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According to Dirac’s and Bergmann’s physical ideas, we derive the expression of the finite Dirac contact
transformation, propose an extended Dirac conjecture, extend Dirac’s original consistency conditions, and
obtain the correct definition of physical observables as well as more universal gauge conditions in general
singular Lagrangian systems. The difficulties in Cawley’s first and second counterexamples of Dirac’s conjec-
ture are overcome. Our results are applicable to Hamiltonization of systems with Hessian variable rank and
systems with the proper subalgebra of the minimum evolution closed Poisson bracket of first-class constraints,
and so provide a correct tool for quantization of these systE&i€50-294{06)03306-9

PACS numbegps): 03.65—~w, 03.20+i, 11.15—q

I. INTRODUCTION rank[16—19, the Dirac and Bergmann method seems not to
work. One is short of a universal algorithm to correctly
Since Dirad 1] proposed the algorithm of generation and Hamiltonize such constrained systems. The famous open
treatment with constraints and Bergmann and co-work&rs problem as to whether “Dirac’s conjecturd?l], i.e.,that all
clarified the relation between constraints and invariance, théhe secondary first-class constraints were also generators of
foundation of the dynamics and quantization of constrainedjauge transformationsvas true still remains. Hence, in or-
systems has been built. The original motivation of their for-der to develop the general theory of the singular Lagrangian
malism of constrained Hamiltonian dynamics, and also theand Hamiltonian constraints for general models, a full under-
dynamics of singular Lagrangian systems, was to develogtanding is necessary of all the “pathological examples”
powerful methods that would allow one to put generally co-[17—2( (always including linear or nonlinear Lagrangian
varia_nt or gauge-invarignt fi_eld_theories into canonical formamultipliers and often with a Hessian variable ranRarticu-
that is, so-called Hamiltonizatiofl,2]. The methods also |4y intriguing for us is the cases related with gauge condi-
have been effectively used for a variety of physical SyStemeions[ZLZZ, that is, that the number of gauge conditions or
often,with a.finite number of degree{§,4]. In particular,. gauge degrees of freedom is not always the same as the
Dirac’s algorithm was successfully applied to the quant'za'number of all the first-class constraints in some general sin-

tion of the gauge field by Faddeev and Popblalong with . T o
the path integral formalism, and was also developed by Batagu'ar Lagr_anglan systems. Th!s implies that the guantization
of these kinds of gauge theories needs restudying on a new

lin, Fradkin, and Vilkovisky along with the Hamiltonian for- footing. Similarly, in quantization of the gauge theories cor-

malism[6]. Recently, a revival of interest in the theory of i he ab bl in classical theori h
constrained systems arose with the superparticle, superstringSpon ing to the above problems in classical theories, there

and low dimensional physical systems, for example, chira so exist.difficulties[15]. Some qther unsolved gnq knotty
scalar and two-dimensional gravitj7—10]; thereby this prob!ems in the theory_of (_:onstramed systems originate from
theory plays an important role in theoretical physics. In fact/ocality and geometry in field theor§23], or are connected
not only is it widely used in various theories with invariance With the anomalies and their topological aspd@4$—26.
but also its development has become an important elemen- Faced with one after another difficulty in the Dirac-
tary subject. There exist a number of excellent reviewsBergmann algorithm, a variety of suggestions have been pro-
[3,4,11-15 which reflect the present status and methods foposed. The recent development is given by Lusdisg in
dynamics and quantization problems of constrained systemshich he describes and reviews some suggestions. It seems
In a word, the theories of the dynamics and quantization ofo us that the failure of the Dirac-Bergmann algorithm is not
constrained systems have had a great success and are ifinats physical ideas. But this algorithm does omit some com-
new period of development. plex situations such as singular systems with the subalgebra
Notwithstanding all these results, there are still some asef the minimum evolution closed Poisson brackeECPB,
pects which have not been sufficiently developed and somehich is defined in our pap¢22]; also see Sec. Il fof the
problems which have not been completely understood. In thérst-class constraints, and with Hessian variable rgi.
classical theory4,16], for some kinds of singular Lagrang- Moreover, this algorithm also has some incomplete proofs
ian systems whose gauge generators do not exhaust all of tled calculations. As a matter of fact, our above views can be
first-class constraints or whose Hessian matrix has varyingupported by analyzing briefly the following three aspects.
First, Dirac and Bergmann thought that the different evo-
lution trajectories with distinct Lagrangian multipliers are
*Present address: Department of Physics and Astronomy, Univeequivalent in physical content and they can be transformed
sity of Glasgow, Glasgow, United Kingdom G12 8QQ. into each other by Dirac’s contact or gauge transformation. It
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results that the secondary first-class constraints have an obystems Dirac’s original consistency conditions are not
vious contribution in evolution of the system, which implies enough to generate all secondary constraints and determine
that the total Hamiltonian can be generalized to the extendedll the arbitrary multipliers in front of the second-class con-
Hamiltonian. This is correct. However, Dirac did not obtain straints. This may lead to the result that the equivalence of
the finite expression of his contact transformation but coniagrangian and Hamiltonian formalisms is not guaranteed
jectured that all the secondary first-class constraints are gemand even the dynamics of the Hamiltonian formalism is not
eratorg[1]. It has been seen that for some examples, Dirac’sompletely determined. In order to overcome the above dif-
conjecture seems not to wofk7]. Second, Dirac supposed ficulties and Hamiltonize the general singular Lagrangian
the constrained hypersurface is stable so as to guarantee tegstem with variable Hessian rank, we propose an extension
full determination of Hamiltonian dynamics in the singular of Dirac’s algorithm of the consistency conditions. In terms
systems. This is natural. But he did not notice that thereof this algorithm of extended consistency conditions, all of
exists a kind of singular system with Hessian variable rankthe secondary constraints can be generated fully and then the
For these systems, all the secondary constraints cannot, fthal total Hamiltonian can be obtained correctly. Moreover,
general, be fully generated by his original consistency conthe generalized Hamiltonian ought to be constructed by our
ditions[18]. Finally, Bergmann pointed out that the physical extended Dirac conjecture. In particular, the algorithm is ap-
observables, or gauge invariant quantities, are determineglicable to Hamiltonization of some more general singular
completely by dynamics and initial conditions, in other systems with Hessian variable rank. As an application, we
words, are free of the arbitrary Lagrangian multipliers. Thisstudy successfully Cawley’s second example. For the general
is elementary. Yet the fact is that one does not derive theases, we reveal our algorithm in detail and study the valid-
general and obvious evolution expression of the function oy, application, and presupposition of our algorithm. It is
phase space and then does not obtain the correct definition ehown that our algorithm connects closely with the
the phySical observable and the universal gauge Conditior@udarshan_MukundaS_M) Lagrangian approach dea”ng
[22]. with the constrained system with Hessian variable rank and
Therefore, in this paper, our aim is to overcome and solvgs 3 development of S-M'’s approach along with Hamiltonian
the difficulties and problems in Hamiltonization, Dirac’s fgrmalism.
conjecture, and the gauge conditions according to Dirac’s |p Sec. VI, according to Bergmann'’s physical supplemen-
and Bergmann’s physical ideas. This paper is arranged &gry conditions, we found that the accustomed conclusion
follows. that the number of gauge conditions or gauge degrees of
In Sec. II, we first recall briefly the Dirac-Bergmann al- freedom is always equal to the number of all the first-class
gorithm and then introduce Cawley’s two famous counterexzonstraints is not universal in general singular systems. It is
amples to Dirac’s conjecture. Meanwhile, we express oushown that the corrected form of physical supplementary
motivation and aim to overcome the difficulties eXiSting in Conditions is that the physica' observab'es have Weak'y van-
the two examples. ishing Poisson brackets with the elements of the subalgbra of
In Sec. Ill, we generally discuss the difficulties existing in the MECPB of the first-class constraints and also with all of
Dirac and Bergmann's algorithm. Then we point out somethe second-class constraints. A simple Cawley’s example is
causes leading to their appearance and give some notions ag@idied. The origin of the gauge conditions is discussed, and
formulas used in this paper. the corrected forms and number of the gauge conditions in
In Sec. IV, after introducing the time translation Operatorsome genera' Singu'ar Lagrangian systems are given_ Our

of the constrained system and the calculation technology dfesults provide a tool for the quantization of this kind of
the (multi-)Poisson bracket, we derive the obvious expresgauge theories.

sion of the finite Dirac contact transformation and its genera- |y Sec. VII, we summarize our main results, point out

tors. Moreover, we find, in general, that the generators do Na§ome knotty problems, and give the conclusions of this pa-
always exhaust all the first-class constraints, but invariablper. |n addition, some details of the derivation and proof of

they involve at least all the primary first-class constraints. Inthe formulas used in this paper are given in the Appendixes.
other words, the generators have weakly vanishing Poisson

brackets not only between themselves but also between them

and the total Hamiltonian. Normally, they form a subalgebra Il. THE DIRAC-BERGMANN ALGORITHM

of th_e MECPB _of the first-class constraints. This concept AND CAWLEY'S COUNTEREXAMPLES
was introduced in our pap¢22] and its details can be seen
in Sec. lll. In order to determine the generalized Hamil- Gauge theories belong to the class of so-called singular

tonian, an extended Dirac conjecture is proposed, and it ikagrangian theories, which are also theories with constraints.
successfully applied to Cawley’s first counterexample toThe standard Hamiltonization and quantization methods can-
Dirac’s conjecture. We conclude that the finite Dirac contactnot be directly applied to these theories. In their well-known
transformation does not change the physical observables amebrks [1,2], Dirac and Bergmann gave such an algorithm
their motions, and that the generators of this finite transforthat one can generate constraints by Dirac’s consistency con-
mation take the constraints of subalgebra of the MECPB ofiitions and can construct the extended Hamiltonian by
the first-class constraints, so that the extended Dirac conje®irac’s conjecture. Although the Dirac-Bergmann algorithm
ture is reasonably verified. Only if the MECPB takes over allhas been successful in many physical systems, it also faces
the first-class constraints does it return to the usual Dirasome serious difficulties since Cawley and Frereedl. pro-
conjecture. posed several counterexampldg,18. In order to propose

In Sec. V, it is found that in general singular Lagrangianour extension of the Dirac-Bergmann theory of constrained
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systems, it is worth recalling and commenting on their algo-serve an evolution weakly vanishing in time. In other words,
rithm of constrained dynamics. Meanwhile, we also will re-the arbitrary order of time derivatives of the constraints
view Cawley’s two counterexamples so that we can solveshould be weakly equal to zero. In terms of this requirement,

their difficulties in the following work.

A. Dirac-Bergmann dynamics of constrained systems

For a singular system, the rank of its HessiannXxn
matrix [4,16]

W= [[2L(q.@)/99'9q']| (i,j=1,...n) (2.1

is less tham. HereL (q,q) is Lagrangian in the system. It is

always possible to number the coordinates in such a way th

in the Hessian matrixV the minor of maximum rank is
placed in the left corner and consequently

del|a?L(9,0)/9q°99"| #0 (o,p=1,...r). (2.2

The other velocities are denoted ¢ and are called the
primarily unexpressible velocitieAEr+1,...,n) [13]. In
Hamiltonian formalismg” is replaced by the arbitrary mul-
tiplier v o which is a function of time. From the definition of
canonical momenta

P,=dL/397=p,(q,q) (2.3
it is clear that dp,=W,,dg’+(d°L/9q"9q")dq"

+(9°L199°3q")dq'. Thus it follows from the theorem on
implicit functions and Eq(2.2) that

q’=f7(a,p,.q". (2.4)

q? is called the primarily expressible velocitfDne can
verify that

pa= L/ 9g*= a(9,p,) (2.5

and thenn—r primary constraints are expressed as

da=Pa— ¥ald,p,)- (2.6

which is calledthe consistency conditiprone can generate
the secondary constrainig step by step. Therefore Dirac’s
consistency conditions can be generally expressed as

{da H+us{da.d8}~0, {xk.H}+Us{xk ¢8}~0,
(2.10

that is, the Poisson brackets betwéépwith all constraints

atre weakly equal to zero. More generally the functions with
fhe above property such &k; are called the first-class ones.
Otherwise they are called the second-class ones. Dirac has
shown that Poisson brackets between two first-class func-
tions are still first class.

