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Quasiclassical-trajectory Monte Carlo methods for collisions with two-electron atoms
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A guasiclassical-trajectory Monte Carl@TMC-EB) model is proposed to extend the classical-trajectory
Monte Carlo(CTMC) method to targets having more than one electron. Quasiclassical stability is achieved via
constraining potentials that enforce lowarergy boundsn the one-electron dynamics. Cross sections for all
possible electronic rearrangemerttsngle and double electron transfer, single and double ionization, and
transfer ionizationin H™+H, H™ +He, HE" +He, and LF* +He collisions are calculated with this model
and with the previously proposed mod&@TMC-KW) of Kirschbaum and Wilet§Phys. Rev. A21, 834
(1980]. The results are compared with accurate experimental data. The regime of validity for the two-electron
targets is found to be similar to that of the usual CTMC model for one-electron targets.
[S1050-294706)05607-7

PACS numbeps): 34.10+x, 34.70+e, 34.50.Fa, 03.65.Sq

[. INTRODUCTION from single-electron atom@he independent-electron mogel
[12,13, (ii) choosing special initial conditions like the Bohr
Since being introduced by Abrines and Percilh], the  model of the helium atom and looking at fast collisions only
classical-trajectory Monte Carl@CTMC) method has en- at short times before autoionization can ocfid], or (iii)
joyed numerous successes where quantum-mechanical metreglecting the electron-electron interactions that allow auto-
ods are difficult to apply. The greatest use has been for iononization[15,16].
atom collisiond2] at intermediate energies 1 a.u). Here A bold different approach was proposed by Kirschbaum
quantum-mechanical close-coupling calculations are limitedind Wilets(KW) [17]. They added effective potential¥y,
in practice by basis-set incompleteness and are complicateahd Vp, motivated by the Heisenberg and Pauli principles,
by translational factors if electronic momentum is to be con-to the pure Coulomb interparticle potentials describing the
served. The CTMC method has also been useful for colli-atom. These potentialgpplied tor; X p; with respect to the
sions of heavy negative particlés.g.,x~ or p) with atoms  nucleus forVy, and tor;; X p;; between electronsandj for
[3], even at low energiesv1 a.u), where electronic con- Vp) serve to prevent classical collapse by excluding the elec-
tinua are crucial. Time-dependent quantal metHdds| can  trons from quantum-mechanically forbidden regions of phase
in principle treat both types of problems, but they have notspace. The resulting quasiclassical states cannot autoionize,
yet proved capable of providing the numerous cross sectiomgnd the stability does not depend on any special configura-
that are required in many applications. Such methods artion of coordinates and momenta. A remarkable feature of
limited by finite-boundary conditions, and the most usedthis approach is that ground-state energies can be obtained
method of this type — time-dependent Hartree-FORHF) by minimizing the energy functional corresponding to the
theory — neglects correlation, which turns out to be essentiatffective Hamiltonian. It has been shown that this simple
in exotic atom formatiori6,7]. ansatzdetermines total energies for all atoms with surprising
The CTMC descriptiohis rigorously justified by the cor- accuracy[18]. The resulting atoms exhibit a shell structure
respondence principle for reactions of high Rydberg orbitalghough it is not always in agreement with the structure of the
[1,9], but has been demonstrated by years of experience to l@etual atoms. A discomforting feature is that these ground
practically accurate for many applications to ground and lowstates are “crystalline;” i.e. the velocitieg = drxy/dt in
excited states as wefl2]. This success may be partially at- the ground state are zero though the momenta argswot
tributed to precise obedience of all conservation laws angyw# Mvkwy)-
treating the dynamics, albeit classical, exactly. The success of the QTMC-KW modebr atomic struc-
Thus far, this advantage has generally been limited tdure is encouraging, but it is for collisions where such a
one-electron systems since multielectron atoms are classirethod is practically needed. In particular, it is desirable to
cally unstable with respect to autoionization. Some usefuhave a method that consistently treats electron transfer and
calculations have been managed on multielectron systems lgnization as well as multiplicities and combinations of these
invoking additional approximations such &$ treating the processes. Such a unified treatment is easily provided by
atom as a one-electron system with an effective chpt@g  solution of classical equations of motion and will be useful
or a model potentidl11], and sometimes expressing the mul- provided the effective Hamiltonian realistically represents
tielectron cross sections as combinations of probabilitieshe requisite physical forces at work. Here we may have
some concern about the QTMC-KW model. For example, it

The CTMC method has also been much used for rotationally
inelastic atom-molecule collisions on adiabatic potential surfaces. 2(Quasjclassical-trajectory Monte Carlo methods belong to a
Quantum-mechanical calculations, e.g., Vesatial. [8] recently, class referred to as “molecular dynamics,” and QTMC-KW is
have confirmed the accuracy of those cross sections. sometimes called “Fermi molecular dynamics.”
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is well known that velocity matching can play an important Secs. Il A and Il B, respectively. The formulation and nu-
role in electron-transfer processgkd], but a ground-state merical solution of the equations of motion and the extrac-
KW target has no internal motion. This feature is not necestion of final states are the same in either case and will be
sarily fatal sincepxw# Mgy, but needs careful investiga- discussed in Sec. Il C.

tion. Another concern is that the constraint potential is still

significant in a target ground staf&8] (e.g., Vi;=0.0%E 4 A. Kirschbaum-Wilets (KW ) approach

for He). Of course, it has to be significantly repulsive to

prevent access to quantum-mechanically forbidden regions, Our QTMC-KW application follows the original prescrip-
but its effect on particle motions in allowed regions alsotion of Kirschbaum and Wilet§17]. The associated quasi-
needs to be investigated. classical Hamiltonian adds constraining potentisg, and

Until now the QTMC-KW method has not been carefully Vp, motivated by the Heisenberg and Pauli principles, to the
tested for collisions, though one limited application was veryactual physical Hamiltoniakl,. Thus
encouraging20]. The method has also been applied to mul-
tielectron atoms in strong field21,22 and to formation of Hixw=Ho+Vy+Vp 1)
antiprotonic heliun23].

The objectives of the present work are twofold: apply ~ Where
QTMC-KW to diverse cross sections that are now known
accurately from experiments arid) present a model that
avoids the concerns mentioned in the above paragraph. Ogf, 5, atonfor ion)-atom collision, in space-fixed coordi-
model is not as ambitious as the KW model in that it makesnates for simplicity, the kinetic energy, as usual, is
no attempt to determine ground-state energies independently.

