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A quasiclassical-trajectory Monte Carlo~QTMC-EB! model is proposed to extend the classical-trajectory
Monte Carlo~CTMC! method to targets having more than one electron. Quasiclassical stability is achieved via
constraining potentials that enforce lowerenergy boundson the one-electron dynamics. Cross sections for all
possible electronic rearrangements~single and double electron transfer, single and double ionization, and
transfer ionization! in H11H, H11He, He211He, and Li311He collisions are calculated with this model
and with the previously proposed model~QTMC-KW! of Kirschbaum and Wilets@Phys. Rev. A21, 834
~1980!#. The results are compared with accurate experimental data. The regime of validity for the two-electron
targets is found to be similar to that of the usual CTMC model for one-electron targets.
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PACS number~s!: 34.10.1x, 34.70.1e, 34.50.Fa, 03.65.Sq

I. INTRODUCTION

Since being introduced by Abrines and Percival@1#, the
classical-trajectory Monte Carlo~CTMC! method has en-
joyed numerous successes where quantum-mechanical meth-
ods are difficult to apply. The greatest use has been for ion-
atom collisions@2# at intermediate energies (v;1 a.u.!. Here
quantum-mechanical close-coupling calculations are limited
in practice by basis-set incompleteness and are complicated
by translational factors if electronic momentum is to be con-
served. The CTMC method has also been useful for colli-
sions of heavy negative particles~e.g.,m2 or p̄) with atoms
@3#, even at low energies (v!1 a.u.!, where electronic con-
tinua are crucial. Time-dependent quantal methods@4,5# can
in principle treat both types of problems, but they have not
yet proved capable of providing the numerous cross sections
that are required in many applications. Such methods are
limited by finite-boundary conditions, and the most used
method of this type — time-dependent Hartree-Fock~TDHF!
theory — neglects correlation, which turns out to be essential
in exotic atom formation@6,7#.

The CTMC description1 is rigorously justified by the cor-
respondence principle for reactions of high Rydberg orbitals
@1,9#, but has been demonstrated by years of experience to be
practically accurate for many applications to ground and low
excited states as well@2#. This success may be partially at-
tributed to precise obedience of all conservation laws and
treating the dynamics, albeit classical, exactly.

Thus far, this advantage has generally been limited to
one-electron systems since multielectron atoms are classi-
cally unstable with respect to autoionization. Some useful
calculations have been managed on multielectron systems by
invoking additional approximations such as~i! treating the
atom as a one-electron system with an effective charge@10#
or a model potential@11#, and sometimes expressing the mul-
tielectron cross sections as combinations of probabilities

from single-electron atoms~the independent-electron model!
@12,13#, ~ii ! choosing special initial conditions like the Bohr
model of the helium atom and looking at fast collisions only
at short times before autoionization can occur@14#, or ~iii !
neglecting the electron-electron interactions that allow auto-
ionization @15,16#.

A bold different approach was proposed by Kirschbaum
and Wilets~KW! @17#. They added effective potentials,VH
andVP , motivated by the Heisenberg and Pauli principles,
to the pure Coulomb interparticle potentials describing the
atom. These potentials~applied tor i3pi with respect to the
nucleus forVH and tor i j3pi j between electronsi and j for
VP) serve to prevent classical collapse by excluding the elec-
trons from quantum-mechanically forbidden regions of phase
space. The resulting quasiclassical states cannot autoionize,
and the stability does not depend on any special configura-
tion of coordinates and momenta. A remarkable feature of
this approach is that ground-state energies can be obtained
by minimizing the energy functional corresponding to the
effective Hamiltonian. It has been shown that this simple
ansatzdetermines total energies for all atoms with surprising
accuracy@18#. The resulting atoms exhibit a shell structure
though it is not always in agreement with the structure of the
actual atoms. A discomforting feature is that these ground
states are ‘‘crystalline;’’ i.e. the velocitiesvKW5drKW /dt in
the ground state are zero though the momenta are not~so
pKWÞmvKW).

The success of the QTMC-KW model2 for atomic struc-
ture is encouraging, but it is for collisions where such a
method is practically needed. In particular, it is desirable to
have a method that consistently treats electron transfer and
ionization as well as multiplicities and combinations of these
processes. Such a unified treatment is easily provided by
solution of classical equations of motion and will be useful
provided the effective Hamiltonian realistically represents
the requisite physical forces at work. Here we may have
some concern about the QTMC-KW model. For example, it

1The CTMC method has also been much used for rotationally
inelastic atom-molecule collisions on adiabatic potential surfaces.
Quantum-mechanical calculations, e.g., Vesovicet al. @8# recently,
have confirmed the accuracy of those cross sections.

2~Quasi!classical-trajectory Monte Carlo methods belong to a
class referred to as ‘‘molecular dynamics,’’ and QTMC-KW is
sometimes called ‘‘Fermi molecular dynamics.’’
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is well known that velocity matching can play an important
role in electron-transfer processes@19#, but a ground-state
KW target has no internal motion. This feature is not neces-
sarily fatal sincepKWÞmvKW , but needs careful investiga-
tion. Another concern is that the constraint potential is still
significant in a target ground state@18# ~e.g.,VH50.09Etot
for He!. Of course, it has to be significantly repulsive to
prevent access to quantum-mechanically forbidden regions,
but its effect on particle motions in allowed regions also
needs to be investigated.

Until now the QTMC-KW method has not been carefully
tested for collisions, though one limited application was very
encouraging@20#. The method has also been applied to mul-
tielectron atoms in strong fields@21,22# and to formation of
antiprotonic helium@23#.

The objectives of the present work are twofold:~i! apply
QTMC-KW to diverse cross sections that are now known
accurately from experiments and~ii ! present a model that
avoids the concerns mentioned in the above paragraph. Our
model is not as ambitious as the KW model in that it makes
no attempt to determine ground-state energies independently.
However, it is closer in spirit to the original CTMC method
of Abrines and Percival@1#, which was to do purely classical
mechanics on a microcanonical ensemble of target atoms
~i.e., a random phase-space distribution on the energy shell
of the actual quantum-mechanical atom!. There is no con-
straint other than energy on the initial condition. For the H
atom in CTMC with a pure Coulomb potential, this distribu-
tion can be achieved by a simple sampling of certain statis-
tically independent and uniformly distributed variables
@1,9,24#. For multielectron and non-Coulomb atoms, such a
choice of analytic variables is not known, but the sampling is
still easily achieved on a computer by choosing all the phase-
space variables at random andthentesting to see if they yield
an energy on~or sufficiently close to! the energy shell of the
entire atom. But this is a straightforward numerical problem;
the fundamental problem is stability.