Suppose the rank of the coefficient matrix for the un-
known multipliersug in (2.10 is R. It is always possible to
choose then—r —R linear combinations of tha—r primary
constraintg Appendix A) in the following way:

Vo= Enda, (2.11

so that they have weakly vanishing Poisson brackets with all
the constraint41,4,16. Hence ¢, is called the first-class
primary constraint. After dividing all the constraints into the
first- and second-class ones, one can rewrite the original total
Hamiltonian as its Dirac form,

H?=H*+u,é,, (2.12

whereu, are arbitrary multipliers an@, are the primary
first-class constraints, whilel*, which is called the first-
class partner of the Hamiltonian, is an evident form of
Dirac’s first-class Hamiltonian and is defined as

H*:H_QSCSS/{QS/,H}. (213

Here ()4 takes over all the second-class constrai@tg, is
the inverse of Dirac’s matrix of the second-class constraints,

So the primary constraints are functions of the variables ofhat is, Cs¢{Qs,Qg}= ¢ [1]. In addition, the symbol

phase space. Introducing the Hamiltonian

H=p,q"+ 0"~ L(a,q), (2.7

one knows thaH is only a function ofq' andp,.. Making
use of the Euler-Lagrange equation one can pifd@ that
the motion equations of), which is a function on phase
space, are given by

g~{g.H+} (2.9

where Hy is called the original total Hamiltonian and its
definition is

HT:H+UA¢A' (29)

Notice that in(2.8) Dirac’s symbol of weak equality "

““="1in Eqg. (2.12 denotes strong equalify16] (Appendix

A). In fact, the canonical equations of motion generated are
invariant in the weak equality sense when the total Hamil-

tonian gains or loses a strongly vanishing term. The reason
for this is that the Poisson bracket between strongly vanish-
ing terms with a differentiable function on a constrained sub-

manifold is weakly equal to zero.

It is necessary to emphasize that no linear combination of
the first-class secondary constraints, which can be denoted
by x., with the arbitrary multiplier appears in the definition
(2.12 of H?. So Dirac analyzed the infinitesimal contact
transformation from his requirement that the physical states
should not depend on arbitrary functions. Then he conjec-
tured that all the first-class constraints, including secondary
ones, were the generators of the contact transformation,
which did not change the physical states. This means that

has been used. Following Dirac, the constraints have to prédirac’s total Hamiltonian is extended §%,4]
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He= H1'?+ UaXa=H* +Undm (2.14 C. Cawley’s second example
Let us consider the Lagrangian

where¢,= (¢, .xa), thatis, they take over all the first-class
constraints, and,, are arbitrary multipliers. It is customary
thatHE is called the extended Hamiltonian, while the motion It is the Lagrangian of Caw|ey’s second Counterexamp|e to
equation is given by Dirac’s conjecturg18]. Its Euler-Lagrange equations are

L=xZ2+yz (2.29

9~{g.He}. (2.19 %(22)=0, z=0, %(2)’(’2)—y:0. (2.25

This is just the famous Dirac conjecture. ] ]
Following Sudarshan and Mukunf&6], one has Lagrangian

B. Cawley’s first example constraints
Cawley[17] gave his first counterexample of Dirac’s con- y=0, y=0, z=0, z=0. (2.26

jecture whose Lagrangian is written as o )
Defining conjugate momenta
L=xz+yZ/2. (2.16 i .
pPx=2% py=0, p,=2xz (2.27
One readily obtains the Euler-Lagrange equations . .
we have a primary constraint

p,~0 (2.29

where Dirac’s symbol of weak equalifyl] has been used.

z=0, Z?/2=0, x=yz (2.17

From Dirac’s algorithm it follows that the primary constraint

IS The original total Hamiltonian of this example can be written
p,~0. (219 @S
_ 12
It is straightforward to derive the secondary constraints Hr=pyP.-yztopy, (229

wherev is thought of as a differentiable function on a con-
strained submanifold. Usually, one uses Dirac’s original con-
sistency conditions to generate the secondary constfdihts
that is, one requires that the evolution in time of the con-
straints must be weakly vanishing. In other words, the con-

7%/2~0, pz~0, p2~0. (2.19

They can be rewritten as the canonical or linear and func
tionally independent forms

z~0, p,~0. (2.20 straints are preserved in time or the arbitrary-order time de-
T rivatives of the constraint equations are still the constraint
Thus, sincez?=0 (“ =" means strong equality, sed6]), equations. Consequently, it is straightforwardly derived that
one can obtain Dirac’s total Hamiltonian there are two secondary constraints,
HY=pep,+vpy . (2.21) z=0, p.~0. (2.30

Here we have written them in linear form as in Réf8]. The
Dirac’s algorithm for generation of constraints has ended.
There are no more constraints. Now, the set of constraints
consists of three constraint.28 and (2.30. They deter-
mine a Dirac constrained hypersurfaE@.

Because the constraints in Dirac’s algorithm are all first
class and the multiplies is undetermined, the original total
X~u, y~v, 2z~0, (2.233 Ham@lton@an shows, in form, no difference from Dirac’s total
Hamiltonian

From the original Dirac conjecture it follows that the ex-
tended Hamiltonian is

He=upstuvpy+wz (2.22

Obviously it generates the following motion equations:

PO By=0, P W (2.230 HY=Hr=p}%p,~yz+vp,. (2.3
They mean thak, y, andp, are all gauge degrees of free-

A X : It follows from it that the canonical motion equations are
dom. Howeverx is originally physical, viz.x has a deter-

mined motion free of the arbitrary multiplier. Even if we X~ pz/zp)l(/zy y~v, z~ p)l(/zl (2.32a
fix the gauge, this system becomes static and does not return
to the original physical motion. Consequently, applying P~0, pymz, p,~Yy. (2.32b

Dirac’s conjecture to Cawley’s counterexample will lead to a

change of the physical content of the theory. The result imObviously, they are not equivalent to the original Euler-
plies that in order to Hamiltonize this kind of singular sys- Lagrange(E-L) motion equation$2.25 because the motion
tem, one has to extend or revise the original Dirac conjecin thex direction is infinite and the motion in thedirection
ture. is arbitrary. Thus Dirac’s original algorithm gives rise to
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difficulty. Moreover, Dirac’s conjecture proposed by this al- We can easily verify that th® operator has the following
gorithm also has the same problem, that is, the canonicaroperties:
equations of motion generated by Dirac’'s extended Hamil-

tonian [Df,Dg]=DiDg—DyD;=Dys g » (3.9
He=pY%p,+up,+ovp,+wz (2.33 n
e DIDg= 3, ClDpr-mgDY, (3.69
m=0

are not consistent with the original E-L equations. The rea-
son for this, in our opinion, is that the constraj=0 and
the multiplier v (=y)~0 are not able to be obtained in
terms of Dirac’s original consistency conditions. Conse-
guently, the equivalence of the Lagrangian and Hamiltonian

formalisms in the physical content is broken. This led us tyhereC™ is the biterm coefficient. The first property B,
reconsider an algorithm of Hamiltonization that can be use¢q_ (3.5), can be called the commutation theorem. It can be
for the kind of singular systems with Hessian variable rank.shown in terms of the Jacobi identity of the Poisson bracket.
The second property dd, Eq. (3.6), can be named the ex-
Ill. THE DIFFICULTIES IN THE DIRAC-BERGMANN change theorem. It is a conclusion of the commutation theo-
ALGORITHM rem and can be verified by virtue of the mathematical induc-

. . .. . tive method(see Appendix B
From the preceding section, we have seen the difficulties By making use of théd operator, we obtain the general

in Dirac’s original Hamiltonization algorithm by discussing - . : I
2 nd explicit expression of the evolution gfin time (see
Cawley’s first and second examples. For the more gener ppendix O:

case, we know, in singular systems, that there are mainly two
kinds of counterexamples to the Dirac-Bergmann algorithm —(t—tg)Dy(tg)

o . . t))~e 0’=H*0 t
One kind is represented by Cawley’s first example and it hag(ﬂ( ) 9(n(to))

n

Dngsz:O (—1)mcang*mDD31f, (3.6b

the feature of the MECPB, that is, there exists a proper sub- * n K
algebra of the minimum evolution closed Poisson bracket of + E m(t—to)” 2
the first-class constraints within it. Another is represented by n=1 1% m=1 ap.az, ....ap=1
Cawley’s second example and it has the feature of Hessian m -1k
variable rank. < TT > > ()oK
J=1 kj=m—j nj=m-—]j
A. Singular systems with proper subalgebra of the MECPB
of first-class constraints X CE;‘US;J kj)(to))

In order to study the difficulties in the singular systems
with proper subalgebra of the MECPB of the first-class con-
straints, we need to derive the general expression of the evo- X |(— )“'"DE’:
lution in time of the function in phase space. For conve-
nience, let us denote 2 phase space variables as
7*,un=12,....2n. They areq' for ©=1,2,...,n; and Xg(n(t))] , (3.7
pi= n*~ " for u=n+ 1. Defining the A-dimension antisym- t=t,
metric tensore”” in the form

m—1
H D Dnm—s—lfkm—sfl
s=0 ¢”m75 H*

where we have used the consistency conditiph]
{H$,¢j}~o, that is, the total Hamiltonian has weakly van-
er={ 1 if wusn and v=u+n (3.1 ishing Poisson brackets with all of the constraififs}. We
also assumed that the constraints do not have explicit time
dependence anld is the number of primary first-class con-

and introducing the linear operat@ which is the Hamil- ~ straints. In addition, in Eq.(3.7), we use the notation

0 if wwsn or w,v=n

-1 if v<n and u=v+tn

tonian vector field27—-30, cS=1, d°f/dt°=f, v®=d*y, /dt", andng=n,n,=1.
Now, we want to know which constraints have contribu-
of 9 of 9 9t 9 tions to the evolution ofy in time. It is easy to see that by
D= er? = — (3.2

virtue of the property of thé® operator the terms related to
constraints can be written as
we have the Poisson bracket expressed as the operator form

b b b
[31,32 DD ", D er, ...D%, g (38
(D hday) (Ot ‘e, ) (D fida)
{f,0}=Dsg=—Dyf. (3.9

¥m—1
with some coefficient functions, in which, b;, andc; are

Moreover, the multiple Poisson bracket can be expressed gf®n-negative integers while eaeh takes values from 1 to

the product ofD operators K. Obviously, only the constraints generated by any multiple
Poisson bracket between the primary first-class constraints

{fl’{fZ’g}}szlszg' (3.4 and the first-class HamiltoniaH* appear in the evolution
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expression ofy. These constraints must be first class, but in my
general they do not exhaust all the first-class constraints. {¢m0,¢mé}=Cmom6¢mg,
This is different from the accustomed conclusion. In fact, we
can prove that they form the subalgebra of the minimum (% ,HD}zbmf,’qS . (3.12b
evolution closed Poisson brack®ECPB) of the first-class mg* " T my " Mo
constraints. If one attempts to add the linear combination of ) ) i
the arbitrary multipliers with all the first-class constraints to Generally,{éy } always contains all the primary first-class
the extended Hamiltonian, as in Dirac’s conjecture, then it ionstraintsg,, but does not always exhaust all the first-class
possible, in some general singular systems, to change thnstraintse,,, that is,
physical content of motion. In order to explain it more
clearly, let us analyse as follows. {#p}C{dm  C{dm}, (3.129

In his well-known work[1], Dirac assumed that there is )
an initial physical state independent of the arbitrary multipli-Where{¢p} and{¢y} denote respectively the sets of all of
ers v,. Following Bergmann’s physical requirement, the the primary first-class and all of thg flrst—qlass constraints.
physical observables are free of arbitrary multipliers at an)pawley’s first example above has just this feature. Obvi-
time. Hence, in Taylor's expansion of the physical observously, E_q.(3.7) represents a series of trajeptorles Wlt_h differ-
ables at initial time, all of the terms related to the arbitrary®nt choices ob, and they are gauge equivalent. It is worth
multipliers and their derivatives are bound to weakly equalemphasizing that the number of arbitrary parameters is not
zero. Because , is arbitrary and the constrained hypersur-equal to one of the first-class constraints but is the same as

(3.123

face is stable, if and only if one of the elements of the subalgebra of the MECPB of the
first-class constraints. Therefore for this kind of example, it
{-{e.H*} . L H¥ L $)~0 (n=12,....,%) is not generally correct when construction of the generalized
\-’\n~ Hamiltonian is given by Dirac’s conjecture.
(3.9

B. Singular systems with Hessian variable rank

g is such a physical observable. Then, from Ej5) and the For a singular system, the elements of the Hessian matrix
first-class property ofi*, we can see that the validity of Eq. have the relation
(3.9 for somen generally needs