Ho=T+Vcour- (2

However, it is closer in spirit to the original CTMC method pz pz 1
of Abrines and Percivdll], which was to do purely classical T=_—2 4 b o 2 pi2, 3
mechanics on a microcanonical ensemble of target atoms 2m,  2mp  2me5

(i.e., a random phase-space distribution on the energy shell , .

of the actual quantum-mechanical atorfthere is no con- wherea and b denote the nuclei and thieindex the N,
straint other than energy on the initial condition. For the Helectrons of atonA andN,, electrons of atonB. The Cou-
atom in CTMC with a pure Coulomb potential, this distribu- /oMb potential is

tion can be achieved by a simple sampling of certain statis- Z.Z,€> b NatNo 7 2 ¢ e?
tically independent and uniformly distributed variables Veou= ——— — ‘ T+ 52 T (4)
[1,9,24. For multielectron and non-Coulomb atoms, such a Fab  y=a i=1 Ty o Fij

choice of analytic variables is not known, but the sampling is

still easily achieved on a computer by choosing all the phasewherer ,z;=rz;—r, (a,=2a,b,1,2,...). Theextra terms,

space variables at random athéntesting to see if they yield representing nonclassical constraints, are

an energy oror sufficiently close tpthe energy shell of the b

entire atom. But this is a straightforward numerical problem; Ve 2

the fundamental problem is stability. H™ <
In the proposed method, stability is enforced by a con-

straint on the energies instead of the phase-space variablend

Other electrons are not allowed to become so bound that

21 U(T i ,Py0) (5)

Na+Np Na+Np

some electron can gain escape energy. The lower bound is 1
imposed on the one-electron energies and is significantly VP:§ ;1 121 5si ,s,-UP(rii Pij)s (6)
lower than the average electron energy, so that the effective (i#])

potential implementing it affects the electron motions only

when they try to venture into an autoionizing configuration, Where the relative momenta are

Hence for theisolated hydrogen atom, with only one elec- M,Pg— Mg,

tron, the motion is never affected and the velocity of the Pap=" 7. )
electron is the same as in CTMC. The new method will be a TR

termed QTMC-EB for energy-bounded QTMC. and 55 ¢ =1 if the spins of théth andjth electrons are the

The present applications will be limited to two-electron
targets(andp+H collisions, which apparently have not been
published previously for the QTMC-KW modeFortunately

same and O if they are different. The constraining potentials
are chosen of the form

there exist benchmark experimental data for,HHe?", and (fcﬁ)z rp 4

Li 3* collisions with He resulting in single and double elec- ve(r,p)= me p[ac 1_(§_h ] (8
tron transfer, single and double ionization, and transfer ion- € €

Ization. (c=H or P), wherem is the reduced mass ane, is a

hardness parameter determining how abruptly the constraint

Il. QUASICLASSICAL-TRAJECTORY MONTE CARLO rp=édi is enforced Note that asymptotically r(,— )

(QTMC) METHODS FOR MULTIELECTRON
TARGETS

The formulation of the quasiclassical Hamiltonians and *The prefactor in Eq(8) is chosen such thaté(dp)[(p?/2m)
the initial ground-state configurations will be described in+uv(r,p)]=0 for the pair of particles whenp= &7 [25].
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Hyw is invariant under separate rigid-body rotations of the B. Energy-bounded(EB) approach

r,i andp,; with respect to nucleug. We have neglected the  |n the QTMC-EB approach, the quasiclassical potential
spin of the nuclei and its possible effect in the case of idenincludes terms placing lower bounds on the one-electron en-
tical nuclei. ergies ignoring all other electrons. The bounds are low

The energy functionall) can be minimized to determine enpugh that the electron motions in the ground state are little
ground-state energies. This was done in RE8] for atoms  affected, but high enough that autoionization is precluded.

and ions up taZ=38. By using the scaled value As in the KW approach, the bound is introduced numerically
_1p2 with a repulsive potential.
_ 1 9 This quasiclassical Hamiltonian for an atom)-atom
§e=&c| 1+ : 9 >
20 collision is
where¢;;=1.0 andé;=2.767, it was found that the energies Hepy=Ho+ Vep, (12

depend only weakly on the hardness parametess long as

itis not too small. Hence the choice af is based largely on  whereH, is the same as in E¢2). The constraint potential
numerical considerations and the physical information reis

sides mostly in th&,'s. In the present worke,=4 was used

(except for sensitivity studig¢sThis value is slightly smaller b Ng+Np
than_ the_ valuea_czs, gsed in Ref[18], but makes the nu- V= 2 E Ueb)(ryl Dy (13)
merical integration a little easier. y=a i=1

It is possible to take different values @, for each
nucleus. For processes involving only one transferred eleGyhere
tron, this flexibility may enable better results; however, for
processes involving more electrons it might be considered

2 Y)
inconsistent since it could result in different treatments of () - 2,8 Eo” ~Ecou
: ; : . . ; Vep (I,P) ex : (14)
isoelectronic systems. This effect will be examined in Sec. r r
I B.

The KW ground state is described by fixed valuesr of Instead of the constraint being applied to the prodpcas in

andp. It is invariant under independent rigid-body rotationsthe KW approach it is applied to the one-electron Coulomb
but is otherwise thought to be nondegenerate. Following thenergy

original prescription of Abrines and Perciidl], we always

assume that, once the Hamiltonian has been defined, the mi- 1 7 2

crocanonical distributioirandom in phase space on the en- Ecou=5—p>— ——. (15

ergy shell is the appropriate physical choi¢8]. There are r

compelling physical reasons for this choice, especially if the

motion is ergodic, and it avoids any bias. Thus the correct In the limit I'—0, this one-electron energy is bounded

Monte Carlo sampling of KW initial conditions is obtained from below by exactly the constaﬁé”. For finite I', the

by performing random Euler rotations of any ground-stateconstraint is softened but still provides an absolute lower

configuration. In general, numerical minimizatifit8] is re-  bound, which in turn, as long as it is not too low, implies

quired to find the ground-state configuration and energy, busibsolute stability of the multielectron atom with respect to

the one- and two-electron cases can be solved analyticallyutoionization(of course, collisional or field ionization can

[17]. For the one-electron atom still occun. In the same vein it can be seen that, for a one-

5 electron atom bound by energy=E,>E,, the constraint
_) [€n(v)] (103 will have no effect on the dynamics for sufficiently small
2ay 4 I". In practiceI' is chosen reasonably small but not so small
as to create problems with the numerical integration.

