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According to Dirac’s and Bergmann’s physical ideas, we derive the expression of the finite Dirac contact
transformation, propose an extended Dirac conjecture, extend Dirac’s original consistency conditions, and
obtain the correct definition of physical observables as well as more universal gauge conditions in general
singular Lagrangian systems. The difficulties in Cawley’s first and second counterexamples of Dirac’s conjec-
ture are overcome. Our results are applicable to Hamiltonization of systems with Hessian variable rank and
systems with the proper subalgebra of the minimum evolution closed Poisson bracket of first-class constraints,
and so provide a correct tool for quantization of these systems.@S1050-2947~96!03306-9#
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I. INTRODUCTION

Since Dirac@1# proposed the algorithm of generation and
treatment with constraints and Bergmann and co-workers@2#
clarified the relation between constraints and invariance, the
foundation of the dynamics and quantization of constrained
systems has been built. The original motivation of their for-
malism of constrained Hamiltonian dynamics, and also the
dynamics of singular Lagrangian systems, was to develop
powerful methods that would allow one to put generally co-
variant or gauge-invariant field theories into canonical form,
that is, so-called Hamiltonization@1,2#. The methods also
have been effectively used for a variety of physical systems,
often with a finite number of degrees@3,4#. In particular,
Dirac’s algorithm was successfully applied to the quantiza-
tion of the gauge field by Faddeev and Popov@5# along with
the path integral formalism, and was also developed by Bata-
lin, Fradkin, and Vilkovisky along with the Hamiltonian for-
malism @6#. Recently, a revival of interest in the theory of
constrained systems arose with the superparticle, superstring,
and low dimensional physical systems, for example, chiral
scalar and two-dimensional gravity@7–10#; thereby this
theory plays an important role in theoretical physics. In fact,
not only is it widely used in various theories with invariance
but also its development has become an important elemen-
tary subject. There exist a number of excellent reviews
@3,4,11–15# which reflect the present status and methods for
dynamics and quantization problems of constrained systems.
In a word, the theories of the dynamics and quantization of
constrained systems have had a great success and are in a
new period of development.

Notwithstanding all these results, there are still some as-
pects which have not been sufficiently developed and some
problems which have not been completely understood. In the
classical theory@4,16#, for some kinds of singular Lagrang-
ian systems whose gauge generators do not exhaust all of the
first-class constraints or whose Hessian matrix has varying

rank @16–19#, the Dirac and Bergmann method seems not to
work. One is short of a universal algorithm to correctly
Hamiltonize such constrained systems. The famous open
problem as to whether ‘‘Dirac’s conjecture’’@1#, i.e., that all
the secondary first-class constraints were also generators of
gauge transformations, was true still remains. Hence, in or-
der to develop the general theory of the singular Lagrangian
and Hamiltonian constraints for general models, a full under-
standing is necessary of all the ‘‘pathological examples’’
@17–20# ~always including linear or nonlinear Lagrangian
multipliers and often with a Hessian variable rank!. Particu-
larly intriguing for us is the cases related with gauge condi-
tions @21,22#, that is, that the number of gauge conditions or
gauge degrees of freedom is not always the same as the
number of all the first-class constraints in some general sin-
gular Lagrangian systems. This implies that the quantization
of these kinds of gauge theories needs restudying on a new
footing. Similarly, in quantization of the gauge theories cor-
responding to the above problems in classical theories, there
also exist difficulties@15#. Some other unsolved and knotty
problems in the theory of constrained systems originate from
locality and geometry in field theory@23#, or are connected
with the anomalies and their topological aspects@24–26#.

Faced with one after another difficulty in the Dirac-
Bergmann algorithm, a variety of suggestions have been pro-
posed. The recent development is given by Lusanna@15#, in
which he describes and reviews some suggestions. It seems
to us that the failure of the Dirac-Bergmann algorithm is not
in its physical ideas. But this algorithm does omit some com-
plex situations such as singular systems with the subalgebra
of the minimum evolution closed Poisson bracket~MECPB,
which is defined in our paper@22#; also see Sec. III A! of the
first-class constraints, and with Hessian variable rank@18#.
Moreover, this algorithm also has some incomplete proofs
and calculations. As a matter of fact, our above views can be
supported by analyzing briefly the following three aspects.

First, Dirac and Bergmann thought that the different evo-
lution trajectories with distinct Lagrangian multipliers are
equivalent in physical content and they can be transformed
into each other by Dirac’s contact or gauge transformation. It
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results that the secondary first-class constraints have an ob-
vious contribution in evolution of the system, which implies
that the total Hamiltonian can be generalized to the extended
Hamiltonian. This is correct. However, Dirac did not obtain
the finite expression of his contact transformation but con-
jectured that all the secondary first-class constraints are gen-
erators@1#. It has been seen that for some examples, Dirac’s
conjecture seems not to work@17#. Second, Dirac supposed
the constrained hypersurface is stable so as to guarantee the
full determination of Hamiltonian dynamics in the singular
systems. This is natural. But he did not notice that there
exists a kind of singular system with Hessian variable rank.
For these systems, all the secondary constraints cannot, in
general, be fully generated by his original consistency con-
ditions @18#. Finally, Bergmann pointed out that the physical
observables, or gauge invariant quantities, are determined
completely by dynamics and initial conditions, in other
words, are free of the arbitrary Lagrangian multipliers. This
is elementary. Yet the fact is that one does not derive the
general and obvious evolution expression of the function on
phase space and then does not obtain the correct definition of
the physical observable and the universal gauge conditions
@22#.

Therefore, in this paper, our aim is to overcome and solve
the difficulties and problems in Hamiltonization, Dirac’s
conjecture, and the gauge conditions according to Dirac’s
and Bergmann’s physical ideas. This paper is arranged as
follows.

In Sec. II, we first recall briefly the Dirac-Bergmann al-
gorithm and then introduce Cawley’s two famous counterex-
amples to Dirac’s conjecture. Meanwhile, we express our
motivation and aim to overcome the difficulties existing in
the two examples.

In Sec. III, we generally discuss the difficulties existing in
Dirac and Bergmann’s algorithm. Then we point out some
causes leading to their appearance and give some notions and
formulas used in this paper.

In Sec. IV, after introducing the time translation operator
of the constrained system and the calculation technology of
the ~multi-!Poisson bracket, we derive the obvious expres-
sion of the finite Dirac contact transformation and its genera-
tors. Moreover, we find, in general, that the generators do not
always exhaust all the first-class constraints, but invariably
they involve at least all the primary first-class constraints. In
other words, the generators have weakly vanishing Poisson
brackets not only between themselves but also between them
and the total Hamiltonian. Normally, they form a subalgebra
of the MECPB of the first-class constraints. This concept
was introduced in our paper@22# and its details can be seen
in Sec. III. In order to determine the generalized Hamil-
tonian, an extended Dirac conjecture is proposed, and it is
successfully applied to Cawley’s first counterexample to
Dirac’s conjecture. We conclude that the finite Dirac contact
transformation does not change the physical observables and
their motions, and that the generators of this finite transfor-
mation take the constraints of subalgebra of the MECPB of
the first-class constraints, so that the extended Dirac conjec-
ture is reasonably verified. Only if the MECPB takes over all
the first-class constraints does it return to the usual Dirac
conjecture.

In Sec. V, it is found that in general singular Lagrangian

systems Dirac’s original consistency conditions are not
enough to generate all secondary constraints and determine
all the arbitrary multipliers in front of the second-class con-
straints. This may lead to the result that the equivalence of
Lagrangian and Hamiltonian formalisms is not guaranteed
and even the dynamics of the Hamiltonian formalism is not
completely determined. In order to overcome the above dif-
ficulties and Hamiltonize the general singular Lagrangian
system with variable Hessian rank, we propose an extension
of Dirac’s algorithm of the consistency conditions. In terms
of this algorithm of extended consistency conditions, all of
the secondary constraints can be generated fully and then the
final total Hamiltonian can be obtained correctly. Moreover,
the generalized Hamiltonian ought to be constructed by our
extended Dirac conjecture. In particular, the algorithm is ap-
plicable to Hamiltonization of some more general singular
systems with Hessian variable rank. As an application, we
study successfully Cawley’s second example. For the general
cases, we reveal our algorithm in detail and study the valid-
ity, application, and presupposition of our algorithm. It is
shown that our algorithm connects closely with the
Sudarshan-Mukunda~S-M! Lagrangian approach dealing
with the constrained system with Hessian variable rank and
is a development of S-M’s approach along with Hamiltonian
formalism.

In Sec. VI, according to Bergmann’s physical supplemen-
tary conditions, we found that the accustomed conclusion
that the number of gauge conditions or gauge degrees of
freedom is always equal to the number of all the first-class
constraints is not universal in general singular systems. It is
shown that the corrected form of physical supplementary
conditions is that the physical observables have weakly van-
ishing Poisson brackets with the elements of the subalgbra of
the MECPB of the first-class constraints and also with all of
the second-class constraints. A simple Cawley’s example is
studied. The origin of the gauge conditions is discussed, and
the corrected forms and number of the gauge conditions in
some general singular Lagrangian systems are given. Our
results provide a tool for the quantization of this kind of
gauge theories.

In Sec. VII, we summarize our main results, point out
some knotty problems, and give the conclusions of this pa-
per. In addition, some details of the derivation and proof of
the formulas used in this paper are given in the Appendixes.

II. THE DIRAC-BERGMANN ALGORITHM
AND CAWLEY’S COUNTEREXAMPLES

Gauge theories belong to the class of so-called singular
Lagrangian theories, which are also theories with constraints.
The standard Hamiltonization and quantization methods can-
not be directly applied to these theories. In their well-known
works @1,2#, Dirac and Bergmann gave such an algorithm
that one can generate constraints by Dirac’s consistency con-
ditions and can construct the extended Hamiltonian by
Dirac’s conjecture. Although the Dirac-Bergmann algorithm
has been successful in many physical systems, it also faces
some serious difficulties since Cawley and Frenkelet al.pro-
posed several counterexamples@17,18#. In order to propose
our extension of the Dirac-Bergmann theory of constrained
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systems, it is worth recalling and commenting on their algo-
rithm of constrained dynamics. Meanwhile, we also will re-
view Cawley’s two counterexamples so that we can solve
their difficulties in the following work.

A. Dirac-Bergmann dynamics of constrained systems

For a singular system, the rankr of its Hessiann3n
matrix @4,16#

Wij[ i]2L~q,q̇!/]q̇i]q̇ j i ~ i , j51, . . . ,n! ~2.1!

is less thann.HereL(q,q̇) is Lagrangian in the system. It is
always possible to number the coordinates in such a way that
in the Hessian matrixW the minor of maximum rankr is
placed in the left corner and consequently

deti]2L~q,q̇!/]q̇s]q̇ri Þ0 ~s,r51, . . . ,r !. ~2.2!

The other velocities are denoted byq̇A and are called the
primarily unexpressible velocities (A5r11, . . . ,n) @13#. In
Hamiltonian formalism,q̇A is replaced by the arbitrary mul-
tiplier vA which is a function of time. From the definition of
canonical momenta

ps[]L/]q̇s5ps~q,q̇! ~2.3!

it is clear that dps5Wsrdq̇
r1(]2L/]q̇s]q̇A)dq̇A

1(]2L/]q̇s]qi)dqi . Thus it follows from the theorem on
implicit functions and Eq.~2.2! that

q̇s5 f s~q,pr ,q̇
A!. ~2.4!

q̇s is called the primarily expressible velocity. One can
verify that

pA5]L/]q̇A5cA~q,ps! ~2.5!

and thenn2r primary constraints are expressed as

fA5pA2cA~q,ps!. ~2.6!

So the primary constraints are functions of the variables on
phase space. Introducing the Hamiltonian

H5psq̇
s1cAq̇

A2L~q,q̇!, ~2.7!

one knows thatH is only a function ofqi andps . Making
use of the Euler-Lagrange equation one can prove@16# that
the motion equations ofg, which is a function on phase
space, are given by

ġ'$g,HT% ~2.8!

whereHT is called the original total Hamiltonian and its
definition is

HT5H1uAfA . ~2.9!

Notice that in~2.8! Dirac’s symbol of weak equality ‘‘' ’’
has been used. Following Dirac, the constraints have to pre-

serve an evolution weakly vanishing in time. In other words,
the arbitrary order of time derivatives of the constraints
should be weakly equal to zero. In terms of this requirement,
which is calledthe consistency condition, one can generate
the secondary constraintsxk step by step. Therefore Dirac’s
consistency conditions can be generally expressed as

$fA ,H%1uB$fA ,fB%'0, $xk ,H%1uB$xk ,fB%'0,
~2.10!

that is, the Poisson brackets betweenHT with all constraints
are weakly equal to zero. More generally the functions with
the above property such asHT are called the first-class ones.
Otherwise they are called the second-class ones. Dirac has
shown that Poisson brackets between two first-class func-
tions are still first class.