In the proposed method, stability is enforced by a con-
straint on the energies instead of the phase-space variables.
Other electrons are not allowed to become so bound that
some electron can gain escape energy. The lower bound is
imposed on the one-electron energies and is significantly
lower than the average electron energy, so that the effective
potential implementing it affects the electron motions only
when they try to venture into an autoionizing configuration.
Hence for theisolatedhydrogen atom, with only one elec-
tron, the motion is never affected and the velocity of the
electron is the same as in CTMC. The new method will be
termed QTMC-EB for energy-bounded QTMC.

The present applications will be limited to two-electron
targets~andp1H collisions, which apparently have not been
published previously for the QTMC-KW model!. Fortunately
there exist benchmark experimental data for H1, He21, and
Li 31 collisions with He resulting in single and double elec-
tron transfer, single and double ionization, and transfer ion-
ization.

II. QUASICLASSICAL-TRAJECTORY MONTE CARLO
„QTMC … METHODS FOR MULTIELECTRON

TARGETS

The formulation of the quasiclassical Hamiltonians and
the initial ground-state configurations will be described in

Secs. II A and II B, respectively. The formulation and nu-
merical solution of the equations of motion and the extrac-
tion of final states are the same in either case and will be
discussed in Sec. II C.

A. Kirschbaum-Wilets „KW … approach

Our QTMC-KW application follows the original prescrip-
tion of Kirschbaum and Wilets@17#. The associated quasi-
classical Hamiltonian adds constraining potentials,VH and
VP , motivated by the Heisenberg and Pauli principles, to the
actual physical HamiltonianH0 . Thus

HKW5H01VH1VP ~1!

where

H05T1VCoul. ~2!

For an atom~or ion!-atom collision, in space-fixed coordi-
nates for simplicity, the kinetic energy, as usual, is
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where rab5rb2ra (a,b5a,b,1,2, . . . ). Theextra terms,
representing nonclassical constraints, are
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where the relative momenta are
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anddsi ,sj51 if the spins of theith andjth electrons are the
same and 0 if they are different. The constraining potentials
are chosen of the form

vc~r ,p!5
~jc\!2

4acr
2m

expH acF12S rpjc\
D 4G J ~8!

(c5H or P), wherem is the reduced mass andac is a
hardness parameter determining how abruptly the constraint
rp>jc\ is enforced.3 Note that asymptotically (r ab→`)

3The prefactor in Eq.~8! is chosen such that (]/]p)@(p2/2m)
1vc(r ,p)]50 for the pair of particles whenrp5jc\ @25#.
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HKW is invariant under separate rigid-body rotations of the
rg i andpg i with respect to nucleusg. We have neglected the
spin of the nuclei and its possible effect in the case of iden-
tical nuclei.

The energy functional~1! can be minimized to determine
ground-state energies. This was done in Ref.@18# for atoms
and ions up toZ538. By using the scaled value

jc5jc
`S 11

1

2ac
D 21/2

, ~9!

wherejH
`51.0 andjP

`52.767, it was found that the energies
depend only weakly on the hardness parameterac as long as
it is not too small. Hence the choice ofac is based largely on
numerical considerations and the physical information re-
sides mostly in thejc’s. In the present workac54 was used
~except for sensitivity studies!. This value is slightly smaller
than the valueac55, used in Ref.@18#, but makes the nu-
merical integration a little easier.

It is possible to take different values ofjH for each
nucleus. For processes involving only one transferred elec-
tron, this flexibility may enable better results; however, for
processes involving more electrons it might be considered
inconsistent since it could result in different treatments of
isoelectronic systems. This effect will be examined in Sec.
III B.

The KW ground state is described by fixed values ofr
andp. It is invariant under independent rigid-body rotations
but is otherwise thought to be nondegenerate. Following the
original prescription of Abrines and Percival@1#, we always
assume that, once the Hamiltonian has been defined, the mi-
crocanonical distribution~random in phase space on the en-
ergy shell! is the appropriate physical choice@9#. There are
compelling physical reasons for this choice, especially if the
motion is ergodic, and it avoids any bias. Thus the correct
Monte Carlo sampling of KW initial conditions is obtained
by performing random Euler rotations of any ground-state
configuration. In general, numerical minimization@18# is re-
quired to find the ground-state configuration and energy, but
the one- and two-electron cases can be solved analytically
@17#. For the one-electron atom

r g1
~0!5S 11

1

2aH
D @jH~g!#2
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~10a!

and
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~0!5jH~g!/r g1

~0! . ~10b!

For the two-electron atom
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~0!5S 11

1
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~0! , ~11b!
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~0! . ~11d!

B. Energy-bounded„EB… approach

In the QTMC-EB approach, the quasiclassical potential
includes terms placing lower bounds on the one-electron en-
ergies ignoring all other electrons. The bounds are low
enough that the electron motions in the ground state are little
affected, but high enough that autoionization is precluded.
As in the KW approach, the bound is introduced numerically
with a repulsive potential.

This quasiclassical Hamiltonian for an atom~ion!-atom
collision is

Heb5H01Veb, ~12!

whereH0 is the same as in Eq.~2!. The constraint potential
is

Veb5 (
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(
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Instead of the constraint being applied to the productrp as in
the KW approach it is applied to the one-electron Coulomb
energy

ECoul5
1

2m
p22

Zge
2

r
. ~15!

In the limit G→0, this one-electron energy is bounded
from below by exactly the constantE0

(g) . For finite G, the
constraint is softened but still provides an absolute lower
bound, which in turn, as long as it is not too low, implies
absolute stability of the multielectron atom with respect to
autoionization~of course, collisional or field ionization can
still occur!. In the same vein it can be seen that, for a one-
electron atom bound by energy 0.Eb.E0 , the constraint
will have no effect on the dynamics for sufficiently small
G. In practice,G is chosen reasonably small but not so small
as to create problems with the numerical integration.