and The constantsE(” are different for different nuclear

0= ( )/r<°) (10D chgrgeszy, but are perhaps _b_est thought of as depending on
y1 = SHUY asingleparameter characterizing the lowest one-electron en-
ergy allowed relative to the actual binding energy. For this
purpose it is useful to ask what is the lowest energy, includ-

r'9=[1+

Y

For the two-electron atom

en(y]? ing the constraint but ignoring all other electrons, that an
r(°1)= 14+ — H—, (1139 electron can ever reach. The energy including constraint is
Y 2ay) 4Z,-1
Z
9=, (110 =gt e(FoFoodlt
P =&n(nIry, (119

=Ecout (% p2_ Ecouw e(Eo~Ecow/l’, (16)
and

©_ _p0 Since the term ip? is positive definite, the minimum energy
P2 =Py (110  possible is
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exact; if not, it is rejected. The region of phase space

° ’ s sampled is sufficiently large that it is highly unlikely that a
//’ random point outside the region would produce an accept-
q L gl | able energy. For H, the uniformly sampled regiom a.u)
=03 au o wasr?e (0,4), p?>e(0,16) with a width of 0.025 about the
e e target energy of-0.5 a.u. For He, the sampled region was
2 b gl i r2e(0,4), p?><(0,12.96) for each electron with a width of
—_ /’ 0.1 about the target energy 6f2.9 a.u. The resulting list of
2 /’ initial conditions can be saved for use in all trajectory calcu-
T 3| // . lations, but, even so, this procedure might be too time con-
= e suming for many-electron targets. It is likely that a more
L // efficient, yet still statistically valid, procedure could be de-
4 gl . veloped.
/,//
5 7 a C. Treatment of the dynamics
This section will be brief since, once the effective Hamil-
o ‘ ‘ ‘ I ‘ tonian is defined and the initial coordinates and momenta
~ s 5 9 3 - P o selected, the treatment is the same as in previous CTMC
E (au) calculatl_orjs_. The _calculqthns proceed in th’ree ste{ps:
0 choose initial conditions(ii) integrate Hamilton’s classical

o ] ) equations of motion, andiii) test asymptotic trajectory for
FIG. 1. Minimum energyEy, (solid curve, reachable in Ed.  final state.

(16 and the corresponding value Bt,, (dashed curveas a func- The selection of the initial atomic configurations was dis-

e e o s oy €SS20 i Secs. 1A and I 5-In ddiion,an impact para-
by I eter must be chosen by uniform sampling &

' e[ (™2, (b™)2]. Our procedure was to do the calculation
with a few ranges of impact parameter, starting with
bI""=0; typically 3—4 ranges contributed. The number of
trajectories in the first range, up to some maximum, was
where we now regaréc,, as a variable that can take any determined by a relative accuracy criterion on the trgak-
value. Figure 1 shows the value &,,, along with the tive cross section. The number of trajectories, again up to
value of E¢,, When it is achieved, as a function Bf,. This  some maximum, in subsequent ranges was determined by the
figure is drawn forl’=0.3 a.u., but it is obvious from Eq. accuracy actually achieved up to that point. This procedure is
(17) that the same curves would apply En,/I' and efficient since usually the reactive probability decreases as
Ecou/I" were plotted as a function dg,/I". b increases, and it will subsequently not be possible to im-

For the present work we have found it satisfactory toprove the relative accuracy much anyway. The advantages of
chooseE, such that the lowest one-electron energy allowedhis procedure over doing all in a single range are that the
classically is~0.5 a.u. lower than the quantum-mechanicalmaximum impact parameter does not have to be chosen in
ground state of the one-electron system. Specifically we usadvance and fewer trajectories need be run in the less impor-
Eo(H)=—2.0 a.u,Eq(He)=—3.4 a.u., andEy(Li)=—6.1 tant regions.

a.u.,, with I'=0.3 a.u. in all cases. These choices yield Hamilton's equations were solved in a barycentric coor-
Emin(H)=—1.22 a.u.,E,i(He)=—2.44 a.u., andE,,(H)= dinate system after eliminating the overall center-of-mass
—4.94 a.u., which are 0.72, 0.44, and 0.44 a.u. lower thamotion. This formulation, which has previously been de-
the true binding energies of H, He and Li?*, respectively.  scribed in detail for the four-body systeitb], eliminates six
The sensitivity to these choices will be examined in Secvariables from the set of ordinary differential equations. The
[l B. The parameted’, like a. in the KW formulation, is  price paid is the extra complexity of the resulting coordinates
chosen largely from consideration of the ease of numericahnd the necessity of transformations between different bary-
integration, andg,, like ¢ in the KW formulation, is modi- centric coordinate systentthree for the four-body problem
fied to compensate for its finite value. For more than four bodies it will probably be more practical

Sampling the microcanonical ensemble to find initial con-to integrate the equations in space-fixed coordinates.
ditions requires more effort than in the KW case. Even for The ODE'’s were integrated with the same subroutine used
the one-electron system it is necessary to do the sampling by all our previous CTMC work[3] (sixth-order hybrid
trial and error(though we do not claim to have proved that method of Gear There may well exist more suitable inte-
analytic procedures do not exist for special casége used grators for this problem. The constrained trajectories, of ei-
the numerical procedure described in Re&6]. Basically it  ther the KW or EB variety, are somewhat more difficult to
consists of randomly choosing a complete set of variablegtegrate than pure Coulomb classical trajectories. The inte-
from a prescribed region of phase space, calculating the regration is made more difficult for large. (in QTMC-KW)
sulting energy, and checking to see if it falls within someor smalll’ (in QTMC-EB). The automatic time step tends to
Gaussian profile about the desired energy. If so, it is acceptdasecome small in highly constrained regions and was not al-
and a slight renormalization is applied to make the energyowed to fall below some specified minimum value. None-

Emin: min{ECouI(l_e(EO_ECOUD/F)}y (17)
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theless the integrator failed very rarely, and all conservation
laws, including energy and angular momentum, were gener-
ally fulfilled quite accurately. Still more demanding tests,
made occasionally, indicated that most of the trajectories
could be back-integrated with meaningful accuracy.