WAi:(awA/apa)WUi . (313)
{({H*, ... {H* .} - }.&}=~0 (k=0,1,...,n). The reason for this is that the primary constraints are ex-
————— pressed as functions of the variables on phase space. Thus
k (3.10  the E-L equations can be divided into two systems; the first

system consists of the second-order differential equations
Because (gx ... [H*,¢,} - }=0,

N~
k

W,i0'=K,, K;=dL/dq'—(#?LI3q'9q))q!, (3.14

and the second system consists of the first-order or/and zero-

we can write[1,16] order differential equations
Ka— (dppldp,)K,=dLlag”—d(dL/9g™)/dt=0.
{H*, ... {H* ¢q} - }=fada (3.10) (3.15
Nt
k It can be verified that the second system is just the second-

where the Einstein summation convention has been useé?age constraints,
Denote all of the constraintg, generate_d from Eq3.11) xa={da H}+qg{da, dp}
for k=1,2,...% by a set{¢30}. Obviously eachg; .
e{¢, } is a first-class constraint and E@.10 means gen- =[Ka=(9¢aldp )Ko]lpfﬂuffq’%o' (3.16

erally {¢;,,9}~0. By virtue of Eqs(3.6) and(3.10, we can |, pjrac’s algorithm, in order to generate the secondary con-
obtain{{¢; . #; ,},9}~0 and{{H*,¢; },g}~0. Moreover,  straints one only requires that Eq8.16 are preserved in
{¢j01¢10,}zc?oj0,¢b and{H*,quo}:fjcoqu_ It follows that  time. Obviously, if the Hessian matrix has variable rar_lk,
all the independent constraints among all of e, ¢y, some of the second-order E-L equations may become first-
and ¢, make up a new sdtdy 1D, }, and for eachp, or/and zero-order ones. Normally, they may, in general, be-
o o, 0 0 come some new constrained equations independent of those
€ {koh ¢k, 91 ~=0. Similarly, in this way, we can obtain, o constraints in Dirac's original algorithm, because those
when Eq.(3.10 is obeyed, that more first-class constraintsold constraints are only generated by the time derivative of
make up a larger set and each element of this set has weakjy, in terms of the consistency conditions. In other words,
vanishing Poisson brackets within general. This process Dirac’s original algorithm may omit in general the new con-
ends when all of these generating constraints, denoted by draints that result from Hessian variable rank.
set{¢y t, form “the minimum evolution closed subalgebra |f the rank of the Hessian matrix decreases in the con-
of the first-class constraints,” that is, for ea¢l?n0e{¢,\,,o} strained submanifold’2 which is given by Dirac’s algo-
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rithm, it implies that deHl\NUp|||rg=0 or the finite inverse of 0 0 22

|W,,| on I'2 does not exist. Thus we cannot find all the W.—| 0 0 0
primarily expressible velocitieg)” as finite functions of 1 2 0 2%
a',p,, andg” onT'2 from the relation

(3.20

i . A Its rank is 2 primarily. But in the constrained submanifold
dp,=(9L/99799')dq +W,,dq"+ W,adQ"™. (3.19 T2 defined by Eqgs(2.28 and(2.30), its rank decreases to 1.
According to Dirac’s original algorithm, one only claims that
In other words, some of them are infinite 5% and conse- the constrainp,~0 orz~0 is preserved in time. However,
quentlyH? is not differentiable ori“g, viz.. this requirement is not enough to generate all of the second-
ary constraints. The reason is that another second-stage con-
) ] ] straint y~0, which is obtained from the motion equations
4*~3HP/dpaluy—>  (@*e{q"}). (3.18  because of the existence of Hessian variable rank, is omitted.
In fact, in Dirac’s algorithm one also assumes that the
rank of the Hessian matrix is 2 and then defines the total

It must be emphasized that in the general case for a co amiltonian. Because some of the primarily expressible ve-

strained system with Hessian variable rank, if the number Olocities tend to infinity on'2. the time derivative of some
the primarily expressible velocities decreases, the primar Kl ishing f yt' c b Ibg E
constraints in the Dirac algorithm sense can perhaps not b caxly Vanl',i Ing functions may be nonzeroog. =or ex-
expressed generally as functions of the phase space vafMPIe. ZPi 7p,~0 but by differentiating it with respect to
ables. The definition and form of Dirac’s total Hamiltonian IMe we obtain
of this kind of system seems not to be suitable. In this kind 1/2 -
of system there is difficulty when one passes from Lagrang- d(2xpcTp)/dt=1. 3.21

ian formalism to Hamiltonian by directly using Dirac's algo- | jmpjies that the constrained hypersurfdcg is not stable.
rithm. We do not know clearly how to solve this problem in | haicylar, because the equations of motion are weakly
the general case. Future study on this problem would bgq 5| ones, they should not be changed in the weakly equal
Interesting. sense by adding or dropping a weakly vanishing term. With-

In order to avoid the above difficulty, we assume that they + |0ss of generalitysupposing there is an additional term

number of primarily expressible velocities does not decreas%)\xzmo (\ is an arbitrary differentiable functionin the
actually on the final constrained hypersurface in the gener ght side of the equation fag,

case when the Hessian matrix has variable rank. For in-
stance, Cawley’s second example is just so. Thus, we still g~{g,H1} +2\xz, (3.22

can first compute the rank of the Hessian matriSiwhich _ .

consists ofg andq, with all g's andq’s being independent, one easily derives

and we can obtain Eq2.4) although some of thg” may 31443

tend to infinity on Dirac’s constrained hypersurfacg. In d*g/dt’~{{{g,Hr},Hr}hHr}+Ap,. (3.23

fact, this poor expression of” is not intrinsic, it ought to be  gjnce the term\p, is not equal to zero but is arbitrary on
eliminated in the real and final constrained hypersur_Ilé@e I'2, Eq.(3.23 implies that the functions of the variables on
which is determined by all the constraints. Otherwise, the,nase space at timtecannot be expressed by their values at
physical significance of this kind of system is not under-.iial time to, or speaking generally, the dynamics of the
standable since there is intrinsically infinite motion. Hamiltonian formalism is not completely determined.

_, From Eq.(3.17) we also see that there is possibly some |, 5 ord, from the above analyses and demonstration we
q°— o if there exists som@"—ce. Thus the above conclu- gegq that Dirac’s original algorithm is not directly and gener-

sion implies that in the singular system with Hessian variable'a”y applicable to a certain class of constrained systems.
rank Dirac’s total Hamiltonian is not differentiable with re-

spect to some variables on phase space if one only considers
the constraints in Dirac’s original algorithm. This feature re-
sults in the difficulties in Dirac’s algorithm.

In particular, although{H>/9p,) =0 onT'2, one has Dirac’s conjecture gives a principle of construction for the
extended Hamiltonian in constrained systems. As is well
known, the crux of the matter is how to construct a correct
extended Hamiltonian in the quantization of singular sys-
tems. Consequently, in this section we try to overcome the
difficulties of Dirac’s conjecture, and propose and prove a
in which we do not sum for inde&. Obviously this contra- principle of construction of an extended Hamiltonian. First,
dicts the consistency conditions or the stability of the con-the transformations between the various evolution trajecto-
strained hypersurface. Hence Dirac’s algorithm of Hamilton-ries at any given time are constructed by using the translation
ization is not suitable to such singular systems with Hessiaoperator. Second, the infinitesimal form of trajectory trans-
variable rank. formation and the relation between this transformation and

For instance, the Hessian matrix in Cawley’s second exthe canonical transformation are realized. Third, the finite
ample is Dirac contact transformation is shown to form a functional

IV. FROM DIRAC’S CONTACT TRANSFORMATION
TO THE EXTENDED DIRAC CONJECTURE

d[g?(aHY/ dp,) ~ 11/ dt~1+q¥{(dHP/aps) "L HEY}~1
(3.19
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group which does not change the physical observables. Thusne translation operator for a function which does not relate
the generators of the finite Dirac contact transformation, thato time explicitly has the form

is, the gauge transformation in constrained systems, are
clearly given. They are the constraints in the set of MECPB'’s

of the first-class constraints. Finally, we propose and prove
the extended Dirac conjecture. At the same time, it is suc-

cessfully applied to Cawley’s first counterexample to Dirac’s t

conjecture. Our conclusion naturally comes back to the usual U~ (tto)=T* exp[ J dTDH?(ﬂ], (4.9
Dirac conjecture when Dirac’s algorithm is applicable. fo

t
U(t,to)mTexp[—f dTDH$(T)], 4.9
to

in which T and T* stand for time-ordered and anti-time-
A. Time translation operator ordered products, respectively, while the relation between

Let us introduce the first-class operator in constrained sysP @ndD can be seen in Appendix D. In particular, when the
tems. A so-called first-class operator acts on all the conMultipliersu, do not depend on time explicitly since
straints¢; = Q) to be weakly equal to zero, viz., .

H= (9.0 Y€ Do(t)~0=Dye(t)~Dip(ty), (410
D ¢;~0. 4.2
the operatof or T* can be dropped and E¢4.8) or (4.9
From this it follows that theD operator constructed by becomes simpler,
Dirac’s total Hamiltonian is a first-class one. It is easy to

show that theD operator constructed by first-class functions U(t,tg)~e (" 10Pnp, (4.1
is first class and the product of first-class operators is also L poo
first class. We can derive the motion equation of the first- U~ Xt tg)~elt0/Php, (4.12

class operator as )
Therefore the variableg*(t) on phase space can be ex-

D;~[D; Dol + D /3t=D 1 40y ¢ sisar - (4.2  pressed in terms of their initial valueg‘(to), that is,

t
For the non-first-class operator its motion equation has an z#(t)=U(t,t,) n“(to)%TeXF){ _j d7rDyo( 1) 7*(to).
additional nontrivial term—c;D;¢; which depends on the to i

function f. Actually, even for a nor> operator, but a first- (4.13

class and linear one, denoted By we also have Equation(4.13 stands for a set of the evolution trajectories

P R on phase space.
F%[F,DH$]+&F/(9L 4.3
B. The trajectory transformation at any given time

Its form is the same as Heisenberg’'s equation and conse- As is well known, the evolution of the constrained sys-

guently we can use the technology of quantum theories in th?ems is determined by Dirac's total Hamiltonibd?. How-

sense of classical theories. If we introduce the time “conju-ever sinced® involves arbitrary multioliers the system can
gate momentum’e so that ’ T y P y

evolve in various trajectories when various multipliers are
P chosen. Following Dirac’s assumption there exists a definite

{t,e}=1 or D ,=— a7 (4.4  physical state which does not depend on the arbitrary multi-
pliers. Without loss of generality, we can suppose that the

then »* andt, e constitute the extended phase space. Obvi-SyStem is in the definite physical state at titge Hence the

ously Eq.(4.2) becomes various trajectories intersect g,
7(to) =7"(to). (4.19

At any time, two trajectories evolve in accordance with the

It can be used to derive the expression of the time translatiofguations
operator. As usual, the time translation operator is defined by .
7= =Dy 7" ={7"H* }tv{n" d.}, (4153

9(n(1))=U(t,to)g(n(to)). (4.6

lts existence is obvious. Because the constrained equations 7~ —Dipw 7*~{n*H*} +U{7" b.}, (4.15D
are always obeyed in any time, the time translation operator ]

is first class. In terms of Eq4.2) we can obtain the motion in which we have denoted
equation of the time translation operator as

D¢~[D¢.Du2+]= Do, - (4.5

= af o
. — ~— uv__
U(t-tO)%_DH_I'?(t)U(t,to)- 4.7 f(n)=f(n), Di=e¢ (?7’# (?7’”. (4.19

It can be rewritten as an integral equation and thus the suclust as in the above subsection, there are the time translation
cessive iteration method is applicable. It follows that theoperators and then
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9()=U(t,t)g(to), (4.17)
g(t)=V(t,tp)g(to). (4.18

In terms of Egs(4.14) we obtain
9(1)=G(t,tg;u,v)g(t), (4.19

where G(t,ty;u,v) is named the trajectory transformation
operator fromzn* to 7* at a given timet. Its definition is

G(t,to;u,v)=U(t,te)V (1 ty). (4.20

It is convenient to ignoré andt, in the following notation
for G. It readily is verified tha(G has the following proper-
ties:

G(u,u)=G(v,v), (4.213
G Yu,v)=G(v,u), (4.21b
G(u,v)G(v,w)=G(u,w), (4.219

Becausel,V is first class,G is also first class. Obviously,
there is the relation

{f1.1217=G{f,,f,}" (4.22

in which the upper index, % stands for computation of the
Poisson bracket with respect tn7, respectively. Equation
(4.22 has the alternative form

D7=GD;G ™. (4.23
Thus we can find the motion equation Gf

G(u,v)~—(U,~7,)Dj G(u,v)~—G(u,v)(u,~v,)Dy,
(4.24

wherel,=Gu, andv,=Gv,. By use of the successive
iteration method one obtains

G(u,u)~Texp{ - J:df[ﬁa(r)—va(f)]ﬁ%(r))

t
~T*exp[ - ft dr[ua(r)—va(T)]D;Sa(T)] :
(4.25

Likewise we have

Gl(u,v)%T*exW’ fth[Ua(T)—Ua(T)]ﬁg (7‘)}
to @

mTeXp[ f:dr[ua( 7)=va(7)]Dy ( T)}.

