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Hyperspherical theory of three-particle fragmentation and Wannier’s threshold law
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A representation of three particle wave functions well adapted to computations of low-energy fragmentation
states of systems interacting electrostatically is derived. A basis called an angle-Sturmian basis, is introduced.
Exact wave functions are represented by sums over the angle-Sturmian functions and integrals over the index
of Bessel functions. Equations for the coefficients of the Sturmian functions are derived. Solutions of these
equations are given in the approximation that one Sturmian is employed. Integral representations of the
approximate three-particle wave functions are obtained. Evaluation of the integral for large hypefRadius
gives the hidden-crossing theory, familiar from representations of ion-atom interactions at low energy. It is
shown that ionization components emerge simply only for complex valuBs 8fich components conform to
Wannier’s threshold 1aw.S1050-294{®6)04707-5

PACS numbeps): 34.10+x, 32.80.Cy

[. INTRODUCTION hyperspherical close coupling method with 100—-200 basis

states to compute wave functions which were fitted to waves

The collective motion of three charged particles is fundarepresenting two free electrons at distances where the
mental to atomic dynamics when two electrons are outside afip~10 channels separate off. They obtain good values for

valence shells, either in doubly excited or in continuumionization cross sections when the electrons escape with a

states. In the latter case, correlated motion of two electronsombined energy in excess ef1.5 eV, but do not get the

produces many observable effects, of which Wannier'siannier threshold behavior for lower energies. The conver-
threshold law is the most studied. The continuum correlagent close-coupling calculatiof8] and the pseudostate cal-
tions were first treated classically by Wannjigt, and quan- culations[9] employ independent particle basis states and do
tally by Rau[2] and Peterkop3]. Feagin[4] gave a general not reproduce the Wannier threshold law in this energy re-
theory of the threshold law for particles of arbitrary mass andyion; indeed, they appear to fail at higher energies of the
charge. order of 3 eV above thresho[d@]. Crotherq10] adapted the

A fairly complete picture of the physical process has beerwave functions of Refs[2,3] to direct calculation of the
given by Fano[5]. A Schralinger wave representing two ionization matrix element and thereby reproduced the Wan-
electrons starts from a region where both electrons are closder threshold law. These calculations gave the &itstnitio

to the ionic core and propagates outward through a regiornjalue of the constant multiplying the Wannier power law.

called by Wannier the Coulomb zone, where the wave Despite the progress outlined above, theory remains in-

branches into alternative channels. A portion of the wavecomplete since the correlations discussed by Wannier are
representing each channel separates off at distances of théficult to incorporate into standard atomic thediyd]. In
order of the mean radius to the channel wave function. Charaddition, large basis set calculations are poorly adapted to
nels with increasing principal quantum numimgrare popu- elucidating underlying physical pictures. They are required
lated at successively higher values of the mean distance af conventional calculations in order to represent two dis-
both electrons from the ionic core. This process continuesimilar but equally important motions.

until a region is reached where both electrons are effectively One type of motion consists of propagation on the ridge

free. The “Wannier ridge,” i.e., a region in coordinate spacewhere the potential is fairly flat and the motion is that of

where the two-electron potential has a local saddle pointmearly free particles within the corresponding region. A sec-
plays a key role in this evolution. Essentially, only that partond type is propagation in the valleys of the potential, where
of the wave which starts on the ridge evolves into a wavehe motion represents one bound electron and one moving
representing two free electrons. outward in a screened potential. Smoothly matching these

Attempts to incorporate these insights into quantitativetwo motions so that the branching into the valleys and con-
calculations have just begun. Boh#] has employed direct tinuation on the ridge are both accurately described is a de-
solutions of coupled equations in a hyperspherical harmonimanding task for conventional approaches. The purpose of
basis to compute eigenchannels of the wave motion. Théhis paper is to describe a mathematical framework that de-
eigenchannels support the basic picture postulated in[Ref. scribes both motions and readily incorporates the basic
but ionization cross sections were not extracted. Kato ang@hysical picture of Ref{5].

Watanabd 7] did extract ionization cross sections using the The framework developed here employs two ingredients,
namely, a type of Laplace transform to describe the motion
in the hyper-radial coordinat®, and a set of basis functions

*Permanent address: loffe Physical Technical Institute, St. Petern the hyperangle€). Together, these two innovations de-
burg, Russia. scribe a set of “channels” such that the outgoing hyper-
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radial wave is the same in all channels. These are not thare separable but the boundary conditions are not. Here we
physical channels, but such channels emerge naturally up@how that they can be used even when the &tihger equa-
evaluating the complete wave function asymptotically. tion is not separable.