The trajectories were integrated long enough that the final
state could be definitely identified by checks on relative dis-
tances, relative velocities, and internal and relative energies
[3]. After accumulation of the results of the trajectories, the
cross section for a reactidR is given by

OR= 2| a'g) (18

in terms of the partial cross sections

N(R)
. i .
o) =t 7L (7= (™)1, (19
i 10 100 1000
whereN(® is the number of trajectories in whidk occurred E (keV/amu)
tot ; : : min . m
out of the tOtQN! trajecto.rles.run wittb & [b™",b"]. The FIG. 2. Electron-transfer and ionization cross sections for
standard statistical error i is H*+H collisions. Theoretical values are shown by curves: CTMC
12 (dotted, QTMC-KW (dashe¢l QTMC-EB (solid). Experimental
AUR:(E (Agg))Z) (20)  Vvalues are shown by data points: Shah and Gilbi28j (filled
i circles, Shah, Eliott, and Gilbody30] (filled squares McClure

[31] (open circles
in terms of the error in each interval,

Agl) =gl W (21)  second ionization potential of He from the true value of 54.4
i eV to 46.3 eV. The modified KW procedure will be desig-

nated QTMC-KWXx.

tot_ N_(R))l/Z for double ionization since the effect is to alter the correct
|

The total number of trajectoriedy;o==;N!*", varied from
about 500 to 5000 for collisions with the helium atdaven

more were used for H+H collisions. A H*+H collisions

IIl. RESULTS The proton-hydrogen atom reaction was the first treated
by electronic CTMC and is still a requisite test case for

Cross sections have been calculated for all electron rearew methods. However, it seems not to have been presented
rangements occurring in collisions of 'H He?*, and Li**  in published QTMC-KW calculations. The CTMC,
ions with the helium atom, as well as for the*HH colli- QTMC-KW(a=4, ¢=0.9428 and QTMC-ERI'=0.3,
sion to compare with normafunconstrained CTMC. In  E,(H) =—2.0) calculations, along with experimental mea-
comparing the Monte Carlo results with each other and withsurements are shown in Fig. 2 for electron transfer and ion-
experimental results, it is important to take into account thezation. A large number of trajectories were run here so the
statistical error bars. The quoted error bars are one standagtatistical error bargnot shown for clarity are small.
deviation; differences and anomalies amounting to less than The CTMC and QTMC-EB results are quite close, thus
two standard deviations should generally be disregarded. loonfirming that the stated philosophy of staying close to
some cases where such deviations appeared, additional tiadrely classical dynamics, even while maintaining quasiclas-
jectories were run to improve the statistics and allow conclusical stability, has been realized. As a test, calculations were
sions to be reached. also performed in the limiEy— —« (actually —10° a.u)

For collisions with the helium atom, the QTMC-KW cal- and agreed precisely with CTM@vithin statistical error as
culations were done two way§) with £(He)=¢(H) and(ii)  they should by construction of the potential. The QTMC-KW
with ¢(He)=1.0844(H).* The latter gives the ionization po- results are also similar — the peak in,, is somewhat
tentials of both H and He correctly while the former gives shifted to higher energies but is in qualitatively similar
IP(He)=28.9 eV instead of the true value of 24.6 eV. While agreement with the experimental results.
this alteration may be expected to be beneficial for single Kerby et al. [27] have interpreted the CTMC underesti-
ionization, it might be expected to have the opposite effecination of the ionization cross section at energies below the

peak as due to classical suppression of low-energy backward

electrons. The rather poor description of electron transfer at

“The subscripH on ¢ will be henceforth dropped since ondy; is  low energies is due to inadequate classical description of the

involved in the descriptions of the hydrogen atom or singlet heliumsymmetric molecular states that serve as intermediaries in
atom. this transition.
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FIG. 3. Sensitivity of the transfeKcircles and ionization FIG. 4. Sensitivity of the transfeKcircles and ionization

(squarep cross sections to the parametérin the QTMC-KW (squarep cross sections to the hardness parameterin the
model for p+He collisions at proton energy 100 keV. The filled QTMC-KW model forp+He collisions at proton energy 100 keV.
points are at the value a@f generally useda=4 in these calcula- The filled points are at the value af generally used. Note that the
tions. The error bars indicate one standard deviation of the Monteorresponding value of has been adjusted in each case to give the
Carlo calculations. The lines connecting the points are just meant toorrect energy of the H atom.

guide the eye.

deeply bound the other electron becomes weakly bound
since the total energy is conserved. Such a weakly bound
In this section the sensitivities of the electron-transfer andelectron is easily ionized. Of course, this amounts to just
ionization cross sections to the parameters of the constraiifting the constraint; as can be seen from Fig. 1, for
ing potentials will be examined. The H+-He collision at  Ey(He)=—23.9 (andI’=0.3) autoionization could occur. Fig-
projectile energy 100 keViy(=2 a.u) will be taken as a ure 5 suggests th&, should be chosen such that the ener-
typical example. gies of the two electrons in the isolated atom are not allowed
In Figs. 3 and 4, the sensitivities of the QTMC-KW re- to become too different — the sensitivity on this side of the
sults to ¢ and a, respectively, are shown. It is evident that figure is much less.
oion IS quite sensitive t& while o, is not. The sensitivity of The sensitivity tol", like that to « in the QTMC-KW
Oion IS 10 be expected since the atomic binding energy ignodel, is much weaker. Here it is important to note that the
inversely proportional t&? and the size of the atom is pro- correspondinds, has been adjusted so tHg,, (see Fig. 1
portional to £2. The insensitivity ofoy, to £ is somewhat
surprising. In this test thé values for both atoms were var-
ied, i.e.,é(He)=¢(H). In calculations where onlg(He) was
changed(the KWx model — see Sec. Il A oy, was more
affected.
The sensitivity toa, shown in Fig. 4, is considerably less.
It is important to note that in this calculation the correspond-
ing ¢ was simultaneously scaled according to E) to
maintain the same atomic binding energy and size. These
results tend to confirm our interpretation éfas a physical
parameter andv as a numerical-implementation parameter.
The valuea=4 appears to be a reasonable compromise be-
tween numerical good behavior and implementation of the
constraint, althouglw=3 or =5 would appear to be quite
acceptable as well.
In Figs. 5 and 6 the sensitivities of the QTMC-EB results ‘ ‘ | ,
to its parametersEq(He) andI', are shown. The effects of 40 38 36 .34 32 .30
Ey andI’ in the QTMC-EB model are analogous to those of E,(He) (au)
¢ and «, respectively, in the QTMC-KW modedhlthough
the units are differeft The ionization cross section is fairly FIG. 5. Sensitivity of the transfefcircles and ionization
sensitive t0Ey. The reason for the increase img, as  (squarescross sections to the parame&gj(He) in the QTMC-EB
Eo(He) becomes more negative can be understood in termgiodel for p+He collisions at proton energy 100 keV. The filled
of its effect on the phase-space distribution of the two-points are at the value dy(He) generally usedl’=0.3 a.u. was
electron system. When one electron is allowed to becomaesed in all these calculations.