Suppose the rank of the coefficient matrix for the un-
known multipliersuB in ~2.10! is R. It is always possible to
choose then2r2R linear combinations of then2r primary
constraints~Appendix A! in the following way:

ca5ja
AfA , ~2.11!

so that they have weakly vanishing Poisson brackets with all
the constraints@1,4,16#. Hencefa is called the first-class
primary constraint. After dividing all the constraints into the
first- and second-class ones, one can rewrite the original total
Hamiltonian as its Dirac form,

HT
D.H*1uafa , ~2.12!

whereua are arbitrary multipliers andfa are the primary
first-class constraints, whileH* , which is called the first-
class partner of the Hamiltonian, is an evident form of
Dirac’s first-class Hamiltonian and is defined as

H*5H2VsCss8$Vs8,H%. ~2.13!

HereVs takes over all the second-class constraints.Css8 is
the inverse of Dirac’s matrix of the second-class constraints,
that is, Css8$Vs8,Vs9%5dss9 @1#. In addition, the symbol
‘‘ . ’’ in Eq. ~2.12! denotes strong equality@16# ~Appendix
A!. In fact, the canonical equations of motion generated are
invariant in the weak equality sense when the total Hamil-
tonian gains or loses a strongly vanishing term. The reason
for this is that the Poisson bracket between strongly vanish-
ing terms with a differentiable function on a constrained sub-
manifold is weakly equal to zero.

It is necessary to emphasize that no linear combination of
the first-class secondary constraints, which can be denoted
by xa , with the arbitrary multiplier appears in the definition
~2.12! of HT

D . So Dirac analyzed the infinitesimal contact
transformation from his requirement that the physical states
should not depend on arbitrary functions. Then he conjec-
tured that all the first-class constraints, including secondary
ones, were the generators of the contact transformation,
which did not change the physical states. This means that
Dirac’s total Hamiltonian is extended as@1,4#
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HE5HT
D1uaxa5H*1umfm ~2.14!

wherefm5(fa ,xa), that is, they take over all the first-class
constraints, andum are arbitrary multipliers. It is customary
thatHE is called the extended Hamiltonian, while the motion
equation is given by

ġ'$g,HE%. ~2.15!

This is just the famous Dirac conjecture.

B. Cawley’s first example

Cawley@17# gave his first counterexample of Dirac’s con-
jecture whose Lagrangian is written as

L5 ẋż1yz2/2. ~2.16!

One readily obtains the Euler-Lagrange equations

z̈50, z2/250, ẍ5yz. ~2.17!

From Dirac’s algorithm it follows that the primary constraint
is

py'0. ~2.18!

It is straightforward to derive the secondary constraints

z2/2'0, pxz'0, px
2'0. ~2.19!

They can be rewritten as the canonical or linear and func-
tionally independent forms

z'0, px'0. ~2.20!

Thus, sincez2.0 ~‘‘ . ’’ means strong equality, see@16#!,
one can obtain Dirac’s total Hamiltonian

HT
D.pxpz1vpy . ~2.21!

From the original Dirac conjecture it follows that the ex-
tended Hamiltonian is

HE5upx1vpy1wz. ~2.22!

Obviously it generates the following motion equations:

ẋ'u, ẏ'v, ż'0, ~2.23a!

ṗx'0, ṗy'0, ṗz'2w. ~2.23b!

They mean thatx, y, andpz are all gauge degrees of free-
dom. However,x is originally physical, viz.,x has a deter-
mined motion free of the arbitrary multiplierv. Even if we
fix the gauge, this system becomes static and does not return
to the original physical motion. Consequently, applying
Dirac’s conjecture to Cawley’s counterexample will lead to a
change of the physical content of the theory. The result im-
plies that in order to Hamiltonize this kind of singular sys-
tem, one has to extend or revise the original Dirac conjec-
ture.

C. Cawley’s second example

Let us consider the Lagrangian

L5 ẋż21yz. ~2.24!

It is the Lagrangian of Cawley’s second counterexample to
Dirac’s conjecture@18#. Its Euler-Lagrange equations are

d

dt
~ ż2!50, z50,

d

dt
~2ẋż!2y50. ~2.25!

Following Sudarshan and Mukunda@16#, one has Lagrangian
constraints

y50, ẏ50, z50, ż50. ~2.26!

Defining conjugate momenta

px5 ż2, py50, pz52ẋż, ~2.27!

we have a primary constraint

py'0 ~2.28!

where Dirac’s symbol of weak equality@1# has been used.
The original total Hamiltonian of this example can be written
as

HT5px
1/2pz2yz1vpy, ~2.29!

wherev is thought of as a differentiable function on a con-
strained submanifold. Usually, one uses Dirac’s original con-
sistency conditions to generate the secondary constraints@1#,
that is, one requires that the evolution in time of the con-
straints must be weakly vanishing. In other words, the con-
straints are preserved in time or the arbitrary-order time de-
rivatives of the constraint equations are still the constraint
equations. Consequently, it is straightforwardly derived that
there are two secondary constraints,

z'0, px'0. ~2.30!

Here we have written them in linear form as in Ref.@18#. The
Dirac’s algorithm for generation of constraints has ended.
There are no more constraints. Now, the set of constraints
consists of three constraints~2.28! and ~2.30!. They deter-
mine a Dirac constrained hypersurfaceGC

D .
Because the constraints in Dirac’s algorithm are all first

class and the multiplierv is undetermined, the original total
Hamiltonian shows, in form, no difference from Dirac’s total
Hamiltonian

HT
D5HT5px

1/2pz2yz1vpy . ~2.31!

It follows from it that the canonical motion equations are

ẋ'pz/2px
1/2, ẏ'v, ż'px

1/2, ~2.32a!

ṗx'0, ṗy'z, ṗz'y. ~2.32b!

Obviously, they are not equivalent to the original Euler-
Lagrange~E-L! motion equations~2.25! because the motion
in thex direction is infinite and the motion in they direction
is arbitrary. Thus Dirac’s original algorithm gives rise to
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difficulty. Moreover, Dirac’s conjecture proposed by this al-
gorithm also has the same problem, that is, the canonical
equations of motion generated by Dirac’s extended Hamil-
tonian

HE5px
1/2pz1upx1vpy1wz ~2.33!

are not consistent with the original E-L equations. The rea-
son for this, in our opinion, is that the constrainty'0 and
the multiplier v (5 ẏ)'0 are not able to be obtained in
terms of Dirac’s original consistency conditions. Conse-
quently, the equivalence of the Lagrangian and Hamiltonian
formalisms in the physical content is broken. This led us to
reconsider an algorithm of Hamiltonization that can be used
for the kind of singular systems with Hessian variable rank.

III. THE DIFFICULTIES IN THE DIRAC-BERGMANN
ALGORITHM

From the preceding section, we have seen the difficulties
in Dirac’s original Hamiltonization algorithm by discussing
Cawley’s first and second examples. For the more general
case, we know, in singular systems, that there are mainly two
kinds of counterexamples to the Dirac-Bergmann algorithm.
One kind is represented by Cawley’s first example and it has
the feature of the MECPB, that is, there exists a proper sub-
algebra of the minimum evolution closed Poisson bracket of
the first-class constraints within it. Another is represented by
Cawley’s second example and it has the feature of Hessian
variable rank.

A. Singular systems with proper subalgebra of the MECPB
of first-class constraints

In order to study the difficulties in the singular systems
with proper subalgebra of the MECPB of the first-class con-
straints, we need to derive the general expression of the evo-
lution in time of the function in phase space. For conve-
nience, let us denote 2n phase space variables as
hm,m51,2, . . . ,2n. They are qi for m51,2, . . . ,n; and
pi5hm2n for m>n11. Defining the 2n-dimension antisym-
metric tensoremn in the form

emn5H 0 if m,n<n or m,n>n

1 if m<n and n5m1n

21 if n<n and m5n1n

~3.1!

and introducing the linear operatorD which is the Hamil-
tonian vector field@27–30#,

Df[emn
] f

]hm

]

]hn [
] f

]qi
]

]pi
2

] f

]pi

]

]qi
, ~3.2!

we have the Poisson bracket expressed as the operator form
@31,32#

$ f ,g%5Dfg52Dgf . ~3.3!

Moreover, the multiple Poisson bracket can be expressed as
the product ofD operators

ˆf 1 ,$ f 2 ,g%‰5Df1
Df2

g. ~3.4!

We can easily verify that theD operator has the following
properties:

@Df ,Dg#[DfDg2DgDf5D $ f ,g% , ~3.5!

Df
nDg5 (

m50

n

Cn
mDD

f
n2mgD f

m , ~3.6a!

DfDg
n5 (

m50

n

~21!mCn
mDg

n2mDD
g
mf , ~3.6b!

whereCn
m is the biterm coefficient. The first property ofD,

Eq. ~3.5!, can be called the commutation theorem. It can be
shown in terms of the Jacobi identity of the Poisson bracket.
The second property ofD, Eq. ~3.6!, can be named the ex-
change theorem. It is a conclusion of the commutation theo-
rem and can be verified by virtue of the mathematical induc-
tive method~see Appendix B!.

By making use of theD operator, we obtain the general
and explicit expression of the evolution ofg in time ~see
Appendix C!:

g„h~ t !…'e2~ t2t0!DH* ~ t0!g„h~ t0!…

1 (
n51

`
1

n!
~ t2t0!

n (
m51

n

(
a1 ,a2 , . . . ,am51

K

3S )
j51

m

(
kj5m2 j

nj2121

(
nj5m2 j

kj

~2 !nj212kj

3Ckj

njva j

~nj2kj !~ t0!D
3H ~2 !nmD

H*
nm S )

s50

m21

Dfam2s
D
H*
nm2s212km2s21D

3g„h~ t !…J
t5t0

, ~3.7!

where we have used the consistency condition@1#
$HT

D ,c j%'0, that is, the total Hamiltonian has weakly van-
ishing Poisson brackets with all of the constraints$c j%. We
also assumed that the constraints do not have explicit time
dependence andK is the number of primary first-class con-
straints. In addition, in Eq.~3.7!, we use the notation
C0
051, d0f /dt05 f , va

(k)5dkva /dt
k, andn05n,nm51.

Now, we want to know which constraints have contribu-
tions to the evolution ofg in time. It is easy to see that by
virtue of the property of theD operator the terms related to
constraints can be written as

DH*
a D

~D
H*
cm fam

!

bm
D

~D
H*
cm21fam21

!

bm21
•••D

~D
H*
c1 fa1

!

b1
g ~3.8!

with some coefficient functions, in whicha, bi , andci are
non-negative integers while eacha i takes values from 1 to
K. Obviously, only the constraints generated by any multiple
Poisson bracket between the primary first-class constraints
and the first-class HamiltonianH* appear in the evolution
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expression ofg. These constraints must be first class, but in
general they do not exhaust all the first-class constraints.
This is different from the accustomed conclusion. In fact, we
can prove that they form the subalgebra of the minimum
evolution closed Poisson bracket~MECPB! of the first-class
constraints. If one attempts to add the linear combination of
the arbitrary multipliers with all the first-class constraints to
the extended Hamiltonian, as in Dirac’s conjecture, then it is
possible, in some general singular systems, to change the
physical content of motion. In order to explain it more
clearly, let us analyse as follows.

In his well-known work@1#, Dirac assumed that there is
an initial physical state independent of the arbitrary multipli-
ers va . Following Bergmann’s physical requirement, the
physical observables are free of arbitrary multipliers at any
time. Hence, in Taylor’s expansion of the physical observ-
ables at initial time, all of the terms related to the arbitrary
multipliers and their derivatives are bound to weakly equal
zero. Becauseva is arbitrary and the constrained hypersur-
face is stable, if and only if

~3.9!

g is such a physical observable. Then, from Eq.~3.5! and the
first-class property ofH* , we can see that the validity of Eq.
~3.9! for somen generally needs

~3.10!

Because

we can write@1,16#

~3.11!

where the Einstein summation convention has been used.
Denote all of the constraintsfa generated from Eq.~3.11!
for k51,2, . . . ,̀ by a set $fJ0

%. Obviously eachf j 0
P$fJ0

% is a first-class constraint and Eq.~3.10! means gen-

erally $f j 0
,g%'0. By virtue of Eqs.~3.6! and~3.10!, we can

obtain ˆ$f j 0
,f j 08

%,g‰'0 and ˆ{ H* ,f j 0
%,g‰'0. Moreover,

$f j 0
,f j 08

%5Cj 0 j 08
b fb and$H* ,f j 0

%. f j 0
c fc . It follows that

all the independent constraints among all of thefa , fb ,
andfc make up a new set$fK0

%$$fJ0
%, and for eachfk0

P$fK0
%,$fk0

,g%'0. Similarly, in this way, we can obtain,
when Eq.~3.10! is obeyed, that more first-class constraints
make up a larger set and each element of this set has weakly
vanishing Poisson brackets withg in general. This process
ends when all of these generating constraints, denoted by a
set$fM0

%, form ‘‘the minimum evolution closed subalgebra

of the first-class constraints,’’ that is, for eachfm0
P$fM0

%

$fm0
,fm

08
%5C

m0m08

m09 fm
09
, ~3.12a!

