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We study the behavior of ionization in intermediate-energy collisions of antiprotons with atomic hydrogen
by direct solution of the time-dependent Schro¨dinger equation represented on a three-dimensional Cartesian
lattice. Total cross sections for these processes are computed over the collision energy range of 0.2 to 500 keV
from knowledge of the asymptotic state probabilities as a function of impact parameter. The computed ion-
ization cross sections are in good agreement with results from recent experiments conducted at CERN@Phys.
Rev. Lett.74, 4627~1995!#. In the energy range from 0.2 to 30 keV, for which measurements are not available,
our calculations are in qualitative agreement with other results based on classical-trajectory and coupled-
channel methods, confirming the predicted significant difference from the analog proton-impact ionization
process. This contrast with proton-hydrogen collisions is also explored qualitatively by employing a model
two-dimensional space in which lattice solutions are less computationally intensive.@S1050-2947~96!08407-7#

PACS number~s!: 34.50 Fa

I. INTRODUCTION

Only relatively recently have intense, well-collimated,
monoenergetic beams of low- to intermediate-energy anti-
matter projectiles, such as positrons and antiprotons, been
available for use in the study of ion-atom collisions~see
reviews by Schultzet al. @1# and Knudsen and Reading@2#!.
The utility of these projectiles stems from the unique ability
they give researchers to study the change in the collision
dynamics and reaction probabilities when a single projectile
characteristic is modified. That is, comparison of proton- and
antiproton-impact collisions reflects only a change of the
projectile’s charge sign, whereas proton- and electron-impact
comparisons display simultaneously a change of charge sign
and a change in mass. Considerable insight has been derived
in the last decade, for example, by comparing the ratio of
double to single ionization by proton, antiproton, electron,
and positron impact~see, e.g.,@1–4#!.

Furthermore, antiproton collisions with atomic hydrogen
provide a fundamental and unique testing ground for the de-
velopment of nonperturbative, quantal scattering methods.
Unlike proton-hydrogen collisions where the final state con-
sists of a superposition of amplitudes for elastic scattering,
electronic excitation, ionization~including the well-known
phenomena of ‘‘electron capture to the continuum’’!, and
charge transfer to the projectile, the negatively charged pro-
jectile only leads to the first three of these, and actually ex-
cludes the electronic probability density from proximity to
the projectile. This simplifies the requirements for the solu-
tion in that the electronic probability density leaving the tar-
get always contributes to the ionization process rather than
also containing a projectile-centered component. The prob-
lem is well suited for a direct solution of the time-dependent

Schrödinger equation~TDSE! on a spatial lattice, where
final-state probabilities are easily obtained by computing the
overlap of the time-evolved wave function with a basis of
target-centered states. Extension of pioneering work@5–9#
on direct, lattice solutions of the Schro¨dinger equation for
ion-atom collisions is straightforward for antiproton colli-
sions with hydrogen. Because of its computationally de-
manding nature, however, lattice solutions of the Schro¨-
dinger equation in full three-dimensional space have only
rarely been performed for atomic phenomena.

Prediction of the antiproton-impact ionization cross sec-
tion of atomic hydrogen down to very low energies was
given @10# in recent years, although long before this Fermi
and Teller@11# had considered an analogous process in nega-
tive muon impact. Fermi and Teller pointed out that for
negatively charged heavy particle impact of atomic hydro-
gen, all the electronic potential energy levels are promoted to
the continuum for interparticle separations below a certain
value. This radius has come to be known as the Fermi-Teller
radius,RFT , @12–14# and has a value of 0.639 a.u. for the
antiproton-hydrogen system. The existence of this radius im-
poses a kind of ideal bound on the low-energy behavior of
the ionization cross section. That is, since below this radius,
all the electron energy levels are promoted to the continuum
in an adiabatic collision, the cross section should be bounded
from below by the valuepRFT

2 . In reality, nonadiabatic cou-
plings lead to a larger cross section, but a key point is that
unlike the proton-impact case, the ionization cross section
should not drop belowpRFT

2 at low collision velocities. In
fact, at extremely low energies~e.g., less than 50 eV! proto-
nium formation@15#, i.e., the formation of a bound state of
the antiproton with the proton of hydrogen, will dominate the
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production of free electrons in this collision.
A description of the low-energy behavior of antiproton

impact of hydrogen and of hydrogenic ions has very recently
been given@16#, supported in part by recent experiments at
CERN @17# and Schro¨dinger equation. The subject of the
present work is to provide a detailed description of the lattice
methods used to produce those results, and to provide an
expanded view of the technique.

To this end, in this paper we examine the direct numerical
solution of the time-dependent Schro¨dinger equation for an-
tiproton ionization of hydrogen using both two- and three-
dimensional~2D and 3D! spatial lattices. As was shown re-
cently for proton collisions with hydrogen@18#, a TDSE
solution in 2D reflects many of the qualitative features found
in full 3D calculations at significantly reduced computational
expense. Besides providing physical insight by surveying the
variation of the collision dynamics expected in the 3D cal-
culations, the 2D results can be used to examine convergence
rates for lattice sizes, mesh intervals, and time steps. Only in
3D, however, can we calculate the ionization cross sections
needed to check previous theoretical approaches and com-
pare with the recent experimental measurements.