B. Sensitivity studies

W »
T T
| !

Cross Section (units of a,’)
N
T
{

|
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for H* +He, H " +He, and LE" +He, all for projectile-ion
energy of 100 keV/amu. So that the abscissa will be sensibly
comparable for all three systentsy has been shifted on the
plot by EJ, whereE] is the highest value d&, that will still

4 - -
allow the transferred electron to reach the ground state on the
, projectile. Namely,ES(H)=—1.075, E§(He)=—2.909, and
3r 7 E8(Li)=—5.631, which allow minimum energies 6f0.5,

—2.0, and—4.5 a.u., respectivelgsee Fig. 1 It can be seen
that only the electron-transfer cross section fof -HHe col-
lisions is sensitive to the target paramdigr. This sensitiv-

ity arises because the ground-state electrons in H and He
have similar velocities and electron-transfer cross sections
tend to peak when the velocities match. Classically the
ground state is characterized by a range of energies, which

Cross Section {units of a’)
N
I
|

é

0 I L I I I must extend somewhat below as well as above the quantized
00 01 02 03 04 05 06 energy[28]. In Sec. Ill C we will see that the QTMC-KW
T (au) model underestimates the'H-He—H+He™ transfer cross

section, presumably because lower energies are excluded.
FIG. 6. Sensitivity of the transfefcircles and ionization

(squarescross sections to the hardndgsdth) parametefl” in the H+ +H
QTMC-EB model forp+He collisions at proton energy 100 keV. ® e
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Finally we examine the sensitivity to the value Bf
taken for the projectile ion. The results are shown in Fig. 7
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FIG. 7. Sensitivity of the transfefcircles connected by solid
curves and ionization(squares connected by dashed cunaess FIG. 8. Cross sections for H+He collisions. Theoretical val-
sections to the parametBg of the projectile ion in the QTMC-EB  ues are shown by curves: QTMC-K®hort dashed QTMC-KWx
model for H' +He, HE" +He, and LF* +He collisions at projec- (long dashelj QTMC-EB (solid). See the tables for the energies at
tile energy 100 keV/amu. ThE, axis has been shifted in each case which calculations were actually made and their statistical error
by EQ, the value ofE, that just allows the ground-state energy of bars. Experimental values are shown by data points: Shah and Gil-
the projectile with one electron to be reached. The filled points aréody[32] (filled circles, Shah, McCallion, and Gilbod}j83] (filled
at the values generally used. squarep
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TABLE |. Comparison of cross sectionén units of 1077
cm?) for the electron-transfer reaction'H He—H+He™.

TABLE Ill. Comparison of cross sectiongn units of 1018
cm?) for the transfer-ionization reaction'HHe—H-+He?" +e.

10002(H,He)

10002(H,He)

E v E v

(KeV) (a.u) Expt[32l QTMC-KW QTMC-KWx: QTMC-EB  (KeV) (au) Expt.[32] QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 2.640.34 6.82:0.66 19.631.46 25.0 1.00 0.1+0.08 0.05:0.05 1.0G-0.27
50.0 1.41 2.550.32 5.10:0.59 9.19-0.80 50.0 141 0.220.11 0.22:0.11 2.64:0.49
80.0 1.79 4.650.23 1.850.29 2.64-0.35 4.62-0.53 80.0 1.79 1.3%0.08 0.272-0.12 0.49:0.16 2.15-0.35
100.0 2.00 2.720.10 1.34-0.11 2.02-0.31 2.8G-0.16 100.0 2.00 0.880.08 0.44-0.15 0.11%*0.08 0.770.20
200.0 2.83 0.3650.004 0.26-0.11 0.18-:0.09 0.3%-0.11 200.0 2.83 0.1020.008 0.22-0.11 0.270.12 0.170.10
400.0 4.00 0.02220.0010 0.0%#0.03 0.06:0.03 0.06-0.02 400.0 4.00 0.00740.0006 0.040.03 0.070.04 <0.012

avith y(He) modified to give accurate first ionization potential of ®None found in 3000 trajectories.

He.
€ QTMC-KW, in which the&(He) parameter has been modi-

fied to give the first ionization potential correctly, does better
for the one-electron processes, but still underestimates
Potentially one of the most useful capabilities of quasi-
tion (oion O 10017), transfer ionization @y+ion OF 1000y),  Classical methods may be their ease of treating multielectron
rearrangements. The QTMC-EB method gives both the

and double ionizationd i, OF 10012) in H* +He collisions AR o . X
are shown in Fig. 8 and tabulated including error bars intransfer ionization and double ionization cross sections fairly

Tables I-IV. In these calculations the initial internuclear dis_accurately. One may note in the double ionization cross sec-

. : tion that there appears to be a “glitch” at100 keV. This
tance was 1& and the impact -parameter rangasay) WETE teature occurs in both the experimental and theoretical cross
until convergence was obtained.

sections. However, the agreement is not really persuasive

! ; . i , Since there are glitches in other theoretical cross sections that
section or 200 trajectories per impact-parameter intervalyy ot show up experimentally.

whichever was reached first. In some cases, especially at the Energy histograms for the ionized free electron and the
higher energies, higher accuracy was sought with largefagiqyal bound electron after single ionization are shown in
numbers of trajectorie@s can be inferred from the statistical Figs. 9a) and 9b), respectively, for the QTMC-EB and

error barg. The double-electron reactions have smaller crosgyT\c-kW calculations. The EB and KW electron-energy
sections and generally occur in coII|S|0n's at smaller impacjistributions are similar, except that the KW peak for the
parameters. In order to obtain them with better accuracy,egiqa He electron at—2.0 a.u. is smeared out in the EB

additional calculations were made with impact parameteg, oy jation. As usual in quasiclassical calculations, effective

ranges[0,0.5), [9-5'0-5/5_]’ [0.5y2,1], ... with the con- quantum numbers have to be assigned to ranges of energies
vergence criterion applied only to the double-electron reacrtzg]_

tions. The trajectories were integrated to a distance — a
least 1B, — where the final state could be conclusively
identified.