$fm0
,HT

D%.b
m0

m08fm0
. ~3.12b!

Generally,$fM0
% always contains all the primary first-class

constraintsfa but does not always exhaust all the first-class
constraintsfm , that is,

$fP%#$fM0
%#$fM%, ~3.12c!

where$fP% and $fM% denote respectively the sets of all of
the primary first-class and all of the first-class constraints.
Cawley’s first example above has just this feature. Obvi-
ously, Eq.~3.7! represents a series of trajectories with differ-
ent choices ofvm0

and they are gauge equivalent. It is worth
emphasizing that the number of arbitrary parameters is not
equal to one of the first-class constraints but is the same as
one of the elements of the subalgebra of the MECPB of the
first-class constraints. Therefore for this kind of example, it
is not generally correct when construction of the generalized
Hamiltonian is given by Dirac’s conjecture.

B. Singular systems with Hessian variable rank

For a singular system, the elements of the Hessian matrix
have the relation

WAi5~]cA /]ps!Ws i . ~3.13!

The reason for this is that the primary constraints are ex-
pressed as functions of the variables on phase space. Thus
the E-L equations can be divided into two systems; the first
system consists of the second-order differential equations

Ws i q̈
i5Ks , Ki5]L/]qi2~]2L/]q̇i]qj !q̇ j , ~3.14!

and the second system consists of the first-order or/and zero-
order differential equations

KA2~]cA /]ps!Ks5]L/]qA2d~]L/]q̇A!/dt50.
~3.15!

It can be verified that the second system is just the second-
stage constraints,

xA5$fA ,H%1q̇B$fA ,fB%

5@KA2~]cA /]p
s!Ks#ups5]L/]q̇s'0. ~3.16!

In Dirac’s algorithm, in order to generate the secondary con-
straints one only requires that Eqs.~3.16! are preserved in
time. Obviously, if the Hessian matrix has variable rank,
some of the second-order E-L equations may become first-
or/and zero-order ones. Normally, they may, in general, be-
come some new constrained equations independent of those
old constraints in Dirac’s original algorithm, because those
old constraints are only generated by the time derivative of
xA in terms of the consistency conditions. In other words,
Dirac’s original algorithm may omit in general the new con-
straints that result from Hessian variable rank.

If the rank of the Hessian matrix decreases in the con-
strained submanifoldGC

D which is given by Dirac’s algo-
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rithm, it implies that detiWsriuG
C
D50 or the finite inverse of

uWsru on GC
D does not exist. Thus we cannot find all the

primarily expressible velocitiesq̇s as finite functions of
qi ,ps , andq̇

A on GC
D from the relation

dps5~]L/]q̇s]qi !dqi1Wsrdq̇
r1WsAdq̇

A. ~3.17!

In other words, some of them are infinite onGC
D and conse-

quentlyHT
D is not differentiable onGC

D , viz.,

q̇a']HT
D/]pauUD

→` ~ q̇aP$q̇s%!. ~3.18!

It must be emphasized that in the general case for a con-
strained system with Hessian variable rank, if the number of
the primarily expressible velocities decreases, the primary
constraints in the Dirac algorithm sense can perhaps not be
expressed generally as functions of the phase space vari-
ables. The definition and form of Dirac’s total Hamiltonian
of this kind of system seems not to be suitable. In this kind
of system there is difficulty when one passes from Lagrang-
ian formalism to Hamiltonian by directly using Dirac’s algo-
rithm. We do not know clearly how to solve this problem in
the general case. Future study on this problem would be
interesting.

In order to avoid the above difficulty, we assume that the
number of primarily expressible velocities does not decrease
actually on the final constrained hypersurface in the general
case when the Hessian matrix has variable rank. For in-
stance, Cawley’s second example is just so. Thus, we still
can first compute the rank of the Hessian matrix inS which
consists ofq and q̇, with all q’s and q̇’s being independent,
and we can obtain Eq.~2.4! although some of theq̇s may
tend to infinity on Dirac’s constrained hypersurfaceGC

D . In
fact, this poor expression ofq̇s is not intrinsic, it ought to be
eliminated in the real and final constrained hypersurfaceGC

F

which is determined by all the constraints. Otherwise, the
physical significance of this kind of system is not under-
standable since there is intrinsically infinite motion.

From Eq.~3.17! we also see that there is possibly some
q̇b→` if there exists someq̇a→`. Thus the above conclu-
sion implies that in the singular system with Hessian variable
rank Dirac’s total Hamiltonian is not differentiable with re-
spect to some variables on phase space if one only considers
the constraints in Dirac’s original algorithm. This feature re-
sults in the difficulties in Dirac’s algorithm.

In particular, although (]HT
D/]pa)

2150 onGC
D , one has

d@qa~]HT
D/]pa!

21#/dt'11qa$~]HT
D/]pa!

21,HT
D%'1

~3.19!

in which we do not sum for indexa. Obviously this contra-
dicts the consistency conditions or the stability of the con-
strained hypersurface. Hence Dirac’s algorithm of Hamilton-
ization is not suitable to such singular systems with Hessian
variable rank.

For instance, the Hessian matrix in Cawley’s second ex-
ample is

Wij5S 0 0 2ż

0 0 0

2ż 0 2ẋ
D . ~3.20!

Its rank is 2 primarily. But in the constrained submanifold
GC
D defined by Eqs.~2.28! and~2.30!, its rank decreases to 1.

According to Dirac’s original algorithm, one only claims that
the constraintpy'0 or z'0 is preserved in time. However,
this requirement is not enough to generate all of the second-
ary constraints. The reason is that another second-stage con-
straint y'0, which is obtained from the motion equations
because of the existence of Hessian variable rank, is omitted.

In fact, in Dirac’s algorithm one also assumes that the
rank of the Hessian matrix is 2 and then defines the total
Hamiltonian. Because some of the primarily expressible ve-
locities tend to infinity onGC

D, the time derivative of some
weakly vanishing functions may be nonzero onGC

D . For ex-
ample, 2xpx

1/2/pz'0 but by differentiating it with respect to
time we obtain

d~2xpx
1/2/pz!/dt'1. ~3.21!

It implies that the constrained hypersurfaceGC
D is not stable.

In particular, because the equations of motion are weakly
equal ones, they should not be changed in the weakly equal
sense by adding or dropping a weakly vanishing term. With-
out loss of generality, supposing there is an additional term
2lxz'0 (l is an arbitrary differentiable function! in the
right side of the equation forġ,

ġ'$g,HT%12lxz, ~3.22!

one easily derives

d3g/dt3'$ˆ$g,HT%,HT‰,HT%1lpz . ~3.23!

Since the termlpz is not equal to zero but is arbitrary on
GC
D , Eq. ~3.23! implies that the functions of the variables on

phase space at timet cannot be expressed by their values at
initial time t0 , or speaking generally, the dynamics of the
Hamiltonian formalism is not completely determined.

In a word, from the above analyses and demonstration we
see that Dirac’s original algorithm is not directly and gener-
ally applicable to a certain class of constrained systems.

IV. FROM DIRAC’S CONTACT TRANSFORMATION
TO THE EXTENDED DIRAC CONJECTURE

Dirac’s conjecture gives a principle of construction for the
extended Hamiltonian in constrained systems. As is well
known, the crux of the matter is how to construct a correct
extended Hamiltonian in the quantization of singular sys-
tems. Consequently, in this section we try to overcome the
difficulties of Dirac’s conjecture, and propose and prove a
principle of construction of an extended Hamiltonian. First,
the transformations between the various evolution trajecto-
ries at any given time are constructed by using the translation
operator. Second, the infinitesimal form of trajectory trans-
formation and the relation between this transformation and
the canonical transformation are realized. Third, the finite
Dirac contact transformation is shown to form a functional
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group which does not change the physical observables. Thus
the generators of the finite Dirac contact transformation, that
is, the gauge transformation in constrained systems, are
clearly given. They are the constraints in the set of MECPB’s
of the first-class constraints. Finally, we propose and prove
the extended Dirac conjecture. At the same time, it is suc-
cessfully applied to Cawley’s first counterexample to Dirac’s
conjecture. Our conclusion naturally comes back to the usual
Dirac conjecture when Dirac’s algorithm is applicable.

A. Time translation operator

Let us introduce the first-class operator in constrained sys-
tems. A so-called first-class operator acts on all the con-
straintsf j5(fm ,Vs) to be weakly equal to zero, viz.,

Df j'0. ~4.1!

From this it follows that theD operator constructed by
Dirac’s total Hamiltonian is a first-class one. It is easy to
show that theD operator constructed by first-class functions
is first class and the product of first-class operators is also
first class. We can derive the motion equation of the first-
class operator as

Ḋ f'@Df ,DH
T
D#1]Df /]t'D $ f ,HT

D%1] f /]t . ~4.2!

For the non-first-class operator its motion equation has an
additional nontrivial term2cjD ff j which depends on the
function f. Actually, even for a non-D operator, but a first-
class and linear one, denoted byF̂, we also have

F̂
˙
'@ F̂,DH

T
D#1]F̂/]t. ~4.3!

Its form is the same as Heisenberg’s equation and conse-
quently we can use the technology of quantum theories in the
sense of classical theories. If we introduce the time ‘‘conju-
gate momentum’’e so that

$t,e%51 or De52
]

]t
, ~4.4!

thenhm and t,e constitute the extended phase space. Obvi-
ously Eq.~4.2! becomes

Ḋ f'@Df ,DH
T
D1e#52DDHT

D
1e f

. ~4.5!

It can be used to derive the expression of the time translation
operator. As usual, the time translation operator is defined by

g„h~ t !…5U~ t,t0!g„h~ t0!…. ~4.6!

Its existence is obvious. Because the constrained equations
are always obeyed in any time, the time translation operator
is first class. In terms of Eq.~4.2! we can obtain the motion
equation of the time translation operator as

U̇~ t,t0!'2DH
T
D~ t !U~ t,t0!. ~4.7!

It can be rewritten as an integral equation and thus the suc-
cessive iteration method is applicable. It follows that the

time translation operator for a function which does not relate
to time explicitly has the form

U~ t,t0!'TexpH 2E
t0

t

dtDH
T
D~t!J , ~4.8!

U21~ t,t0!'T* expH E
t0

t

dtDH
T
D~t!J , ~4.9!

in which T and T* stand for time-ordered and anti-time-
ordered products, respectively, while the relation between
D andD can be seen in Appendix D. In particular, when the
multipliersua do not depend on time explicitly since

ḊH
T
D~ t !'0⇒DH

T
D~ t1!'DH

T
D~ t2!, ~4.10!

the operatorT or T* can be dropped and Eq.~4.8! or ~4.9!
becomes simpler,

U~ t,t0!'e2~ t2t0!DHT
D, ~4.11!

U21~ t,t0!'e~ t2t0!DHT
D. ~4.12!

Therefore the variableshm(t) on phase space can be ex-
pressed in terms of their initial valueshm(t0), that is,

hm~ t !5U~ t,t0!h
m~ t0!'TexpH 2E

t0

t

dtDH
T
D~t!J hm~ t0!.

~4.13!

Equation~4.13! stands for a set of the evolution trajectories
on phase space.

B. The trajectory transformation at any given time

As is well known, the evolution of the constrained sys-
tems is determined by Dirac’s total HamiltonianHT

D . How-
ever, sinceHT

D involves arbitrary multipliers the system can
evolve in various trajectories when various multipliers are
chosen. Following Dirac’s assumption there exists a definite
physical state which does not depend on the arbitrary multi-
pliers. Without loss of generality, we can suppose that the
system is in the definite physical state at timet0 . Hence the
various trajectories intersect att0 ,

hm~ t0!5h̃m~ t0!. ~4.14!

At any time, two trajectories evolve in accordance with the
equations

ḣm'2DH
T
D~v !h

m'$hm,H* %1va$hm,fa%, ~4.15a!

h̃˙ m'2D̃H̃
T
D~u!h̃

m'$h̃m,H̃* %1ũa$h̃m,fa%, ~4.15b!

in which we have denoted

f̃ ~h!5 f ~ h̃ !, D̃ f̃ 5emn
] f̃

]h̃m

]

]h̃n
. ~4.16!

Just as in the above subsection, there are the time translation
operators and then
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g̃~ t !5Ũ~ t,t0!g̃~ t0!, ~4.17!

g~ t !5V~ t,t0!g~ t0!. ~4.18!

In terms of Eqs.~4.14! we obtain

g̃~ t !5G~ t,t0 ;u,v !g~ t !, ~4.19!

whereG(t,t0 ;u,v) is named the trajectory transformation
operator fromhm to h̃m at a given timet. Its definition is

G~ t,t0 ;u,v !5Ũ~ t,t0!V
21~ t,t0!. ~4.20!

It is convenient to ignoret and t0 in the following notation
for G. It readily is verified thatG has the following proper-
ties:

G~u,u!5G~v,v !, ~4.21a!