(4.2

Equationg4.25 and(4.26) are just the obvious forms of the
trajectory transformation fromy* to 7* at a given timet. It

is a functional form transformation with transformation pa-
rametersu,—v, (or U,—v,) and generatoD, (or Dy )

under the integral for time. Therefore it depends on the val-
ues of the multipliers and the forms of the generators not at
a given time but in the time intervdkt,. In general, the
multipliers vary in time. In particular, it is interesting that the
evolution in time of the generatof3, will lead to increase

of the numbers of generators, viz., sorfeoperators con-
structed by the secondary constraints become new genera-
tors.

For some singular systems, if there is the subalgebra of
the MECPB of the first-class constraints defined as Eqs.
(3.12, we can obtain

i)¢m0(t)~b28D¢m6(t), (4.27)

Mo

bro=f0+(Dy v,)0,0+v,Cr0 . (4.28

Therefore it can be seen that the evolution of the generators
D, is only interrelated with the operatof8, in which
@ mO
quO belongs to the subalgebra of the MECPB of the first-
class constraints. From E.27) it follows that
Dy (O~ Vingmy(1:t2) Dy, (1) (4.29

whereV is a matrix function whose definition is

t
V(t,t1)=TeXp[f dTB(T)}, (4.30a
51
Bro=b0. (4.300

Obviously V has inverse and unit elements and it can be
called the translation function dD¢m . It is easy to verify
0

that the product of two successive translation functions is
still a translation function. Thus,

D5, ()= Unngy(1.10) Vs o (t.10) Dy (1) (43D

where

Z{(t,to)zTexp{ - ftd{&( 7')] , (4.323
to

AM_g™_T™ (B T)seT &
Am(J —am0 —fmo +(D¢,moua) S, +uaCmoa,

(4.32b

Vl(t,to)zT*exp[ - thB(T)}, (4.320

to

and we have used
D3, (t)=D,, (to). (4.33

Hence theD operators constructed by the elements of the
subalgebra of the MECPB of the first-class constraints in a
given trajectory can be expressed as the linear combinations
of their forms in another trajectory.

In terms of the commutation theorem Bf operators and
Egs. (4.29 and(4.31) we can compute the commutators of
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D, at various times and the results are still a linear com- d mo
Mo . = O\ (1) = €,(1) Fgm —b (1) Ny (1), (4.38
bination ofD¢ . Of course, our above conclusions are also dt 0 0 My 0
My

valid when the subalgebra of the MECPB of the first—classTh. means that the infinitesimal transformation parameter

constraints is the whole algebra of the first-class constrainta ISth S fon f ' '(') tSIOO frths i II P: rht q S

or the set of the subalgebra of the the MECPB of the first- re the sums fon from © 10 = of the n-iuple weighte
ntegrals ofe, and so their completely independent numbers

class constraints is the complete set of the first-class corl : .
P generally may be different from thﬁ”m(’) numbers in the

straints.
If we make use of the Baker-Hausdorff formuta,can be  functional sense.
written in the form If we introduce the generating functidf, of the infini-

tesimal canonical transformation,
G(u,v)~e Mmpltvitto Py, O, (4.34
_ _ o F2(0,9) = 0B + Ny #m,(0.B), (4.39
This form can be seen more clearly in the discussion on
infinitesimal transformations in the following section. ._after dropping the second-order infinitesimal terms we have
Obviously from our above analyses and demonstration
whether or not the secondary constraints are the generators ~i i i
of trajectory transformations relies on whether they belong q=4 5)\m0&¢m0/ﬁp. (1 5)\"’0D4’mo)q '
or do not belong to the set of the subalgbra of the MECPB of (4.409
the first-class constraints. _
Pi=pi— 5)\m0&¢m0/‘9q| =(1- 5)\mOD¢>mO)pi )
C. Infinitesimal trajectory transformation (4.40p

Let us consider two “neighboring trajectories,” viz., the ) ] ] .
differences of the multipliers in front of the first-class pri- in which 6\, is thought of, without loss of generality, as a
mary constraints tend to zero or are infinitesimal, denoted byime function free of dynamics variables. Therefore the in-
u,—v,=€,. Hence they are also infinitesimal after integrat- finitesimal trajectory transformation is consistent with the
ing over a finite time interval. Thus the infinitesimal trans- infinitesimal canonical transformation generatedMyy
formationG, at timet of two neighboring trajectories takes It is easy to verify that HamiltoniatK which generates
the form the motion equations of* can be found in terms of the

theory of the canonical transformation akdis equal to

t D
G~1- f dty€o(t1) Vamy (2 Dy, (D Hr (),
tg Mo

— *
~1—5hm0(t,t0)D¢mo(t). (4.35 K=H*(9)+v,d,+IF,1dt

A H* & U= b2y oy
Here by use of the method of the change of integration limit, N
Co =H* () +T,d,=HP(u). (4.41)
[ at [ ateppTie
t t 4
° ! ° Here we have useéjq&mo,H-'?}:bquSmé and dropped the
t 1 my m) second-order infinitesimal terms.
- . dty . dt2bm6(tl)bmo(t2)= (4.36 For the transformation from a given trajectory to another
0 0 given trajectory at a certain time, one can realize it by a
series of successive infinitesimal canonical transformations.
Of course it is necessary thél\m0 satisfies Eq(4.38. The
t end result is the same as Hg.25.
5}‘mo(t't0): ‘ dT&Amo(T'to)’ (4.373 Since the trajectory transformatidd.25 or (4.26 is a
0 functional, another form of its infinitesimal transformation
, can be taken as one in an infinitesimal time interval
A my(7t0) = €0l 7)Sumy = bI(7) | 57 )7 t—to=at,
0 0 m0 to 0

we can rewrite the infinitesimal transformation parameters a

I G(6t)=1=dt[Uy(to+ 8t) —v4(tot 6) 1Dy (1 + o) -
~ (1) um,~ 0707 | dre (1) .42
0

not give rise to trajectory transformations since the trajecto-

ries only generally intersect &. In his original paper Dirac
(4.37h studied the difference of the product of two arbitrary trajec-

tory transformations in an infinitesimal time interval, which
They obey the equations will be seen in the following section.

- * (T t th 1 It is worth pointing out that a series of succesgygst)’s do
+bmgln§2 () J'todtl dt,- - - JIO dt,

to
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D. FTV|dent. Dirac’s (.:ontact tra.nsforrrTatlon . Ag:[Gl'Gﬂg%[&‘lmoD(bmo'5)‘r2noD¢mo]g
In according with physical considerations, the physical
observables on the various trajectories should be equal, that ={[5>\r1n,(D¢m,5)\ﬁq0)— - 5)\r2n,(D¢m,5)\,1no)]D¢m
iS, 0 0 0 0 0
. 1 2 m//
9or( 7)~Gpn( 7). (4.43 O\ € Do t0 (4.50

Hence the trajectory transformations are ones which do natjere we have used E@3.6). From Eq.(4.25 we can find
change the physical observables, more generally the product of two arbitrary trajectory trans-
formations with finite parameters as
GO 7)~=gpr( 7). (4.44

G(u,a)G(b,u)~Texp[ - J: d(m){[uy(m)—ay(n)]VW
0

In fact Eq.(4.44 can be shown strictly by the requirement
that the physical observables do not depend on arbitrary
functions. It is shown in Sec. VI.

Obviously, even when the product of two arbitrary trajec-
tory transformations is not successive, it does not change

. t
physical observables, :Texp[ - d(7)®§rl1273%>(7)}:
0 Mo

Glezgphggph- (4.49

X Dy (7) + fETL]g(T)DEf)U(nZJg(T)}]

(
a

(4.5

Here invariance is in the sense of weak equality since wen which we introduce the notation
derive the trajectory transformations and introduce the physi-

cal observables only in the sense of weak equality. w oA g
K .. . L . . A(W)(t):A( (w) t) D( ) —M
In his original paper Dirac just considered the difference 75U AlW) I g pWv?
of the products of two such arbitrary infinitesimal trajectory (4.52
transformations, but he took their forms as E442 in an
infinitesimal time interval, that is, and 7“* evolves in accordance with the equation
Boa=0t(U,=2,),  yoe=0tb,~v,), (440 n = e H O Ul g e e, (453

while the definition off((t) is
Gi=1-B.Dy, Go~1——v,D,, (4473 0

b
f()=G(u,a)(b,~v,) "V (Lo Vi, (Lto)

9'=G1G29, g"=G3G9. (4.47H (4.54
Hence one has and the form of@mo is given by
Ag=g'—g"=[G1,G2]9~[B.Dy.. 7D 19 ORI (7)=[Ua(7) = ag(1)]V S+ T (7). (455
={[Ba(Dg,Yar) = ¥a(Dy Ba)Dy,, It is worth pointing out that the product of the variables’
+ D 44 evolution in the various trajectories or the action of the op-
BaYa {%,%,}}g. (4.48 erators on the other trajectory variables can be calculated by

translation of them to the initial valueg”(t,).

The last term may give rise to generators constructed by the By virtue of Egs.(3.12 and(4.31) we see that the prod-
secondary constraints because of the closed property of thests of all the contact transformations are closed and thus
first-class constraints. But this is not always the case. Thenhey form a functional group, which can be called the contact
shortcoming of such considerations is that one does not ohransformation functional group. Moreover, under the con-
tain secondary constraints derived {y*, ¢, } as the gen-  tact transformations all the functional transformation param-
erators of Dirac’s contact transformations in general. This i®ters®, are arbitrary and the generators @eoperators
one of the reasons why Dirac could only make a conjecturegonstructed by the elements of the subalgebra of the MECPB

We think that Dirac’s idea of contact transformations in of the first-class constraints. The general form of the contact
constrained systems refers to the product of two arbitraryransformation group element is given by
trajectory transformations at a given tirheThus we prefer

e ) .
;cl)l;l:h\(/)igse the form of Eq4.35 more definitely and gener g(t,t0)=Texp{ —ft dT@mo(T'tO)D¢mo( 7). (4.56
) " 0

Gy~1— 5)\#‘0D‘f’m , Goy=1-— 5)\;0D¢m , (4.49 Here we no longer write the upper indexrelevant to the
° ° trajectory. Because of E¢4.31) DEZ(% in an arbitrary trajec-

m

where&)\rlno andéhﬁ10 are independent of each other. Hencetory can always be expressed as linear combinations of
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D, and this combination coefficient matrix is absorbed 7H()=G(u,v;t,te) 7(t)
Mg
into the arbitrary®, . We think that Eq(4.56) is just what t
Dirac expected to find as the evident expression of his con- %{ 1—f dru(r) —v(7)]Dp (1) 7(V),
tact transformations which do not change the physical states. o
However, it is not the same as the form conjectured by Dirac. (4.65