The QTMC-EB method provides a good description of all ~ Cross sections for electron transfer,(or ,004), ioniza-
four H" +He cross sections, including the single electrontion (ion OF 200721), transfer ionization i +ion OF 200712,
transfer even at the lowest energies treated. The QTMC-Kwlouble ionization § o, OF 2002,), and double transferof,
method does fairly well for ionization but greatly underesti- Or 2002 in He?* +He collisions are shown in Fig. 10 and
mates the transfer reactions. The QTMC-KWHx variation oftabulated in Tables V-IX. The initial conditions were simi-

C. H* +He collisions

Cross sections for electron transfer,(or 100791), iOniza-

D. He?* +He collisions

TABLE IV. Comparison of cross sectiongn units of 10°1°
cm?) for the double-ionization reaction HHe—H"+
He¥ ™ + 2e.

TABLE Il. Comparison of cross sectiongn units of 1017
cm?) for the single-ionization reaction H-He—H* + He™ +e.

10012(H,He)

H,He
E v E v 1001 )

Kev) (a.u) Expt.[32] QTMC-KW QTMC-KWx QTMC-EB (Kev) (a.u) Expt.[32] QTMC-KW QTMC-KWx QTMC-EB
250 1.00 0.920.20 1.32-0.23 4.61-0.73 250 1.00 0.550.55 0.55-0.55 2.21-1.10
50.0 1.41 246034 427046 6.26:0.72 50.0 1.41 1.180.78 3.85-1.44 6.05-1.97
80.0 1.79 8.320.13 3.61-0.39 550-049 7.870.73 80.0 179 10.571.01 3.96:1.72 4.77%1.99 6.07-1.82
100.0 2.00 8.430.18 4.15-0.18 5.980.50 7.72-0.30 100.0 2.00 9.6+1.03 4.95-1.63 8.80:2.15 7.15-1.97
200.0 2.83 6.930.17 4.13-0.36 6.20:0.48 6.9%053 200.0 2.83 5.680.17 3.30:1.34 12.78:3.04 8.272.11
400.0 4.00 4.410.09 3.34-0.17 4.12-0.21 4.08-0.21  400.0 4.00 2.360.12 8.43-1.59 8.10-1.60 4.58-1.16
800.0 5.66 2.670.03 2.24-0.14 2.66-0.16 2.17-0.14 800.0 5.66 0.9680.051 2.42-0.73 3.08-0.82 1.32-0.54
1000.0 6.33 2.260.08 2.02-0.13 2.32-0.16 1.50-0.12  1000.0 6.33 0.7450.027 1.32-0.54 2.25-0.71 0.22-0.22
2000.0 8.95 1.2950.011 1.2%0.11 1.370.12 0.9%0.10 2000.0 8.95 0.3650.035 0.88-0.44 0.66-0.38 0.22-0.22
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FIG. 9. Histograms of the electron energy distributions of(the
ionized free electrons an() residual bound electrons after single
ionization in H" +He collisions at a H energy of 100 keV. The
solid curves are the results of QTMC-EB calculations and the
dashed curves are the results of QTMC-KW calculations.

o, (1077 am?)

lar to those described in Sec. Il C except that the initial
internuclear distancéand minimum final distangewas 20 20 100 1000

a, and the first range of impact parameters wasl.5 E (keV/amu)

([0,0.79 for the extra trajectories run for the double electron

reactions.

The QTMC-EB results for single and double ionization FIG. 10. Cross sections for M&+He collisions. Theoretical
are good, while those for transfer are not quite as good. Thealues are shown by curves: QTMC-K{ghort dashed QTMC-
QTMC-KW method seems to get the single transfer cros&Wx (long dashel] QTMC-EB (solid). See the tables for the en-
section precisely while the QTMC-EB cross section is tooergies at which calculations were actually made and their statistical
|arge at the lower energies' For the double ionization pro.error bars. EXperimentaI values are shown by data points: Shah and
cess, the QTMC-EB method appears to be best at energi&_ilbc’dy [32] (filled c_ircles), Shah, McCaIIion, and Gilbod{33]
higher than the peak, while the QTMC-KWx method seemsilled squarel DuBois[34] (open circles
best at lower energies. That the QTMC-KWXx result is better
than the QTMC-KW result here is probably fortuitous since  Except for the symmetric double electron exchange, the
the KWx modification was made to benefit one-electron proquasiclassical results would certainly provide useful esti-
cesses. mates in the absence of accurate experimental data.

All the quasiclassical methods are much too small for the
double electron transfer. Presumably this failure is due to the
importance of wave-function symmetry in this exactly reso-
nant process. At higher energies 250 ke\) the quasiclas- Cross sections for the two single-electron and three
sical calculations of this double transfer appear to be muckiouble-electron rearrangements possible iA*LiHe colli-
better, but the statistical uncertainty in the Monte Carlosions are shown in Fig. 11, and their error bars are indicated
makes this conclusion equivocal. in Tables X—XIV. In these calculations, the initial internu-

E. Li 3* +He collisions
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TABLE V. Comparison of cross sectior@n units of 1017 cm?) for the electron-transfer reaction

He?™ +He—He™ +He™.
20011(He,He

E (keV/amy v (a.u) Expt.[32] QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 25.731.55 38.0&:2.15 58.38:3.70
50.0 1.42 22.280.30 22.56:1.37 29.26:1.76 32.25-1.48
80.0 1.80 15.180.30 16.25-1.15 19.06:1.45 16.03-0.87
100.0 2.01 11.580.14 13.44-1.07 14.35-1.24 10.86-1.31
200.0 2.84 2.680.02 3.34-0.43 3.710.52 2.25-0.43
400.0 4.02 0.3020.007 0.59-0.17 0.41-0.14 0.22-0.07

TABLE VI. Comparison of cross sectiongn units of 101" cm?) for the single-ionization reaction

He?™ +He—He?" +Het +e.
20021(He,He

E (keV/amy v (a.u) Expt[32]. QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 0.590.34 0.59-0.34 2.67-0.99
50.0 1.42 7.260.31 0.99-0.44 1.54-0.58 12.66:1.15
80.0 1.80 15.250.26 3.29:0.72 6.53-1.06 19.06:1.10
100.0 2.01 18.560.21 4.94-0.84 8.36:1.16 19.42-1.81
200.0 2.84 20.260.30 8.970.65 13.72:0.92 18.13-1.09
400.0 4.02 15.140.21 8.06:0.59 10.88:0.60 12.330.45
800.0 5.68 9.740.14 5.89-0.31 7.49-0.39 7.96£0.40
1000.0 6.35 8.26:0.10 5.01%0.27 6.59-0.35 6.30:-0.37
2000.0 8.98 3.540.25 4.53-0.27 3.270.27

TABLE VII. Comparison of cross sectior@ units of 10" cm?) for the transfer-ionization reaction
He?t+He—Het +He?" +e.

