsewhere@14# to examine directly the
nature of this instability. To do this, we have found the nor-
mal modes of a spherical condensate close to the experimen-
tal case. The frequencies of the two lowest frequency modes
are plotted as functions of the number of condensed atoms in
Fig. 3. The higher-frequency mode is the first radial excita-
tion, i.e., the breathing mode of the condensate. The fact that
its frequency goes down as the number of condensed atoms
is increased shows that this breathing mode is going ‘‘soft’’
and that the mean field will become unstable with respect to
collapse of the cloud. For the case of this spherical trap,
nr5108 Hz, it is no longer possible to find stable numerical
solutions beyond approximately 1500 atoms.

The instability of the mean field occurs because the ki-
netic energy can no longer stabilize the wave function and
prevent collapse to a denser state. Kagan, Shlyapnikov, and
Walraven@10# and Stoof@11# have shown how such a tran-
sition can take place by tunneling even before the stability
edge for mean field of the whole condensate is reached. Ka-
gan, Shlyapnikov, and Walraven further showed that this rate
is initially very small and does not compete strongly with the
two- and three-body loss rates until close to the edge of
stability. As this is approached it will rise, initially at a high
power of the density, and overwhelm any other rates. De-
scribing this region accurately will require far more than
mean-field theory plus corrections@15#. Even in the absence
of such an analysis we can be sure that it will not be possible
to achieve stable solutions beyond the numbers found here.

Even before the region of instability of the mean field is
reached, the kinetic loss rates become very large indeed. We
now show explicitly how two- and three-body interactions
will limit the approach to the densities at which the instabil-
ity becomes an issue. These losses can be thought of as a
kinetic obstacle to getting a large enough number of atoms to

FIG. 1. Contour plots, in they50 plane, of the evolution of a
7Li condensate, with increasing population.

FIG. 2. Condensate peak density.

FIG. 3. Excitation frequencies, for a spherical trap~nr5108 Hz!,
measured in trap units above the ground state.
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see the onset of instability in the condensate. The two pro-
cesses we will look at are two-body dipolar loss collisions
and three-body recombination collisions. These occur pre-
dominantly between the lower-energy atoms, i.e., those in
the ground translational state of the trap. This loss acts in the
opposite sense to the evaporative cooling and therefore there
is the possibility for a kinetic steady state to develop. There
has been some casual discussion to the effect that the insta-
bility, caused bya,0, would lead to a transition to a solid or
liquid state. It is clear that in our analysis~or in any reason-
able extension! no such thing will happen for magnetically
trapped atoms; dipolar loss will heat and eject atoms, reduc-
ing the density of the gas. Three-body recombination will
similarly lead to heating and loss of atoms from the trap, but
it is unlikely that many clusters larger than diatomic mol-
ecules will be formed.

The two-body dipolar loss rates that we used were found
using the coupled Schro¨dinger equation for the following
dipolar relaxation process:

7Li ~Fa52,mFa
52!17Li ~Fb52,mFb

52!

→7Li ~Fa8 ,mFa
8 !17Li ~Fb8 ,mFb

8 !. ~2!

The calculations were done in the zero-magnetic-field limit,
in which case the Hamiltonian separates into individual
blocks of good parityp and total angular momentumF.
Thus, for the process described above we need only to con-
sider theF54 positive-parity Hamiltonian. A more extensive
description of the Hamiltonian and resulting close-coupled
equations is found in@18# and are equivalent to those re-
ported in@19#. As expected, the predominant loss processes
are due to spin-spin dipole relaxation. Because the incoming
channel is a purea 3S u

1 state, the rates are only weakly
affected by theX 1S g

1 scattering length. Thus, it is unlikely
that these rates will change drastically and, in fact, the num-
bers presented here are consistent with recent calculations of
lithium loss rates by Moerdijk and Verhaar using a slightly
different potential@16#. The calculations described here use
the potential and potential subroutines described by Coˆté,
Dalgarno, and Jamieson@17#.

The dominant dipolar loss processes,u22&
1u22&→uFa8mFa

8 &1uFb8mFb
8 &, are independent of collision

energy in the range of 1–1000 nK. The rates for the four
largest dipolar loss processes are 3.2310215 cm3 s21 for u11&
1u11&, 4.8310215 cm3 s21 for u21&1u11&, 2.5310216 cm3 s21

for u22&1u10&, and 3.6310215 cm3 s21 for u22&1u11&, where
the states listed are the final magnetic hyperfine states of the
two fragments. For the three-body recombination rates, we
have used the recent calculations of Moerdijk, Boesten, and
Verhaar @20#. The actual collisional-loss process is totally
dominated by the two-body dipolar loss except for conden-
sates approaching 1300 atoms.

In Fig. 4 we show the loss rate of the condensate, calcu-
lated using condensate densities as in Fig. 1 and the loss rate
equations given in@20,21#. The total loss rate is given by

R~N!5aN2E dr uc~r !u41LN3E dr uc~r !u6. ~3!

These calculations used a two-body dipolar loss rate coeffi-
cient a of 1.2310214 cm3 s21 and a three-body recombina-
tion loss rate coefficientL of 2.6310228 cm6 s21 @20#. Our
results give a lower limit of the loss rate, since the interac-
tion with the thermal and background gas has been ne-
glected.

We have shown, in the mean-field limit, that in the case of
the negative scattering length the rapid increase in the den-
sity of the atoms will result in a very large loss rate for the
condensate in the case of a large number of particles. The
precise number of particles that may be condensed will de-
pend on the details of the confining potential and the evapo-
rative cooling mechanism, but we do not expect it to exceed
1300 for the case of Ref.@2#. We should point out that the
analysis we have given here does not take into account the
possibility of observing other types of phase transitions as
described by Stoof@9#. In the case of a trapped gas the onset
of Bardeen-Cooper-Schrieffer pairing in the atoms could oc-
cur in a different way than that which occurs in a homoge-
neous gas. The characterization of the interaction potential
by thes-wave scattering length, i.e.,U0, is only valid for the
system when the dominant interactions are long-range elastic
collisions, this may no longer be completely true as we ap-
proach the instability point. In any case, for reasonable pa-
rameters it does not appear that it will be possible to generate
a large macroscopic field. The negative scattering length case
is, however, very much worthy of further study because of
the large range of subtle issues it brings up.

We would like to thank H. T. C. Stoof, Y. Kagan, G.
Shlyapnikov, M. Lewenstein, L. You, J. Cooper, and R. Hu-
let for enlightening conversations. We would like to thank
W. D. Phillips in particular for most helpful comments on
this paper. This work was supported by the National Science
Foundation~NSF! through a grant to the Institute for Theo-
retical Atomic and Molecular Physics at the Harvard-
Smithsonian Center for Astrophysics. M. J. Holland, C. J.
Williams, and Mark Edwards all wish to acknowledge sup-
port from the NSF Through Grants Nos. 92-23853~M.J.H.
and C.J.W.! and PHY-9505468~M.E.!. P. A. Ruprecht
thanks the Rhodes Trust for financial support. K. Burnett
acknowledges support of the UK EPSRC.

FIG. 4. Total condensate loss rate due to two- and three-body
collisions.
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