The constantsE0
(g) are different for different nuclear

chargesZg , but are perhaps best thought of as depending on
a singleparameter characterizing the lowest one-electron en-
ergy allowed relative to the actual binding energy. For this
purpose it is useful to ask what is the lowest energy, includ-
ing the constraint but ignoring all other electrons, that an
electron can ever reach. The energy including constraint is

E5ECoul1
Z

r
e~E02ECoul!/G

5ECoul1~ 1
2 p

22ECoul!e
~E02ECoul!/G. ~16!

Since the term inp2 is positive definite, the minimum energy
possible is
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Emin5min$ECoul~12e~E02ECoul!/G!%, ~17!

where we now regardECoul as a variable that can take any
value. Figure 1 shows the value ofEmin , along with the
value ofECoul when it is achieved, as a function ofE0 . This
figure is drawn forG50.3 a.u., but it is obvious from Eq.
~17! that the same curves would apply ifEmin /G and
ECoul/G were plotted as a function ofE0 /G.

For the present work we have found it satisfactory to
chooseE0 such that the lowest one-electron energy allowed
classically is;0.5 a.u. lower than the quantum-mechanical
ground state of the one-electron system. Specifically we use
E0~H!522.0 a.u.,E0~He!523.4 a.u., andE0~Li !526.1
a.u., with G50.3 a.u. in all cases. These choices yield
Emin~H!521.22 a.u.,Emin~He!522.44 a.u., andEmin~H!5
24.94 a.u., which are 0.72, 0.44, and 0.44 a.u. lower than
the true binding energies of H, He1, and Li21, respectively.
The sensitivity to these choices will be examined in Sec.
III B. The parameterG, like ac in the KW formulation, is
chosen largely from consideration of the ease of numerical
integration, andE0 , like j in the KW formulation, is modi-
fied to compensate for its finite value.

Sampling the microcanonical ensemble to find initial con-
ditions requires more effort than in the KW case. Even for
the one-electron system it is necessary to do the sampling by
trial and error~though we do not claim to have proved that
analytic procedures do not exist for special cases!. We used
the numerical procedure described in Ref.@26#. Basically it
consists of randomly choosing a complete set of variables
from a prescribed region of phase space, calculating the re-
sulting energy, and checking to see if it falls within some
Gaussian profile about the desired energy. If so, it is accepted
and a slight renormalization is applied to make the energy

exact; if not, it is rejected. The region of phase space
sampled is sufficiently large that it is highly unlikely that a
random point outside the region would produce an accept-
able energy. For H, the uniformly sampled region~in a.u.!
was r 2P(0,4), p2P(0,16) with a width of 0.025 about the
target energy of20.5 a.u. For He, the sampled region was
r 2P(0,4), p2P(0,12.96) for each electron with a width of
0.1 about the target energy of22.9 a.u. The resulting list of
initial conditions can be saved for use in all trajectory calcu-
lations, but, even so, this procedure might be too time con-
suming for many-electron targets. It is likely that a more
efficient, yet still statistically valid, procedure could be de-
veloped.

C. Treatment of the dynamics

This section will be brief since, once the effective Hamil-
tonian is defined and the initial coordinates and momenta
selected, the treatment is the same as in previous CTMC
calculations. The calculations proceed in three steps:~i!
choose initial conditions,~ii ! integrate Hamilton’s classical
equations of motion, and~iii ! test asymptotic trajectory for
final state.

The selection of the initial atomic configurations was dis-
cussed in Secs. II A. and II B. In addition, an impact param-
eter must be chosen by uniform sampling ofb2

P@(bi
min)2,(bi

max)2#. Our procedure was to do the calculation
with a few ranges of impact parameter, starting with
b1
min50; typically 3–4 ranges contributed. The number of
trajectories in the first range, up to some maximum, was
determined by a relative accuracy criterion on the totalreac-
tive cross section. The number of trajectories, again up to
some maximum, in subsequent ranges was determined by the
accuracy actually achieved up to that point. This procedure is
efficient since usually the reactive probability decreases as
b increases, and it will subsequently not be possible to im-
prove the relative accuracy much anyway. The advantages of
this procedure over doing all in a single range are that the
maximum impact parameter does not have to be chosen in
advance and fewer trajectories need be run in the less impor-
tant regions.

Hamilton’s equations were solved in a barycentric coor-
dinate system after eliminating the overall center-of-mass
motion. This formulation, which has previously been de-
scribed in detail for the four-body system@15#, eliminates six
variables from the set of ordinary differential equations. The
price paid is the extra complexity of the resulting coordinates
and the necessity of transformations between different bary-
centric coordinate systems~three for the four-body problem!.
For more than four bodies it will probably be more practical
to integrate the equations in space-fixed coordinates.

The ODE’s were integrated with the same subroutine used
in all our previous CTMC work@3# ~sixth-order hybrid
method of Gear!. There may well exist more suitable inte-
grators for this problem. The constrained trajectories, of ei-
ther the KW or EB variety, are somewhat more difficult to
integrate than pure Coulomb classical trajectories. The inte-
gration is made more difficult for largeac ~in QTMC-KW!
or smallG ~in QTMC-EB!. The automatic time step tends to
become small in highly constrained regions and was not al-
lowed to fall below some specified minimum value. None-

FIG. 1. Minimum energy,Emin ~solid curve!, reachable in Eq.
~16! and the corresponding value ofECoul ~dashed curve! as a func-
tion of the parameterE0 for fixed G50.3 a.u. Note@see Eq.~17!#
that the same curves would apply for allG if both axes were divided
by G.
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theless the integrator failed very rarely, and all conservation
laws, including energy and angular momentum, were gener-
ally fulfilled quite accurately. Still more demanding tests,
made occasionally, indicated that most of the trajectories
could be back-integrated with meaningful accuracy.

The trajectories were integrated long enough that the final
state could be definitely identified by checks on relative dis-
tances, relative velocities, and internal and relative energies
@3#. After accumulation of the results of the trajectories, the
cross section for a reactionR is given by

sR5(
i

sR
~ i ! ~18!

in terms of the partial cross sections

sR
~ i !5

Ni
~R!