The remaining sections of this paper are arranged as fol-
lows: Sections II and III contain a summary of the theoretical
description of the collision and the numerical methods used
to solve the time-dependent Schro¨dinger equation for anti-
proton collisions with hydrogen, the results of the 2D model
are presented in Sec. IV, as are the results of the full 3D
calculations in Sec. V, and a discussion of the results with a
brief summary and outlook is given in Sec. VI.

II. THEORY

In our study of antiproton-hydrogen collisions at interme-
diate energies, we use the semiclassical approximation in
which the projectile travels along a well-defined trajectory in
interacting with the target atom. For projectile kinetic ener-
gies of 1 keV or greater, we consider only constant-velocity,
straight-line trajectories for the projectile. For the lowest-
energy calculation performed~0.2 keV! in three dimensions,
we numerically computed the trajectory for the projectile by
solving Hamilton’s equations for the antiproton moving in
the adiabatic ground-state potential-energy curve of the
antiproton-hydrogen system. In terms of three-dimensional
Cartesian coordinates, we define the reaction to occur in the
x-y plane with the beam directed alongx̂ and the impact
parameterb alongŷ defining the straight-line trajectory to be
rWp(t)5(vpt,b,0), tP@2`,`#, wherevp is the projectile’s
velocity. In practice, we initiate the collision with the anti-
proton at a finite distance away from the hydrogen atom.
Except where noted, we employ atomic units in this paper
~i.e., \5e5me51).

For the energies considered here, the dynamics of an an-
tiproton colliding with the hydrogen atom are well described
by the single-particle Schro¨dinger equation for an electron
interacting with the electromagnetic field created by the tar-
get nucleus and the projectile. Separating the Hamiltonian
into time-independent and time-dependent parts, we write
the Schro¨dinger equation in the rest frame of the target
nucleus

@H01Vp~rW,t !#c~rW,t !5 i
]

]t
c~rW,t !, ~1!

wherec(rW,t) is the electronic wave function,rW is the elec-
tronic position vector, and the static Hamiltonian,H0 , de-
scribes the motion of an electron in the Coulomb field cre-
ated by the target nucleus with electric chargeZt ,

H0[2
1

2
¹22

Zt
r
, ~2!

andVp(rW,t) is the time-dependent interaction of the electron
with an external field generated by the projectile’s motion

Vp~rW,t !52
Zp

urW2rWp~ t !u
. ~3!

A. Two-dimensional model

As was demonstrated recently for proton collisions with
hydrogen@18#, a solution of the time-dependent Schro¨dinger
equation in a two-dimensional space, designed to model the
essential properties of the electronic wave function in 3D
space, qualitatively includes many of the features found in a
physical ion-atom collision. This reduction to two dimen-
sions is useful as it enables the numerical consideration of
relatively large collision ‘‘volumes’’ with greatly reduced
computational expense, while still preserving the concept of
an impact parameter. In constructing this model, we modify
the short-range behavior of the electromagnetic interaction
by choosing to use the so-called soft-core Coulomb potential,
which has a long-range behavior identical to the Coulomb
potential, but at small distances has a ‘‘softer,’’ nonsingular
behavior similar to the field of a uniformly charged sphere.
With the soft-core potential, the target and projectile interac-
tions have the following form:

Vt~r !52
Zt

Ac1r 2
, ~4!

Vp~rW,t !52
Zp

Ac1urW2rWp~ t !u2
, ~5!

wherec is the real, positive-definite soft-core parameter. In
the two-dimensional spacerW5(x,y), and the projectile’s po-
sition vector is given byrWp(t)5(vpt,b), tP@2`,`#, de-
scribing a straight-line trajectory.

The soft-core parameterc provides the flexibility to
choose a target interaction which produces approximately the
same binding energy and electronic radial and momentum
distributions as in the physical hydrogen atom. This is nec-
essary since the two-dimensional Kepler problem possesses
an analytic ground-state energy of22 a.u. rather than the
20.5 a.u. binding of the physical atom. From experience
@18#, we choose the soft-core parameterc50.63 a.u.2 pro-
ducing a reasonable two-dimensional model for hydrogen. In
addition, the use of the soft-core potential ameliorates the
difficulties associated with the representation of the singular
Coulomb potential on a Cartesian grid with finite spacing.
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This feature will be discussed more fully in connection with
our three-dimensional calculations.

B. Three-dimensional calculations

The direct, numerical solution of the time-dependent
Schrödinger equation in three-dimensional space for even
one-electron ion-atom collisions is a computationally inten-
sive task due to the number of lattice points or basis states
required to provide a representation of reasonable fidelity. As
will be discussed in the following section, we choose to
solve Schro¨dinger’s equation using lattice methods in Carte-
sian coordinates because such methods are efficient and
simple. However, representing the Coulomb potential on a
Cartesian grid with finite lattice spacing is difficult because
of the singularity of the potential at the charged particle cen-
ters. Numerical schemes based on nonuniform or adaptive
lattices exist for the solution of partial differential equations,
but for simplicity we choose to use methods based on lattices
with constant spacing in the present work.

We reduce the difficulties of the Coulomb singularity in
3D by utilizing the soft-core potential in our numerical cal-
culations. Only for the Coulomb potential~i.e., c50 a.u.2)
does the interaction in Eq.~4! reproduce the physical value
of the ground-state binding energy of the three-dimensional
hydrogen atom, so the soft-core potential is introduced into
the 3D calculations for reasons slightly different than in the
2D model. That is, the three-dimensional, lattice-based nu-
merical solution of the hydrogen atom on a uniformly spaced
Cartesian grid must be modified to avoid the singularity of
the Coulomb potential if one desires accurate binding ener-
gies. In contrast, the soft-core parameter is introduced in the
two-dimensional space to facilitate modeling 3D hydrogen.
These issues will be discussed more fully in Sec. V.