A second purpose is to assess the usefulness of this frame- Exact solutions are obtained by integrating over the sepa-
work based upon approximate solutions of the exact repreration constant. For systems with Hamiltonians that separate
sentation that we have constructed. A preliminary report waito hyperspherical coordinates, as for particles interacting
presented in Ref12] but no details of the underlying frame- via r ~2 potentials, the coefficient®(»,Q)) are eigenfunc-
work were given. The approximate theory is identical to thetions of ()-dependent operators at a single value ofn this
hidden-crossing theory familiar from ion-atom collisions, case, the integral transform is employed to satisfy boundary
which was used, without justification but with some successconditions. For particles interacting via Coulomb interac-
for ionization of atomic hydrogen by electron impact. Thetions, the®(v,)) are eigenfunctions d2-dependent opera-
physical picture of Schidinger wave evolution along the tors at many values af. In this case, the transform is needed
potential ridge emerges in this theory, as does a relativelyo represent dynamics, and Ed..1) may be considered a
simple, although approximate, quantitative expression fotdynamical separation of variables.
excitation and ionization cross sections. This paper shows The coefficientsb(v,()) are expanded in appropriate ba-
the fundamental basis for extension of the hidden-crossingis sets. The introduction in Sec. Il B of a different basis set
theory to electron impact and to the correlated motion ofis the main innovation reported here. The basis functions
three charged particles of arbitrary mass and charge geneg;(v;{)) are chosen so that at values ®&=p,(v),
ally. Atomic units are used throughout. where p,(v) are the eigenvalues, the products

Hyperspherical coordinates are basic to the theory thag,(v;Q)RY?Z (KR) are solutions of the Schdinger equa-
will be developed. These coordinates are now commonlyion
used to describe correlated states of two-electron atomic spe-
cies[5] and are briefly reviewed in Sec. Il A. In these coor- ] "
dinates the electrostatic potentia(R,()) factors into a part lim [H(R,Q)-E]S(»;Q)R™Z,(KR)=0. (1.2
C(Q) that depends only upon the hyperangles and an overall R=pnl¥)
scale factor R so thatV(R,Q)=C(Q)/R. This factoring is
essential for the representation that we devise. The functiofthe pasis functions are solutions of equations where the co-
C(Q2) will be called the scaled potential. efficient of C(Q)) is the eigenvalue. It is now conventional in

The scaled potential has a broad region which is fairly flatyhysics to call basis functions using the coefficient of the
over large angular ranges. In this region the hyper-radial mopotential in the Schidinger equation as an eigenvalue a
tion is locally that of free particles represented by Bessektyrmian basi§14,15.
functionsZ,(KR), whereK?=2E and » is an index. They Sturmian functions were originally introduced in atomic
are solutions of the hyper-radial Schiroger equation with  physics to obtain a complete, square integrable basis set
an effective potential #°—1/4)/2R°. Conventionally, adapted to the central Coulomb potential/r. The set is
boundary conditions at the limits of the angular rangeS ar%enerated by f|X|ng the ener@at some negative Value and
used to select integer values for the indexBut C(Q) isnot  ysingz as an eigenvalue. The functions are square integrable
flat at the edges of the angular region; on the contrary, this ignd orthonormal with respect to the weight functiom.1/
where the sharp structures of the potential are located. Fofhis square integrable set is still used today to represent
this reason, the index is not limited to integer values; continuum functions of positive energy. Such bases describe
rather, it can take on any complex value. eneral Schidinger functions in regions where the potentials

It is also necessary to represent motion in the valleys ofre strong and similar in shape to the Coulomb potential, but
the potential. The wave functions in this region look very qo not represent continuum functions at all well outside this
different from those on the ridge. Fortunately, a mathematifimited region.
cal method for representing any arbitrary functionFofin It is now recognized that square integrability is not the
terms of Bessel functions of fixed energff/2 is known,  key feature of Sturmian bases and bases for any central po-
namely, the Kontorovich-Lebedev transfofi3]. We use  tential U(r), whereE is fixed at a positive value set by the
this transform to represent exact wave functidnéR,{2) at  particle energy15], are defined. These bases satisfy outgo-
total energyE=K?/2 in the form ing wave rather than bound state asymptotic conditions and

represent the physical functions accurately both where the

\I’(R,Q)=fq)(v,Q)R1IZZ,,(KR) vdv, (1.1) potential is strong and Wherg it is weak. Indegd, they are

c chosen to have correct outgoing wave asymptotic conditions

in regions where the potential is not just weak, but vanishing.

wherec denotes a contour in the plane that depends upon  Two key properties emerge from these developments of
boundary conditions. Sturmian theory. First, it is orthonormality with respect to