Ni
tot p@~bi

max!22~bi
min!2#, ~19!

whereNi
(R) is the number of trajectories in whichR occurred

out of the totalNi
tot trajectories run withbP@bi

min ,bi
max#. The

standard statistical error insR is

DsR5S (
i

~DsR
~ i !!2D 1/2 ~20!

in terms of the error in each interval,

DsR
~ i !5sR

~ i !SNi
tot2Ni

~R!

Ni
totNi

~R! D 1/2. ~21!

The total number of trajectories,Ntot5( iNi
tot , varied from

about 500 to 5000 for collisions with the helium atom~even
more were used for H11H collisions!.

III. RESULTS

Cross sections have been calculated for all electron rear-
rangements occurring in collisions of H1, He21, and Li31

ions with the helium atom, as well as for the H11H colli-
sion to compare with normal~unconstrained! CTMC. In
comparing the Monte Carlo results with each other and with
experimental results, it is important to take into account the
statistical error bars. The quoted error bars are one standard
deviation; differences and anomalies amounting to less than
two standard deviations should generally be disregarded. In
some cases where such deviations appeared, additional tra-
jectories were run to improve the statistics and allow conclu-
sions to be reached.

For collisions with the helium atom, the QTMC-KW cal-
culations were done two ways:~i! with j~He!5j~H! and~ii !
with j~He!51.0844j~H!.4 The latter gives the ionization po-
tentials of both H and He correctly while the former gives
IP~He!528.9 eV instead of the true value of 24.6 eV. While
this alteration may be expected to be beneficial for single
ionization, it might be expected to have the opposite effect

for double ionization since the effect is to alter the correct
second ionization potential of He from the true value of 54.4
eV to 46.3 eV. The modified KW procedure will be desig-
nated QTMC-KWx.

A. H 11H collisions

The proton-hydrogen atom reaction was the first treated
by electronic CTMC and is still a requisite test case for
new methods. However, it seems not to have been presented
in published QTMC-KW calculations. The CTMC,
QTMC-KW~a54, j50.9428! and QTMC-EB„G50.3,
E0~H! 522.0… calculations, along with experimental mea-
surements are shown in Fig. 2 for electron transfer and ion-
ization. A large number of trajectories were run here so the
statistical error bars~not shown for clarity! are small.

The CTMC and QTMC-EB results are quite close, thus
confirming that the stated philosophy of staying close to
purely classical dynamics, even while maintaining quasiclas-
sical stability, has been realized. As a test, calculations were
also performed in the limitE0→2` ~actually 2106 a.u.!
and agreed precisely with CTMC~within statistical error! as
they should by construction of the potential. The QTMC-KW
results are also similar — the peak ins ion is somewhat
shifted to higher energies but is in qualitatively similar
agreement with the experimental results.

Kerby et al. @27# have interpreted the CTMC underesti-
mation of the ionization cross section at energies below the
peak as due to classical suppression of low-energy backward
electrons. The rather poor description of electron transfer at
low energies is due to inadequate classical description of the
symmetric molecular states that serve as intermediaries in
this transition.

4The subscriptH on j will be henceforth dropped since onlyjH is
involved in the descriptions of the hydrogen atom or singlet helium
atom.

FIG. 2. Electron-transfer and ionization cross sections for
H11H collisions. Theoretical values are shown by curves: CTMC
~dotted!, QTMC-KW ~dashed!, QTMC-EB ~solid!. Experimental
values are shown by data points: Shah and Gilbody@29# ~filled
circles!, Shah, Eliott, and Gilbody@30# ~filled squares!, McClure
@31# ~open circles!.
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B. Sensitivity studies

In this section the sensitivities of the electron-transfer and
ionization cross sections to the parameters of the constrain-
ing potentials will be examined. The H11He collision at
projectile energy 100 keV (v52 a.u.! will be taken as a
typical example.

In Figs. 3 and 4, the sensitivities of the QTMC-KW re-
sults toj anda, respectively, are shown. It is evident that
s ion is quite sensitive toj while s tr is not. The sensitivity of
s ion is to be expected since the atomic binding energy is
inversely proportional toj2 and the size of the atom is pro-
portional to j2. The insensitivity ofs tr to j is somewhat
surprising. In this test thej values for both atoms were var-
ied, i.e.,j~He!5j~H!. In calculations where onlyj~He! was
changed~the KWx model — see Sec. II A!, s tr was more
affected.

The sensitivity toa, shown in Fig. 4, is considerably less.
It is important to note that in this calculation the correspond-
ing j was simultaneously scaled according to Eq.~9! to
maintain the same atomic binding energy and size. These
results tend to confirm our interpretation ofj as a physical
parameter anda as a numerical-implementation parameter.
The valuea54 appears to be a reasonable compromise be-
tween numerical good behavior and implementation of the
constraint, althougha53 or a55 would appear to be quite
acceptable as well.

In Figs. 5 and 6 the sensitivities of the QTMC-EB results
to its parameters,E0~He! andG, are shown. The effects of
E0 andG in the QTMC-EB model are analogous to those of
j and a, respectively, in the QTMC-KW model~although
the units are different!. The ionization cross section is fairly
sensitive toE0 . The reason for the increase ins ion as
E0~He! becomes more negative can be understood in terms
of its effect on the phase-space distribution of the two-
electron system. When one electron is allowed to become

deeply bound the other electron becomes weakly bound
since the total energy is conserved. Such a weakly bound
electron is easily ionized. Of course, this amounts to just
lifting the constraint; as can be seen from Fig. 1, for
E0~He!523.9 ~andG50.3! autoionization could occur. Fig-
ure 5 suggests thatE0 should be chosen such that the ener-
gies of the two electrons in the isolated atom are not allowed
to become too different — the sensitivity on this side of the
figure is much less.

The sensitivity toG, like that to a in the QTMC-KW
model, is much weaker. Here it is important to note that the
correspondingE0 has been adjusted so thatEmin ~see Fig. 1!