III. NUMERICAL SOLUTION

We solve the time-dependent Schro¨dinger equation using
lattice techniques to obtain a discrete representation of the
wave function, i.e.,c(x,y,z)→c(xi ,yj ,zk), and all
coordinate-space operators on a three-dimensional Cartesian
mesh. Local operators such as potentials simply become di-
agonal matrices composed of their values at the lattice
points, i.e.,V(x,y,z)→V(xi ,yj ,zk)d i ,i 8d j , j 8dk,k8. Deriva-
tive operators, such as the kinetic energy, have lattice repre-
sentations in terms of matrices, i.e.,]/]x→Di ,i 8

(x) d j , j 8dk,k8.
All algorithms used are iterative in nature and are based on
matrix-vector ~i.e., Hamiltonian wave function! operations
which are implemented in a simple form largely due to the
separability of the kinetic-energy operator in Cartesian coor-
dinates. We have implemented our solutions via two similar,
but distinct, lattice methods using~i! a low-order, three-point
finite-difference representation@19#, and ~ii ! the high-order
Fourier-collocation representation@20#. We choose these
methods since the computational expense in both scales rea-
sonably well with the number of lattice points. The finite-
difference derivative operators are tridiagonal so that matrix-
vector operations scale as the number of points on the grid,
N5NxNyNz . The Fourier-collocation derivatives may be
represented either as full matrices or through a sequence of
forward and backward fast-Fourier transform~FFT! opera-
tions. In practice, we choose the FFT implementation since

the matrix-vector operations scale asN ln(N) using this effi-
cient algorithm.

For the large three-dimensional lattice, complete diago-
nalization of the Hamiltonian operator to obtain the station-
ary states of interest is not practical. Therefore, we imple-
ment a partial eigensolution for the ground and low-lying
bound excited states of the target atom. For the two-
dimensional model, either partial or complete diagonaliza-
tion can be performed. We have implemented two alternative
methods for partial eigensolution. In one, we relax an initial
function having a finite overlap with the ground state through
propagation of the time-dependent Schro¨dinger equation in
imaginary time (t→2 ı̇t) using only the static Hamiltonian,
H0 @21#. We have also implemented the Lanczos algorithm
@22# for a partial eigensolution ofH0 . We obtain excited
bound states with either partial eigensolution method through
successive application of the algorithm while projecting out
lower-energy or energy-degenerate states. We chose the ini-
tial estimate for each excited state to be the appropriate ana-
lytic state evaluated on the lattice. With this method, one can
obtain the finite number of excited states supported on the
lattice. We project the time-dependent wave function onto
these excited states to determine impact-parameter-
dependent probabilities for elastic scattering and excitation.
Total ionization probabilities are computed using unitarity as

Pioniz~ t ![12(
b

u^xbuc~ t !&u2, ~6!

where uxb& are the bound atomic states supported on the
lattice (n, 4 in 3D in this work!, and uc(t)& is the time-
evolved electronic wave function, initially in the ground state
of the target. Use of this simple unitarity approach utilizing
only target-centered, bound-state wave functions is possible
for antiproton projectiles since the charge transfer channel is
closed, and accordingly no projectile-centered bound states
are present.

The formal solution of the time-dependent Schro¨dinger
equation for small time intervals (Dt5t2t0) is given by

c~ t !5U~ t,t0!c~ t0!. ~7!

A number of different methods may be employed to approxi-
mate the infinitesimal time-evolution operatorU(t,t0),

U~ t,t0!5exp$2 iH @ 1
2 ~ t1t0!#Dt%. ~8!

For the finite-difference representation, the exponential op-
erator is approximated using the implicit Peaceman-
Rachford algorithm@23#. This approximation is unitary and
easily adapted to vectorized computer architectures, but re-
quires matrix inversions that can be a problem for massively
parallel computers. One may avoid the matrix inversion op-
erations by choosing the explicit Richardson algorithm@24#.
With the Fourier-collocation method, we approximate the
exponential operator byK terms in a Taylor series expansion
@22#, whereK is chosen at each step according to a conver-
gence criterion on the wave function. The Taylor series is not
explicitly unitary, but in practice is approximately unitary to
a good precision.
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As is common practice when using lattice-based methods,
we add an imaginary, absorbing potential2 iW(x,y,z) to the
full Hamiltonian to remove outgoing flux@25#. The real
functionW(x,y,z) is nonzero only near the edge of the lat-
tice, increasing from zero gradually to minimize reflections.
Therefore, flux absorbed by the boundary is regarded as ion-
ized since it is removed from the finite number of bound
states supported on the lattice.

The discretization of functions and operators by lattice
techniques introduces numerical errors which normally are
made negligible as the parameters of the numerical lattice are
refined, i.e., as the size of the numerical box is increased and
the lattice spacing is decreased. While these convergence
tests are relatively easy to complete for the two-dimensional
calculations, extensive convergence tests for our three-
dimensional calculations are prohibitively expensive. As a
supplement therefore, we have used experience gained with
the less expensive two-dimensional calculations as a guide in
choosing the lattice parameters for the three-dimensional cal-
culations. In addition, selectively comparing the results of
calculations performed using both low-order and high-order
methods implemented in two independent codes increased
our confidence in the reliability of our results. Other mea-
sures used in accessing the accuracy of our three-
dimensional calculations will be discussed in Sec. V.

