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Numerical solution of the time-dependent Schrdinger equation
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We study the behavior of ionization in intermediate-energy collisions of antiprotons with atomic hydrogen
by direct solution of the time-dependent Sdfirmer equation represented on a three-dimensional Cartesian
lattice. Total cross sections for these processes are computed over the collision energy range of 0.2 to 500 keV
from knowledge of the asymptotic state probabilities as a function of impact parameter. The computed ion-
ization cross sections are in good agreement with results from recent experiments conducted §PEERN
Rev. Lett.74, 4627(1995]. In the energy range from 0.2 to 30 keV, for which measurements are not available,
our calculations are in qualitative agreement with other results based on classical-trajectory and coupled-
channel methods, confirming the predicted significant difference from the analog proton-impact ionization
process. This contrast with proton-hydrogen collisions is also explored qualitatively by employing a model
two-dimensional space in which lattice solutions are less computationally inte[SM50-29476)08407-7

PACS numbds): 34.50 Fa

I. INTRODUCTION Schralinger equation(TDSE) on a spatial lattice, where
final-state probabilities are easily obtained by computing the
Only relatively recently have intense, well-collimated, overlap of the time-evolved wave function with a basis of
monoenergetic beams of low- to intermediate-energy antitarget-centered states. Extension of pioneering wWérk9]
matter projectiles, such as positrons and antiprotons, beesn direct, lattice solutions of the Schlinger equation for
available for use in the study of ion-atom collisiofgee jon-atom collisions is straightforward for antiproton colli-
reviews by Schultzt al.[1] and Knudsen and Readif]).  sions with hydrogen. Because of its computationally de-
The utility of these projectiles stems from the unique ability manding nature, however, lattice solutions of the $chro
they give researchers to study the change in the collisioginger equation in full three-dimensional space have only
dynamics and reaction probabilities when a single prolectllerare|y been performed for atomic phenomena.
characteristic is modified. That is, comparison of proton- and  pregiction of the antiproton-impact ionization cross sec-

antiproyon—impact cpllisions reflects only a change qf thetion of atomic hydrogen down to very low energies was
projectile’s charge sign, whereas proton- and electron—lmpagcg

comparisons display simultaneously a change of charge si ven [10] in recent years, although long before this Fermi
and a change in mass. Considerable insight has been deriv Hd Tellerf11] had considered an analogous process in nega-

in the last decade, for example, by comparing the ratio o ve ?U()ln u;npact(.j I;erml andt_'l]ell_er p0|tntefd tOUt.thﬁt dfor
double to single ionization by proton, antiproton, electron,nega Ively charged heavy particie impact of atomic nydro-

and positron impactsee, e.g.[1-4]). gen, all the electronic potential energy levels are promoted to

Furthermore, antiproton collisions with atomic hydrogenthe contir.1uum.for interparticle separations below a gertain
provide a fundamental and unique testing ground for the devalue. This radius has come to be known as the Fermi-Teller

velopment of nonperturbative, quantal scattering methoddadius,Rer, [12—-14 and has a value of 0.639 a.u. for the
Unlike proton-hydrogen collisions where the final state con-antiproton-hydrogen system. The existence of this radius im-
sists of a superposition of amplitudes for elastic scatteringPoses a kind of ideal bound on the low-energy behavior of
electronic excitation, ionizatiotiincluding the well-known the ionization cross section. That is, since below this radius,
phenomena of “electron capture to the continuumand  all the electron energy levels are promoted to the continuum
charge transfer to the projectile, the negatively charged pron an adiabatic collision, the cross section should be bounded
jectile only leads to the first three of these, and actually exfrom below by the valuerRZ; . In reality, nonadiabatic cou-
cludes the electronic probability density from proximity to plings lead to a larger cross section, but a key point is that
the projectile. This simplifies the requirements for the solu-unlike the proton-impact case, the ionization cross section
tion in that the electronic probability density leaving the tar-should not drop belowrRZ; at low collision velocities. In
get always contributes to the ionization process rather thafact, at extremely low energidg.g., less than 50 e\proto-
also containing a projectile-centered component. The probrium formation[15], i.e., the formation of a bound state of
lem is well suited for a direct solution of the time-dependentthe antiproton with the proton of hydrogen, will dominate the
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production of free electrons in this collision. . R J .

A description of the low-energy behavior of antiproton [Ho+ Vp(r,ODJg(r,) =i —4(r,1), (1)
impact of hydrogen and of hydrogenic ions has very recently
been giver{16], supported in part by recent experiments aty here (1 t) is the electronic wave functior, is the elec-
CERN [17] and Schrdinger equation. The subject of the ;. position vector, and the static Hamiltoniafy, de-
present work is to provide a detailed description of the lattice;cripes the motion of an electron in the Coulomb field cre-

methods used to produce those results, and to provide agjeq by the target nucleus with electric chaije
expanded view of the technique.