20012(He,He
E (keV/amy v (au) Expt[32]. QTMC-KW  QTMC-KWx  QTMC-EB
25.0 1.00 0.32:0.09 1.0%0.18 1.470.22
50.0 1.42 3.68:0.06 0.89-0.15 1.63:0.24 1.96-0.24
80.0 1.80 2.8%0.06 1.19:0.17 1.76:0.21 1.72:0.21
100.0 2.01 2.360.02 1.48-0.19 2.05:0.23 1.78:0.21
200.0 2.84 0.5180.005 0.7G:0.10 0.72:0.10 0.52:0.06
400.0 4.02 0.042%0.0026 0.140.04 0.14-0.04 0.08:0.02

TABLE VIIl. Comparison of cross sectionén units of 10 *® cm?) for the double-ionization reaction
He** +He—He?" + He?* + 2e.

20022(He,He
E (keV/amy v (au) Expt. [32] QTMC-KW  QTMC-KWx  QTMC-EB
80.0 1.80 3.660.41 0.49-0.35 2.72-1.01 0.25-0.25
100.0 2.01 5.46:0.34 2.970.91 4.45-1.14 2.16:0.74
200.0 2.84 6.530.21 6.35-0.91 7.36:0.96 4.90:0.67
400.0 4.02 3.1%0.11 6.68-0.97 6.49-1.02 4.06:0.48
800.0 5.68 1.0530.047 3.26:0.45 4.33:0.51 1.410.30
1000.0 6.35 0.70F%0.050 2.380.38 3.29:0.45 1.19-0.24

2000.0 8.98 1.180.24 1.24:0.24 0.25:0.11
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TABLE IX. Comparison of cross sectionén units of 108 cm?) for the double-transfer reaction

He?" +He—He+He?*.
20002He,He

E (keV/amy v (au) Expt.[34] 2 QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 14.182.15 23.50-3.19 19.12-2.61
50.0 1.42 61.9, 76.8 12.621.86 15.83-2.14 12.13-1.83
80.0 1.80 6.431.27 7.67:1.55 6.65-1.39
100.0 2.01 135 2.970.84 3.46:0.97 6.19-1.33
200.0 2.84 0.540.27 0.51-0.26 0.19-0.12
250.0 3.17 0.169 0.340.12 0.310.12 0.13-0.08

8Uncertainly in experimental values #515%.

clear distance was 23 and the first range of impact param-
eters wad0,2] ([0,1] for the extra trajectories run for the
double electron reactions

Again the agreement with experiments is generally quite
credible. The calculated double electron transfer cross sec-
tions here agree reasonably well with the experimental val-
ues, so we have some corroboration that the disagreement in
the case of H&" +He—He+He?" is indeed due to the im-
portance of wave-function symmetry there. As in the case of
He?* +He, the QTMC-KWand KW cross sections for
double ionization are considerably too large at the higher
energies; theo,;,, calculated by QTMC-KW seems to be
shifted to higher energies relative to the experimental cross
section. This deviation is somewhat disturbing since the qua-
siclassical description is expected to be valid at these ener-
gies. The QTMC-EBo;,, appears to be in much better
agreement with the experimental determination.

IV. CONCLUSIONS

Two quasiclassical methods — the previously proposed
QTMC-KW and the QTMC-EB approaches — have been
shown to provide useful predictions of single and double
electron rearrangements. The energy regime of validity is
found to be similar to that of the usual CTMC method for
one-electron systems. Even for one-electron systems some
improvement may be obtained by eliminating transfer into
orbitals more deeply bound than allowed by quantum me-
chanics. Quasiclassical approaches are most valid at collision
velocities comparable to those of the target electrong,

a.u., which is also where nonresonant electron-rearrangement
cross sections tend to peak. At lower energies the quasiclas-
sical approach tends to break down because of the impor-
tance of molecular structure effects on the evolution of the
electron density during the collision. In the high-energy
limit, where cross sections are generally too small to be ame-
nable to a Monte Carlo approach anyway, the classical as-
ymptotic dependence may not be quite correct; e.g., classi-
cally the single-ionization cross section falls off a1/

-18 2 - -18 2
o 10 e o (107 ) rtion 107 o) o (10 am?) oy (107 )

instead of (1£)logE [36]. The high-energy behavior of ion- 20 100 1000
ization is dominated by the perturbative contribution, which E (keV/amu)
involves quantal tunneling. FIG. 11. Cross sections for £i +He collisions. Theoretical

The present applications were made to collisions 6f,H \jues are shown by curves: QTMC-KVghort dashed QTMC-
He?*, and Li** with He, for which all the cross sections are kwsx (long dashell QTMC-EB (solid). See the tables for the en-
generally well known experimentally. These comparisonsergies at which calculations were actually made and their statistical
provide guidance for future applications to other systemserror bars. Experimental values are shown by data points: Shah and
where cross sections are unknown. The only dramatic failur&ilbody [32] (filled circles, Knudsenet al. [35] (open circles
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TABLE X. Comparison of cross sectior@n units of 10°1® cm?) for the electron-transfer reaction
Li®*+He—Li?* +He".

300'21(Li,He)

E (keV/amy v (a.u) Expt. [32] QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 3.7#0.23 5.63-0.31 11.46:0.64
50.0 1.42 5.39:0.09 3.13-0.22 4.26-0.29 6.31-0.31
80.0 1.80 3.140.03 2.83-0.21 3.05-0.25 2.79-0.31
100.0 2.01 2.26:0.02 2.28-0.19 2.67-0.23 2.36-0.27
200.0 2.84 0.4790.004 0.65-0.08 0.74-0.12 0.56-0.10
400.0 4.02 0.18:0.03 0.07:0.03 0.06-0.03

TABLE XI. Comparison of cross section@n units of 1016 cm?) for the single-ionization reaction
Li®*+He—Li®" +He" +e.