Generally, its generators cannot exhaust all the first-class ) i _
constraints but must involve all primary first-class con-in Which 7* takesx,y,z and py,py,p,. It is obvious that
straints at least. Normally, its generators should be the eleexcept fory the other variables do not change. Thus

ments of the so-called subalgebra of the MECPB of the first- - N
class constraints, which is defined by E(&123—(3.129. S(m=gm=3 1 9"9(n) F—y)"
By using the Baker-Hausdorff formula and Edd.31) K D= ay"
and (4.35 one readily obtains .
1 o n
G(t,tg) =€ fmtto) Dy, (1), (4.57) ngO m[ ft dr[u(r)—v(r)]] Dgy(t)g(n)
o n'| Ji,
Of course its infinitesimal form is =exp{—)\(t,t0)Dpy(t)}g(7;), (4.66
ge(t,to)wl_ 50m0D¢m y (458)
0 t -
A(t,to)Zf drdu(r)—v(7)], (4.67
to

d

GiL80m (0]= 80 (1) =b (1) 86y (1), (4.59
0 in which we have made a simplified rule thatis supposed

to be a function only of timeé and theriDpy has no action on

t
56’mo(t.to)=J d760 py (7,80) Vin my(7:1) it. Therefore
to
_— G(u,v;ttg)~e Mt Pp, (V) (4.68
= | d760p(7.to), (460 .
to 0 Dirac’s contact transformation operator also has the same
form,
—_— m T ,_ ,
5m0( T,t0)=5®mo( T,to)_me( 7) ftodT 5®m6(7 1) G(t,tg) ~e~ Lt Pp (0, (4.69

(4.69) This indicates clearly that the Dirac conjecture is not appli-

Obviously the product of a series of infinitesimal contactc@ble to Cawley’s first example. The reason for the absence

transformations such as E@t.58 will give rise to the finite  Of the other secondary constraints in £4.69 is that the

Dirac contact transformation E¢4.56). contribution of the strongly vanishing tergz?/2 to Dirac’s
Likewise, as stated above, the generating function correcontact transformation does not need to be considered. In

sponding to the infinitesimal contact transformation is then Other words, this strongly vanishing function has strongly
vanishing Poisson brackets with the first-class constraints

fzzq‘5i+50mo¢mo(q,b'). (4.62 and theD operator constructed by the strongly vanishing
function has weakly vanishing Poisson brackets with the dif-
It is easy to verify that it generates a transformation consisferentiable(sometimes limiteglfunctions on the constrained

tent with the one given by Ed4.58). hypersurface. Consequently, in the sense of weak equality
they at most are some trivial “generators” because they
E. Application to Cawley’s first example have not contributions for the trajectory or contact transfor-

mations. Hence they can be dropped.

It is very important and interesting how to determine the
correct generalized Hamiltonian. To do this, we will propose
an extended Dirac conjecture in the following section.

In fact, from Eq.(4.25 it follows that the trajectory trans-
formation operatoG for Cawley’s first example is

t
G(t)%T*eXF{—f dT[U(T)—U(T)]Dpy(T)] (4.63
to F. The extended Dirac conjecture

and the translation function dﬁpy is Under Dirac’s contact transformation the physical observ-
ables are not changed, which implies

t
Dpy(t)~e><p[ - ft 0dt’Dpyv(t’)] Dp,(to) =W(t,10) Dy, (to).- 9o 0m,D 4, Gpr~0. (4.70

(469 Becauseﬁ@m0 are completely independent one obtains
Thus the set of the subalgebra of the MECPB of the first-
class constraints only involvep,. Consequently Dirac’s Dy 9pn=0. 4.7)
contact transformation only hﬁpy as its generator. We also °

can findG from its definition in terms of Notice that
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It is necessary to emphasize that the motion equation is

m!
[D¢m0 ’DH-'?]: D{¢m0vH?}%bng¢ml;' 4.72 given byH¢ and we need the gauge conditions as well as the
gauge fixing conditions so as to return to the physical sector.
Thus it is straightforward to derive This is shown in Sec. VI.
Obviously, the extended Dirac conjecture is applicable to
Dd,mogphw—D%oDHggpth. (4.73 Cawley'’s first example. From our analyses and demonstra-

tion the foundation of the extended Dirac conjecture is the

Therefore the motion equation of the physical observables ilnite Dirac contact transformation. We have shown clearly
also invariant under Dirac’s contact transformation. Consethat only the elements of the minimum evolution closed sub-

quently, sometimes one calls Dirac’s contact transformatioif/9€Pra of the first-class constraints are able to become the
the gauge transformation. generators of Dirac’s contact transformation or the gauge

If we take Eq.(4.62 as the generating function of the transformatior] whiqh does not changg the physical obsgrv—
infinitesimal contact transformation, it is easy to derive  2pPles and their motions. As a conclusion the extended Dirac
conjecture can be thought to have been proved and is natu-
rally acceptable.

It is worth pointing out that the extended Dirac conjecture

is still applicable to those cases in which the Hamiltonian is

Pi=p— 50m0‘9¢m0/‘9qi:(1_50m0D¢m ypi.  (4.74b not differentiable or Dirac’s algorithm does not give rise to

0 all the constraint¢see Sec. Y/ But we are bound not to take

Without loss of generality56,. is supposed to be a time Dirgc’s total Hami_lton_ian but have to use the fi_nal Hamil-

Mo tonian. The latter is given by the extended consistency con-

function and is free of the dynamics variable. Thus it can beyitions, as the evolution generating function. Moreover, in
verified that the new Hamiltonian under Dirac’s infinitesimal {nege cases, the minimum evolution closed subalgebra in-

Q'=0'+ 80m 0, 19pi = (1= 86m Dy )0, (4.743

contact transformation becomes volves at least all primary first-class constraints which appear
, . . ) in the final total Hamiltonian together with arbitrary and un-
H'=H"(7)tv,po+ IFIt=H"(5)+ vy dm, determined multipliers, and it has the closed Poisson bracket

(4.79 algebra between its elements and the final total Hamiltonian.
These problems will be dealt with in the following section. If
Obviously whensp,, = 6\, it goes back to Eq4.41) and  all constraints are generated by our extended consistency
H'= H?. However, for Dirac’s contact transformation, the conditions, we find that Cawley's second and Frenkel's ex-

86rm, are completely independent of each other. This leads tgmples are no longer counterexamples of Dirac’s conjecture.

the fact that the generalized Hamiltonian is constructed b)l(ﬂ addition, the extended Dirac conjecture is applicable to
only adding the terms of products of the arbitrary multiplier em
Um, and the constraintd:mo:
V. FROM DIRAC'S CONSISTENCY CONDITIONS
He=H* +vm0¢m0, (4.76 TO HAMILTONIZATION OF THE SINGULAR SYSTEM
WITH HESSIAN VARIABLE RANK

in which the ¢, belong to the minimum evolution closed  Generally speaking, the stability of the constrained hyper-
subalgebra of the first-class constraints. It is different fromsurface is a necessary condition so that the Hamiltonian dy-
the usual extended Hamiltonian becauﬁa@o cannot gener- namics in singular systems can be completely determined. In
ally exhaust all the first-class constraints. This is the exSec. lll, we have seen that, for Cawley’'s second example,
tended Dirac conjecture proposed by us. since the term\p, is not equal to zero but is arbitrary on
For example, in Cawley’s first example, we know thatI'g, the functions of the variables on phase spacetate

there is onlyap, in the subalgebra of the MECPB of the are not determined completely by the function value of initial
first-class constraints. According to the extended Dirac contime ty. The reason for this is that in singular systems with

jecture we can write the generalized Hamiltonian as Hessian variable rank Dirac’s primary constraints cannot, in
general, be all main branches generating all the secondary
Ho=pxp,Tvpy. (4.77  constraints. In other words, the new constraints may appear

in the other branches and then they may break the require-
Although Dirac’s conjecture fails in the above case, it is stillment of stability of the constrained hypersurface. Hence it
applicable when the set of the minimum evolution closedseems to us that Dirac’s original consistency conditions are
subalgebra of the first-class constraints is the complete set @it enough to generate all constraints and guarantee the sta-
the first-class constraints. Many well-known theories belondility of the constraint hypersurfacﬁg. It is inconsistent
to such cases. The Christ-Lee’s mod@8] is just so(see with the origin of Dirac’s physical idea of the consistency
Appendix B. condition.

It is clear that under the above construction of the gener- In fact, in order to keep the complete determination of
alized Hamiltonian the physical sectors of singular systemglamiltonian dynamics of singular systems with Hessian
are invariant or the gauge equivalence between the distinstariable rank, we have reason to conjecture, or have to as-
total Hamiltonians with different multipliers is set up by vir- sume that, for all the functions which are weakly equal to
tue of Egs.(4.71) and (4.73. zero, their evolution in time should preserve the weakly van-



70 AN MIN WANG AND TU NAN RUAN 54

ishing property. It is a natural conclusion from Dirac’s physi- However, since we have not a first-class primary constraint,
cal idea of the stability of the constrained hypersurface. Thathis conclusion cannot be given by Dirac’s infinitesimal con-
is, their arbitrary-order time derivatives are always weaklytact transformations. Similarly, it cannot be obtained in terms
equal to zero. This is just an extension of Dirac’s originalof Dirac’s test suggested by Cawley. Formally, Dirac’s con-
consistency conditions. jecture does not fail for Cawley’s second example since it
gives the same motion as that in the Lagrangian formalism.
A. Generation of new constraints in Cawley’s second example ~However, Eq(5.6) is not fully appropriate when gauge con-

. . . . ditions are taken, which can be seen in Sec. VI. In addition,
To verify our above point of view, let us start by studying ¢, Frenker's example we can discuss it similarly and we

a concrete example—Cawley’s second example. In terms q{; e the same conclusion. It seems to us that the correct

our extended consisten_cy _condition_s, the _second time deriV%’onstruction of the generalized Hamiltonian ought to be ob-
tion of the weakly "a”'Sh”_‘g functionxz is bound to be  (5ineq from the extended Dirac conjecture. Obviously, the
weakly equal to zero, that is, subalgebra of the MECPB of the first-class constraints is null
2 in Cawley's second example. Hence its final total Hamil-
W(sz)mpzmo_ (5.1  tonian is the same as its generalized Hamiltonian.
In his paper, Cawley also gave the above new constraints,

Hence we obtain thab, is a new constraint. Of course, we W:_'g:"(\a'\ée‘r‘es acnf?tl:ggtioilib;?a?r?gga{?]’at(i)ges ’ :Brrl:tor;?n usae(;utg_e
also have to use the consistency conditions to each new cons ' » 0y IMp 9

straint; moreover, again we use them to generate each new%?condary constrairg,~0, so that the motion ok is im-

constraint step by step until no more constraints are obtainetlﬁ:.]rg(\)/r?]d I[(:aLtBe]. Vlglllesnlg;? tronzx dbtf]eai%%zprteﬁleh b;ézillrggigeznadn d
So the constrainp, ought to obey piete. phy

the general principle or method.
pz%{vaHT}:y: y%{y,HT}:U- (5.2

So another new constraint is then generated and the multi-
plier v is determined as

B. The extension of Dirac’s algorithm

For a singular Lagrangian system, without loss of gener-
ality, the independent weakly vanishing functions on the

y~0, v~0. (5.3  constrained hypersurfade? can be written a§4,13]
When Egs(5.1) and(5.3) are satisfied, obviously the canoni- Ci=A%x,p)¢;(x,p)~0, A%x,p)|r D#0,,
cal equations of motiofi2.32 are equivalent to the original (5.7

E-L equations(2.25. On the final constrained hypersurface ) . ) o
FE determined by all constraint®.28, (2.30, (5.1), and wherg ¢; take over all thg constr'alnts in Dirac’s onglnal
(5.3), there is no condition which can determine the limit of &l9orithm and A* are functlonallyamdependent for various
pz/pilz- Thus Eq.(2.324 indicates that the motion in the indicesa. Actually, one expand€;' on the congtramed hy- _
direction is undetermined, or arbitrary. persurfaqe and uses the property that the various constraints
Making use of Eqs(5.2) and notingv to be a differen- are functionally independent of each other, and then can ob-
tiable function we have tain Eq.(5.7). In Ref.[16], this relation is shown in detail by
the relation theorem on weak equality and strong equality. It
yz=0, uvp,=0. (5.4  must be emphasized that the higher power terms of con-
straints need not be considered because they strongly vanish.
Therefore we can rewrite the final total Hamiltonian in the The reason and argument can be found in RE3]. Even
form though one considers the higher power terms of the con-
straints, the conclusion is the same.
Px - (5.5 It must be noted tha#? is taken on the constrained hy-
persurface. According to Reff13], one can transform all of
It iS- easy to show that the correct canonical equations the old 2n variables on phase space to 2ew variables
motion are generated by it. (m=1,...m) and«* (u=p+1,...,20 in which ,, takes

L ; . Ym
It is interesting that the increase of the number of con-gyer gl the constraints. Thus, without loss of generality,
straints may result in some first-class constraints changing 1Ra can be taken ag”.

second-class ones because these original first-class con—Suppose that in the system there exist
straints probably have nonvanishing Poisson brackets with
some of the new constraints. For instance, in Cawley’s sec- Dk+1Aa| p=x (k=0,1,2...) (5.8
ond example, in the new complete set of constraints gener- Hr fe ”

ated by our algorithm, there is only one first-class constraint, _ ) .
p,~0: the others are second-class ones. According tg\{(here thelE operator is defined as in E(.2). It means that
Dirac’s conjecture, this could effect the determination of the? Hrlon*" is notl_< or,der @fferenuab!e with respect -
extended Hamiltonian: namely, only, is thought to be a If we only have Dirac’s original consistency conditions
generator of gauge transformations. Thus the extended
Hamiltonian is

HE=(pp, ™)

dnd)J /dt”|rg=O (n=1,2,...) (59)

He=up,. (5.6 we cannot guarantee
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d“rICHdt o= (—)** YD 'AY ¢, (5.10  ables. We requir€f=A%g; to satisfy(5.12. Obviously the
¢ T requirement can generally lead to the generation of new con-
straints.