IV. TWO-DIMENSIONAL CALCULATIONS

Our two-dimensional calculations have allowed us to
quickly confirm the prediction that at low collision energies
the probability of ionization remains roughly constant at very
small impact parameter, to obtain a quick qualitative view of
the electronic probability density for antiproton-hydrogen
collisions, and to compare and contrast this density to that
formed in proton-hydrogen collisions.

A four-frame sequence of the logarithm of the time-
dependent electron probability density is shown in Fig. 1 for
an antiproton collision with hydrogen in 2D. The incident
energy of the antiproton is 20 keV, and a small impact pa-
rameter ofb50.4 a.u. is chosen. In the plots, the target re-
mains fixed at the origin of the coordinate system, while the
projectile moves from right to left along a straight line at
constant velocity, and is indicated by a solid circle. The con-
tours at the peak are of the order 1021, while the lowest
contours mapped are of the order 1025. In Fig. 1~a! the
projectile has already passed the target and formed a small,
deep hole in the electron density. The exclusion of flux from
an almost circular region around the projectile is seen to
persist through Figs. 1~b! and 1~c!. By the time represented
by Fig. 1~d!, the absorbing potential at the grid boundary has
eliminated reflections of the density leaving the region
bounded by the extent of the numerical lattice. We note that
the impact parameter is along the positivey axis and that the
electronic density develops a counterclockwise rotation by
the later time slices. Both this behavior and the formation of
the void of density clearly come about due to the repulsion of
the electronic density by the antiproton.

As a test of our procedures, we have also computed the
elastic and inelastic scattering probabilities for our 2D colli-
sions by projecting the time-evolved wave function onto the
ground state of the target hydrogen atom. The first indication

that we found confirming that the ionization probability
would remain high at small impact parameters, where the
molecular-orbital energy curves closely approach the con-
tinuum, came from observing the total inelastic probability
as a function of the impact energy for two fixed impact pa-
rameters: one at 0.2 a.u., and the other at 1 a.u. These results
are shown in Fig. 2 between 100 eV and 1 MeV. Straight-
line trajectories were used even at the lowest velocities since
this exercise was intended simply to reveal the trend if it
were indeed present. One sees forb51 a.u. that at low en-
ergies the inelastic probability drops, but that forb50.2 a.u.
it plateaus. Thus, for collisions in which the projectile does
not approach the target closely, the probability of ionization
drops quickly at low energies, whereas in near collisions, the
probability of ionization does not drop as the collision veloc-
ity is lowered. This encouraged us to attempt the full 3D
calculations described in detail below.

Also of interest is a comparison in 2D of the behavior of
the probability density obtained in either antiproton or proton
impact. In first-order perturbation theory~Born approxima-
tion!, the ionization cross section depends only on the square
of the projectile charge so that it would predict the same
result for antiproton and proton impact. Many works, espe-
cially over the past decade, have shown that fuller treatments
of the spectrum of electrons ejected by charged-particle im-
pact need to treat the electron as moving in the two-center
field produced by the projectile and target ions, and be ex-
plicitly dependent on their charge~see, e.g.,@26# and refer-
ences therein!. Furthermore, the dependence of the ionization
cross section when either proton- or antiproton-impact oc-
curs was considered in detail in a number of works~see,
e.g., @10,1# and references therein!.

The general features of these differences can readily be
seen in Fig. 3 where we display four time slices after the
distance of closest approach has been obtained in 20 and 100
keV proton@Figs. 3~a! and 3~c!# and antiproton impact@Fig.
3~b! and Fig. 3~d!# of hydrogen. The low-energy proton-
impact frame shows the characteristic charge transfer to the
projectile, as well as the elongated electronic density roughly
along the internuclear axis and centered about the midpoint
between the target and projectile ions associated with the
so-called saddle-point mechanism of ionization. For higher
impact energy, the proton case shows reduced charge trans-
fer and an ejected electron density centered more closely
about the target, as would be expected as the perturbative
regime is approached. This nearly target-centered density is,
however, pulled toward the projectile due to the attractive
interaction of the electron with the projectile. In contrast, for
antiproton impact, the opposite sign of the projectile charge
prevents charge transfer, and as we have seen in Fig. 1, ex-
cludes electronic density from its vicinity. For low incident
energy, the ejected electronic density is nearly circular in
shape, with a void centered about the antiproton. This differ-
ence in charge sign also leads to the formation of an ‘‘anti-
cusp’’ in contrast to the well-known electron capture to the
continuum cusp formed in proton impact~see, e.g.,@27# and
references therein!. At higher incident energy, as in the pro-
ton case, the electronic density is primarily centered on the
target, but in this instance, it manifests a shape reflecting a
repulsive interaction between the electron and the projectile.
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V. THREE-DIMENSIONAL CALCULATIONS