300°31(Li,He)

E (keV/amy v (a.u) Expt. [32] QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 <0.02 0.04-0.04 0.07-0.05
50.0 1.42 0.580.06 0.07-0.05 0.1}-0.08 1.74-0.24
80.0 1.80 2.030.07 0.28-0.09 0.88-0.18 2.88-0.18
100.0 2.01 2.720.12 0.54-0.12 0.99-0.18 3.06-0.28
200.0 2.84 3.520.12 1.42-0.12 2.17:0.18 3.05:0.21
400.0 4.02 1.380.10 1.74-0.10 2.310.13
800.0 5.68 1.140.06 1.33:0.07 1.47-0.08
1000.0 6.35 0.970.05 1.17-0.06 1.24-0.07
2000.0 8.98 0.780.05 0.84-0.05 0.75-0.05

TABLE XII. Comparison of cross section@ units of 10 *” cm?) for the transfer-ionization reaction
Li®*+He—Li?"+He" +e.

300’21(Li,He)

E (keV/amy v (a.u) Expt. [32] QTMC-KW QTMC-KWx QTMC-EB
25.0 1.00 1.76:0.29 4.18-0.51 3.40-0.40
50.0 1.42 6.16:0.13 3.17-0.38 5.37:0.55 4.32-0.44
80.0 1.80 6.640.10 3.78-0.40 5.01-0.47 4.07-0.25
100.0 2.01 6.08:0.11 3.08-0.36 5.81-0.50 4.37-0.28
200.0 2.84 2.1%0.04 2.74-0.23 2.810.23 2.43-0.23
400.0 4.02 0.5£0.10 0.48-0.10 0.42-0.09
800.0 5.68 0.16:0.03 0.07-0.02 0.03-0.02

TABLE XIIl. Comparison of cross sectionén units of 10 *® cm?) for the double-ionization reaction
Li®* +He—Li 3"+ He?* + 2e.

300'32(Li,He)

E (keV/amy v (a.u) Expt. [32] QTMC-KW QTMC-KWx QTMC-EB
80.0 1.80 5.540.31 0.44-0.44 1.32-0.98 2.30-0.63
100.0 2.01 9.08:0.60 0.44-0.44 2.64-1.24 2.21-0.88
200.0 2.84 19.260.80 8.65-1.36 16.611.92 11.74-1.58
400.0 4.02 14.511.98 18.612.31 13.431.82
800.0 5.68 10.381.05 12.88-1.21 5.54-0.74
1000.0 6.35 7.920.86 9.06-0.95 4.84-0.71

2000.0 8.98 3.960.58 4.46-0.61 1.670.38
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TABLE XIV. Comparison of cross sectionén units of 101" cm?) for the double-transfer reaction
Li®* +He—Li " +He?".

300'12(Li,He)

E (keV/amy v (a.u) Expt. [32] QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 4.620.46 6.51-0.63 4.56-0.47

50.0 1.42 2.820.04 4.44-0.40 6.23:0.54 4.45-0.41

80.0 1.80 2.240.04 3.48-0.35 4.31+0.43 2.54-0.20

100.0 2.01 1.660.03 3.03£0.32 2.55-0.32 2.25:0.21

200.0 2.84 0.23%10.015 0.330.09 0.35£0.09 0.210.07
was for resonant double electron transfer in’fHe He col- The QTMC-EB method gives more accurate cross sec-
lisions where wave-function symmetry is expected to play artions than the QTMC-KW method in most cases, but this
essential role. improvement has been bought with a price. QTMC-EB is not

The two great selling points of the QTMC methods @je  as “ab initio” as QTMC-KW. It cannot predict atomic bind-
their ease of use andi) the consistent and simultaneous ing energies like the KW approach. On the other hand, there
treatments of all electron rearrangements. The regime gk some advantage to this less-ambitious approach in that the
greatest utility is expected to be at intermediate energieginding energies can be specified hoc Atomic binding
where all the processes tend to have significant cross segnergies are accurately known from quantum-mechanical
tions, electronic continua are important, and quantuMgaicylations, and it is the collisional dynamics with these
mechanical b_aS|s-set meth_ods are slowly convergent. rgets that sometimes still remains perplexing. Some im-
methods are intended as simple tools for understanding a ovement in the QTMC-KW cross sections was obtained by
visualizing dynamic mechanisms as well as for calculatin modification, designated QTMC-KWXx, in which tiepa-
useful cross sections, but not as vehicles for high-precision - : Ny . )
tests. The methods can lend some qualitative guidance 1Eopameter was adjusted to give the quasiclassical helium atom

: : : ts accurate ionization potential.
but certainly will not supplant, quantum-mechanical devel-' .
opments y PP q Another advantage of the QTMC-EB approach is that the

Quasiclassical methods employed in the gasentioned f[arget is dy_namic; i.e., the grognd-state electrons hav_e v_eloc-
in Sec. ) for helium targets, which achieved stability by 'Y @nd notjust momentum as in the QTMC-KW description.
considering one-electron subsystems or neglecting electroyelocity matching was expected to be important in some
correlation[10,11,13,18 also obtained fairly accurate cross electron-transfer processes. However, the results seem to in-
sections for single charge transfer and single ionization aflicate that the KW effective momentum generally provides
E=100 keV/amu. A method that achieved limited stability an adequate description even though it is not simply related
via circular orbits for the electrongl 4] is in agreement at to a velocity. In any event, this feature is not of great concern
E=1000 keV/amu. Only the paper of Wetmore and Olsonto ionizing processes, where QTMC-KW has already proved
[16], which neglected the electron-electron force, gave deto be useful21,22.
tailed results for the two-electron processes {ion, T 2ion» The full advantage of the EB flexibility was not required
and o o). Their results foroy o, are comparable with the in the present calculations on the helium atom since for this
present results in the cases of Heand Li** projectiles but  atom there are only two electrons in the same subshell. In
are much too small for the H projectile(as are the KW and  general, the EB approach would allow each subshell to be
KWHx results in the present workTheir results foroy,, are  assigned its own energy bound; again there would be a price
not as good. Their results far,, are very good for Li*,  to be paid — here loss of fully identical treatment of all
and are not given for He" for which no classical method is electrons. Further development of the EB approach is needed
expected to be valid. Other than accuracy considerations, &@r the general many-electron situation. The present stage of

advantage of the present methods over these earlier agayelopment seems to extend the proved utility of the CTMC
proaches are their generality in treating the full interaction§yetnod to at least two-electron targets.

of all electrons.
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