This process ends when no more new constraints are gen-
erated and/or no more new multiplier equations are given. It
is worth pointing out that on the new constrained hypersur-
face determined by the new complete set of constraints, there
is no longer sucth\? so that the casg$.8) can appear. Con-

It follows that the weakly vanishing functior@ja onT'2 no  sequently, when the linear combinations of all the con-
longer preserve the weakly vanishing property in time orstraints, involving the new constraints, are preserved in time,
I'2 is unstable in time. Thus, because the canonical motiohat is, the arbitrary-order time derivatives of the weakly
equations in the constrained dynamics are written in the fornyanishing functions are still weakly equal to zero, the ex-
of a weak equality, the Hamiltonian formalism appears in-tended consistency conditions are satisfied on the new con-
consistent. In other words, the time higher order derivativestrained hypersurface.

of the function on phase space cannot be calculated exactly More generally, if there still exist the cases such as Egs.
and the evolution trajectory in time of the function of the (5.12, the process of generation of the constraints does not
phase space variables cannot be determined completely. THe§d generally and we have to require again the higher stage
problem has been seen from Cawley’s second example i@xtended consistency conditions. These processes will end at
Sec. Il B. This inconsistency has to be eliminated. Therea finite number of steps, at least in systems with finite de-
fore, we necessarily propose extended consistency condgrees of freedom and contradictory relations such a1
tions, that is, all the weakly vanishing functions also have towill not occur. Otherwise the original Lagrangian equations
preserve the weakly vanishing property in time. This impliesare inconsistenfl].

vanishing weakly since the right side of E&.9) is «XO0.
We also cannot remove the case

dk’C?/dtklrg;ﬁO (k' >k+1). (5.11)

that anyC? defined by Eq(5.7) obeys After all the constraints are generated, we have to deter-
mine which constraints belong to the first class and which
d”Cja/dt”~0 (n=1,2,...). (5.12  constraints belong to the second class. Then in terms of the

well-known Dirac method and extended consistency condi-

But here the “weakly vanishing” means to be equal to serolions we can obta}ln the flngl Hgmlltoman.. Moreover, if we
need the generalized Hamiltonian, we still must apply the

on the final constrained hypersurface. It is similar to the re- ded Di ;
quirement for all the constraints to be weakly equal to zerdX€nded Dirac conjecture.

on rg in Dirac’s algorithm and thus it is acceptable physi-

cally. When the constrained system has no st€tobeyed C. Study of the general case

by (5.8), the extended consistency conditions will return to ) )
Dirac’s original consistency conditions. However, when the NOW, we generally study those systems in which there are

cases(5.10 occur, the extended consistency conditions will SOMe independert® satisfied by5.8). For Cawley's second

be needed so as to eliminate the inconsistency and genert&@mple suciA™ is only x. The existence of such™ implies

new constraints. In fact, we have applied the extended corfhat the total Hamiltonian is not differentiable with respect to
sistency conditions successfully to Cawley's second exampl&0Me phase space variables. This feature exists in singular
in Sec. VA by requiring &z or 2xpY? to preserve the Lagrangian system with Hessian variable rafsee Sec.
weakly vanishing property in time. Further discussion can bl B). — . .
seen in Sec. V C. Generally speaking, if the right side of Eq, [N order to Hamiltonize general singular systems with

(5.10 is a function it should vanish weakly in terms of the Y&ing rank Hessian matrix we assume all the primarily
extended consistency conditions expressible velocitieg)” [13] can be expressed finally as

finite functions of th variableg,p, on phase space as well

K+lpay 4 . as the multipliers@™), or say their limits always exist on the

(Dr AD ¢~0. 613 final constrained submanifolie. The reason for making

] o b this assumption is thahe inherently infinite motion has no
Itis a limit of 0/0 onT'c and thus may, generally, generate ppysical significanceFor example, in the Cawley’s example
new constraints. We also have to require all the new Conabove,X=pZ/2p§’2 is infinite on rg but because there is
straints to preserve the weakly vanishing property in time,ynoer constraim,~0 one can think its limit, a finite func-

and, as usual, this may give rise to more new constraints. ltfion, exists orFE. In fact, this assumption is required so that

the right side of(5.10 IS a Constant of’c, it implies that_ the primary constraints can be turned to Hamiltonian ones.
the system shows the inconsistency 0. Such a system is Returning to Sec. IlI B, if ddW,,[|ro = 0, it implies
(03

not interesting according to Dirdd]. )
Similar to using Dirac’s original consistency conditions that some rows or columns OWUB) are either weakly van-

[1] we generate constraints in terms of the extended considshing or linearly dependent ofic. For the latter we can
tency conditions. First, we tak&? as a constant and require Make an invertible elementary _transfortr)natlh_rso that some
C? to preserve the weakly vanishing property in time. It isfOWs or columns ofPW),,, vanish onl'c. Without loss of
just Dirac's original algorithm. Second, if there exist suchgenerality, suppose rows of PW,, weakly vanish on
phase space variables that the 1 order partial derivatives I'¢c. in which L=r—r" while r’ is the rank ofW,, on
of the total Hamiltonian with respect to them are infinite,T(D;. Equivalently, there ard. null eigenvectors)\fr') for
A? are respectively taken as their canonical conjugate varifW,,|| on I'2, that is,
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Furthermore, to require similarly

Wi,(0,.8)=3 \(0.0)Wo,(.0)]r2=0 )

W;i~0, W(quj)*\./\/nqj+2W|iqj+W|i-qj*0,
(1=1.2,...L). (5.14 (5.193
Obviouslyvvh, only depends orsomevilocitiequ' at most d — -
in a weakly dependent sense, thatd#y,,/9g" ~0. Other- g (Wi d") =Wia'+W; g’ ~0, (5.19b
wise W, is not weakly equal to zero if there is no other
condition(s). Thus from Eq.5.14 we have we have
Wi,=~0, (5.153 Wy~0, Wig=~0, W,i~0. (5.20
Wia= NG W= AW, (09l p,)~0  (1=1,... L). Obviously they may lead to new constraints and/or multiplier
(5.150  solutions,
It is easily seen thaﬂp can be expressed as a function of — _ | ) _
a,p,, andg” in terms of Eq.(3.16). Of course, by virtue of Wig'=yi(a.0)=2 Aﬂ)(q.Q)KU(q,Q)hg*O-
the motion equations we obtain ' (5.2

7|(q,Q)EZ Kg)(q,Q)K(r(q,qﬂrg:O (1=12,...L). We hav_e to check cont@nl_JaIIy whether E@5.21) are pre-
i served in time. In fact, it is the same as the steps taken by
(5.1  S-M's approach in Lagrangian formalism, that 4s,in Egs.
) ) ) (5.2]) is required to preserve the weakly vanishing property.
~ According to Dirac's idea and the reasons stated above, Iy other words, all new constraints, which originate from
is very natural to require them to be preserved in time, thafjessjan variable rank, as new main branches generating the
is, we need the extended consistency conditions. In fact, igecondary constraints, are obtained by our extended consis-
Ref. [16] Sudarshan and Mukunda did just that in Lagrang-ency conditions. This means that our algorithm of the ex-
ian formalism as stated aboysee Appendix J: But Sudar-  tended consistency conditions involves the steps of
shan and Mukunda only required that the constraint equasydarshan-Mukunda’s approach. Therefore, for a singular
tions (5.16 were @served_ln _time. In Lagrangian system with Hessian variable rank, if Sudarshan-Mukunda’s
formalism, in generalW,;g' andW;;q’ can be regarded as a approach is applicable our algorithm is also applicable.
linear combination of Lagrangian constraints. Thus in terms  For all new constraints generated by the above steps, we
of the motion equations generally one cannot get the fact thatave to require them to obey the consistency conditions,
some velocitieg)? tend to infinity. In other words, the time namely, their time derivatives are weakly vanishing. As
derivatives ofW,; are finite and thus the evolution of them in usual, each derivation of them may give rise to more new
time does not give new independent constraints. Thereforeonstraints. This process is ended when no more new con-
S-M's approach has no problem. However, in Hamiltonianstraints are generated and/or no more new multiplier solu-
formalism, the case is a little complex because we generalljions are given. More generally, if there still exists the case
cannot expres¥V,;q' andW,;q’ as a linear combination of of a Hessian matrix with varying rank di’ determined by
the Hamiltonian constraints which are defined BB. For all above new and old constraints, we have to further repeat
instance, in Cawley’s second exampWgx=2zx=p, is the above process so that more and newer constraints are
just so. Although in Lagrangian formalism it is zero since thegenerated till the Hessian matrix has no longer a variable
constrainz=0, in Hamiltonian formalism we do not know it rank on the final constrained submanifdi§. These pro-
to be zero onl“g in the Dirac-Bergmann algorithm. It is a cesses must end in finite steps for a system with a finite
little similar to the fact that in general one need not write Number of degrees of freedom, and the contradictory relation
explicitly the primary constraints in Lagrangian formalism 1~0 will not occur. Otherwise the original Lagrangian
but one needs to clearly give them in Hamiltonian formal-(equations must be inconsistent.

ism. So we have to require generawliqjmo to be pre- Compal’ab|e with Sudarshan and Mukunda’s meﬂ[‘kﬁ]
served in time, that is, of treating the system with Hessian variable rank in Lagrang-

ian formalism we can say all corresponding Lagrangian con-
d — — straints are generated by the above processes. It is very im-
&(WHQ')%WHQ“FWHQ'%O- (5.17  portant and interesting that the above processes can be
determined from the requirement that for each process the
— _ constrained functiong/; andW,;q' which vanish in the con-
Of course we also rg)a\)e/” ~0. Because some of the veloci- girained submanifold preserve the weakly vanishing property
ties are infinite orl’c Eq. (5.17) may give rise to new con- i time. We call them the extended consistency conditions.
straints and/or new equations about tife Thus it can be As stated above\lvn can be expressed as functionsgf
rewritten as andp, and the multipliers as functions of time, and conse-
L _ quently all the new constraints, which are generated in terms
W,;i=0, W,g'~0. (5.19  of Hamiltonian (canonical motion equations and the ex-
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tended consistency conditions, are Hamiltonian ones. Theree work. In fact, the definition(6.1) is only a conjecture

fore our algorithm is proposed in Hamiltonian formalism andbased on Dirac’s algorithm. In Dirac’s papgt] and the

is a development of Sudarshan-Mukunda’s approach alongurrent literaturd 15], the explicit expression of evolution of

with the Hamiltonian formalism. Of course, the previous as-the phase space function in time is not derived. Only accord-

sumption in Sec. lll B is necessary. o ing to the behavior of the second time derivative of the func-
Actually, the constrained function&,; andW,;g’ can be tion does one conjecture the definiti¢h) of the physical

expanded as a linear combination of the independent weaklgbservables.

vanishing function? defined by(5.7). The higher power of ~In his well-known work[1], Dirac assumed that there is

Cja can be absorbed into the combination coefficigd®].  an initial ph_y3|cal state independent of t_he arbitrary r_nultlph—

Therefore the extended consistency conditions can also B¥Sv.- At timeto, suppose the constrained system is at the

expressed as the evolution of the constrained functibis initial .phy5|cal stat.e. Thus, |f we require that the functhn

andW,;q' preserves the weakly vanishing property in time.g.( 7) is free of arbitrary multipliers at_any tlme,_th_e cc_)effl-