FIG. 3. Sensitivity of the transfer~circles! and ionization
~squares! cross sections to the parameterj in the QTMC-KW
model for p1He collisions at proton energy 100 keV. The filled
points are at the value ofj generally used.a54 in these calcula-
tions. The error bars indicate one standard deviation of the Monte
Carlo calculations. The lines connecting the points are just meant to
guide the eye.

FIG. 4. Sensitivity of the transfer~circles! and ionization
~squares! cross sections to the hardness parametera in the
QTMC-KW model forp1He collisions at proton energy 100 keV.
The filled points are at the value ofa generally used. Note that the
corresponding value ofj has been adjusted in each case to give the
correct energy of the H atom.

FIG. 5. Sensitivity of the transfer~circles! and ionization
~squares! cross sections to the parameterE0~He! in the QTMC-EB
model for p1He collisions at proton energy 100 keV. The filled
points are at the value ofE0~He! generally used.G50.3 a.u. was
used in all these calculations.
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is the same for all values ofG. This is analogous to the
adjustment ofa discussed above. These results confirm our
interpretation ofE0 as a physical parameter andG as a
numerical-implementation parameter.

Finally we examine the sensitivity to the value ofE0
taken for the projectile ion. The results are shown in Fig. 7

for H11He, He211He, and Li311He, all for projectile-ion
energy of 100 keV/amu. So that the abscissa will be sensibly
comparable for all three systems,E0 has been shifted on the
plot byE0

0 , whereE0
0 is the highest value ofE0 that will still

allow the transferred electron to reach the ground state on the
projectile. Namely,E0

0~H!521.075,E0
0~He!522.909, and

E0
0~Li !525.631, which allow minimum energies of20.5,

22.0, and24.5 a.u., respectively~see Fig. 1!. It can be seen
that only the electron-transfer cross section for H11He col-
lisions is sensitive to the target parameterE0 . This sensitiv-
ity arises because the ground-state electrons in H and He
have similar velocities and electron-transfer cross sections
tend to peak when the velocities match. Classically the
ground state is characterized by a range of energies, which
must extend somewhat below as well as above the quantized
energy@28#. In Sec. III C we will see that the QTMC-KW
model underestimates the H11He→H1He1 transfer cross
section, presumably because lower energies are excluded.

FIG. 6. Sensitivity of the transfer~circles! and ionization
~squares! cross sections to the hardness~width! parameterG in the
QTMC-EB model forp1He collisions at proton energy 100 keV.
The filled points are at the value ofG generally used. Note that the
corresponding value ofE0~He! has been adjusted in each case to
give the same lower bound on the He atom.

FIG. 7. Sensitivity of the transfer~circles connected by solid
curves! and ionization~squares connected by dashed curves! cross
sections to the parameterE0 of the projectile ion in the QTMC-EB
model for H11He, He211He, and Li311He collisions at projec-
tile energy 100 keV/amu. TheE0 axis has been shifted in each case
by E0

0 , the value ofE0 that just allows the ground-state energy of
the projectile with one electron to be reached. The filled points are
at the values generally used.

FIG. 8. Cross sections for H11He collisions. Theoretical val-
ues are shown by curves: QTMC-KW~short dashed!, QTMC-KWx
~long dashed!, QTMC-EB ~solid!. See the tables for the energies at
which calculations were actually made and their statistical error
bars. Experimental values are shown by data points: Shah and Gil-
body @32# ~filled circles!, Shah, McCallion, and Gilbody@33# ~filled
squares!.
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C. H11He collisions

Cross sections for electron transfer (s tr or 10s01), ioniza-
tion (s ion or 10s11), transfer ionization (s tr1ion or 10s02),
and double ionization (s2ion or 10s12) in H

11He collisions
are shown in Fig. 8 and tabulated including error bars in
Tables I–IV. In these calculations the initial internuclear dis-
tance was 15a0 and the impact parameter ranges~in a0) were
@0,1#, @1,A2#, @A2,2#, . . . until convergence was obtained.
Target relative accuracy was 5% of the total reactive cross
section or 200 trajectories per impact-parameter interval,
whichever was reached first. In some cases, especially at the
higher energies, higher accuracy was sought with larger
numbers of trajectories~as can be inferred from the statistical
error bars!. The double-electron reactions have smaller cross
sections and generally occur in collisions at smaller impact
parameters. In order to obtain them with better accuracy,
additional calculations were made with impact parameter
ranges@0,0.5#, @0.5,0.5A2#, @0.5A2,1#, . . . with the con-
vergence criterion applied only to the double-electron reac-
tions. The trajectories were integrated to a distance — at
least 15a0 — where the final state could be conclusively
identified.

The QTMC-EB method provides a good description of all
four H11He cross sections, including the single electron
transfer even at the lowest energies treated. The QTMC-KW
method does fairly well for ionization but greatly underesti-
mates the transfer reactions. The QTMC-KWx variation of

QTMC-KW, in which thej~He! parameter has been modi-
fied to give the first ionization potential correctly, does better
for the one-electron processes, but still underestimatess tr .

Potentially one of the most useful capabilities of quasi-
classical methods may be their ease of treating multielectron
rearrangements. The QTMC-EB method gives both the
transfer ionization and double ionization cross sections fairly
accurately. One may note in the double ionization cross sec-
tion that there appears to be a ‘‘glitch’’ at;100 keV. This
feature occurs in both the experimental and theoretical cross
sections. However, the agreement is not really persuasive
since there are glitches in other theoretical cross sections that
do not show up experimentally.

Energy histograms for the ionized free electron and the
residual bound electron after single ionization are shown in
Figs. 9~a! and 9~b!, respectively, for the QTMC-EB and
QTMC-KW calculations. The EB and KW electron-energy
distributions are similar, except that the KW peak for the
residual He1 electron at22.0 a.u. is smeared out in the EB
calculation. As usual in quasiclassical calculations, effective
quantum numbers have to be assigned to ranges of energies
@28#.

D. He211He collisions

Cross sections for electron transfer (s tr or 20s11), ioniza-
tion (s ion or 20s21), transfer ionization (s tr1ion or 20s12),
double ionization (s2ion or 20s22), and double transfer (s2tr
or 20s02) in He211He collisions are shown in Fig. 10 and
tabulated in Tables V–IX. The initial conditions were simi-

TABLE I. Comparison of cross sections~in units of 10217

cm2) for the electron-transfer reaction H11He→H1He1.