To this end, in this paper we examine the direct numerical 1_, %
solution of the time-dependent ScHinger equation for an- Ho=— EV T 2
tiproton ionization of hydrogen using both two- and three-

d|m;a|ns]lonal(2|t3 and ﬁ.D. spatla!t:]at:]lcgs. As vé\;as Sh—?ggée_ ande(F ,t) is the time-dependent interaction of the electron
cently for proton Collisions wi y rqge_hl ], a with an external field generated by the projectile’s motion
solution in 2D reflects many of the qualitative features found

in full 3D calculations at significantly reduced computational

expense. Besides providing physical insight by surveying the Vp(F,t)= - # (3)
variation of the collision dynamics expected in the 3D cal- |r—rp(t)|

culations, the 2D results can be used to examine convergence

rates for lattice sizes, mesh intervals, and time steps. Only in A. Two-dimensional model

3D, however, can we calculate the ionization cross sections

needed to check previous theoretical approaches and corﬂ-

pare with the recent experimental measurements. y
The remaining sections of this paper are arranged as fo

As was demonstrated recently for proton collisions with
drogen[18], a solution of the time-dependent Sctirger
Equation in a two-dimensional space, designed to model the

lows: Sections Il and Il contain a summary of the theoreticalessentlal plr_?pt_ertlles_ Ofl tge electronlfctr\]/vafve tfunct|fon '8 _3D
description of the collision and the numerical methods usedPace, quaiitalively inciudes many of the features tound in a
to solve the time-dependent Schinger equation for anti- physical ion-atom collision. This reduction to two dimen-

proton collisions with hydrogen, the results of the 2D modeISions is useful as it enables the numerical consideration of

are presented in Sec. IV, as are the results of the full 3l:gelat|vely_large collision vplumgs with greatly reduced
calculations in Sec. V, and a discussion of the results with gomputatlonal expense, while still preserving the concept of

brief summary and outlook is given in Sec. VI an impact parameter. In constructing this model, we modify
o the short-range behavior of the electromagnetic interaction

by choosing to use the so-called soft-core Coulomb potential,
which has a long-range behavior identical to the Coulomb
potential, but at small distances has a “softer,” nonsingular

In our study of antiproton-hydrogen collisions at interme- behavior similar to the field of a uniformly charged sphere.
diate energies, we use the semiclassical approximation iWith the soft-core potential, the target and projectile interac-
which the projectile travels along a well-defined trajectory intions have the following form:
interacting with the target atom. For projectile kinetic ener-
gies of 1 keV or greater, we consider only constant-velocity, V(r)=— Zy @)

Il. THEORY

straight-line trajectories for the projectile. For the lowest- Je+r?’

energy calculation performe@.2 keV) in three dimensions,

we numerically computed the trajectory for the projectile by R Z

solving Hamilton’s equations for the antiproton moving in Vp(r,t)=— + (5)
the adiabatic ground-state potential-energy curve of the \/c+|r—rp(t)|2

antiproton-hydrogen system. In terms of three-dimensional ) N o
Cartesian coordinates, we define the reaction to occur in thwherec is the real, positive-definite soft-core parameter. In
x-y plane with the beam directed alongand the impact the two-dimensional spage=(Xx,y), and the projectile’s po-
parameteb alongy defining the straight-line trajectory to be sition vector is given b)fp(t)Z(vpt,b), te[—o,%], de-
Fp(t)z(vpt,b,O), te[—,%], wherev, is the projectile’s  scribing a straight-line trajectory.
velocity. In practice, we initiate the collision with the anti-  The soft-core parametec provides the flexibility to
proton at a finite distance away from the hydrogen atomchoose a target interaction which produces approximately the
Except where noted, we employ atomic units in this papesame binding energy and electronic radial and momentum
(i.,e.,i=e=m,=1). distributions as in the physical hydrogen atom. This is nec-
For the energies considered here, the dynamics of an assary since the two-dimensional Kepler problem possesses
tiproton colliding with the hydrogen atom are well describedan analytic ground-state energy ef2 a.u. rather than the
by the single-particle Schdinger equation for an electron —0.5 a.u. binding of the physical atom. From experience
interacting with the electromagnetic field created by the tar[18], we choose the soft-core parameter0.63 a.u? pro-
get nucleus and the projectile. Separating the Hamiltoniaucing a reasonable two-dimensional model for hydrogen. In
into time-independent and time-dependent parts, we writaddition, the use of the soft-core potential ameliorates the
the Schrdinger equation in the rest frame of the targetdifficulties associated with the representation of the singular
nucleus Coulomb potential on a Cartesian grid with finite spacing.
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This feature will be discussed more fully in connection with the matrix-vector operations scale ldn(N) using this effi-

our three-dimensional calculations. cient algorithm.
. . . For the large three-dimensional lattice, complete diago-
B. Three-dimensional calculations nalization of the Hamiltonian operator to obtain the station-

The direct, numerical solution of the time-dependent?’y States o_f inte_rest is not practical. Therefore, we imple-
Schralinger equation in three-dimensional space for everfn€nt a partial eigensolution for the ground and low-lying
one-electron ion-atom collisions is a computationally inten-Pound excited states of the target atom. For the two-
sive task due to the number of lattice points or basis statedimensional model, either partial or complete diagonaliza-
required to provide a representation of reasonable fidelity. A§ON can be performed. We have implemented two alternative
will be discussed in the following section, we choose tometh_ods for_partla_l elgensolutlon_. In one, we relax an initial
solve Schidinger's equation using lattice methods in Carte-function having a finite overlap with the ground state through
sian coordinates because such methods are efficient afgopagation of the time-dependent Salirger equation in
simple. However, representing the Coulomb potential on amnaginary time (—>—|7-)_usmg only the static Ham||ton|a_n,
Cartesian grid with finite lattice spacing is difficult becauseHo [21]. We have also implemented the Lanczos algorithm
of the singularity of the potential at the charged particle cenl22] for a partial eigensolution oH,. We obtain excited
ters. Numerical schemes based on nonuniform or adaptiv@ound states with either partial eigensolution method through
lattices exist for the solution of partial differential equations, Successive application of the algorithm while projecting out

but for simplicity we choose to use methods based on lattice!wer-energy or energy-degenerate states. We chose the ini-
with constant spacing in the present work. tial estimate for each excited state to be the appropriate ana-