G21~u,v !5G~v,u!, ~4.21b!

G~u,v !G~v,w!5G~u,w!, ~4.21c!

BecauseŨ,V is first class,G is also first class. Obviously,
there is the relation

$ f̃ 1 , f̃ 2%
h̃5G$ f 1 , f 2%

h ~4.22!

in which the upper indexh,h̃ stands for computation of the
Poisson bracket with respect toh,h̃, respectively. Equation
~4.22! has the alternative form

D̃ f̃ 5GDfG
21. ~4.23!

Thus we can find the motion equation ofG:

Ġ~u,v !'2~ ũa2 ṽa!D̃ f̃a
G~u,v !'2G~u,v !~ua2va!Dfa

~4.24!

where ũa5Gua and ṽa5Gva . By use of the successive
iteration method one obtains

G~u,v !'TexpH 2E
t0

t

dt@ ũa~t!2 ṽa~t!#D̃fa
~t!J

'T* expH 2E
t0

t

dt@ua~t!2va~t!#Df̃a
~t!J .

~4.25!

Likewise we have

G21~u,v !'T* expH E
t0

t

dt@ ũa~t!2 ṽa~t!#D̃f̃a
~t!J

'TexpH E
t0

t

dt@ua~t!2va~t!#Dfa
~t!J .

~4.26!

Equations~4.25! and~4.26! are just the obvious forms of the
trajectory transformation fromhm to h̃m at a given timet. It
is a functional form transformation with transformation pa-
rametersua2va ~or ũa2 ṽa) and generatorDfa

~or D̃f̃a
)

under the integral for time. Therefore it depends on the val-
ues of the multipliers and the forms of the generators not at
a given time but in the time intervalt2t0 . In general, the
multipliers vary in time. In particular, it is interesting that the
evolution in time of the generatorsDfa

will lead to increase

of the numbers of generators, viz., someD operators con-
structed by the secondary constraints become new genera-
tors.

For some singular systems, if there is the subalgebra of
the MECPB of the first-class constraints defined as Eqs.
~3.12!, we can obtain

Ḋfm0
~ t !'b

m0

m08Dfm08
~ t !, ~4.27!

b
m0

m085 f
m0

m081~Dfm0
va!da

m081vaCm0a

m08 . ~4.28!

Therefore it can be seen that the evolution of the generators
Dfa

is only interrelated with the operatorsDfm0
in which

fm0
belongs to the subalgebra of the MECPB of the first-

class constraints. From Eq.~4.27! it follows that

Dfm0
~ t !'Vm0m08

~ t,t1!Dfm08
~ t1! ~4.29!

whereV is a matrix function whose definition is

V~ t,t1!5TexpH E
t1

t

dtB~t!J , ~4.30a!

B
m0

m085b
m0

m08 . ~4.30b!

Obviously V has inverse and unit elements and it can be
called the translation function ofDfm0

. It is easy to verify

that the product of two successive translation functions is
still a translation function. Thus,

D̃f̃m0
~ t !'Ũm0m08

~ t,t0!Vm
08m09

21
~ t,t0!Dfm09

~ t ! ~4.31!

where

Ũ~ t,t0!5TexpH 2E
t0

t

dtÃ~t!J , ~4.32a!

Ã
m0

m085ã
m0

m085 f̃
m0

m081~D̃fm0
ũa!da

m081ũaC̃m0a

m08 ,

~4.32b!

V21~ t,t0!5T* expH 2E
t0

t

dtB~t!J , ~4.32c!

and we have used

D̃f̃m0
~ t0!5Dfm0

~ t0!. ~4.33!

Hence theD operators constructed by the elements of the
subalgebra of the MECPB of the first-class constraints in a
given trajectory can be expressed as the linear combinations
of their forms in another trajectory.

In terms of the commutation theorem ofD operators and
Eqs. ~4.29! and ~4.31! we can compute the commutators of
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Dfm0
at various times and the results are still a linear com-

bination ofDfm0
. Of course, our above conclusions are also

valid when the subalgebra of the MECPB of the first-class
constraints is the whole algebra of the first-class constraint,
or the set of the subalgebra of the the MECPB of the first-
class constraints is the complete set of the first-class con-
straints.

If we make use of the Baker-Hausdorff formula,G can be
written in the form

G~u,v !'e2lm0
~u,v;t,t0!Dfm0

~ t !. ~4.34!

This form can be seen more clearly in the discussion on
infinitesimal transformations in the following section.

Obviously from our above analyses and demonstration
whether or not the secondary constraints are the generators
of trajectory transformations relies on whether they belong
or do not belong to the set of the subalgbra of the MECPB of
the first-class constraints.

C. Infinitesimal trajectory transformation

Let us consider two ‘‘neighboring trajectories,’’ viz., the
differences of the multipliers in front of the first-class pri-
mary constraints tend to zero or are infinitesimal, denoted by
ua2va5ea . Hence they are also infinitesimal after integrat-
ing over a finite time interval. Thus the infinitesimal trans-
formationGe at time t of two neighboring trajectories takes
the form

Ge'12E
t0

t

dt1ea~ t1!Vam0
~ t1 ,t !Dfm0

~ t !

'12dlm0
~ t,t0!Dfm0

~ t !. ~4.35!

Here by use of the method of the change of integration limit,

E
t0

t

dt1E
t1

t

dt2bm0

m08~ t1!bm
08

m09~ t2!

5E
t0

t

dt1E
t0

t1
dt2bm

08

m09~ t1!bm0

m08~ t2!, ~4.36!

we can rewrite the infinitesimal transformation parameters as

dlm0
~ t,t0!5E

t0

t

dtdLm0
~t,t0!, ~4.37a!

dLm0
~t,t0!5ea~t!dam0

2b
m
08

m0~t!E
t0

t

dLm
08
~t8,t0!dt8

5ea~t!dam0
2ba

m0tE
t0

t

dt1ea~ t1!

1bm01

m0 (
n52

`

~2 !nE
t0

t

dt1E
t0

t1
dt2•••E

t0

tn21
dtn .

~4.37b!

They obey the equations

d

dt
dlm0

~ t !5ea~ t !dam0
2b

m
08

m0~ t !dlm
08
~ t !. ~4.38!

This means that the infinitesimal transformation parameters
are the sums forn from 0 to ` of the n-tuple weighted
integrals ofea and so their completely independent numbers
generally may be different from thefm

08
numbers in the

functional sense.
If we introduce the generating functionF2 of the infini-

tesimal canonical transformation,

F2~q,p̃!5qi p̃i1dlm0
fm0

~q,p̃!, ~4.39!

after dropping the second-order infinitesimal terms we have

q̃ i5qi1dlm0
]fm0

/]pi5~12dlm0
Dfm0

!qi ,

~4.40a!

p̃ i5pi2dlm0
]fm0

/]qi5~12dlm0
Dfm0

!pi ,

~4.40b!

in which dlm0
is thought of, without loss of generality, as a

time function free of dynamics variables. Therefore the in-
finitesimal trajectory transformation is consistent with the
infinitesimal canonical transformation generated byF2 .

It is easy to verify that HamiltonianK which generates
the motion equations ofh̃m can be found in terms of the
theory of the canonical transformation andK is equal to
H̃T
D(u),

K5H* ~h!1vafa1]F2 /]t

5H̃*1uafa2b
m0

m08dlm0
fm

08

5H̃* ~h!1ũaf̃a5H̃T
D~u!. ~4.41!

Here we have used$fm0
,HT

D%5b
m0

m08fm
08
and dropped the

second-order infinitesimal terms.
For the transformation from a given trajectory to another

given trajectory at a certain time, one can realize it by a
series of successive infinitesimal canonical transformations.
Of course it is necessary thatdlm0

satisfies Eq.~4.38!. The
end result is the same as Eq.~4.25!.

Since the trajectory transformation~4.25! or ~4.26! is a
functional, another form of its infinitesimal transformation
can be taken as one in an infinitesimal time interval
t2t05dt,

G~dt !512dt@ua~ t01dt !2va~ t01dt !#Dfa~ t01dt ! .
~4.42!

It is worth pointing out that a series of successiveG(dt)’s do
not give rise to trajectory transformations since the trajecto-
ries only generally intersect att0 . In his original paper Dirac
studied the difference of the product of two arbitrary trajec-
tory transformations in an infinitesimal time interval, which
will be seen in the following section.
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D. Evident Dirac’s contact transformation

In according with physical considerations, the physical
observables on the various trajectories should be equal, that
is,

gph~h!'gph~ h̃ !. ~4.43!

Hence the trajectory transformations are ones which do not
change the physical observables,

Ggph~h!'gph~h!. ~4.44!

In fact Eq. ~4.44! can be shown strictly by the requirement
that the physical observables do not depend on arbitrary
functions. It is shown in Sec. VI.

Obviously, even when the product of two arbitrary trajec-
tory transformations is not successive, it does not change
physical observables,

G1G2gph'gph. ~4.45!

Here invariance is in the sense of weak equality since we
derive the trajectory transformations and introduce the physi-
cal observables only in the sense of weak equality.

In his original paper Dirac just considered the difference
of the products of two such arbitrary infinitesimal trajectory
transformations, but he took their forms as Eq.~4.42! in an
infinitesimal time interval, that is,

ba5dt~ua2aa!, ga5dt~ba2va!, ~4.46!

G1'12baDfa
, G2'122gaDfa

, ~4.47a!

g85G1G2g, g95G2G1g. ~4.47b!

Hence one has

Dg5g82g95@G1 ,G2#g'@baDfa
,gaDfa

#g

5$@ba~Dfa
ga8!2ga~Dfa

ba8!#Dfa8

1baga8D $fa ,fa8%
%g. ~4.48!

The last term may give rise to generators constructed by the
secondary constraints because of the closed property of the
first-class constraints. But this is not always the case. The
shortcoming of such considerations is that one does not ob-
tain secondary constraints derived by$H* ,fm0

% as the gen-
erators of Dirac’s contact transformations in general. This is
one of the reasons why Dirac could only make a conjecture.

We think that Dirac’s idea of contact transformations in
constrained systems refers to the product of two arbitrary
trajectory transformations at a given timet. Thus we prefer
to choose the form of Eq.~4.35! more definitely and gener-
ally, viz.,

G1'12dlm0

1 Dfm0
, G2'12dlm0

2 Dfm0
, ~4.49!

wheredlm0

1 anddlm0

2 are independent of each other. Hence

Dg5@G1 ,G2#g'@dlm0

1 Dfm0
,dlm0

2 Dfm0
#g

5$@dlm
08

1
~Dfm08

dlm0

2 !22dlm
08

2
~Dfm08

dlm0

1 !#Dfm0

1dlm0

1 dlm
08

2
C
m0m08

m09 Dfm09
%g. ~4.50!

Here we have used Eq.~3.6!. From Eq.~4.25! we can find
more generally the product of two arbitrary trajectory trans-
formations with finite parameters as

G~u,a!G~b,v !'TexpH 2E
t0

t

d~t!$@ua~t!2aa~t!#~u!

3Df
a
~u!

~u!
~t !1 f m0

~u!~t !Df
m0

~u!
~u!

~t !%J
5TexpH 2E

t0

t

d~t!Qm0

~u!Df
m0

~u!
~u!

~t !J ,
~4.51!

in which we introduce the notation

A~w!~ t !5A~h~w!,t !, DA~w!
~w!

5emn
]A~w!

]h~w!m

]

]h~w!n ,

~4.52!

andh (u)m evolves in accordance with the equation

ḣ~u!m'$h~u!m,H* ~u!%1ua
~u!$h~u!m,fa

~u!%, ~4.53!

while the definition off m0

(u)(t) is

f m0

~u!~ t !5G~u,a!~ba2va!~b!Vam
08

~b!
~ t,t0!Vm

08m0

~a!
~ t,t0!

~4.54!

and the form ofQm0
is given by

Qm0

~u!~t !5@ua~t!2aa~t!#~u!dam0
1 f m0

~u!~t !. ~4.55!

It is worth pointing out that the product of the variables’
evolution in the various trajectories or the action of the op-
erators on the other trajectory variables can be calculated by
translation of them to the initial valueshm(t0).

By virtue of Eqs.~3.12! and ~4.31! we see that the prod-
ucts of all the contact transformations are closed and thus
they form a functional group, which can be called the contact
transformation functional group. Moreover, under the con-
tact transformations all the functional transformation param-
etersQm0

are arbitrary and the generators areD operators
constructed by the elements of the subalgebra of the MECPB
of the first-class constraints. The general form of the contact
transformation group element is given by

G~ t,t0!5TexpH 2E
t0

t

dtQm0
~t,t0!Dfm0

~t!J . ~4.56!