This is the same as the method proposed in Sec. V B. | ients of the terms related to the arbltrary_multlphercsm

addition, in some situations, we can slightly loosen our as- g. (3.7 will be weakly equal to zero, that is,

sumption, that is, we only assume that Dirac’s total Hamil- m-1

tonian of the system with Hessian variable rank is known. Nm Nm-s-1"Km-s=1| _

Thus we can directly use the algorithm of the extended con- DH*(sHo D"}amstH* 9~0. ©.2

sistency conditions to generate new constraints and obtain

the final total and the generalized Hamiltonian according toThis relation shows how the multiple operafracts ong. It

the method described in Sec. V B. is always possible that by changing the action order the right
side of Eq.(6.2) could be rewritten as E@3.8). It follows, as
VI. FROM BERGMANN'S PHYSICAL REQUIREMENT stated in Sec. I, thag satisfies

TO THE GAUGE CONDITIONS
. . . bm
The invariance of the Lagrangian under gauge transfor- o
mation implies that Lagrangian is singular, i.e., the determi- .
nant of its Hessian matrix vanishg$,16]. By virtue of the by using the exchange theorem of theoperator(3.6) and

) * .
Dirac-Bergmann algorithril,2], one can pass from the sin- ';he }‘_lrs.t-clflstshprgperty ddﬂ ' Thfce)re;‘rc])re E§§6.3) IS elr:_otj_gh
gular Lagrangian formalism to the Hamiltonian formalism. 0 eliminate the dependence gion the arbitrary multipliers

Since the coordinates and momenta turn out not to be indf‘ any time. In fact, we also can obta.3) in terms of the

pendent in a constrained system, only a submanifold O'nite Dirac contact transformation or gauge transformation
phase space is relevant to the Hamiltonian description of thi 4'|56) %?ft?d o?hthehlnv_arl?n(t:)e of tth; physlcall(ljobbse;]vables.
system. This submanifold is called the constrained submani- h addition, the physical observables should be chosen on

fold and it is determined by all of the constrained equation he_ constrained hyp_ersurface and then they have yamshmg
[4,13. However, the submanifold still contains the gauge oisson brackets with all the second-class constraints since

variables; one needs to introduce such a reduction proce | of the second-class constraints can be expressed as a set

that the gauge variables may be eliminated and then the re- canoni(_:al conjugate pairs in the locally equivalent sense
duced phase space can be obtained. As is well known, in th 3], that is,
process one has to determine the number and form of gauge
conditions so as to identify the physical reduced space and

give the definition of physical observables on it. In fact, it is

necessary for the quantization of constrained systemélternatively, Dirac’s brackets can be used if one allows the
[1-4,13. constraints to appear in the physical observables formally

[13].
Returning to the accustomed definitih 1) of the physi-
cal observables, we find that it is not appropriate and univer-
It is important that Bergmann proposed a physical re-sa| in general singular Lagrangian systems since it may im-
quirement[2]: the physical observables, i.e., the gauge in-pose too many and too strict restrictions, which may make
variant quantities, are determined fully by the dynamicsthe physical sector of the constrained system change or even
equations and the initial conditions. It means that the physitose the physical observables. This can be seen more clearly
cal observables do not depend on the arbitrary functibas  in Sec. VI D. Hence, we have to give a corrected definition
grangian multipliers Only in this sense can they be mea- of the physical observables. As stated above and in Sec.
sured in principle by experiment. Obviously, Bergmann’s|j| A, it is shown that the physical observables have weakly

physical requirement is truly essential and naturally acceptyanishing Poisson brackets with, , and also with all the
able. However, in systems with constraints or singular Lag o qjass constrainfs, according to Bergmann’s physi-
grangian systems, one usually thinks that a physical observ:,

ableF is defined implicitly by the conditionf4,11-13 cal requirement,
{F.¢;}=~0, (6.1) {F.¢m,} =0, {F,Qg~0. (6.5

A. The definition of physical observables

where y; take over all constraints in constrained systems. In fact, the difference between the definitions of physical
For a general singular system, the definiti@nl) seems not observable$6.1) and(6.5) is not trivial because they result,
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respectively, in the distinct gauge conditions in some generdbecause of the first-class property ¢tno. In Eq. (6.12
gauge theories. This can been seen in the following sectiorbmO are the arbitrary functions on phase space. From the

N above Eq(6.12), it follows that the physical observables are
B. The gauge conditions invariant under translation transformation gf, . Therefore

In order to relate the corrected definitid6.5 of the  we can choose gauge conditions as
physical observables to the origin of gauge conditions, we
rewrite Eq. (6.5 as a system of linear partial differential Xm,=0. (6.13
equations,
This is just our corrected form of gauge conditions. Their
A ‘9_9~0 A=l m 6.6 number is the same as that of the constraints of the subalge-
L me: 7 ' bra of the MECPB of the first-class constraints but is not
invariably equal to that of all the first-class constraints in
Because all of thep,, are functionally independent of each general. This conclusion is important and nontrivial. It will
other, Amou has the maximum rank, which is equal to the result in the well-known difficulties in gauge reduction and
number of elements of the minimum evolution closed subalduantization of gauge theories because there may be insuffi-
gebra of the first-class constraints. cient gauge conditions in general constrained systems. In
Let us instead ofs,, use®, , other words, for the first-class constraiat; (m+ mg) that
0 0 does not belong to the minimum evolution closed subalgebra
@, =n"0—f(7*)~0 6.7 of the first-class constraints, one cannot choose such a cor-
mo= 77 K ' ' responding gauge conditiony;=0 that the equation
_ _ _ — detl{ dm x| #0 exists. In fact, the accustomed physical
in which |9, /d7™] has the maximum rank angt' takes  yequced phase space may no longer be of even dimensions
over the variables on phase space exeght @ is equiva-  generally and we do not know how to write out the measure

lent to ¢, locally [13,34 and can be obtained in terms of in path integral quantization. Cawley's examp[&g,1g dis-

the theorem on implicit functions from the constraints €USSed in the following are just simple examples.
#. ~0. By using the closed propert.12 of ¢, we have Therefore a new subject worth studying, the quantization
Mo Mo for general singular Lagrangian theories, appears. The quan-

(@, Dt =0 6.9 tization of the type of the gauge theories needs restudying on
Mo = Mg ‘ ' a new footing. We believe that some interesting results will

] be derived and this is an aim in our future papers.
Thus<I)m0 can be chosen as a part of the generalized coordi-

nates, or of the generalized momenta, or the mixing of them
(without any pair of canonical conjugajesn phase space. ] ] , .
To seek the other new variables on phase space, we can write A Simple case is Cawley’s counterexample for Dirac’s

the system of homogeneous linear partial differential equaconjecture[1]. Let us take the combination of his two ex-
tions of the first order as amples[17,18 and write the Lagrangian as

C. A simple example

{q) K}:O (69) L=5(1.Z]_+ylzi/2+ ).(2.Z§+y222. (614)
mOY

aThis example is a singular system with both the proper sub-
3Igebra of the MECPB of the first class and Hessian variable
rank. One readily obtains the Euler-Lagrange equations

Obviously, it is a complete system. Therefore this system h
2n—k independent solutions which involve all of thgﬂo

whose number is supposed to k¢34]. We again choose a
set of such functiong, independent ofb,, so that 7,=0, Z3/2=0, ¥X;=y;7;, (6.153

def{® g, Xy} 0. (610 d, d .

azzzo, z,=0, a(2x222)—y2=0. (6.15h
It is easy to show thay‘(mo also does not depend ¢hin Eq.
(6.9, otherwise Eq.(6.10 cannot be satisfied. Thus,n2 Hence they describe a motion that is limited to the-y;
phase space variables can be replaced by@w variables plane and on the, axis (z;=y,=z,=0). The velocity in

k= (P, Xm KO Me=1, ... K,o=2k+1,...,2n). Con- the x; direction is uniform while the motion in thg,; and
sequently Eq(6.5) becomes X, directions is arbitrary or undetermined. In terms of
Dirac’'s algorithm, the primary constraint is given by
39’ ()] Ixmy~0, 9’ (x)=0(). (6.1)  Py,~0,py,~0. Itis straightforward to derive secondary con-

straints similar to Eq92.20 and(2.30. They can be rewrit-
This means thag, as a function of new variableg”, is free  ten as the canonical or linearly and functionally independent
of xm, in the weak equality sense. Obviously the generaforms z;~0, p,, ~0, 2;~0, andp,,~0. Thus sincez?=0,
solution of Eq.(6.11) satisfies one obtains Dirac’s total Hamiltonian

9" (Xmy+ By, P, K =9" (Xmg: Py, K?) - (6.12) HY =Py Pz, + v 1Py, + Px Pz~ YoZot 0Py, (6.16
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Obviously, all the constraints by Dirac’s algorithm are first VIl. CONCLUSIONS
class. If we make use of the accustomed definitier) of In this paber. we trv to extend the Dirac-Beramann theor
the physical observables, this system has no physical degree Paper, y 9 y

of freedom. In other words, the physical reduced phase spac? constrained systems so that it is applicable to more gen-

) : ) - M . eral singular systems, such as Cawley’'s first and second
is zero dimensional. In fact, Dirac’s conjecture may be com- 9 y y

ing from the definition(6.1) to a great extent. Following the c?ueni;[ge(;ca;rﬁepll\e;lsé gvﬁécgf?ﬁ\e/ii:;e_ Cflzitsu(":?)r?;t:gﬁ‘ltzrgﬁ(ejr::st)-
original idea of Dirac’'s conjecture we have the extended. 2 . . )
Hamiltonian sian variable rank, respectively. We derive the general ex-

pression of evolution of the function on phase space in terms

12 the Taylor expansion method and the obvious expression of
He=U1Px, +01Py, ¥ W1Zy D5 P2, F UaPx, + UaPy, T WaZo.  the finite Dirac contact transformation by virtue of time
(6.17  translation and trajectory transformation. They all indicate

that only those first-class constraints belonging to the subal-
It follows that the motions of this system in many directions gebra of the MECPB have contributions to the evolution of

are arbitrary, and particularly the motion becomes infinite. the system. Therefore the generalized Hamiltonian is con-
In other wordsx,, y1, andp,, andx,, y,, andp,, are all  structed by adding the linear combination of the arbitrary

gauge freedoms in Dirac’s original algorithm. However, Lagrangian multipliers , and the elementg, of the sub-

X1, Pz X2, Y2, Z2, Py, andp,, are originally physical; algebra of the MECPB of the first-class constraints, that is,
namely,x; has a determined motion angd has an undeter- vm ®m,. This is just the extended Dirac conjecture which is

mined motion free of the choice of Lagrangian multiplier, proposed and shown in this paper. For singular systems with
while p,,, Y2, Z2, px,, andp,, are also some constants in- Hessian variable rank, we find that, in terms of Dirac’s con-
dependent of Lagrangian multipliers. If one uses the exsistency conditions only, the stability of the constrained hy-
tended Dirac Hamiltonian to generate the motion equationgpersurface is not guaranteed. In other words, Dirac’s original
even if one fixes the gauge, this system becomes static arnsistency conditions are not enough to generate all the
does not return to the original physical motion. Conse-Ssecondary constraints. It seems to us that physically the con-
quently, the application of the definitiori6.1) may result in ~ strained hypersurface is bound to be stable and so our ex-
imposing too many and too strict restrictions on the physicatended consistency condition is proposed. It leads to genera-
observables. In other words, the physical degrees of freedofion of new constraints and stability of the constrained
may be decreased and the gauge degrees of freedom may Ipersurface. Hamiltonization of this kind of system is then
increased unexpectedly in general singular systems. The finggalized and its dynamics in Hamiltonian formalism is
result is that the physical content of the theory is changedequivalent to that of Lagrangian formalism. It is worth em-
Therefore Eq(6.1) is not correct and universal. phasizing that in many well-known cases, for example, QED
Actually, because of the Hessian variable rank we have t@nd Yang-Mills theory, the minimum evolution closed sub-
apply the extended consistency condition. As in Sec. V Aalgebra of the first-class constraints is just the complete evo-
we can obtain the new constrainfs, ~0, y,~0, and lution closed algebra of the first-class constraints, and they
v,~0. Thus the final total Hamiltonian can be written as h_ave not Hessan vanaple rank. It is clear that our conclu-
sions are consistent with and go back to the accustomed
F_ 112 Dirac-Bergmann algorithm in these cases. It is important and
HT=PxPey tU1Py, + Pi, Py .18 interesting that our results can be used for some more general
singular Lagrangian systems with the proper subalgebra of