We reduce the difficulties of the Coulomb singularity in IYtic state evaluated on the lattice. With this method, one can
3D by utilizing the soft-core potential in our numerical cal- 0btain the finite number of excited states supported on the
culations. Only for the Coulomb potentiéile., c=0 a.u?) lattice. We project the time-dependent wave function onto

does the interaction in Eq4) reproduce the physical value these excited states to determine impact-parameter-
of the ground-state binding energy of the three-dimensionaflePendent probabilities for elastic scattering and excitation.
hydrogen atom, so the soft-core potential is introduced intdfotal ionization probabilities are computed using unitarity as
the 3D calculations for reasons slightly different than in the
2D model. That is, the three-dimensional, lattice-based nu-
merical solution of the hydrogen atom on a uniformly spaced
Cartesian grid must be modified to avoid the singularity of
the Coulomb potential if one desires accurate binding enefyhere | y,) are the bound atomic states supported on the
gies. In contrast, the soft-core parameter is introduced in thgyttice (n< 4 in 3D in this work, and|(t)) is the time-
two-dimensional space to facilitate modeling 3D hydrogeneyolved electronic wave function, initially in the ground state

Piomzmzl—% [(x gl (D)2, (6)

These issues will be discussed more fully in Sec. V. of the target. Use of this simple unitarity approach utilizing
only target-centered, bound-state wave functions is possible
lI. NUMERICAL SOLUTION for antiproton projectiles since the charge transfer channel is

We solve the time-dependent Sétlimger equation using ;Ir(;sgfie,saer;s accordingly no projectile-centered bound states

lattice techniques to obtain a discrete representation of thé . . -
vave funton, Loy, 20, and al 11 IO st o e e enendens S
coordinate-space operators on a three-dimensional Cartesi& a € intervalsa o) is given by
mesh. Local operators such as potentials simply become di-

agonal matrices composed ofptheir values pa)t/ the lattice $(1)=U(tt0)¢(to). @)
points, i.e.,V(X,y,2)—V(Xi,Y;,Z) i 6j j ok . Deriva-
tive operators, such as the kinetic energy, have lattice repr
sentations in terms of matrices, i.@./,(?XHDi(’Xi), SOk

All algorithms used are iterative in nature and are based on )

matrix-vector (i.e., Hamiltonian wave functionoperations U(t,tg)=exp{—iH[3 (t+1to)]At}. 8
which are implemented in a simple form largely due to the

separability of the kinetic-energy operator in Cartesian coorfor the finite-difference representation, the exponential op-
dinates. We have implemented our solutions via two similargrator is approximated using the implicit Peaceman-
but distinct, lattice methods usirip a low-order, three-point Rachford algorithn{23]. This approximation is unitary and
finite-difference representatidi 9], and (ii) the high-order easily adapted to vectorized computer architectures, but re-
Fourier-collocation representatiof20]. We choose these quires matrix inversions that can be a problem for massively
methods since the computational expense in both scales reparallel computers. One may avoid the matrix inversion op-
sonably well with the number of lattice points. The finite- erations by choosing the explicit Richardson algoritf2d).
difference derivative operators are tridiagonal so that matrixWith the Fourier-collocation method, we approximate the
vector operations scale as the number of points on the griggxponential operator b terms in a Taylor series expansion
N=N,NyN,. The Fourier-collocation derivatives may be [22], whereK is chosen at each step according to a conver-
represented either as full matrices or through a sequence génce criterion on the wave function. The Taylor series is not
forward and backward fast-Fourier transfoffFT) opera-  explicitly unitary, but in practice is approximately unitary to
tions. In practice, we choose the FFT implementation sinc& good precision.

& number of different methods may be employed to approxi-
mate the infinitesimal time-evolution operatd(t,t,),
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As is common practice when using lattice-based methodghat we found confirming that the ionization probability
we add an imaginary, absorbing potentialW(x,y,z) to the  would remain high at small impact parameters, where the
full Hamiltonian to remove outgoing flux25]. The real molecular-orbital energy curves closely approach the con-
function W(x,y,z) is nonzero only near the edge of the lat- tinuum, came from observing the total inelastic probability
tice, increasing from zero gradually to minimize reflections.as a function of the impact energy for two fixed impact pa-
Therefore, flux absorbed by the boundary is regarded as iofameters: one at 0.2 a.u., and the other at 1 a.u. These results
ized since it is removed from the finite number of boundare shown in Fig. 2 between 100 eV and 1 MeV. Straight-
states supported on the lattice. _line trajectories were used even at the lowest velocities since