Here we no longer write the upper indexu relevant to the
trajectory. Because of Eq.~4.31! Df

m
(w)

(w)
in an arbitrary trajec-

tory can always be expressed as linear combinations of
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Dfm0
and this combination coefficient matrix is absorbed

into the arbitraryQm0
. We think that Eq.~4.56! is just what

Dirac expected to find as the evident expression of his con-
tact transformations which do not change the physical states.
However, it is not the same as the form conjectured by Dirac.
Generally, its generators cannot exhaust all the first-class
constraints but must involve all primary first-class con-
straints at least. Normally, its generators should be the ele-
ments of the so-called subalgebra of the MECPB of the first-
class constraints, which is defined by Eqs.~3.12a!–~3.12c!.

By using the Baker-Hausdorff formula and Eqs.~4.31!
and ~4.35! one readily obtains

G~ t,t0!'e2um0
~ t,t0!Dfm0

~ t !. ~4.57!

Of course its infinitesimal form is

Ge~ t,t0!'12dum0
Dfm0

, ~4.58!

d

dt
@dum0

~ t !#5dQm0
~ t !2b

m
08

m0~ t !dum
08
~ t !, ~4.59!

dum0
~ t,t0!5E

t0

t

dtdQm
08
~t,t0!Vm

08m0
~t,t !

5E
t0

t

dtdQm0
~t,t0!, ~4.60!

dQm0
~t,t0!5dQm0

~t,t0!2b
m
08

m0~t!E
t0

t

dt8dQm
08
~t8,t0!.

~4.61!

Obviously the product of a series of infinitesimal contact
transformations such as Eq.~4.58! will give rise to the finite
Dirac contact transformation Eq.~4.56!.

Likewise, as stated above, the generating function corre-
sponding to the infinitesimal contact transformation is then

F25qi p̃i1dum0
fm0

~q,p̃!. ~4.62!

It is easy to verify that it generates a transformation consis-
tent with the one given by Eq.~4.58!.

E. Application to Cawley’s first example

In fact, from Eq.~4.25! it follows that the trajectory trans-
formation operatorG for Cawley’s first example is

G~ t !'T* expH 2E
t0

t

dt@u~t!2v~t!#Dpy
~t!J ~4.63!

and the translation function ofDpy
is

Dpy
~ t !'expH 2E

t0

t

dt8Dpy
v~ t8!JDpy

~ t0!5V~ t,t0!Dpy
~ t0!.

~4.64!

Thus the set of the subalgebra of the MECPB of the first-
class constraints only involvespy . Consequently Dirac’s
contact transformation only hasDpy

as its generator. We also

can findG from its definition in terms of

h̃m~ t !5G~u,v;t,t0!h
m~ t !

'H 12E
t0

t

dt@ ũ~t!2v~t!#Dpy
~ t !J hm~ t !,

~4.65!

in which hm takesx,y,z and px ,py ,pz . It is obvious that
except fory the other variables do not change. Thus

g̃~h!5g~ h̃ !5 (
n50

`
1

n!

]ng~h!

]yn
~ ỹ2y!n

' (
n50

`
1

n! H Et0
t

dt@ ũ~t!2v~t!#J nDpy
n ~ t !g~h!

5exp$2l~ t,t0!Dpy
~ t !%g~h!, ~4.66!

l~ t,t0!5E
t0

t

dt@ ũ~t!2v~t!#, ~4.67!

in which we have made a simplified rule thatl is supposed
to be a function only of timet and thenDpy

has no action on
it. Therefore

G~u,v;t,t0!'e2l~ t,t0!Dpy~ t !. ~4.68!

Dirac’s contact transformation operator also has the same
form,

G~ t,t0!'e2u~ t,t0!Dpy~ t !. ~4.69!

This indicates clearly that the Dirac conjecture is not appli-
cable to Cawley’s first example. The reason for the absence
of the other secondary constraints in Eq.~4.69! is that the
contribution of the strongly vanishing termyz2/2 to Dirac’s
contact transformation does not need to be considered. In
other words, this strongly vanishing function has strongly
vanishing Poisson brackets with the first-class constraints
and theD operator constructed by the strongly vanishing
function has weakly vanishing Poisson brackets with the dif-
ferentiable~sometimes limited! functions on the constrained
hypersurface. Consequently, in the sense of weak equality
they at most are some trivial ‘‘generators’’ because they
have not contributions for the trajectory or contact transfor-
mations. Hence they can be dropped.

It is very important and interesting how to determine the
correct generalized Hamiltonian. To do this, we will propose
an extended Dirac conjecture in the following section.

F. The extended Dirac conjecture

Under Dirac’s contact transformation the physical observ-
ables are not changed, which implies

dgph'dum0
Dfm0

gph'0. ~4.70!

Becausedum0
are completely independent one obtains

Dfm0
gph'0. ~4.71!

Notice that
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@Dfm0
,DH

T
D#5D $fm0

,H
T
D%'b

m0

m08Dfm08
. ~4.72!

Thus it is straightforward to derive

Dfm0
ġph'2Dfm0

DH
T
Dgph'0. ~4.73!

Therefore the motion equation of the physical observables is
also invariant under Dirac’s contact transformation. Conse-
quently, sometimes one calls Dirac’s contact transformation
the gauge transformation.

If we take Eq.~4.62! as the generating function of the
infinitesimal contact transformation, it is easy to derive

q̃ i5qi1dum0
]fm0

/]pi5~12dum0
Dfm0

!qi , ~4.74a!

p̃ i5pi2dum0
]fm0

/]qi5~12dum0
Dfm0

!pi . ~4.74b!

Without loss of generality,dum0
is supposed to be a time

function and is free of the dynamics variable. Thus it can be
verified that the new Hamiltonian under Dirac’s infinitesimal
contact transformation becomes

H85H* ~h!1vafa1]F/]t5H* ~h!1vm0
8 fm0

.

~4.75!

Obviously whendum0
5dlm0

, it goes back to Eq.~4.41! and

H85HT
D . However, for Dirac’s contact transformation, the

dum0
are completely independent of each other. This leads to

the fact that the generalized Hamiltonian is constructed by
only adding the terms of products of the arbitrary multiplier
vm0

and the constraintsfm0
:

HG5H*1vm0
fm0

, ~4.76!

in which thefm0
belong to the minimum evolution closed

subalgebra of the first-class constraints. It is different from
the usual extended Hamiltonian becausefm0

cannot gener-
ally exhaust all the first-class constraints. This is the ex-
tended Dirac conjecture proposed by us.

For example, in Cawley’s first example, we know that
there is onlyapy in the subalgebra of the MECPB of the
first-class constraints. According to the extended Dirac con-
jecture we can write the generalized Hamiltonian as

HG5pxpz1vpy . ~4.77!

Although Dirac’s conjecture fails in the above case, it is still
applicable when the set of the minimum evolution closed
subalgebra of the first-class constraints is the complete set of
the first-class constraints. Many well-known theories belong
to such cases. The Christ-Lee’s model@33# is just so~see
Appendix E!.

It is clear that under the above construction of the gener-
alized Hamiltonian the physical sectors of singular systems
are invariant or the gauge equivalence between the distinct
total Hamiltonians with different multipliers is set up by vir-
tue of Eqs.~4.71! and ~4.73!.

It is necessary to emphasize that the motion equation is
given byHG and we need the gauge conditions as well as the
gauge fixing conditions so as to return to the physical sector.
This is shown in Sec. VI.

Obviously, the extended Dirac conjecture is applicable to
Cawley’s first example. From our analyses and demonstra-
tion the foundation of the extended Dirac conjecture is the
finite Dirac contact transformation. We have shown clearly
that only the elements of the minimum evolution closed sub-
algebra of the first-class constraints are able to become the
generators of Dirac’s contact transformation or the gauge
transformation which does not change the physical observ-
ables and their motions. As a conclusion the extended Dirac
conjecture can be thought to have been proved and is natu-
rally acceptable.

It is worth pointing out that the extended Dirac conjecture
is still applicable to those cases in which the Hamiltonian is
not differentiable or Dirac’s algorithm does not give rise to
all the constraints~see Sec. V!. But we are bound not to take
Dirac’s total Hamiltonian but have to use the final Hamil-
tonian. The latter is given by the extended consistency con-
ditions, as the evolution generating function. Moreover, in
these cases, the minimum evolution closed subalgebra in-
volves at least all primary first-class constraints which appear
in the final total Hamiltonian together with arbitrary and un-
determined multipliers, and it has the closed Poisson bracket
algebra between its elements and the final total Hamiltonian.
These problems will be dealt with in the following section. If
all constraints are generated by our extended consistency
conditions, we find that Cawley’s second and Frenkel’s ex-
amples are no longer counterexamples of Dirac’s conjecture.
In addition, the extended Dirac conjecture is applicable to
them.

V. FROM DIRAC’S CONSISTENCY CONDITIONS
TO HAMILTONIZATION OF THE SINGULAR SYSTEM

WITH HESSIAN VARIABLE RANK

Generally speaking, the stability of the constrained hyper-
surface is a necessary condition so that the Hamiltonian dy-
namics in singular systems can be completely determined. In
Sec. III, we have seen that, for Cawley’s second example,
since the termlpz is not equal to zero but is arbitrary on
GC
D , the functions of the variables on phase space att time

are not determined completely by the function value of initial
time t0 . The reason for this is that in singular systems with
Hessian variable rank Dirac’s primary constraints cannot, in
general, be all main branches generating all the secondary
constraints. In other words, the new constraints may appear
in the other branches and then they may break the require-
ment of stability of the constrained hypersurface. Hence it
seems to us that Dirac’s original consistency conditions are
not enough to generate all constraints and guarantee the sta-
bility of the constraint hypersurfaceGC

D . It is inconsistent
with the origin of Dirac’s physical idea of the consistency
condition.

In fact, in order to keep the complete determination of
Hamiltonian dynamics of singular systems with Hessian
variable rank, we have reason to conjecture, or have to as-
sume that, for all the functions which are weakly equal to
zero, their evolution in time should preserve the weakly van-
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ishing property. It is a natural conclusion from Dirac’s physi-
cal idea of the stability of the constrained hypersurface. That
is, their arbitrary-order time derivatives are always weakly
equal to zero. This is just an extension of Dirac’s original
consistency conditions.

A. Generation of new constraints in Cawley’s second example

To verify our above point of view, let us start by studying
a concrete example—Cawley’s second example. In terms of
our extended consistency conditions, the second time deriva-
tion of the weakly vanishing function 2xz is bound to be
weakly equal to zero, that is,

d2

dt2
~2xz!'pz'0. ~5.1!

Hence we obtain thatpz is a new constraint. Of course, we
also have to use the consistency conditions to each new con-
straint; moreover, again we use them to generate each newer
constraint step by step until no more constraints are obtained.
So the constraintpz ought to obey

ṗz'$pz ,HT%5y, ẏ'$y,HT%5v. ~5.2!

So another new constraint is then generated and the multi-
plier v is determined as

y'0, v'0. ~5.3!

When Eqs.~5.1! and~5.3! are satisfied, obviously the canoni-
cal equations of motion~2.32! are equivalent to the original
E-L equations~2.25!. On the final constrained hypersurface
GC
F determined by all constraints~2.28!, ~2.30!, ~5.1!, and

~5.3!, there is no condition which can determine the limit of
pz /px

1/2. Thus Eq.~2.32a! indicates that the motion in thex
direction is undetermined, or arbitrary.

Making use of Eqs.~5.2! and notingv to be a differen-
tiable function we have

yz.0, vpy.0. ~5.4!

Therefore we can rewrite the final total Hamiltonian in the
form

HT
F.~pzpx

21/2!px . ~5.5!

It is easy to show that the correct canonical equations of
motion are generated by it.

It is interesting that the increase of the number of con-
straints may result in some first-class constraints changing to
second-class ones because these original first-class con-
straints probably have nonvanishing Poisson brackets with
some of the new constraints. For instance, in Cawley’s sec-
ond example, in the new complete set of constraints gener-
ated by our algorithm, there is only one first-class constraint,
px'0; the others are second-class ones. According to
Dirac’s conjecture, this could effect the determination of the
extended Hamiltonian; namely, onlypx is thought to be a
generator of gauge transformations. Thus the extended
Hamiltonian is

HE.upx . ~5.6!

However, since we have not a first-class primary constraint,
this conclusion cannot be given by Dirac’s infinitesimal con-
tact transformations. Similarly, it cannot be obtained in terms
of Dirac’s test suggested by Cawley. Formally, Dirac’s con-
jecture does not fail for Cawley’s second example since it
gives the same motion as that in the Lagrangian formalism.
However, Eq.~5.6! is not fully appropriate when gauge con-
ditions are taken, which can be seen in Sec. VI. In addition,
for Frenkel’s example we can discuss it similarly and we
have the same conclusion. It seems to us that the correct
construction of the generalized Hamiltonian ought to be ob-
tained from the extended Dirac conjecture. Obviously, the
subalgebra of the MECPB of the first-class constraints is null
in Cawley’s second example. Hence its final total Hamil-
tonian is the same as its generalized Hamiltonian.

In his paper, Cawley also gave the above new constraints,
which were called ‘‘subsecondary’’ ones. But he used the
so-called ‘‘sanitization’’ method, that is, by imposing a sub-
secondary constraintpz'0, so that the motion ofx is im-
proved @18#. His idea may be acceptable, but limited and
incomplete. We need to find the inherent physical causes and
the general principle or method.