Modification of the short-range behavior of the Coulomb
potential in order to improve the correspondence between the
analytical solution and a numerical solution based on a rela-
tively course grid has proved useful in other investigations
@28,29#. For our purposes, we use the soft-core potential to
eliminate the singularity even though, as already mentioned,
any c.0 implies a ground-state energy for the Schro¨dinger
equation greater than the physical value. However, in lattice

calculations with a small soft-core parameter compared to
the square of the lattice spacingh ~i.e., c!h2), the soft-core
potential is not well represented nearr50 in that there are
too few lattice points to smoothly follow the rapid change of
the V near the minimum of this function near the charge
center. As a result, the numerical ground-state eigenvalue
can be either smaller or larger than the analytic binding en-
ergy depending on the size of the lattice spacing and on how
well the potential is represented on the lattice near its mini-

FIG. 1. The logarithm of the electronic probability densityuc(x,y,t)u2 for antiproton impact of a model hydrogen atom on a 2D Cartesian
lattice at an incident energy of 20 keV and an impact parameter of 0.4 a.u. Time increases from section~a! to ~d!. The left column contains
contours of equal probability density and the right column shows the corresponding density as a vertical displacement.
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mum. This is true because the ground state is determined by
a balance between the discrete kinetic and potential energies
as represented on the lattice. The lattice spacing determines
the maximum kinetic energy@i.e., Tmax5(3p2/2h2)#. The
distance from the origin to the nearest lattice point, along
with the value ofc, determines to a large extent the potential
energy available. Thus, for a given lattice spacing, with soft-
core parameterc!h2, one can obtain a range of ground-state
energies by simply changing the position of the lattice points
nearr50.

Given these constraints, one can arrive at reasonable nu-
merical approximations to the stationary states of the hydro-
gen atom via the following procedure. We choose to locate a
lattice point atr50 so that there is a lattice point at the
minimum of the soft-core potential. We choose the spatial
extent of our lattice to be sufficiently large to support bound
states with a principal quantum numbern,4. For example, a

lattice extending626 a.u. in each of the three Cartesian
directions is sufficient so that the value of the ground-state
wave function near the boundary to be below machine pre-
cision, and the values of then52 andn53 excited states
near the boundary to be approximately 1028 and 531024,
respectively. The lattice spacing, and thus the number of
points used, is constrained by the available computing re-
sources. We have used lattices with various sizes, but our
most reliable calculations were performed, for example, with
1353 lattice points and a spacing ofh50.385 a.u.

After these lattice parameters are determined, the soft-
core parameter is adjusted to approximate the ground-state
energy of the hydrogen atom. Using the Fourier-collocation
method with the lattice parameters previously mentioned, we
computed the energy of the ground state on the lattice to
be 20.499 992 a.u. using a soft-core parameter of
c50.015 715 a.u.2. With this value of the soft-core param-
eter, Vt(0)'27.98 a.u. Use of different lattice methods,
e.g., finite difference methods or different lattice parameters,
would require a slightly different value for the soft-core pa-
rameter to achieve the same approximation to the ground-
state energy. In general, this procedure greatly reduces the
dependence of our calculations on the size of the lattice spac-
ing, since the ground-state binding energy is one of the more
crucial characteristics which must be reproduced to accu-
rately compute the ionization cross section. For reasons of
consistency, we choose the soft-core parameter for the pro-
jectile interaction to be the same as that used for the target
interaction.

A. Stationary-state spectrum

A quantitative method of evaluating the effect of our ap-
proximations to the stationary-state hydrogen problem is to
directly compute observable quantities and compare them
with analytical results. We have computed several observ-
ables, using the lattice parameters previously described,
which are listed in Tables I and II. The reader will notice that

FIG. 3. The electronic prob-
ability density for proton and anti-
proton impact of hydrogen in the
present 2D model;~a! proton im-
pact at 20 keV andb52 a.u.,~b!
antiproton impact at 20 keV and
b50.4 a.u.,~c! proton impact at
100 keV andb51 a.u., and~d!
antiproton impact at 100 keV and
b51 a.u.

FIG. 2. The inelastic probability for antiproton impact of hydro-
gen in the present 2D model as a function of incident energy for
impact parameters ofb50.2 a.u. andb51.0 a.u.
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our computed observables generally correspond closely to
the analytical results, but, for certain states, with only a mod-
est degree of accuracy. Some of the error originates from the
use of the soft-core potential since it breaks theO(4) sym-
metry of the hydrogen atom, resulting in broken energy de-
generacies among states with the same principal quantum
numbern, but differing angular momentum quantum number
l . Note that this error is independent of the type of lattice
approximation ~i.e., finite differences or Fourier colloca-
tion!. The other major source of error arises since the present
Cartesian lattice both formally and practically breaks the
O(3) rotational invariance inherent in the hydrogen atom.
The modest errors resulting from this can be observed in
several ways, but most clearly in the calculation of expecta-
tion values of angular momentum observables.