The discretization of functions and operators by latticeys exercise was intended simply to reveal the trend if it
techniques introduces numerical errors which normally ar¢yere indeed present. One seeslier1 a.u. that at low en-

e e v csen e W atasas e he e probabitycrops, bt it or0.2
L It plateaus. Thus, for collisions in which the projectile does

the lattice spacing is decreased. While these CONVETJENCR: approach the target closely, the probability of ionization
tests are relatively easy to complete for the two-dimensional bp g Y, P y

calculations, extensive convergence tests for our threequpS quickly at low energies, whereas in near collisions, the

dimensional calculations are prohibitively expensive. As aoropability of ionizgtion does not drop as the collision veloc-
supplement therefore, we have used experience gained witly iS lowered. This encouraged us to attempt the full 3D
the less expensive two-dimensional calculations as a guide fralculations described in detail below. _
choosing the lattice parameters for the three-dimensional cal- Also of interest is a comparison in 2D of the behavior of
culations. In addition, selectively comparing the results ofthe probability density obtained in either antiproton or proton
calculations performed using both low-order and high-ordefmpact. In first-order perturbation theoff3orn approxima-
methods implemented in two independent codes increasdiPn), the ionization cross section depends only on the square
our confidence in the reliability of our results. Other mea-of the projectile charge so that it would predict the same
sures used in accessing the accuracy of our thregesult for antiproton and proton impact. Many works, espe-
dimensional calculations will be discussed in Sec. V. cially over the past decade, have shown that fuller treatments
of the spectrum of electrons ejected by charged-particle im-
pact need to treat the electron as moving in the two-center
field produced by the projectile and target ions, and be ex-

Our two-dimensional calculations have allowed us topliCitly dependent on their chargeee, e.g.[26] and refer-
quickly confirm the prediction that at low collision energies ences therein Furthermore, the dependence of the ionization
the probability of ionization remains roughly constant at verycross section when either proton- or antiproton-impact oc-
small impact parameter, to obtain a quick qualitative view ofcurs was considered in detail in a number of wofkee,
the electronic probability density for antiproton-hydrogene.g., [10,1] and references thergin
collisions, and to compare and contrast this density to that The general features of these differences can readily be
formed in proton-hydrogen collisions. seen in Fig. 3 where we display four time slices after the

A four-frame sequence of the logarithm of the time- distance of closest approach has been obtained in 20 and 100
dependent electron probability density is shown in Fig. 1 forkeV proton[Figs. 3a) and 3c)] and antiproton impadtFig.
an antiproton collision with hydrogen in 2D. The incident 3(b) and Fig. 3d)] of hydrogen. The low-energy proton-
energy of the antiproton is 20 keV, and a small impact paimpact frame shows the characteristic charge transfer to the
rameter ofb=0.4 a.u. is chosen. In the plots, the target re-projectile, as well as the elongated electronic density roughly
mains fixed at the origin of the coordinate system, while thealong the internuclear axis and centered about the midpoint
projectile moves from right to left along a straight line at between the target and projectile ions associated with the
constant velocity, and is indicated by a solid circle. The conso-called saddle-point mechanism of ionization. For higher
tours at the peak are of the order 19 while the lowest impact energy, the proton case shows reduced charge trans-
contours mapped are of the order 0 In Fig. 1(a) the fer and an ejected electron density centered more closely
projectile has already passed the target and formed a sma#ipout the target, as would be expected as the perturbative
deep hole in the electron density. The exclusion of flux fromregime is approached. This nearly target-centered density is,
an almost circular region around the projectile is seen tdiowever, pulled toward the projectile due to the attractive
persist through Figs.(b) and Xc). By the time represented interaction of the electron with the projectile. In contrast, for
by Fig. 1(d), the absorbing potential at the grid boundary hasantiproton impact, the opposite sign of the projectile charge
eliminated reflections of the density leaving the regionprevents charge transfer, and as we have seen in Fig. 1, ex-
bounded by the extent of the numerical lattice. We note thatludes electronic density from its vicinity. For low incident
the impact parameter is along the positivaxis and that the energy, the ejected electronic density is nearly circular in
electronic density develops a counterclockwise rotation byshape, with a void centered about the antiproton. This differ-
the later time slices. Both this behavior and the formation ofence in charge sign also leads to the formation of an “anti-
the void of density clearly come about due to the repulsion ofusp” in contrast to the well-known electron capture to the
the electronic density by the antiproton. continuum cusp formed in proton impaskee, e.g.[27] and

As a test of our procedures, we have also computed theeferences thereinAt higher incident energy, as in the pro-
elastic and inelastic scattering probabilities for our 2D colli-ton case, the electronic density is primarily centered on the
sions by projecting the time-evolved wave function onto thetarget, but in this instance, it manifests a shape reflecting a
ground state of the target hydrogen atom. The first indicatiomepulsive interaction between the electron and the projectile.

IV. TWO-DIMENSIONAL CALCULATIONS
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X (a.u.)

FIG. 1. The logarithm of the electronic probability dengig(x,y,t)|? for antiproton impact of a model hydrogen atom on a 2D Cartesian
lattice at an incident energy of 20 keV and an impact parameter of 0.4 a.u. Time increases from(aetiGa). The left column contains
contours of equal probability density and the right column shows the corresponding density as a vertical displacement.