Ep

~keV!
v

~a.u.!

10s01~H,He!

Expt @32#. QTMC-KWQTMC-KWxa QTMC-EB

25.0 1.00 2.6460.34 6.8260.66 19.6361.46
50.0 1.41 2.5560.32 5.1060.59 9.1960.80
80.0 1.79 4.6560.23 1.8560.29 2.6460.35 4.6260.53
100.0 2.00 2.7260.10 1.3460.11 2.0260.31 2.8060.16
200.0 2.83 0.36560.004 0.2660.11 0.1860.09 0.3160.11
400.0 4.00 0.022260.0010 0.0760.03 0.0660.03 0.0660.02

aWith x~He! modified to give accurate first ionization potential of
He.

TABLE II. Comparison of cross sections~in units of 10217

cm2) for the single-ionization reaction H11He→H11He11e.

Ep

~keV!
v

~a.u.!

10s11~H,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 0.9260.20 1.3260.23 4.6160.73
50.0 1.41 2.4660.34 4.2760.46 6.2660.72
80.0 1.79 8.3260.13 3.6160.39 5.5060.49 7.8760.73
100.0 2.00 8.4360.18 4.1560.18 5.9860.50 7.7260.30
200.0 2.83 6.9360.17 4.1360.36 6.2060.48 6.9160.53
400.0 4.00 4.4160.09 3.3460.17 4.1260.21 4.0060.21
800.0 5.66 2.6760.03 2.2460.14 2.6660.16 2.1760.14
1000.0 6.33 2.2660.08 2.0260.13 2.3260.16 1.5060.12
2000.0 8.95 1.29560.011 1.2160.11 1.3760.12 0.9160.10

TABLE III. Comparison of cross sections~in units of 10218

cm2) for the transfer-ionization reaction H11He→H1He211e.

Ep

~keV!
v

~a.u.!

10s02~H,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 0.1160.08 0.0560.05 1.0060.27
50.0 1.41 0.2260.11 0.2260.11 2.6460.49
80.0 1.79 1.3160.08 0.2760.12 0.4960.16 2.1560.35
100.0 2.00 0.8060.08 0.4460.15 0.1160.08 0.7760.20
200.0 2.83 0.10260.008 0.2260.11 0.2760.12 0.1760.10
400.0 4.00 0.007160.0006 0.0460.03 0.0760.04 ,0.01a

aNone found in 3000 trajectories.

TABLE IV. Comparison of cross sections~in units of 10219

cm2) for the double-ionization reaction H11He→H11
He2112e.

Ep

~keV!
v

~a.u.!

10s12~H,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 0.5560.55 0.5560.55 2.2161.10
50.0 1.41 1.1060.78 3.8561.44 6.0561.97
80.0 1.79 10.5761.01 3.9661.72 4.7761.99 6.0761.82
100.0 2.00 9.6161.03 4.9561.63 8.8062.15 7.1561.97
200.0 2.83 5.6060.17 3.3061.34 12.7863.04 8.2762.11
400.0 4.00 2.3660.12 8.4361.59 8.1061.60 4.5861.16
800.0 5.66 0.96060.051 2.4260.73 3.0860.82 1.3260.54
1000.0 6.33 0.74560.027 1.3260.54 2.2560.71 0.2260.22
2000.0 8.95 0.36560.035 0.8860.44 0.6660.38 0.2260.22
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lar to those described in Sec. III C except that the initial
internuclear distance~and minimum final distance! was 20
a0 and the first range of impact parameters was@0,1.5#
~@0,0.75# for the extra trajectories run for the double electron
reactions!.

The QTMC-EB results for single and double ionization
are good, while those for transfer are not quite as good. The
QTMC-KW method seems to get the single transfer cross
section precisely while the QTMC-EB cross section is too
large at the lower energies. For the double ionization pro-
cess, the QTMC-EB method appears to be best at energies
higher than the peak, while the QTMC-KWx method seems
best at lower energies. That the QTMC-KWx result is better
than the QTMC-KW result here is probably fortuitous since
the KWx modification was made to benefit one-electron pro-
cesses.

All the quasiclassical methods are much too small for the
double electron transfer. Presumably this failure is due to the
importance of wave-function symmetry in this exactly reso-
nant process. At higher energies (*250 keV! the quasiclas-
sical calculations of this double transfer appear to be much
better, but the statistical uncertainty in the Monte Carlo
makes this conclusion equivocal.

Except for the symmetric double electron exchange, the
quasiclassical results would certainly provide useful esti-
mates in the absence of accurate experimental data.

E. Li 311He collisions

Cross sections for the two single-electron and three
double-electron rearrangements possible in Li311He colli-
sions are shown in Fig. 11, and their error bars are indicated
in Tables X–XIV. In these calculations, the initial internu-

FIG. 9. Histograms of the electron energy distributions of the~a!
ionized free electrons and~b! residual bound electrons after single
ionization in H11He collisions at a H1 energy of 100 keV. The
solid curves are the results of QTMC-EB calculations and the
dashed curves are the results of QTMC-KW calculations.

FIG. 10. Cross sections for He211He collisions. Theoretical
values are shown by curves: QTMC-KW~short dashed!, QTMC-
KWx ~long dashed!, QTMC-EB ~solid!. See the tables for the en-
ergies at which calculations were actually made and their statistical
error bars. Experimental values are shown by data points: Shah and
Gilbody @32# ~filled circles!, Shah, McCallion, and Gilbody@33#
~filled squares!, DuBois @34# ~open circles!.
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TABLE V. Comparison of cross sections~in units of 10217 cm2) for the electron-transfer reaction
He211He→He11He1.

E ~keV/amu! v ~a.u.!

20s11~He,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 25.7361.55 38.0062.15 58.3863.70
50.0 1.42 22.2060.30 22.5661.37 29.2661.76 32.2561.48
80.0 1.80 15.1060.30 16.2561.15 19.0061.45 16.0360.87
100.0 2.01 11.5060.14 13.4461.07 14.3561.24 10.8661.31
200.0 2.84 2.6060.02 3.3460.43 3.7160.52 2.2560.43
400.0 4.02 0.30960.007 0.5960.17 0.4160.14 0.2260.07

TABLE VI. Comparison of cross sections~in units of 10217 cm2) for the single-ionization reaction
He211He→He211He11e.