In Table I, we present energy expectations^H0&, fluctua-
tions h[A^H0&

22^H0
2&, and radial expectation values^r &

for the bound stationary states supported on our three-
dimensional Cartesian lattice. The energy expectations cor-
respond to the bound-state spectrum of hydrogen,
En52(1/2n2), with errors varying between 0.01% and
0.5%. The effect of brokenO(4) symmetry is that states
with the same principal quantum numbern differ in energy
by approximately 0.5%. We observe effects from the broken
O(3) rotational symmetry in that the 3d states with varying
magnetic quantum number are not degenerate, but differ in
energy by approximately 0.2%. However, the 2p and 3p
states, respectively, are degenerate to the precision of the
computer. States with the samen andl values, which differ
only in the sign of the magnetic quantum numberm, are
found to be degenerate. The energy fluctuationsh illustrate
the effectiveness of our eigensolution algorithms discussed
in Sec. III. Note that it is more difficult to obtain conver-
gence of the iterative eigensolution for the higher-energy sta-
tionary states, and therefore they have the larger fluctuations.
The computed radial expectation values are in agreement
with the analytic values,̂r &nl 5 1

2@3n
22l (l 11)#, with er-

rors ranging between 0.3% and 1.6%.
In Table II, we present expectation values of the total

angular momentum̂L2&, its z-coordinate projection̂Lz&,
and the paritŷ P& for the bound stationary states supported
on the lattice. The angular-momentum eigenvalues are very
well reproduced for then51 andn52 shells with errors
occasionally as small as on the order of computer precision.
The higher energyn53 states are more sensitive to the box-
like shape of the numerical lattice, and errors ranging be-
tween 0.1% and 1% are observed for these states. The ei-
genvalues of the parity operator,P5(21)l , are observed to
be very well reproduced, as this symmetry is preserved in
our numerical representation. In addition, we compute the
expectation value 2̂T&2^Vt&, which is zero for stationary
states of the hydrogen atom as a result of the virial theorem.
The relatively small value of this quantity is further evidence

TABLE I. Energy expectations ^H0&, fluctuations
@^H0&

22^H0
2&#1/2 , and radial expectation values^r & for the bound

stationary states on a three-dimensional Cartesian lattice using the
soft-core potential withc50.015 715 a.u.2 and lattice spacing of
h50.385 a.u.

State ^H0& A^H0&
22^H0

2& ^r &

1s 20.49999 1.931027 1.49
2s 20.12524 8.531027 5.98
2p0 20.12467 9.531027 5.02
2p11 20.12467 9.531027 5.02
2p21 20.12467 9.531027 5.02
3s 20.05584 4.231026 13.72
3p0 20.05537 4.731026 12.41
3p11 20.05537 4.631026 12.41
3p21 20.05537 4.631026 12.41
3d0 20.05561 3.631026 10.62
3d11 20.05551 4.531026 10.47
3d21 20.05551 4.431026 10.47
3d12 20.05556 3.731024 10.54
3d22 20.05556 3.931024 10.54

TABLE II. Expectation values of the total angular momentum^L2&, its projection^Lz&, and the parity
^P& for the bound stationary states on a three-dimensional Cartesian lattice using the soft-core potential with
c50.015 715 a.u.2 and lattice spacing ofh50.385 a.u. In addition, we compute the expectation value
2^T&2^Vt& which is zero for eigenstates of the hydrogen atom as a result of the virial theorem.

State ^L2& ^Lz& ^P& 2^T&2^Vt&

1s 1.431025 1310220 1.0000 1.931022

2s 3.331026 1310220 1.0000 3.031023

2p0 2.0000 2310221 21.0000 26.631024

2p11 2.0000 1.0000 21.0000 26.631024

2p21 2.0000 21.0000 21.0000 26.631024

3s 3.831022 1310216 1.0000 21.531023

3p0 2.02 7310218 21.0000 7.831024

3p11 2.02 0.996 21.0000 7.831024

3p21 2.02 20.996 21.0000 7.831024

3d0 6.02 5310218 1.0000 29.531024

3d11 6.006 0.9997 1.0000 2.331024

3d21 6.006 20.9997 1.0000 2.331024

3d12 6.013 1.9990 1.0000 23.131024

3d22 6.013 21.9991 1.0000 23.031024
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that we have a reasonable approximation to the bound-state
spectrum of the hydrogen atom represented on a three-
dimensional, uniformly-spaced Cartesian grid. We interpret
the fact that the virial theorem is better approximated by the
excited states, as opposed to the ground state as evidence of
the poorer representation of the static potential nearr50.
Clearly, the ground state is more sensitive to modifications in
the potential nearr50 than are the excited states.

To further test our lattice approximations, we have com-
puted the ground-state quasimolecular eigenenergy curve for
the antiproton-hydrogen system as a function of the distance
(R) between the proton and the antiproton. In Fig. 4, we plot
the results of this calculation in comparison to an accurate
reference solution or the ground (1ss) energy curve@13,16#.
On the linear scale presented, the agreement between these
solutions is very good at all values ofR. A comparison on a
finer scale reveals deviations of the present lattice solution
for R,1 a.u. originating from our present soft-core and fi-
nite lattice approaches.

A result of using the imaginary potential to eliminate un-
physical reflections from the boundaries of the numerical
lattice is that each stationary state wave function will possess
an effective energy width~i.e., the energy will have a com-
plex valueE1 iG/2). Therefore, probability present in any
stationary state of the static Hamiltonian will decay at a con-
stant rate in the absence of the projectile interaction. For
accurate calculations of the final-state probabilities, these de-
cay rates must be small compared to the total time used to
integrate the Schro¨dinger equation for the collision. As a
check for this effect, we have time evolved the 1s, 2s, and
3s wave functions on the lattice to ensure that the loss of
probability was small and consistent with the overall accu-
racy for the calculation. As expected, the excited states decay
more rapidly than the ground state. This observation,
coupled with the observation that contributions from excita-
tion to states withn>4 do not significantly affect the com-
puted ionization cross section, assured us that the choice of

box size and absorber strength was adequate for our present
purposes.