V. THREE-DIMENSIONAL CALCULATIONS calculations with a small soft-core parameter compared to

. . - 2 _
Madification of the short-range behavior of the Coulombthi sc![gallrg of tthe Iellltuce spachﬂ.e., C<8h. )’ﬂt]h? fr?ft core
potential in order to improve the correspondence between thgotential 1S not well represented naar® In that there are

analytical solution and a numerical solution based on a relal®® few lattice points to smoothly follow the rapid change of

tively course grid has proved useful in other investigationdn€ V near the minimum of this function near the charge

[28,29. For our purposes, we use the soft-core potential t¢€Nter. As a result, the numerical ground-state eigenvalue
eliminate the singularity even though, as already mentionectan be either smaller or larger than the analytic binding en-
any c>0 implies a ground-state energy for the Sclinger ~ €rgy depending on the size of the lattice spacing and on how
equation greater than the physical value. However, in latticavell the potential is represented on the lattice near its mini-
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lattice extending+26 a.u. in each of the three Cartesian

1o directions is sufficient so that the value of the ground-state
wave function near the boundary to be below machine pre-
0.8 cision, and the values of the=2 andn=3 excited states
2z near the boundary to be approximately $cand 5< 10 4,
5 06 respectively. The lattice spacing, and thus the number of
E 0. ) . ; . .
S points used, is constrained by the available computing re-
& sources. We have used lattices with various sizes, but our
5 0.4 most reliable calculations were performed, for example, with
S 135’ lattice points and a spacing bf=0.385 a.u.
- After these lattice parameters are determined, the soft-
021 core parameter is adjusted to approximate the ground-state
energy of the hydrogen atom. Using the Fourier-collocation
00 & - - . s method with the lattice parameters previously mentioned, we
10 10 10 10 10 computed the energy of the ground state on the lattice to
Impact Energy (keV) be —0.499992 a.u. using a soft-core parameter of

_ , . _ _ ¢=0.015 715 a.lf. With this value of the soft-core param-

FIG. ﬁ The 'nelazsgc pr%ballb'“ty f(f)r anF'prOt?n 'mc';’aCt of hydrof' eter, V,(0)~—7.98 a.u. Use of different lattice methods,

gen in the present 2D model as a function of incident energy foly o = finite difference methods or different lattice parameters,
impact parameters di=0.2 a.u. andb=1.0 a.u.

would require a slightly different value for the soft-core pa-

; - ; —(3-2[9h?
the maximum kinetic energi-e., Tma—=(37/2h%)]. The  o0ia) characteristics which must be reproduced to accu-

distance from the origin to the nearest lattice point, along ey compute the ionization cross section. For reasons of

with the vaI.LIJeb?fc,Tdheter:cnlnes Fo a I?rg.e extent_the pqtﬁnt'?tlconsistency, we choose the soft-core parameter for the pro-
energy available. Thus, for a given lattice spacing, with SOftje e interaction to be the same as that used for the target
core parameter<h<, one can obtain a range of ground'Stateinteraction
energies by simply changing the position of the lattice points '

nearr =0.

Given these constraints, one can arrive at reasonable nu-
merical approximations to the stationary states of the hydro- A quantitative method of evaluating the effect of our ap-
gen atom via the following procedure. We choose to locate @roximations to the stationary-state hydrogen problem is to
lattice point atr=0 so that there is a lattice point at the directly compute observable quantities and compare them
minimum of the soft-core potential. We choose the spatialith analytical results. We have computed several observ-
extent of our lattice to be sufficiently large to support boundables, using the lattice parameters previously described,
states with a principal quantum numbrex 4. For example, a which are listed in Tables | and Il. The reader will notice that

A. Stationary-state spectrum

40 T T T T T T T 40 T T T T T T T T
L (a) 4 L
20+ . 20+
300 1 3F°0
g g
20 - . 20 -
= i ol FIG. 3. The electronic prob-
-40 + g -40 + g ability density for proton and anti-
r 1 F 1 proton impact of hydrogen in the
O w0 20 0 20 0 60 @0 20 0 20 40 present 2D model(a) proton im-
X (a.u.) X (a.u.) pac_t at 20 _keV and=2 a.u.,(b)
40— T — 40 : T — antiproton impact at 20 keV and
(©) 1 r (d) b=0.4 a.u.,(c) proton impact at
20 1 20F 1 100 keV andb=1 a.u., and(d)
T © 1 | 1 antiproton impact at 100 keV and
307 i 30T ] b=1 a.u.
& 7 g 0
N -20j 4 N 4
40 F 8 -40 - .
0 60 40 20 0 20 4o 0 60 40 20 0 20 40
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TAZBLE , I.l/2 Energy  expectations (Ho), fluctuations In Table I, we present energy expectatidhky), fluctua-
[(Ho)*—(Ho)]™ , and radial expectation valugs) for the bound  tions = \/(H,)2—(H2), and radial expectation valugs)
stationary states on a three-dimensional Cartesian lattice using “fSr the bound stationary states supported on our three-
soft-core potential witfc=0.015715 a.d.and lattice spacing of  y, o o nal Cartesian lattice. The energy expectations cor-

h=0.385 au. respond to the bound-state spectrum of hydrogen,

State (Ho) (Hoy’—(H2) (r) E,=—(1/2n%), with errors varying between 0.01% and
0.5%. The effect of broke®(4) symmetry is that states

1s —0.49999 1.10°’ 1.49 with the same principal quantum numbediffer in energy

2s —0.12524 8.510 ' 5.98 by approximately 0.5%. We observe effects from the broken

2po —0.12467 9510’ 5.02 O(3) rotational symmetry in that thed3states with varying

2Py —0.12467 9.x10°7 5.02 magnetic quantum number are not degenerate, but differ in