B. The extension of Dirac’s algorithm

For a singular Lagrangian system, without loss of gener-
ality, the independent weakly vanishing functions on the
constrained hypersurfaceGC

D can be written as@4,13#

Cj
a5Aa~x,p!f j~x,p!'0, Aa~x,p!uGCDÞ0,`,

~5.7!

wheref j take over all the constraints in Dirac’s original
algorithm, andAa are functionally independent for various
indicesa. Actually, one expandsCj

a on the constrained hy-
persurface and uses the property that the various constraints
are functionally independent of each other, and then can ob-
tain Eq.~5.7!. In Ref. @16#, this relation is shown in detail by
the relation theorem on weak equality and strong equality. It
must be emphasized that the higher power terms of con-
straints need not be considered because they strongly vanish.
The reason and argument can be found in Ref.@13#. Even
though one considers the higher power terms of the con-
straints, the conclusion is the same.

It must be noted thatAa is taken on the constrained hy-
persurface. According to Ref.@13#, one can transform all of
the old 2n variables on phase space to 2n new variables
cm ~m51,...,m) andkm̄ ~m̄5m11,...,2n! in whichcm takes
over all the constraints. Thus, without loss of generality,
Aa can be taken askm̄.

Suppose that in the system there exist

DHT

k11AauG
C
D5` ~k50,1,2, . . . ! ~5.8!

where theD operator is defined as in Eq.~3.2!. It means that
]kHT /]hmk is not k order differentiable with respect tohn.
If we only have Dirac’s original consistency conditions

dnf j /dt
nuG

C
D50 ~n51,2, . . .! ~5.9!

we cannot guarantee
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dk11Cj
a/dtk11uG

C
D5~2 !k11~DHT

k11Aa!f j ~5.10!

vanishing weakly since the right side of Eq.~5.9! is `30.
We also cannot remove the case

dk8Cj
a/dtkuG

C
DÞ0 ~k8.k11!. ~5.11!

It follows that the weakly vanishing functionsCj
a on GC

D no
longer preserve the weakly vanishing property in time or
GC
D is unstable in time. Thus, because the canonical motion

equations in the constrained dynamics are written in the form
of a weak equality, the Hamiltonian formalism appears in-
consistent. In other words, the time higher order derivatives
of the function on phase space cannot be calculated exactly
and the evolution trajectory in time of the function of the
phase space variables cannot be determined completely. This
problem has been seen from Cawley’s second example in
Sec. III B. This inconsistency has to be eliminated. There-
fore, we necessarily propose extended consistency condi-
tions, that is, all the weakly vanishing functions also have to
preserve the weakly vanishing property in time. This implies
that anyCj

a defined by Eq.~5.7! obeys

dnCj
a/dtn'0 ~n51,2, . . .!. ~5.12!

But here the ‘‘weakly vanishing’’ means to be equal to zero
on the final constrained hypersurface. It is similar to the re-
quirement for all the constraints to be weakly equal to zero
on GC

D in Dirac’s algorithm and thus it is acceptable physi-
cally. When the constrained system has no suchAa obeyed
by ~5.8!, the extended consistency conditions will return to
Dirac’s original consistency conditions. However, when the
cases~5.10! occur, the extended consistency conditions will
be needed so as to eliminate the inconsistency and generate
new constraints. In fact, we have applied the extended con-
sistency conditions successfully to Cawley’s second example
in Sec. V A by requiring 2xz or 2xpx

1/2 to preserve the
weakly vanishing property in time. Further discussion can be
seen in Sec. V C. Generally speaking, if the right side of Eq.
~5.10! is a function it should vanish weakly in terms of the
extended consistency conditions

~DHT

k11Aa!f j'0. ~5.13!

It is a limit of 0/0 onGC
D and thus may, generally, generate

new constraints. We also have to require all the new con-
straints to preserve the weakly vanishing property in time
and, as usual, this may give rise to more new constraints. If
the right side of~5.10! is a constant onGC

D , it implies that
the system shows the inconsistency 051. Such a system is
not interesting according to Dirac@1#.

Similar to using Dirac’s original consistency conditions
@1# we generate constraints in terms of the extended consis-
tency conditions. First, we takeAa as a constant and require
Cj
a to preserve the weakly vanishing property in time. It is

just Dirac’s original algorithm. Second, if there exist such
phase space variables that thek11 order partial derivatives
of the total Hamiltonian with respect to them are infinite,
Aa are respectively taken as their canonical conjugate vari-

ables. We requireCj
a5Aaf j to satisfy~5.12!. Obviously the

requirement can generally lead to the generation of new con-
straints.

This process ends when no more new constraints are gen-
erated and/or no more new multiplier equations are given. It
is worth pointing out that on the new constrained hypersur-
face determined by the new complete set of constraints, there
is no longer suchAa so that the cases~5.8! can appear. Con-
sequently, when the linear combinations of all the con-
straints, involving the new constraints, are preserved in time,
that is, the arbitrary-order time derivatives of the weakly
vanishing functions are still weakly equal to zero, the ex-
tended consistency conditions are satisfied on the new con-
strained hypersurface.

More generally, if there still exist the cases such as Eqs.
~5.12!, the process of generation of the constraints does not
end generally and we have to require again the higher stage
extended consistency conditions. These processes will end at
a finite number of steps, at least in systems with finite de-
grees of freedom and contradictory relations such as 1'0
will not occur. Otherwise the original Lagrangian equations
are inconsistent@1#.

After all the constraints are generated, we have to deter-
mine which constraints belong to the first class and which
constraints belong to the second class. Then in terms of the
well-known Dirac method and extended consistency condi-
tions we can obtain the final Hamiltonian. Moreover, if we
need the generalized Hamiltonian, we still must apply the
extended Dirac conjecture.

C. Study of the general case

Now, we generally study those systems in which there are
some independentAa satisfied by~5.8!. For Cawley’s second
example suchAa is only x. The existence of suchAa implies
that the total Hamiltonian is not differentiable with respect to
some phase space variables. This feature exists in singular
Lagrangian system with Hessian variable rank~see Sec.
III B !.

In order to Hamiltonize general singular systems with
varying rank Hessian matrix we assume all the primarily
expressible velocitiesq̇s @13# can be expressed finally as
finite functions of the variablesq,ps on phase space as well
as the multipliers (q̇A), or say their limits always exist on the
final constrained submanifoldGC

F . The reason for making
this assumption is thatthe inherently infinite motion has no
physical significance. For example, in the Cawley’s example
above, ẋ5pz/2px

1/2 is infinite on GC
D but because there is

another constraintpz'0 one can think its limit, a finite func-
tion, exists onGC

F . In fact, this assumption is required so that
the primary constraints can be turned to Hamiltonian ones.

Returning to Sec. III B, if detiWsriuG
C
D 5 0, it implies

that some rows or columns of (Wsr) are either weakly van-
ishing or linearly dependent onGC

D . For the latter we can
make an invertible elementary transformationP so that some
rows or columns of~PW! sr vanish onGC

D . Without loss of
generality, supposeL rows of PWsr weakly vanish on
GC
D , in which L5r2r 8 while r 8 is the rank ofWsr on

GC
D . Equivalently, there areL null eigenvectorsls

( l ) for
iWsri on GC

D , that is,
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W̄lr~q,q̇![(
s

ls
~ l !~q,q̇!Wsr~q,q̇!uG

C
D50

~ l51,2, . . . ,L !. ~5.14!

ObviouslyW̄lr only depends onsomevelocitiesq̇
A8 at most

in a weakly dependent sense, that is,]W̄lr /]q̇
A8'0. Other-

wise W̄lr is not weakly equal to zero if there is no other
condition~s!. Thus from Eq.~5.14! we have

W̄lr'0, ~5.15a!

W̄lA5ls
~ l !WsA5ls

~ l !Wsr~]cA /]pr!'0 ~ l51, . . . ,L !.
~5.15b!

It is easily seen thatW̄lr can be expressed as a function of
q,ps , andq̇

A in terms of Eq.~3.16!. Of course, by virtue of
the motion equations we obtain

g l~q,q̇![(
i

ls
~ l !~q,q̇!Ks~q,q̇!uG

C
D50 ~ l51,2, . . . ,L !.

~5.16!

According to Dirac’s idea and the reasons stated above, it
is very natural to require them to be preserved in time, that
is, we need the extended consistency conditions. In fact, in
Ref. @16# Sudarshan and Mukunda did just that in Lagrang-
ian formalism as stated above~see Appendix F!. But Sudar-
shan and Mukunda only required that the constraint equa-
tions ~5.16! were preserved in time. In Lagrangian
formalism, in general,W̄li q

j andW̄li q̇
j can be regarded as a

linear combination of Lagrangian constraints. Thus in terms
of the motion equations generally one cannot get the fact that
some velocitiesq̇a tend to infinity. In other words, the time
derivatives ofW̄li are finite and thus the evolution of them in
time does not give new independent constraints. Therefore,
S-M’s approach has no problem. However, in Hamiltonian
formalism, the case is a little complex because we generally
cannot expressW̄li q

j and W̄li q̇
j as a linear combination of

the Hamiltonian constraints which are defined onGC
D. For

instance, in Cawley’s second example,W31ẋ52żẋ5pz is
just so. Although in Lagrangian formalism it is zero since the
constraintż50, in Hamiltonian formalism we do not know it
to be zero onGC

D in the Dirac-Bergmann algorithm. It is a
little similar to the fact that in general one need not write
explicitly the primary constraints in Lagrangian formalism
but one needs to clearly give them in Hamiltonian formal-
ism. So we have to require generallyW̄li q

j'0 to be pre-
served in time, that is,

d

dt
~W̄li q

j !'W
˙̄
li q

j1W̄li q̇
j'0. ~5.17!

Of course we also haveẆ̄li'0. Because some of the veloci-
ties are infinite onGC

D Eq. ~5.17! may give rise to new con-
straints and/or new equations about theq̇A. Thus it can be
rewritten as

W˙̄ li'0, W̄li q̇
j'0. ~5.18!

Furthermore, to require similarly

Ẅli'0,
d2

dt2
~W̄li q

j !'Ẅli q
j12W˙̄ li q̇

j1W̄li q̈
j'0,

~5.19a!

d

dt
~W̄li q̇

j !5W
˙̄
li q̇

j1W̄li q̈
j'0, ~5.19b!

we have

Ẅ̄li'0, W
˙̄

li q̇
j'0, W̄li q̈

j'0. ~5.20!

Obviously they may lead to new constraints and/or multiplier
solutions,

W̄li q̈
i5g l~q,q̇![(

i
ls

~ l !~q,q̇!Ks~q,q̇!uG
C
D'0.

~5.21!

We have to check continually whether Eqs.~5.21! are pre-
served in time. In fact, it is the same as the steps taken by
S-M’s approach in Lagrangian formalism, that is,g l in Eqs.
~5.21! is required to preserve the weakly vanishing property.
In other words, all new constraints, which originate from
Hessian variable rank, as new main branches generating the
secondary constraints, are obtained by our extended consis-
tency conditions. This means that our algorithm of the ex-
tended consistency conditions involves the steps of
Sudarshan-Mukunda’s approach. Therefore, for a singular
system with Hessian variable rank, if Sudarshan-Mukunda’s
approach is applicable our algorithm is also applicable.

For all new constraints generated by the above steps, we
have to require them to obey the consistency conditions,
namely, their time derivatives are weakly vanishing. As
usual, each derivation of them may give rise to more new
constraints. This process is ended when no more new con-
straints are generated and/or no more new multiplier solu-
tions are given. More generally, if there still exists the case
of a Hessian matrix with varying rank onG8 determined by
all above new and old constraints, we have to further repeat
the above process so that more and newer constraints are
generated till the Hessian matrix has no longer a variable
rank on the final constrained submanifoldGC

F . These pro-
cesses must end in finite steps for a system with a finite
number of degrees of freedom, and the contradictory relation
1'0 will not occur. Otherwise the original Lagrangian
~equations! must be inconsistent.

Comparable with Sudarshan and Mukunda’s method@16#
of treating the system with Hessian variable rank in Lagrang-
ian formalism we can say all corresponding Lagrangian con-
straints are generated by the above processes. It is very im-
portant and interesting that the above processes can be
determined from the requirement that for each process the
constrained functionsW̄li andW̄li q

j which vanish in the con-
strained submanifold preserve the weakly vanishing property
in time. We call them the extended consistency conditions.

As stated above,W̄li can be expressed as functions ofqi

andps and the multipliers as functions of time, and conse-
quently all the new constraints, which are generated in terms
of Hamiltonian ~canonical! motion equations and the ex-
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tended consistency conditions, are Hamiltonian ones. There-
fore our algorithm is proposed in Hamiltonian formalism and
is a development of Sudarshan-Mukunda’s approach along
with the Hamiltonian formalism. Of course, the previous as-
sumption in Sec. III B is necessary.