B. Time-dependent solutions and total cross sections

Probabilities for inelastic scattering are obtained by pro-
jecting the time-evolved wave function onto the ground and
low-lying excited states of the target atom, as described in
Sec. III. By monitoring the squares of these overlaps as a
function of collision time~or, equivalently, projectile posi-
tion!, the convergence of the probabilities to asymptotic val-
ues can be judged. Cross sections are then determined by
solving the time-dependent Schro¨dinger equation for a range
of impact parameters,b, producing the channel probabilities,
Pa(b), and performing the integration

sa52pE
0

bmax
bPa~b!db, ~9!

where the indexa denotes the particular channel such as
ionization. Approximately ten impact parameters are com-
puted for each incident energy to assure a smooth represen-
tation of Pa(b). Furthermore, we have tested the depen-
dence of the derived probabilities on such parameters as the
initial and final position of the antiproton, and computed the
result for a series of increasing impact parameters until the
cross section is no longer sensitive to the inclusion of larger
values ofb.

We have estimated the accuracy of our results by compar-
ing our Fourier collocation and finite difference results, and
by testing many, but not all, of the parameters of the calcu-
lation. The primary sources of error are the finite box size
and lattice spacing used for the calculations. For the lattice
parameters used, we estimate that our results should have an
accuracy of approximately 10%. We have already mentioned
two numerical effects which cause our calculations to
slightly overpredict ionization probabilities:~i! only bound
states withn,4 are supported on the numerical lattice and,
therefore, excitation ton>4 will appear as ionization, and
~ii ! the stationary atomic states supported on the lattice pos-
sess a small decay rate due to the use of absorbing boundary
conditions. In addition, collisional states which are populated
when the projectile is near the distance of closest approach
may be deformed by the presence of the finite, spatial bound-
ary. While this error is more likely to affect the relative
final-state populations of excited bound states, it also tends
to increase the predicted ionization probability. The use of
the soft-core potential certainly affects the small impact-
parameter collisions, but, as Eq.~9! shows, these are not
heavily weighted in computing cross sections.

The projection of the probability density,
*dzuc(x,y,z,t)u2, is depicted in Fig. 5 for 20 keV antiproton
impact and with an impact parameter of 0.8 a.u. In the first
frame of this series of time slices, the projectile is still to the
left of the target in its ground state. As the collision pro-
ceeds, the features illustrated above for the 2D model colli-
sions are essentially reproduced, such as the roughly spheri-
cal shape to the outgoing electronic density, and the
exclusion of the density from the vicinity of the projectile.
Shown in Table III are the TDSE results for the 1s→2l
excitations which compare well with previous coupled chan-

FIG. 4. The ground-state quasimolecular electronic eigenenergy
for the antiproton-hydrogen system as a function of the distance
(R) between the proton and the antiproton computed by solving the
two-center eigenvalue problem using two independent representa-
tions: ~a! a representation in Cartesian coordinates using the lattice
techniques described in this paper, and~b! a representation in sphe-
roidal coordinates in which the Hamiltonian is separable@13,16#.
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nels calculations@30# at collision energies of 30, 60, and 100
keV.

At high impact energy, where first-order perturbation
theory is valid, the present ionization probability as a func-
tion of impact parameter can be directly compared with re-

sults of the Born approximation. At the highest energy con-
sidered here, this regime is almost reached. In Fig. 6 this
comparison is made for an incident energy of 500 keV. The
figure shows a very good agreement between the TDSE and
Born approximation results@31#, where we have plotted

FIG. 5. The logarithm of the electronic probability density for antiproton impact of hydrogen in 3D. The incident energy is 20 keV and
b50.8 a.u. Time increases from section~a! to ~d!. The left column contains contours of equal probability density, and the right column
shows the corresponding density as a vertical displacement.

TABLE III. Excitation cross sections for antiproton collisions with hydrogen in units of 10218 cm2.

Energy TD method CC method@30# TD method CC method@30#
~keV! 1s→2s 1s→2s 1s→2p 1s→2p

30.0 6.26 7.15 70.9 79.0
60.0 5.91 5.52 78.8 82.1
100.0 4.87 4.53 70.7 75.3
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bP(b) so that the area under each curve is proportional to
the predicted total cross section. Differences between the two
results can be attributed to inadequacies of the present lattice
treatment, or to the fact that the incident energy is not quite
large enough to assure the strict applicability of first-order
perturbation theory. This 500 keV TDSE result agrees well
also with the experimentally measured data of Knudsen@17#,
the atomic orbital~AO! close coupling results of Martiret
al. @30#, of Toshima@32#, and of Schiwietz@33#, and the
two-center, first-order perturbation theory result of the
continuum-distorted-wave–eikonal-initial-state~CDW EIS!
approximation@16#, as seen in Fig. 7.

Furthermore, Fig. 7 shows the results of TDSE calcula-
tions performed at several energies and shows that they agree
well over the energy range between 30 and 100 keV with
experiment, the prediction of the classical trajectory Monte
Carlo ~CTMC! method@10,16#, and the AO results. In the
energy range from 20 down to 1 keV, the TDSE calculations
agree well with the AO calculations of Schiwietz@33# within
the accuracy attributed to our lattice calculations, while the
classical trajectory Monte Carlo method overestimates the
cross section in this energy regime. We note that our calcu-
lation of the ionization cross section at 0.2 keV includes
non-straight-line, nonconstant velocity trajectories as previ-
ously described. Also shown in Fig. 7 is the ideal lower
bound set by the Fermi-Teller cross sectionpRFT

2 . Note that
nonadiabatic effects are inferred to be relatively strong since
the predicted cross sections are approximately a factor of 3
larger thanpRFT

2 for the lower energies considered.
Although the CDW EIS method is not applicable for low

impact energies, we have included in Fig. 7 the result of this
theory for comparison. The breakdown of the theory below
approximately 50 keV is clearly visible. The CDW EIS cross
section, as well as any result based on conventional first-
order perturbation theory, will drop precipitously at low en-
ergies due to the rapidly oscillating term it contains resulting
from the vanishingly small separation of the bound-state en-
ergy level from the continuum at small distances.