2p_, —0.12467 9.x10°7 5.02 energy by approximately 0.2%. However, the 2and 3

3s —0.05584 4.x10°° 13.72 states, respectively, are degenerate to the precision of the

3po —0.05537 4.%10°6 12.41 computer. States with the sameand/ values, which differ

3p;1 —0.05537 4.610°°© 12.41 only in the sign of the magnetic quantum numlmay are

3p_; —0.05537 4.x10°© 12.41 found to be degenerate. The energy fluctuatignfiustrate

3d, —0.05561 3.6¢10°6 10.62 the effectiveness of our eigensolution algorithms discussed

3d,, —0.05551 4510 © 10.47 in Sec. Ill. Note that it is more difficult to obtain conver-

3d_, —0.05551 4.X10°6 10.47 gence of the iterative eigensolution for the higher-energy sta-

3d,, — 0.05556 3%10°4 10.54 tionary states, and therefore they have the larger fluctuations.

3d_, —0.05556 35104 10.54 The computed radial expectation values are in agreement

with the analytic values(r),, = 3[3n%—/(/+1)], with er-

rors ranging between 0.3% and 1.6%.

our computed observables generally correspond closely to In Table I, we present expectation values of the total
the analytical results, but, for certain states, with only a mod-angular momentun{L?), its z-coordinate projectiof{L,),

est degree of accuracy. Some of the error originates from thand the parity P) for the bound stationary states supported
use of the soft-core potential since it breaks @g) sym-  on the lattice. The angular-momentum eigenvalues are very
metry of the hydrogen atom, resulting in broken energy dewell reproduced for then=1 andn=2 shells with errors
generacies among states with the same principal quantupccasionally as small as on the order of computer precision.
numbem, but differing angular momentum guantum number The higher energn=3 states are more sensitive to the box-
/. Note that this error is independent of the type of latticelike shape of the numerical lattice, and errors ranging be-
approximation (i.e., finite differences or Fourier colloca- tween 0.1% and 1% are observed for these states. The ei-
tion). The other major source of error arises since the presemgenvalues of the parity operatd?=(—1)', are observed to
Cartesian lattice both formally and practically breaks thebe very well reproduced, as this symmetry is preserved in
O(3) rotational invariance inherent in the hydrogen atom.our numerical representation. In addition, we compute the
The modest errors resulting from this can be observed ixpectation value @) —(V,), which is zero for stationary
several ways, but most clearly in the calculation of expectastates of the hydrogen atom as a result of the virial theorem.
tion values of angular momentum observables. The relatively small value of this quantity is further evidence

TABLE II. Expectation values of the total angular moment(in?), its projection(L,), and the parity
(P) for the bound stationary states on a three-dimensional Cartesian lattice using the soft-core potential with
¢=0.015715 a.d. and lattice spacing oh=0.385 a.u. In addition, we compute the expectation value
2(T)—(V,) which is zero for eigenstates of the hydrogen atom as a result of the virial theorem.

State (L% (L2) (P) 2(T)—(Vy)
1s 1.4x107° 1x10°2° 1.0000 1.%10°?
2s 3.3x10°¢ 1x10°20 1.0000 3.x10°3
2po 2.0000 2102 —1.0000 -6.6x10°*
2ps1 2.0000 1.0000 —1.0000 -6.6x10°*
2p_, 2.0000 —1.0000 —1.0000 —6.6x10°*
3s 3.8x10°?2 1x10°16 1.0000 —15x10°°
3po 2.02 7x10°18 —1.0000 7.&10°*
3p.1 2.02 0.996 —1.0000 7.&1074
3p_; 2.02 —0.996 —1.0000 7.&1074
3d, 6.02 5x10 8 1.0000 —9.5x107*
3d,, 6.006 0.9997 1.0000 2310 4
3d_, 6.006 —0.9997 1.0000 281074
3d,, 6.013 1.9990 1.0000 -3.1x107*

3d_, 6.013 —1.9991 1.0000 —-3.0x10°*
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box size and absorber strength was adequate for our present
4 purposes.

0.0¢

Lattice

B. Time-dependent solutions and total cross sections
o Reference

Probabilities for inelastic scattering are obtained by pro-
jecting the time-evolved wave function onto the ground and
low-lying excited states of the target atom, as described in
Sec. lll. By monitoring the squares of these overlaps as a
_ function of collision time(or, equivalently, projectile posi-
tion), the convergence of the probabilities to asymptotic val-
ues can be judged. Cross sections are then determined by
solving the time-dependent Sckiinger equation for a range
-0.3 . + L . of impact parameter®, producing the channel probabilities,

0 1 2 3 4 P.(b), and performing the integration
R (a.n)

E(R) (a.u.)

max

FIG. 4. The ground-state quasimolecular electronic eigenenergy Oq= 27Tf0 bP,(b)db, 9
for the antiproton-hydrogen system as a function of the distance
(R) between the proton and the antiproton computed by solving the
two-center eigenvalue problem using two independent representgghere the indexa denotes the particular channel such as
tions: (@) a representation in Cartesian coordinates using the latticgynization. Approximately ten impact parameters are com-
techniques described in this paper, dhga representation in sphe- puted for each incident energy to assure a smooth represen-
roidal coordinates in which the Hamiltonian is separdii@,16|. tation of P,(b). Furthermore, we have tested the depen-

dence of the derived probabilities on such parameters as the
that we have a reasonable approximation to the bound-stateitial and final position of the antiproton, and computed the
spectrum of the hydrogen atom represented on a threeesult for a series of increasing impact parameters until the
dimensional, uniformly-spaced Cartesian grid. We interpretross section is no longer sensitive to the inclusion of larger
the fact that the virial theorem is better approximated by theralues ofb.
excited states, as opposed to the ground state as evidence ofWe have estimated the accuracy of our results by compar-

the poorer representation of the static potential meaf.  ing our Fourier collocation and finite difference results, and
Clearly, the ground state is more sensitive to modifications irby testing many, but not all, of the parameters of the calcu-
the potential near =0 than are the excited states. lation. The primary sources of error are the finite box size