Actually, the constrained functionsW̄li andW̄li q
j can be

expanded as a linear combination of the independent weakly
vanishing functionsCj

a defined by~5.7!. The higher power of
Cj
a can be absorbed into the combination coefficients@13#.

Therefore the extended consistency conditions can also be
expressed as the evolution of the constrained functionsW̄li

andW̄li q
j preserves the weakly vanishing property in time.

This is the same as the method proposed in Sec. V B. In
addition, in some situations, we can slightly loosen our as-
sumption, that is, we only assume that Dirac’s total Hamil-
tonian of the system with Hessian variable rank is known.
Thus we can directly use the algorithm of the extended con-
sistency conditions to generate new constraints and obtain
the final total and the generalized Hamiltonian according to
the method described in Sec. V B.

VI. FROM BERGMANN’S PHYSICAL REQUIREMENT
TO THE GAUGE CONDITIONS

The invariance of the Lagrangian under gauge transfor-
mation implies that Lagrangian is singular, i.e., the determi-
nant of its Hessian matrix vanishes@4,16#. By virtue of the
Dirac-Bergmann algorithm@1,2#, one can pass from the sin-
gular Lagrangian formalism to the Hamiltonian formalism.
Since the coordinates and momenta turn out not to be inde-
pendent in a constrained system, only a submanifold of
phase space is relevant to the Hamiltonian description of this
system. This submanifold is called the constrained submani-
fold and it is determined by all of the constrained equations
@4,13#. However, the submanifold still contains the gauge
variables; one needs to introduce such a reduction process
that the gauge variables may be eliminated and then the re-
duced phase space can be obtained. As is well known, in this
process one has to determine the number and form of gauge
conditions so as to identify the physical reduced space and
give the definition of physical observables on it. In fact, it is
necessary for the quantization of constrained systems
@1–4,13#.

A. The definition of physical observables

It is important that Bergmann proposed a physical re-
quirement@2#: the physical observables, i.e., the gauge in-
variant quantities, are determined fully by the dynamics
equations and the initial conditions. It means that the physi-
cal observables do not depend on the arbitrary functions~La-
grangian multipliers!. Only in this sense can they be mea-
sured in principle by experiment. Obviously, Bergmann’s
physical requirement is truly essential and naturally accept-
able. However, in systems with constraints or singular La-
grangian systems, one usually thinks that a physical observ-
ableF is defined implicitly by the conditions@4,11–13#

$F,c j%'0, ~6.1!

wherec j take over all constraints in constrained systems.
For a general singular system, the definition~6.1! seems not

to work. In fact, the definition~6.1! is only a conjecture
based on Dirac’s algorithm. In Dirac’s paper@1# and the
current literature@15#, the explicit expression of evolution of
the phase space function in time is not derived. Only accord-
ing to the behavior of the second time derivative of the func-
tion does one conjecture the definition~1! of the physical
observables.

In his well-known work@1#, Dirac assumed that there is
an initial physical state independent of the arbitrary multipli-
ersva . At time t0 , suppose the constrained system is at the
initial physical state. Thus, if we require that the function
g(h) is free of arbitrary multipliers at any time, the coeffi-
cients of the terms related to the arbitrary multipliersva in
Eq. ~3.7! will be weakly equal to zero, that is,

D
H*
nm S )

s50

m-1

Dfam2s
D
H*
nm2s212km2s21D g'0. ~6.2!

This relation shows how the multiple operatorD acts ong. It
is always possible that by changing the action order the right
side of Eq.~6.2! could be rewritten as Eq.~3.8!. It follows, as
stated in Sec. III, thatg satisfies

Dfm0
g'0 ~6.3!

by using the exchange theorem of theD operator~3.6! and
the first-class property ofH* . Therefore Eq.~6.3! is enough
to eliminate the dependence ofg on the arbitrary multipliers
at any time. In fact, we also can obtain~6.3! in terms of the
finite Dirac contact transformation or gauge transformation
~4.56! based on the invariance of the physical observables.

In addition, the physical observables should be chosen on
the constrained hypersurface and then they have vanishing
Poisson brackets with all the second-class constraints since
all of the second-class constraints can be expressed as a set
of canonical conjugate pairs in the locally equivalent sense
@13#, that is,

DVs
g'0. ~6.4!

Alternatively, Dirac’s brackets can be used if one allows the
constraints to appear in the physical observables formally
@13#.

Returning to the accustomed definition~6.1! of the physi-
cal observables, we find that it is not appropriate and univer-
sal in general singular Lagrangian systems since it may im-
pose too many and too strict restrictions, which may make
the physical sector of the constrained system change or even
lose the physical observables. This can be seen more clearly
in Sec. VI D. Hence, we have to give a corrected definition
of the physical observables. As stated above and in Sec.
III A, it is shown that the physical observables have weakly
vanishing Poisson brackets withfm0

, and also with all the

second-class constraintsVs according to Bergmann’s physi-
cal requirement,

$F,fm0
%'0, $F,Vs%'0. ~6.5!

In fact, the difference between the definitions of physical
observables~6.1! and~6.5! is not trivial because they result,
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respectively, in the distinct gauge conditions in some general
gauge theories. This can been seen in the following section.

B. The gauge conditions

In order to relate the corrected definition~6.5! of the
physical observables to the origin of gauge conditions, we
rewrite Eq. ~6.5! as a system of linear partial differential
equations,

Am0m

]g

]hm '0, Am0m[$fm0
,hm%. ~6.6!

Because all of thefm0
are functionally independent of each

other,Am0m has the maximum rank, which is equal to the
number of elements of the minimum evolution closed subal-
gebra of the first-class constraints.

Let us instead offm0
useFm0

,

Fm0
[hm02 f ~hm̄!'0, ~6.7!

in which i]fm0
/]hm0i has the maximum rank andhm̄ takes

over the variables on phase space excepthm0. Fm0
is equiva-

lent tofm0
locally @13,34# and can be obtained in terms of

the theorem on implicit functions from the constraints
fm0

'0. By using the closed property~3.12! of fm0
we have

$Fm0
,Fm

08
%50. ~6.8!

ThusFm0
can be chosen as a part of the generalized coordi-

nates, or of the generalized momenta, or the mixing of them
~without any pair of canonical conjugates! on phase space.
To seek the other new variables on phase space, we can write
the system of homogeneous linear partial differential equa-
tions of the first order as

$Fm0
,K%50. ~6.9!

Obviously, it is a complete system. Therefore this system has
2n2k independent solutions which involve all of thefm0

whose number is supposed to bek @34#. We again choose a
set of such functionsxm0

independent ofFm0
so that

deti$Fm0
,xm

08
%iÞ0. ~6.10!

It is easy to show thatxm0
also does not depend onK in Eq.

~6.9!, otherwise Eq.~6.10! cannot be satisfied. Thus, 2n
phase space variables can be replaced by 2n new variables
km5(Fm0

,xm0
,Ks,m051, . . . ,k,s52k11, . . . ,2n). Con-

sequently Eq.~6.5! becomes

]g8~k!/]xm0
'0, g8~k!5g~h!. ~6.11!

This means thatg, as a function of new variableskm, is free
of xm0

in the weak equality sense. Obviously the general
solution of Eq.~6.11! satisfies

g8~xm0
1bm0

,Fm0
,Ks!'g8~xm0

,Fm0
,Ks! ~6.12!

because of the first-class property offm0
. In Eq. ~6.12!

bm0
are the arbitrary functions on phase space. From the

above Eq.~6.12!, it follows that the physical observables are
invariant under translation transformation ofxm0

. Therefore
we can choose gauge conditions as

xm0
50. ~6.13!

This is just our corrected form of gauge conditions. Their
number is the same as that of the constraints of the subalge-
bra of the MECPB of the first-class constraints but is not
invariably equal to that of all the first-class constraints in
general. This conclusion is important and nontrivial. It will
result in the well-known difficulties in gauge reduction and
quantization of gauge theories because there may be insuffi-
cient gauge conditions in general constrained systems. In
other words, for the first-class constraintfm̄ (m̄Þm0) that
does not belong to the minimum evolution closed subalgebra
of the first-class constraints, one cannot choose such a cor-
responding gauge conditionxm̄50 that the equation
deti$fm̄ ,xm̄8%iÞ0 exists. In fact, the accustomed physical
reduced phase space may no longer be of even dimensions
generally and we do not know how to write out the measure
in path integral quantization. Cawley’s examples@17,18# dis-
cussed in the following are just simple examples.

Therefore a new subject worth studying, the quantization
for general singular Lagrangian theories, appears. The quan-
tization of the type of the gauge theories needs restudying on
a new footing. We believe that some interesting results will
be derived and this is an aim in our future papers.

C. A simple example

A simple case is Cawley’s counterexample for Dirac’s
conjecture@1#. Let us take the combination of his two ex-
amples@17,18# and write the Lagrangian as

L5 ẋ1ż11y1z1
2/21 ẋ2ż2

21y2z2 . ~6.14!

This example is a singular system with both the proper sub-
algebra of the MECPB of the first class and Hessian variable
rank. One readily obtains the Euler-Lagrange equations

z̈150, z1
2/250, ẍ15y1z1 , ~6.15a!

d

dt
ż2
250, z250,

d

dt
~2ẋ2ż2!2y250. ~6.15b!

Hence they describe a motion that is limited to thex12y1
plane and on thex2 axis (z15y25z250). The velocity in
the x1 direction is uniform while the motion in they1 and
x2 directions is arbitrary or undetermined. In terms of
Dirac’s algorithm, the primary constraint is given by
py1'0, py2'0. It is straightforward to derive secondary con-
straints similar to Eqs.~2.20! and~2.30!. They can be rewrit-
ten as the canonical or linearly and functionally independent
forms z1'0, px1'0, z2'0, andpx2'0. Thus sincez2.0,
one obtains Dirac’s total Hamiltonian

HT
D.px1pz11v1py11px2

1/2pz22y2z21v2py2. ~6.16!
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Obviously, all the constraints by Dirac’s algorithm are first
class. If we make use of the accustomed definition~6.1! of
the physical observables, this system has no physical degrees
of freedom. In other words, the physical reduced phase space
is zero dimensional. In fact, Dirac’s conjecture may be com-
ing from the definition~6.1! to a great extent. Following the
original idea of Dirac’s conjecture we have the extended
Hamiltonian

HE5u1px11v1py11w1z11px2
1/2pz21u2px21v2py21w2z2 .

~6.17!

It follows that the motions of this system in many directions
are arbitrary, and particularly thex2 motion becomes infinite.
In other words,x1 , y1 , andpz1 andx2 , y2 , andpz2 are all
gauge freedoms in Dirac’s original algorithm. However,
x1 , pz1, x2 , y2 , z2 , px2, and pz2 are originally physical;

namely,x1 has a determined motion andx2 has an undeter-
mined motion free of the choice of Lagrangian multiplier,
while pz1, y2 , z2 , px2, andpz2 are also some constants in-
dependent of Lagrangian multipliers. If one uses the ex-
tended Dirac Hamiltonian to generate the motion equations,
even if one fixes the gauge, this system becomes static and
does not return to the original physical motion. Conse-
quently, the application of the definitions~6.1! may result in
imposing too many and too strict restrictions on the physical
observables. In other words, the physical degrees of freedom
may be decreased and the gauge degrees of freedom may be
increased unexpectedly in general singular systems. The final
result is that the physical content of the theory is changed.
Therefore Eq.~6.1! is not correct and universal.

Actually, because of the Hessian variable rank we have to
apply the extended consistency condition. As in Sec. V A,
we can obtain the new constraintspz2'0, y2'0, and

v2'0. Thus the final total Hamiltonian can be written as

HT
F.px1pz11v1py11px2

1/2pz2. ~6.18!

It is easy to verify that on the final constrained hypersurface
the subalgebra of the MECPB of the first-class constraints
only has an elementpy1. From Eq.~6.5! it follows that the
corrected definition of the physical observables is

Dpy1
g'0. ~6.19!

It implies that this system has only a gauge degree of free-
dom, and Dirac’s contact transformation has only a gauge
generator. The corrected generalized Hamiltonian should be
constructed by our extended Dirac conjecture. Obviously, it
is the same as the final total Hamiltonian in the form

HG.HT
F.px1pz11v1py11px2

1/2pz2. ~6.20!

Of course, a simple choice of the gauge condition is

x5y150. ~6.21!

It gives the same motion as in the Lagrangian formalism.