It is easy to verify that on the final constrained hypersurfacehe MECPB of the first-class constraints and/or with Hessian
the subalgebra of the MECPB of the first-class constraintgariable rank.

only has an element, . From Eq.(6.5) it follows that the Finally, we would like to point out that in this paper we
corrected definition of the physical observables is have finished the Hamiltonization for singular systems with
the proper subalgebra of the MECPB of the first-class con-
Dpy g~0. (6.19 straints and/or with Hessian variable rank, and obtained the
1

choice of the gauge condition; however, how to carry out
o ) guantization of these singular systems is still an open ques-
It implies that this system has only a gauge degree of freeqon. Because, generally speaking, the number of gauge con-
dom, and Dirac’s contact transformation has only a gauggjitions can be less than one of the first-class constraints in
generator. The corrected generalized Hamiltonian should bgege systems, we do not know how to write the correct
constructed by our extended Dirac conjecture. Obviously, itheasurement of path integral quantization. Our algorithm is
is the same as the final total Hamiltonian in the form to provide a tool for quantization of them. We believe that
this question is very elementary and some interesting appli-

He=H7=py Pz, +v1Py, + Difpzz- (6.20  cations of our results can be found. Such work is in progress.
Of course, a simple choice of the gauge condition is
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APPENDIX A Normally, two functions being strongly equal means that

Suppose the rank of the coefficient matrix for the un-both they and the_ir corresponding partial derivatives with
known multipliersuy, in Egs.(2.10 is R. WhenR is equal to respect to the variables on phase space are weakly equal.

n—r, which is the number of primary constraints, we CanThgrefore the strongly vanishing term in. the tptal Hamil-
completely determine all multipliers. WheR<n—r, there  tonian has no contribution to motion equations with the weak

aren—r —R null eigenvectors? so that equality form. The following theorem on the relations be-
A tween weak equality and strong equality can be demon-

{da,daléa~0, (Ala) strated. When the hypersurface is determined by the equa-
tions ¢;=0, for the functionsf and g whose second
{x«, P} é8~0, (Alb) derivatives exist and are continuo(smetimes this can be

slightly looseneglon the hypersurface, ff~g, then

Consequently then—r —R linear combinations of primary
constraints such as E¢2.11) become the first-class ones,
while the other independent linear combinations of primary
constraints are secondary ones, denotegpy We also can
recombine linearly the secondary constraifgsnerally pri- APPENDIX B
mary constraints may be involvedo that they become first . . . .
class as far as possible; the remaining independent combina- 1h€ continuous and differentiable functions B, and
tions must be the second class, and we denote thepp,by 9 satisfy the Jacobi identity of the Poisson bracket,
and y,, respectively. _ _

In constrained systems, Dirac’s total Hamiltonian can {A{9.B}l}={{B.A},g}—{B.{A.g}}. (B1)
only be determined in a strong equality sense. The symbol of
the strong equality is denoted by. If f;=f,, then it means Therefore Eq.(3.6b is valid for n=1. Assuming that the
that equation also is valid fon, we have fom+1

f(a,p)=g(q.p) +c;¢;. (A3)

{Afl---{e.B}.....B}={A{{-"{¢.B}. ....B}).B}}

Nt~/
n+1
=—{B.{A,({--{¢.B}. ... .BY}+{{B.A}.({---{8.B}, ... .B})}
N~
=3 (5B, LB (B, .. {B.A}- gl )
N~ N,
n+l-m m
n+1
+mE=1 (_)n+1+mC;”—1{B, ....{B{({B,... {B.A}---D.g}} -} (52
R N
nt+l-m m
In terms of the relation
nm+l:Cnm+ Cnmil (B3)
we obtain
n+l
{A’{ : '{g’B}” ’ "B}}= 2 (_)n+1+mC:1n+l{B" : "{B v{({B’ e 9{B ’A} . }),g}} N } (B4)
m=0
n+l n+l-m m

Thus Eq.(3.6b is proved.
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APPENDIX C

In terms of Eq.(3.6) we can obtain

ar dn—l
—_— A — * +
dtng(q’p) dtn-—l({g?H } Ua{g’¢a})
n—-1 K dk
~{ gl GHA 2 2 @l {8l H b)) e
=0 &=
n n—k—1
in which we have used the consistency condifidh
{H?,;}=~0 (C2)

and assumed that the constraints do not have explicit time dependence and the number of primary first-class constraints is
K. Making use of Leibniz’s differential formula we continually calcul@®l) and can get

n—-1 K

n d™
—k
grelap)~{ g H* e D D Z Cplo® ™ = ({{- {g.H*}, ... H* L @ 1)
dt k=0 a;=1 n;=0 L% dt
Nt ..’ Nt ™~ e’
n n—ky—1
n-1 K
ny (ny—kyp) —k ”1 k-1
~ _1 nD + I 1 1 ny 1
(=1)"Diyug E_Mlz_l,,lz_och k) (i, D)
n—-1 K ky

~(=D"Dpgt X X 3 Gl (= 1D (=) hD, DTt ]

k=0 a;=1n;=0

n—-1 K ny—1

dm
n(n—k)n(n —ky)
(3 3 38 S S aptne &

ky=0 a;=1 n;=0 k=0 ap=1 ny=0

"1 ky—1

x[(=1)="kD, D2 27l (—ymkp, Dy, g]. (C3

Likewise, by the successive iteration method, we can deducé/hen making use of the successive iteration method we
Eq. (3.7). have to be very careful. It can be shown by the exchange

theorem that
APPENDIX D

Actually the time translation operator can be obtained by t
the product of a series of successive infinitesimal dynamics Dta()~Dr(t)g(t’) = t,dtlpf(t)[DH?“g](tl)'
transformations, (D43

7 (t+ 8t)~= (1 - StD L) (1), (DY)
T Dy (D[Dy 0 @(t)]= Dy () Dy (') g(t")

i.e., the time translation operator has the form
t!
- ft” dt, Dy, (1) Dy (1)

U ~ |i 1- _1)Dyp D2
(t,to) t:‘mt 1;[[ (t—t-)Duey, ] (B2 X[Dyo- glt), (D4b)

N
N—oo

where— refers to a successive product from left side to right,yhere
side in turn. It can be written straightforwardly as

t * __47\n
U(t,to)~1—ft d7Dy2U(7.to). (D3) DHg)=3 %Dxnm')g(t/): (05)
0 H
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t_tr)n (tl_tll)n
n! m!

Dy, (0D (1)g(t) =2, X (
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t ty
‘9(t)’~V19(t0)+(t_t0)§(t0)+Jt dtlJt dtu(ty),

(E8b
X Dxng(tnDxmin9(t");  (D6)

t
similarly for the product of manyD’s. The X operator is §(t)~§(to)+f dtyu(ty), (E89

defined as fo
=—Dyp... (D7) pr(t)~e ("0Pultolp,(ty), (E8d
Obviously theD operator has the properties Po(t)~po(to), (E8¢
Di(1)g(t) =Dyyg(t), Dy(t)t'=0, (D8) Pe(t)~pe(to) = (t—to)py(to), (E8)

“(t—t)" t in which
Di(t)~ > i Dxnf(t’)”Df(t')ﬂLf/dTDXf(T)- )

n=0 ! t H=H*=p:/2+ py&+V(r). (E9)

(D9)

Thus the successive iteration method is applicable. For
function which does not relate to time explicitly, the time
translation operator acting on it has the form of E@E8)
and(4.9).

APPENDIX E

Let us start from the Christ-Lee moddé3]. Its Lagrang-
ian is
L=[r2+r2(0— &)2]/2—V(r). (ED)
The advantage of this example is that its invariant group has
common features with the QCD or QED gauge groups, that
is, their elements involve an arbitrary function tnUnder
such transformations as

g is easy to see that

7(1)=G(U,v;t,to) 7*(t)

t —~
%[1_ftodtl[u(tl)_v(tl)]ppg
t ty -
_f dt, dtz[u(tz)—v(tz)]ng(t)]
to to

t
%[ 1- J'todtl[ﬁ(tl)_U(tl)]ng(tl)} n*(t)

= exp{— Rl(t,to)ng(t) - )\z(t,to)ng(t)}ﬂM(t),
(E10

t
7\1(t,to)=ft dty[U(ty) —v(ty)], (E1la
0

t o
)\z(t,to):Jt dtlft dt[u(ty) —v(ty)].  (E11b

HereD, andD, are thought not to act ok, and\, since
¢ 0

they are the functions dfonly. Hence we can write

0— 0+ a(t), E—&+a(l), (E2)
Lagrangian(E1) is invariant.
Defining the conjugate momenta
p=f, P=r36-¢), pg=0, (E3)
one has a primary constraint
pe~0. (E4)
The original total Hamiltonian is
Hy=p7/2+p3/2r>+pyé+ V() +ope.  (EH)

constraint

G(U,U ;t,t0)~exp{— Al(t’tO)Dpf(t) - Kz(t,tO)ng(t)}
(E12

Thus the subalgebra of the MECPB of the first-class con-

Obviously the consistency conditions result in a SeConda@traints.has two elements and just exhausts all the fir_st—class
constraints. Consequently Dirac’s contact transformation op-

erator becomes

py~0. (E6)

Because the two constraints are both first class @0,

G(t,tg)~e *1Pp,~a2lp, (E13

then Dirac’s total Hamiltonian has the form

HY=pZ/2+ pyé+V(r)+up;. (E7)

With the aid of the canonical motion equations one readily

obtains

r(t)~e ("0Pulor(tg),

(E8a

It must be noted thatv; and «, are independent of each
other and different from\; and\,, which satisfy the rela-
tion

No(t,to) =N (t,tp). (E19

It is interesting that the secondary first-class constrpint
becomes a generator of Dirac’s contact transformation. This
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is consistent with Dirac’s conjecture. Therefore by usingequations of motion have restricted the motion to the surface
Dirac’s conjecture we can determine correctly the generalV of lower dimensionality, so that we must go back and

ized Hamiltonian recompute the rank diw;;|| after restricting the variables to
, the surfacev. When this is done, although the rank cannot
He=p;/2+V(r)+ a1pyt+ asp; (E15 increase, it could, in principle, decrease and we denote its

_ ) . rank asr’< r. That means that with the variables con-
where p,¢ is absorbed intoa;p,. Consequently, Dirac’s strained toV, we may find more null eigenvectors for the

conjecture is applicable to the Christ-Lee model since th‘?natrixHWin, and these in turn may introduce more indepen-

subalgebra of the MECPB of the first-class constraints is thgient constraints among theg and §;; the motion then be-

same as the complete set of the first-class constraints in thigmes restricted to a surfasé of lower dimensionality than
model. V. The surfaceV’ of dimensionality (h—k’) is defined by

k' (=r’) independent constraint equations which are ob-
APPENDIX F tained by

In order to contrast Sudarshan and Mukunda’s method of
treating the singular Lagrangian system with Hessian vari- Y®(a,q)=> A P(q,0)Ki(q,0)|v=0
able rank in Lagrangian formulatidi.6] by using our algo- i
rithm of the extended consistency conditions in Hamiltonian (b=1,2 n—r') (F3)
formalism, let us recall briefly the S-M approach. Because ey

existn—r linearly independent null eigenvectox$®(q,q) |Wi; (0, in the surfacev, that is,
for this matrix:

. . 2 A (AOWi(a,mly=0 (b=12,....n=r"). (F4)
2P@aWi(a9)=0 (a=12,...n-1) F) 7
Its functionally independent number kS.
or Then we have to check whether the constraiff4) are
preserved in time so that we obtain more secondary con-
straints. The number of all independent constraints that are
generated by the above process is denotel’byf the rank
of |W;| decreases in the surfacé” of dimensionality
(For ease in writing, we omit all explicit time dependence. (2n—k”) defined byk” independent constraints involving
Suppose the number of the functionally independenthe secondary constraints, we have to go again through each
y¥(q,q) is ksn-r. Equation (F2 defines a of the steps described above. For a system with a finite num-
(2n—k)-dimensional surfac¥ in S which consists off and  ber of degrees of freedom, for which genuine motion is pos-
g. The rankr of |W;]| was first computed in the spa&  sible, this iterative process must end after a finite number of
that is, with all theg's and g's being independent. But the steps.

y<a><q,c|>52 M (a,)Ki(a,d)=0. (F2)
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