To further test our lattice approximations, we have com-and lattice spacing used for the calculations. For the lattice
puted the ground-state quasimolecular eigenenergy curve fararameters used, we estimate that our results should have an
the antiproton-hydrogen system as a function of the distancaccuracy of approximately 10%. We have already mentioned
(R) between the proton and the antiproton. In Fig. 4, we plotwo numerical effects which cause our calculations to
the results of this calculation in comparison to an accuratslightly overpredict ionization probabilitiegi) only bound
reference solution or the groundgd) energy curv¢13,16.  states withn<4 are supported on the numerical lattice and,
On the linear scale presented, the agreement between theberefore, excitation tm=4 will appear as ionization, and
solutions is very good at all values Bf A comparison on a (ii) the stationary atomic states supported on the lattice pos-
finer scale reveals deviations of the present lattice solutiosess a small decay rate due to the use of absorbing boundary
for R<1 a.u. originating from our present soft-core and fi- conditions. In addition, collisional states which are populated
nite lattice approaches. when the projectile is near the distance of closest approach

A result of using the imaginary potential to eliminate un- may be deformed by the presence of the finite, spatial bound-
physical reflections from the boundaries of the numericabry. While this error is more likely to affect the relative
lattice is that each stationary state wave function will possesfinal-state populations of excited bound states, it also tends
an effective energy widtki.e., the energy will have a com- to increase the predicted ionization probability. The use of
plex valueE+iI'/2). Therefore, probability present in any the soft-core potential certainly affects the small impact-
stationary state of the static Hamiltonian will decay at a conparameter collisions, but, as E(Q) shows, these are not
stant rate in the absence of the projectile interaction. Foheavily weighted in computing cross sections.
accurate calculations of the final-state probabilities, these de- The  projection of the  probability density,
cay rates must be small compared to the total time used tfdz| (x,y,z,t)|?, is depicted in Fig. 5 for 20 keV antiproton
integrate the Schdbnger equation for the collision. As a impact and with an impact parameter of 0.8 a.u. In the first
check for this effect, we have time evolved thg s, and frame of this series of time slices, the projectile is still to the
3s wave functions on the lattice to ensure that the loss ofeft of the target in its ground state. As the collision pro-
probability was small and consistent with the overall accuceeds, the features illustrated above for the 2D model colli-
racy for the calculation. As expected, the excited states decasions are essentially reproduced, such as the roughly spheri-
more rapidly than the ground state. This observationcal shape to the outgoing electronic density, and the
coupled with the observation that contributions from excita-exclusion of the density from the vicinity of the projectile.
tion to states witm=4 do not significantly affect the com- Shown in Table lll are the TDSE results for thes-%2/
puted ionization cross section, assured us that the choice efcitations which compare well with previous coupled chan-
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FIG. 5. The logarithm of the electronic probability density for antiproton impact of hydrogen in 3D. The incident energy is 20 keV and
b=0.8 a.u. Time increases from secti@ to (d). The left column contains contours of equal probability density, and the right column
shows the corresponding density as a vertical displacement.

nels calculation$30] at collision energies of 30, 60, and 100 sults of the Born approximation. At the highest energy con-
keV. sidered here, this regime is almost reached. In Fig. 6 this
At high impact energy, where first-order perturbationcomparison is made for an incident energy of 500 keV. The
theory is valid, the present ionization probability as a func-figure shows a very good agreement between the TDSE and
tion of impact parameter can be directly compared with reBorn approximation result$31], where we have plotted

TABLE lIl. Excitation cross sections for antiproton collisions with hydrogen in units of*f@m?.

Energy TD method CC methd@0] TD method CC methofi30]

(keV) 1s—2s 1s—2s 1s—2p 1s—2p
30.0 6.26 7.15 70.9 79.0
60.0 5.91 5.52 78.8 82.1

100.0 4.87 4.53 70.7 75.3
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FIG. 6. Comparison of the present TDSE ionization probability S
as a function of impact parameter for 500 keV antiproton impact of
. ot . . 05 f
hydrogen with results of the first-order Born approximation. ‘
_ _ FT NS
bP(b) so that the area under each curve is proportional to 0.0 , , , L
the predicted total cross section. Differences between the two 107 10° 10" 10° 10°
results can be attributed to inadequacies of the present lattice Impact Energy (keV)

treatment, or to the fact that the incident energy is not quite
l;g%irggﬁgﬁr:ht:()?;s}lj_ﬁstggosﬁg\t/ ?%)chaEélgmtO;gﬂrresgs,owgﬁ FIG. 7. The total cross section for ionizat'io'n as a function of
also with the experihentally measured data of Knud4&i incident energy for ant_lproton-hydr_ogen collisions. T_he data are
the atomic orbitallAO) close coupling results of Martiet separated into two sections _for clarity. In the top section, the open
al. [30], of Toshima[32], and of Schiwiet33], and the squares represent the.experlmental megsurgments of Knedakn
tWO—Cent’er first-order p’erturbation theory résult of thescaled as described in R€f17], the solid circles represent Fhe