E ~keV/amu! v ~a.u.!

20s21~He,He!

Expt @32#. QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 0.5960.34 0.5960.34 2.6760.99
50.0 1.42 7.2060.31 0.9960.44 1.5460.58 12.6061.15
80.0 1.80 15.2560.26 3.2960.72 6.5361.06 19.0061.10
100.0 2.01 18.5060.21 4.9460.84 8.3661.16 19.4261.81
200.0 2.84 20.2060.30 8.9760.65 13.7260.92 18.1361.09
400.0 4.02 15.1460.21 8.0660.59 10.8860.60 12.3360.45
800.0 5.68 9.7460.14 5.8960.31 7.4960.39 7.9660.40
1000.0 6.35 8.2660.10 5.0160.27 6.5960.35 6.3060.37
2000.0 8.98 3.5460.25 4.5360.27 3.2760.27

TABLE VII. Comparison of cross sections~in units of 10217 cm2) for the transfer-ionization reaction
He211He→He11He211e.

E ~keV/amu! v ~a.u.!

20s12~He,He!

Expt @32#. QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 0.3260.09 1.0160.18 1.4760.22
50.0 1.42 3.6060.06 0.8960.15 1.6360.24 1.9660.24
80.0 1.80 2.8960.06 1.1960.17 1.7660.21 1.7260.21
100.0 2.01 2.3660.02 1.4860.19 2.0560.23 1.7860.21
200.0 2.84 0.51860.005 0.7060.10 0.7260.10 0.5260.06
400.0 4.02 0.042760.0026 0.1460.04 0.1460.04 0.0860.02

TABLE VIII. Comparison of cross sections~in units of 10218 cm2) for the double-ionization reaction
He211He→He211He2112e.

E ~keV/amu! v ~a.u.!

20s22~He,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

80.0 1.80 3.6660.41 0.4960.35 2.7261.01 0.2560.25
100.0 2.01 5.4060.34 2.9760.91 4.4561.14 2.1060.74
200.0 2.84 6.5360.21 6.3560.91 7.3060.96 4.9060.67
400.0 4.02 3.1160.11 6.6860.97 6.4961.02 4.0060.48
800.0 5.68 1.05360.047 3.2060.45 4.3360.51 1.4160.30
1000.0 6.35 0.70760.050 2.3860.38 3.2960.45 1.1960.24
2000.0 8.98 1.1960.24 1.2460.24 0.2560.11
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clear distance was 25a0 and the first range of impact param-
eters was@0,2# ~@0,1# for the extra trajectories run for the
double electron reactions!.

Again the agreement with experiments is generally quite
credible. The calculated double electron transfer cross sec-
tions here agree reasonably well with the experimental val-
ues, so we have some corroboration that the disagreement in
the case of He211He→He1He21 is indeed due to the im-
portance of wave-function symmetry there. As in the case of
He211He, the QTMC-KW~and KWx! cross sections for
double ionization are considerably too large at the higher
energies; thes2ion calculated by QTMC-KW seems to be
shifted to higher energies relative to the experimental cross
section. This deviation is somewhat disturbing since the qua-
siclassical description is expected to be valid at these ener-
gies. The QTMC-EBs2ion appears to be in much better
agreement with the experimental determination.

IV. CONCLUSIONS

Two quasiclassical methods — the previously proposed
QTMC-KW and the QTMC-EB approaches — have been
shown to provide useful predictions of single and double
electron rearrangements. The energy regime of validity is
found to be similar to that of the usual CTMC method for
one-electron systems. Even for one-electron systems some
improvement may be obtained by eliminating transfer into
orbitals more deeply bound than allowed by quantum me-
chanics. Quasiclassical approaches are most valid at collision
velocities comparable to those of the target electrons,;1
a.u., which is also where nonresonant electron-rearrangement
cross sections tend to peak. At lower energies the quasiclas-
sical approach tends to break down because of the impor-
tance of molecular structure effects on the evolution of the
electron density during the collision. In the high-energy
limit, where cross sections are generally too small to be ame-
nable to a Monte Carlo approach anyway, the classical as-
ymptotic dependence may not be quite correct; e.g., classi-
cally the single-ionization cross section falls off as 1/E
instead of (1/E)logE @36#. The high-energy behavior of ion-
ization is dominated by the perturbative contribution, which
involves quantal tunneling.

The present applications were made to collisions of H1,
He21, and Li31 with He, for which all the cross sections are
generally well known experimentally. These comparisons
provide guidance for future applications to other systems
where cross sections are unknown. The only dramatic failure

FIG. 11. Cross sections for Li311He collisions. Theoretical
values are shown by curves: QTMC-KW~short dashed!, QTMC-
KWx ~long dashed!, QTMC-EB ~solid!. See the tables for the en-
ergies at which calculations were actually made and their statistical
error bars. Experimental values are shown by data points: Shah and
Gilbody @32# ~filled circles!, Knudsenet al. @35# ~open circles!.

TABLE IX. Comparison of cross sections~in units of 10218 cm2) for the double-transfer reaction
He211He→He1He21.

E ~keV/amu! v ~a.u.!

20s02~He,He!

Expt. @34# a QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 14.1062.15 23.5063.19 19.1262.61
50.0 1.42 61.9, 76.8 12.6261.86 15.8362.14 12.1361.83
80.0 1.80 6.4361.27 7.6761.55 6.6561.39
100.0 2.01 13.5 2.9760.84 3.4660.97 6.1961.33
200.0 2.84 0.5460.27 0.5160.26 0.1960.12
250.0 3.17 0.169 0.3160.12 0.3160.12 0.1360.08

aUncertainly in experimental values is615%.
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TABLE X. Comparison of cross sections~in units of 10216 cm2) for the electron-transfer reaction
Li311He→Li 211He1.

E ~keV/amu! v ~a.u.!