VI. DISCUSSION AND SUMMARY

In general, for heavy-particle collisions with an atom,
when the effective collision time,b/vp , is large compared

with the period which characterizes a transition, the colliding
system may adiabatically deform during the course of the
collision rendering inelastic collisions improbable. For the
case of ionization in antiproton-hydrogen collisions, this
means that the probability for ionization is very low for col-
lisions in which b/vp@E(R)21 for the ground-state elec-
tronic energy curve. While this adiabaticity condition always
holds for sufficiently large impact parameters, this condition
can never be satisfied forb<RFT since all electronic
potential-energy curves are mixed with the continuum at this
value of the internuclear distance. Assuming straight-line tra-
jectories, this imposes an ideal low-energy bound on the ion-
ization cross section ofpRFT

2 . Intermediate to these ex-
tremes of very small and large impact parameters, we have a
regime for whichR*RFT where the ground-state electronic
energy curve approaches closely to the continuum edge, re-
sulting in nonadiabatic transitions to be very probable in col-
lisions for whichvp /b@E(R). SinceR;b near the distance
of closest approach, we can express this condition as
vp@RE(R). For projectile velocities*0.1 a.u., this condi-
tion is satisfied forR&1 a.u., providing a practical limit for

FIG. 6. Comparison of the present TDSE ionization probability
as a function of impact parameter for 500 keV antiproton impact of
hydrogen with results of the first-order Born approximation.

FIG. 7. The total cross section for ionization as a function of
incident energy for antiproton-hydrogen collisions. The data are
separated into two sections for clarity. In the top section, the open
squares represent the experimental measurements of Knudsenet al.
scaled as described in Ref.@17#, the solid circles represent the
present TDSE results, the dashed curve represents the classical tra-
jectory Monte Carlo~CTMC! technique@10,16#, and the dash-dot
curve represents the continuum-distorted-wave–eikonal-initial-state
~CDW EIS! approximation@16#. In the bottom section, the solid
circles represent the present TDSE results as compared with three
independent atomic-orbital close coupling results. The dash-dot
curve represents the result of Martiret al. (CCM @30#, the dashed
curve represents the result of ToshimaCCT @32#, and the dotted
curve represents the result of SchiwietzCCS @33#!. Also shown in
both sections is the limit given by the Fermi-Teller cross section,
pRFT

2 , indicated by the arrow.
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the low-energy ionization cross section of approximatelyp
a.u. This practical low-energy limit for the ionization cross
section is very consistent with our computed results pre-
sented in Fig. 7, and provides an explanation for our results
being approximately a factor of 3 larger thanpRFT

2 at low
energy.

From these considerations, one sees that the ionization
cross section for antiproton-hydrogen collisions is dominated
by nonadiabatic transitions occurring atR.RFT down to
collision energies near the threshold for direct ionization. It
has been predicted@34# that the low-energy cross section
would rise as the energy decreases due to the effect of the
attractive force between the projectile and target~proton! dis-
torting trajectories with larger impact parameters to attain
smaller values ofR. This effect is appreciable in CTMC
calculations@16# beginning at a collision energy of 0.1 keV.
However, for our TDSE calculations, the minimum energy
considered~0.2 keV! is not sufficient for the cross section to
display this behavior. The size of the trajectory effect was
briefly explored in our TDSE calculations at 0.2 keV by
comparing probabilities for ionization at an impact parameter
of b50.6 a.u. with and without the non-straight-line trajec-
tories for the projectile. Inclusion of these effects in this case
resulted in an increase in the calculated ionization probabil-
ity of approximately 3%.

In summary, a three-dimensional lattice solution of the
time-dependent Schro¨dinger equation has been employed to
study the behavior of ionization in collisions of antiprotons
with atomic hydrogen. The computational approach is found
to be applicable over an extremely wide energy range, en-
compassing the low-energy, two-center,~nearly! molecular
regime, as well as the high-energy, one-center Born limit.
The collision dynamics are revealed by examination of time-
evolving electron probability density plots. Furthermore,

projections of the wave function onto the stationary states of
the target are used to obtain ionization cross sections in good
agreement with very recent experiments and previous theo-
retical results. These results have confirmed the behavior
predicted on the basis of the Fermi-Teller model and earlier
CTMC calculations of the ionization cross section at low
energy. Furthermore, these results indicate a significant
nonadiabatic contribution to the ionization cross approxi-
mately modeled by the CTMC approach, well in excess of
the strictly adiabatic picture of the Fermi-Teller model. In
the future we plan to make 2D and 3D lattice calculations for
a variety of one~active! electron collision systems. One of
the strengths of a computational method based on the direct
solution of the time-dependent Schro¨dinger equation is its
straightforward application to many different types of prob-
lems in atomic physics.
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