VII. CONCLUSIONS

In this paper, we try to extend the Dirac-Bergmann theory
of constrained systems so that it is applicable to more gen-
eral singular systems, such as Cawley’s first and second
counterexamples, which have the feature of the proper sub-
algebra of the MECPB of the first-class constraints and Hes-
sian variable rank, respectively. We derive the general ex-
pression of evolution of the function on phase space in terms
the Taylor expansion method and the obvious expression of
the finite Dirac contact transformation by virtue of time
translation and trajectory transformation. They all indicate
that only those first-class constraints belonging to the subal-
gebra of the MECPB have contributions to the evolution of
the system. Therefore the generalized Hamiltonian is con-
structed by adding the linear combination of the arbitrary
Lagrangian multipliersvm0

and the elementsfm0
of the sub-

algebra of the MECPB of the first-class constraints, that is,
vm0

fm0
. This is just the extended Dirac conjecture which is

proposed and shown in this paper. For singular systems with
Hessian variable rank, we find that, in terms of Dirac’s con-
sistency conditions only, the stability of the constrained hy-
persurface is not guaranteed. In other words, Dirac’s original
consistency conditions are not enough to generate all the
secondary constraints. It seems to us that physically the con-
strained hypersurface is bound to be stable and so our ex-
tended consistency condition is proposed. It leads to genera-
tion of new constraints and stability of the constrained
hypersurface. Hamiltonization of this kind of system is then
realized and its dynamics in Hamiltonian formalism is
equivalent to that of Lagrangian formalism. It is worth em-
phasizing that in many well-known cases, for example, QED
and Yang-Mills theory, the minimum evolution closed sub-
algebra of the first-class constraints is just the complete evo-
lution closed algebra of the first-class constraints, and they
have not Hessian variable rank. It is clear that our conclu-
sions are consistent with and go back to the accustomed
Dirac-Bergmann algorithm in these cases. It is important and
interesting that our results can be used for some more general
singular Lagrangian systems with the proper subalgebra of
the MECPB of the first-class constraints and/or with Hessian
variable rank.

Finally, we would like to point out that in this paper we
have finished the Hamiltonization for singular systems with
the proper subalgebra of the MECPB of the first-class con-
straints and/or with Hessian variable rank, and obtained the
choice of the gauge condition; however, how to carry out
quantization of these singular systems is still an open ques-
tion. Because, generally speaking, the number of gauge con-
ditions can be less than one of the first-class constraints in
these systems, we do not know how to write the correct
measurement of path integral quantization. Our algorithm is
to provide a tool for quantization of them. We believe that
this question is very elementary and some interesting appli-
cations of our results can be found. Such work is in progress.
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APPENDIX A

Suppose the rank of the coefficient matrix for the un-
known multipliersub in Eqs.~2.10! isR. WhenR is equal to
n2r , which is the number of primary constraints, we can
completely determine all multipliers. WhenR,n2r , there
aren2r2R null eigenvectorsjA

a so that

$fA ,fB%jB
a'0, ~A1a!

$xk ,fB%jB
a'0, ~A1b!

Consequently then2r2R linear combinations of primary
constraints such as Eq.~2.11! become the first-class ones,
while the other independent linear combinations of primary
constraints are secondary ones, denoted byfb . We also can
recombine linearly the secondary constraints~generally pri-
mary constraints may be involved! so that they become first
class as far as possible; the remaining independent combina-
tions must be the second class, and we denote them byxa
andxb , respectively.

In constrained systems, Dirac’s total Hamiltonian can
only be determined in a strong equality sense. The symbol of
the strong equality is denoted by.. If f 1. f 2 , then it means
that

f 1' f 2 , ~A2a!

] f 1 /]q
i'] f 2 /]q

i , ] f 1 /]pi'] f 2 /]pi . ~A2b!

Normally, two functions being strongly equal means that
both they and their corresponding partial derivatives with
respect to the variables on phase space are weakly equal.
Therefore the strongly vanishing term in the total Hamil-
tonian has no contribution to motion equations with the weak
equality form. The following theorem on the relations be-
tween weak equality and strong equality can be demon-
strated. When the hypersurface is determined by the equa-
tions f j50, for the functions f and g whose second
derivatives exist and are continuous~sometimes this can be
slightly loosened! on the hypersurface, iff'g, then

f ~q,p!.g~q,p!1cjf j . ~A3!

APPENDIX B

The continuous and differentiable functionsA, B, and
g satisfy the Jacobi identity of the Poisson bracket,

ˆA,$g,B%‰5ˆ$B,A%,g‰2ˆB,$A,g%‰. ~B1!

Therefore Eq.~3.6b! is valid for n51. Assuming that the
equation also is valid forn, we have forn11

~B2!

In terms of the relation

Cn11
m 5Cn

m1Cn
m21 ~B3!

we obtain

~B4!

Thus Eq.~3.6b! is proved.

76 54AN MIN WANG AND TU NAN RUAN



APPENDIX C

In terms of Eq.~3.6! we can obtain

~C1!

in which we have used the consistency condition@1#

$HT
D ,c j%'0 ~C2!

and assumed that the constraints do not have explicit time dependence and the number of primary first-class constraints is
K. Making use of Leibniz’s differential formula we continually calculate~C1! and can get

~C3!

Likewise, by the successive iteration method, we can deduce
Eq. ~3.7!.

APPENDIX D

Actually the time translation operator can be obtained by
the product of a series of successive infinitesimal dynamics
transformations,

hm~ t1dt !'~12dtDH
T

D~ t !!hm~ t !, ~D1!

i.e., the time translation operator has the form

U~ t,t0!' lim
tN5t
N→`

)
j51
→

N

@12~ t j2t j21!DH
T
D~ t j21!# ~D2!

where→ refers to a successive product from left side to right
side in turn. It can be written straightforwardly as

U~ t,t0!'12E
t0

t

dtDH
T

D~t!U~t,t0!. ~D3!

When making use of the successive iteration method we
have to be very careful. It can be shown by the exchange
theorem that

Df ~ t !g~ t !'Df~ t !g~ t8!2E
t8

t

dt1Df~ t !@DH
T
D1eg#~ t1!,

~D4a!

Df1
~ t !@Df2~ t8!g~ t8!#'Df1

~ t !Df2
~ t8!g~ t9!

2E
t9

t8
dt2Df1

~ t !Df2
~ t8!

3@DH
T
D1eg#~ t2!, ~D4b!

where

Df~ t !g~ t8![ (
n50

`
~ t2t8!n

n!
DXnf ~ t8!g~ t8!, ~D5!
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Df1
~ t !Df2

~ t8!g(t9)[ (
n50

`

(
m50

`
~ t2t8!n

n!

~ t82t9!n

m!

3DXnf ~ t9!DXmf ~ t9!g~ t9!; ~D6!

similarly for the product of manyD8s. TheX operator is
defined as

X[2DH
T
D1e . ~D7!

Obviously theD operator has the properties

Df~ t !g~ t !5Df ~ t !g~ t !, Df~ t !t850, ~D8!

Df~ t !' (
n50

`
~ t2t8!n

n!
DXnf~ t8!'Df~ t8!1E

t8

t

dtDXf~t!.

~D9!

Thus the successive iteration method is applicable. For a
function which does not relate to time explicitly, the time
translation operator acting on it has the form of Eqs.~4.8!
and ~4.9!.

APPENDIX E

Let us start from the Christ-Lee model@33#. Its Lagrang-
ian is

L5@ ṙ 21r 2~ u̇2j!2#/22V~r !. ~E1!

The advantage of this example is that its invariant group has
common features with the QCD or QED gauge groups, that
is, their elements involve an arbitrary function ont. Under
such transformations as

u→u1a~ t !, j→j1ȧ~ t !, ~E2!

Lagrangian~E1! is invariant.
Defining the conjugate momenta

pr5 ṙ , pu5r 2~ u̇2j!, pj50, ~E3!

one has a primary constraint

pj'0. ~E4!

The original total Hamiltonian is

HT5pr
2/21pu

2/2r 21puj1V~r !1vpj . ~E5!

Obviously the consistency conditions result in a secondary
constraint

pu'0. ~E6!

Because the two constraints are both first class andpu
2.0,

then Dirac’s total Hamiltonian has the form

HT
D.pr

2/21puj1V~r !1vpj . ~E7!

With the aid of the canonical motion equations one readily
obtains

r ~ t !'e2~ t2t0!DH~ t0!r ~ t0!, ~E8a!

u~ t !'u~ t0!1~ t2t0!j~ t0!1E
t0

t

dt1E
t0

t1
dt2v~ t2!,

~E8b!

j~ t !'j~ t0!1E
t0

t

dt1v~ t1!, ~E8c!

pr~ t !'e2~ t2t0!DH~ t0!pr~ t0!, ~E8d!

pu~ t !'pu~ t0!, ~E8e!

pj~ t !'pj~ t0!2~ t2t0!pu~ t0!, ~E8f!

in which

H5H*5pr
2/21puj1V~r !. ~E9!

It is easy to see that

h̃m~ t !5G~u,v;t,t0!h
m~ t !

'H 12E
t0

t

dt1@ ũ~ t1!2v~ t1!#Dpj

2E
t0

t

dt1E
t0

t1
dt2@ ũ~ t2!2v~ t2!#Dpu

~ t !J
'H 12E

t0

t

dt1@ ũ~ t1!2v~ t1!#Dpj
~ t1!J hm~ t !

5exp$2l1~ t,t0!Dpj
~ t !2l2~ t,t0!Dpu

~ t !%hm~ t !,

~E10!

l1~ t,t0!5E
t0

t

dt1@ ũ~ t1!2v~ t1!#, ~E11a!

l2~ t,t0!5E
t0

t

dt1E
t0

t1
dt2@ ũ~ t2!2v~ t2!#. ~E11b!

HereDpj
andDpu

are thought not to act onl1 andl2 since
they are the functions oft only. Hence we can write

G~u,v;t,t0!'exp$2l1~ t,t0!Dpj
~ t !2l2~ t,t0!Dpu

~ t !%.
~E12!

Thus the subalgebra of the MECPB of the first-class con-
straints has two elements and just exhausts all the first-class
constraints. Consequently Dirac’s contact transformation op-
erator becomes

G~ t,t0!'e2a1Dpj
2a2Dpu. ~E13!

It must be noted thata1 and a2 are independent of each
other and different froml1 andl2 , which satisfy the rela-
tion

l̇2~ t,t0!5l1~ t,t0!. ~E14!

It is interesting that the secondary first-class constraintpu
becomes a generator of Dirac’s contact transformation. This
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is consistent with Dirac’s conjecture. Therefore by using
Dirac’s conjecture we can determine correctly the general-
ized Hamiltonian

HG5pr
2/21V~r !1a1pu1a2pj ~E15!

where puj is absorbed intoa1pu . Consequently, Dirac’s
conjecture is applicable to the Christ-Lee model since the
subalgebra of the MECPB of the first-class constraints is the
same as the complete set of the first-class constraints in this
model.

APPENDIX F

In order to contrast Sudarshan and Mukunda’s method of
treating the singular Lagrangian system with Hessian vari-
able rank in Lagrangian formulation@16# by using our algo-
rithm of the extended consistency conditions in Hamiltonian
formalism, let us recall briefly the S-M approach. Because
the Hessian matrix is singular and its rank isr,n, there
exist n2r linearly independent null eigenvectorsl i

(a)(q,q̇)
for this matrix:

(
i

l i
~a!~q,q̇!Wij ~q,q̇!50 ~a51,2, . . . ,n2r ! ~F1!

or

g~a!~q,q̇![(
i

l i
~a!~q,q̇!Ki~q,q̇!50. ~F2!

~For ease in writing, we omit all explicit time dependence.!
Suppose the number of the functionally independent
g (a)(q,q̇) is k<n2r . Equation ~F2! defines a
(2n2k)-dimensional surfaceV in Swhich consists ofq and
q̇. The rankr of iWij i was first computed in the spaceS,
that is, with all theq’s and q̇’s being independent. But the

equations of motion have restricted the motion to the surface
V of lower dimensionality, so that we must go back and
recompute the rank ofiWij i after restricting the variables to
the surfaceV. When this is done, although the rank cannot
increase, it could, in principle, decrease and we denote its
rank as r 8, r. That means that with the variables con-
strained toV, we may find more null eigenvectors for the
matrix iWij i , and these in turn may introduce more indepen-
dent constraints among theqi and q̇i ; the motion then be-
comes restricted to a surfaceV8 of lower dimensionality than
V. The surfaceV8 of dimensionality (2n2k8) is defined by
k8 (<r 8) independent constraint equations which are ob-
tained by

g~b!~q,q̇![(
i

l i
~b!~q,q̇!Ki~q,q̇!uV50

~b51,2, . . . ,n2r 8! ~F3!

in which l i
(b)(q,q̇) are the null eigenvectors for the matrix

iWij (q,q̇)i in the surfaceV, that is,

(
i

l i
~b!~q,q̇!Wij ~q,q̇!uV50 ~b51,2, . . . ,n2r 8!. ~F4!

Its functionally independent number isk8.
Then we have to check whether the constraints~F4! are

preserved in time so that we obtain more secondary con-
straints. The number of all independent constraints that are
generated by the above process is denoted byk9. If the rank
of uWij u decreases in the surfaceV9 of dimensionality
(2n2k9) defined byk9 independent constraints involving
the secondary constraints, we have to go again through each
of the steps described above. For a system with a finite num-
ber of degrees of freedom, for which genuine motion is pos-
sible, this iterative process must end after a finite number of
steps.
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