. ' . N~ present TDSE results, the dashed curve represents the classical tra-
gggtr'g)l:ilrjnrg;%‘:’ﬁgeigvggz;?r']kg?gal';n't'al'StateDW EIS jectory Monte Carlo(CTMC) technique[10,16), and the dash-dot

_ curve represents the continuum-distorted-wave—eikonal-initial-state
Furthermore, Fig. 7 shows the results of TDSE calculaicpyy Els) approximation[16]. In the bottom section, the solid

tions performed at several energies and shows that they agregcles represent the present TDSE results as compared with three
well over the energy range between 30 and 100 keV withndependent atomic-orbital close coupling results. The dash-dot
experiment, the prediction of the classical trajectory Montecurve represents the result of Maré al. (CCy, [30], the dashed
Carlo (CTMC) method[10,16, and the AO results. In the curve represents the result of ToshiB&; [32], and the dotted
energy range from 20 down to 1 keV, the TDSE calculationscurve represents the result of Schiwi@£s [33]). Also shown in
agree well with the AO calculations of Schiwid&3] within both sections is the limit given by the Fermi-Teller cross section,
the accuracy attributed to our lattice calculations, while therRZ;, indicated by the arrow.

classical trajectory Monte Carlo method overestimates the

cross section in t_h|s_energy regime. We note that our CaICL&7vith the period which characterizes a transition, the colliding
lation of the ionization cross section at 0.2 keV includes

traight.l tant velocity traiectori “system may adiabatically deform during the course of the
non-straight-in€, nonconstant velocity rajectores as préviy, igiq, rendering inelastic collisions improbable. For the

ously described. Also_shown in Fig. 7_'3 Zthe ideal IOWercase of ionization in antiproton-hydrogen collisions, this
bound set by the Fermi-Teller cross sectioRgr. Note that - eang that the probability for ionization is very low for col-

nonadiabatic effects are inferred to be relatively strong Sincﬁsions in which b/v >E(R)~! for the ground-state elec-
p

the predicted gross sections are approximately a factor of gqnic energy curve. While this adiabaticity condition always
larger thanRg for the lower energies considered. holds for sufficiently large impact parameters, this condition
_ Although the CDW EIS method is not applicable for low can never be satisfied fob<Rgr since all electronic

impact energies, we have included in Fig. 7 the result of thigotential-energy curves are mixed with the continuum at this

theory for comparison. The breakdown of the theory belowa)ye of the internuclear distance. Assuming straight-line tra-

approximately 50 keV is clearly visible. The CDW EIS cross;

i - : éectories, this imposes an ideal low-energy bound on the ion-
section, as well as any result based on conventional first;ation cross section OhRIZZT' Intermediate to these ex-

order perturbation theory, will drop precipitously at low en- ;.o as of very small and large impact parameters, we have a
ergies due to the rapidly oscillating term it contains resultingregime for whichR=Rr1 where the ground-state electronic
from the vanishingly smgll separation of Fhe bound-state enénergy curve approaches closely to the continuum edge, re-
ergy level from the continuum at small distances. sulting in nonadiabatic transitions to be very probable in col-
V1. DISCUSSION AND SUMMARY lisions for whichv ,/b>E(R). SinceR~b near the distg_nce
of closest approach, we can express this condition as
In general, for heavy-particle collisions with an atom, v,>RE(R). For projectile velocities=0.1 a.u., this condi-
when the effective collision timey/v,, is large compared tion is satisfied foR<1 a.u., providing a practical limit for
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the low-energy ionization cross section of approximately projections of the wave function onto the stationary states of
a.u. This practical low-energy limit for the ionization cross the target are used to obtain ionization cross sections in good
section is very consistent with our computed results preagreement with very recent experiments and previous theo-
sented in Fig. 7, and provides an explanation for our resultsetical results. These results have confirmed the behavior
being approximately a factor of 3 larger thaerﬁT at low  predicted on the basis of the Fermi-Teller model and earlier
energy. CTMC calculations of the ionization cross section at low
From these considerations, one sees that the ionizatiopnergy. Furthermore, these results indicate a significant
cross section for antiproton-hydrogen collisions is dominatedionadiabatic contribution to the ionization cross approxi-
by nonadiabatic transitions occurring BRt>Rgr down to  mately modeled by the CTMC approach, well in excess of
collision energies near the threshold for direct ionization. Itthe strictly adiabatic picture of the Fermi-Teller model. In
has been predictefB4] that the low-energy cross section the future we plan to make 2D and 3D lattice calculations for
would rise as the energy decreases due to the effect of the variety of one(active) electron collision systems. One of
attractive force between the projectile and tafgedton dis-  the strengths of a computational method based on the direct
torting trajectories with larger impact parameters to attairsolution of the time-dependent Schinger equation is its
smaller values ofR. This effect is appreciable in CTMC straightforward application to many different types of prob-
calculationg 16] beginning at a collision energy of 0.1 keV. lems in atomic physics.
However, for our TDSE calculations, the minimum energy
cpn5|dereq(0.2 ke\o_ is not sufﬂClent for the_ Cross section to ACKNOWLEDGMENTS
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