30s21~Li,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 3.7760.23 5.6360.31 11.4060.64
50.0 1.42 5.3960.09 3.1360.22 4.2660.29 6.3160.31
80.0 1.80 3.1460.03 2.8360.21 3.0560.25 2.7960.31
100.0 2.01 2.2060.02 2.2860.19 2.6760.23 2.3660.27
200.0 2.84 0.47960.004 0.6560.08 0.7460.12 0.5660.10
400.0 4.02 0.1060.03 0.0760.03 0.0660.03

TABLE XI. Comparison of cross sections~in units of 10216 cm2) for the single-ionization reaction
Li311He→Li 311He11e.

E ~keV/amu! v ~a.u.!

30s31~Li,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 &0.02 0.0460.04 0.0760.05
50.0 1.42 0.5860.06 0.0760.05 0.1160.08 1.7460.24
80.0 1.80 2.0360.07 0.2860.09 0.8860.18 2.8860.18
100.0 2.01 2.7260.12 0.5460.12 0.9960.18 3.0660.28
200.0 2.84 3.5960.12 1.4260.12 2.1760.18 3.0560.21
400.0 4.02 1.3860.10 1.7460.10 2.3160.13
800.0 5.68 1.1160.06 1.3360.07 1.4760.08
1000.0 6.35 0.9760.05 1.1760.06 1.2460.07
2000.0 8.98 0.7060.05 0.8460.05 0.7560.05

TABLE XII. Comparison of cross sections~in units of 10217 cm2) for the transfer-ionization reaction
Li311He→Li 211He11e.

E ~keV/amu! v ~a.u.!

30s21~Li,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

25.0 1.00 1.7660.29 4.1860.51 3.4060.40
50.0 1.42 6.1660.13 3.1760.38 5.3760.55 4.3260.44
80.0 1.80 6.6460.10 3.7860.40 5.0160.47 4.0760.25
100.0 2.01 6.0060.11 3.0860.36 5.8160.50 4.3760.28
200.0 2.84 2.1560.04 2.7460.23 2.8160.23 2.4360.23
400.0 4.02 0.5160.10 0.4860.10 0.4260.09
800.0 5.68 0.1060.03 0.0760.02 0.0360.02

TABLE XIII. Comparison of cross sections~in units of 10218 cm2) for the double-ionization reaction
Li311He→Li 311He2112e.

E ~keV/amu! v ~a.u.!

30s32~Li,He!

Expt. @32# QTMC-KW QTMC-KWx QTMC-EB

80.0 1.80 5.5460.31 0.4460.44 1.3260.98 2.3060.63
100.0 2.01 9.0060.60 0.4460.44 2.6461.24 2.2160.88
200.0 2.84 19.2060.80 8.6561.36 16.6161.92 11.7461.58
400.0 4.02 14.5161.98 18.6162.31 13.4361.82
800.0 5.68 10.3861.05 12.8861.21 5.5460.74
1000.0 6.35 7.9260.86 9.0660.95 4.8460.71
2000.0 8.98 3.9660.58 4.4060.61 1.6760.38
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was for resonant double electron transfer in He211He col-
lisions where wave-function symmetry is expected to play an
essential role.

The two great selling points of the QTMC methods are~i!
their ease of use and~ii ! the consistent and simultaneous
treatments of all electron rearrangements. The regime of
greatest utility is expected to be at intermediate energies
where all the processes tend to have significant cross sec-
tions, electronic continua are important, and quantum-
mechanical basis-set methods are slowly convergent. The
methods are intended as simple tools for understanding and
visualizing dynamic mechanisms as well as for calculating
useful cross sections, but not as vehicles for high-precision
tests. The methods can lend some qualitative guidance for,
but certainly will not supplant, quantum-mechanical devel-
opments.

Quasiclassical methods employed in the past~mentioned
in Sec. I! for helium targets, which achieved stability by
considering one-electron subsystems or neglecting electron
correlation@10,11,13,16#, also obtained fairly accurate cross
sections for single charge transfer and single ionization at
E*100 keV/amu. A method that achieved limited stability
via circular orbits for the electrons@14# is in agreement at
E*1000 keV/amu. Only the paper of Wetmore and Olson
@16#, which neglected the electron-electron force, gave de-
tailed results for the two-electron processes (s tr1ion , s2ion,
ands2tr). Their results fors tr1ion are comparable with the
present results in the cases of He21 and Li31 projectiles but
are much too small for the H1 projectile~as are the KW and
KWx results in the present work!. Their results fors2ion are
not as good. Their results fors2tr are very good for Li31,
and are not given for He21 for which no classical method is
expected to be valid. Other than accuracy considerations, an
advantage of the present methods over these earlier ap-
proaches are their generality in treating the full interactions
of all electrons.

The QTMC-EB method gives more accurate cross sec-
tions than the QTMC-KW method in most cases, but this
improvement has been bought with a price. QTMC-EB is not
as ‘‘ab initio’’ as QTMC-KW. It cannot predict atomic bind-
ing energies like the KW approach. On the other hand, there
is some advantage to this less-ambitious approach in that the
binding energies can be specifiedad hoc. Atomic binding
energies are accurately known from quantum-mechanical
calculations, and it is the collisional dynamics with these
targets that sometimes still remains perplexing. Some im-
provement in the QTMC-KW cross sections was obtained by
a modification, designated QTMC-KWx, in which thej pa-
rameter was adjusted to give the quasiclassical helium atom
its accurate ionization potential.

Another advantage of the QTMC-EB approach is that the
target is dynamic; i.e., the ground-state electrons have veloc-
ity and not just momentum as in the QTMC-KW description.
Velocity matching was expected to be important in some
electron-transfer processes. However, the results seem to in-
dicate that the KW effective momentum generally provides
an adequate description even though it is not simply related
to a velocity. In any event, this feature is not of great concern
to ionizing processes, where QTMC-KW has already proved
to be useful@21,22#.

The full advantage of the EB flexibility was not required
in the present calculations on the helium atom since for this
atom there are only two electrons in the same subshell. In
general, the EB approach would allow each subshell to be
assigned its own energy bound; again there would be a price
to be paid — here loss of fully identical treatment of all
electrons. Further development of the EB approach is needed
for the general many-electron situation. The present stage of
development seems to extend the proved utility of the CTMC
method to at least two-electron targets.
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200.0 2.84 0.23160.015 0.3360.09 0.3560.09 0.2160.07
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