Equation(1.1) differs from the usual Fourier-Bessel trans- the weight functionU(r) that accounts for the set’'s effec-
form in that the integration is over the indexof the Bessel tiveness in representing arbitrary functions in the limited re-
function rather than its argument. This is appropriate, sincgion of space where the potential is most significant. Square
the transform is introduced to separate angular and radiahtegrability is only a numerical convenience of little funda-
motion andy? is a separation constant for a six-dimensionalmental value when it is not in accord with physical require-
Laplacian separated infd andR variables. Such transforms ments. Second, functions obtained at a value of the param-
are usually employed when the partial differential equationster E, no matter whetheE is positive, negative, or even
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complex, are mathematically well defined and can be exerder to stress the connection with the earlier formulation
ploited to represent wave motion that depends upon this pd48] of hidden-crossing theory, adiabatic energy eigenvalues

rameter. are denoted by, (R) rather tharJ ,(R), which is conven-
These considerations apply to our representation of thdonal in the hyperspherical adiabatic representaf&in
function ®(v,Q). By using functions orthonormal with re- The stationary phase approximation corresponds to as-

spect to the weight functio€(Q) we efficiently represent ymptotic evaluation of the approximate one-Sturmian wave
@ (v,Q) in the potential valleys where one of the electrons isfunction. As is common for such evaluations, the complete
confined. By using angular functio®s( ;) with the index asymptotic representation does not emerge for real
v set by the Bessel function,(KR), we also insure that the [19,20. When the wave function is evaluated asymptotically
representation is locally accurate in regions where the poterfor real R, only excitation channels appear. To extract ion-
tial plays only a minor role, e.g., where it is nearly constant.ization channels by the method of stationary phase, it is con-
For these reasons, we call the functi@(s;{)) angle Stur- venient to consider wave functions for complex values of
mians. R. For sufficiently large values of IR, a single ionization
The angle Sturmians, which describe angular motion, alsehannel appears. For larger values ofRmmore ionization
introduce a feature not shared by the more familiar radiathannels appear. Finally, wheR is purely imaginary, a
Sturmians. We can consider that the Sg{v;(}) defines a complete set of ionization channels emerge. The change of
set of “channel” functions. Exact solution®(v»,{)) require  asymptotic form with increasing IR represents a type of
superpositions of the channel functions. These superpositior8tokes’ phenomena where the analytic form of the asymp-
are represented by angle-Sturmian expansions introduced totic wave function changes &sis carried around a circle in
Sec. lll. With this set of channel functions the radial motion,the complex plane. Such behavior is known for solutions of
represented by the Bessel functiod,(KR) in the coupled ordinary differential equatiof$9]; here it emerges
Kontorovich-Lebedev transform, is the same in all channelsfor approximate solutions of partial differential equations.
Integration over the index and summation over the angle- The ionization channels are just those of the adiabatic Wan-
Sturmian channels yields ¥ (R,}). nier theory[11,21,23, as shown in Sec. V where the Wan-
The Sturmians do not represent asymptotic channels, armer threshold law is derived.
it is necessary to connect these channels with the physical That only excitation channels appear asymptotically for
channels at large distances. It is shown in Sec. Il D thateal R appears related to the distinction between complete-
Sturmian functions are related to adiabatic eigenfunctionsiess and asymptotic completeness in the theory of rearrange-
¢,(R;Q) [16] according to Demkov's constructiofl7].  ment reaction§23]. A basis set may be mathematically com-
Adiabatic bases are briefly reviewed in Sec. Il C. plete everywhere, yet not represent physical channels
Because the Sturmian functions give exact solutions at asymptotically. Rather, alternative complete sets satisfying
point, we anticipate that different modesare not strongly different boundary conditions are needed. For ionization of
coupled, thus one-Sturmian approximations are introduced iatomic hydrogen by electron impact, the Kummer functions
Sec. IV A. Integral expressions for the corresponding waveliscussed by Watanaljé1] are the alternative set. In the
functions present work, this set emerges most simply at compex
Because the ionization channels are central to a complete
theory of correlated electron motion, a rigorous mathemati-
cal derivation of the ionization channels for réals given in
an Appendix. Concluding remarks are given in Sec. VI.
whereA,(v) are expansion coefficients, are also obtained.
The physical content of Eq1.3) emerges upon evaluat-
ing the integral in the stationary phase approximation, valid Il. HYPERSPHERICAL COORDINATES
for large R. In this approximation, discussed in Sec. IV B, AND BASIS FUNCTIONS
contributions to the integral are dominated by values of A. Hyperspherical coordinates
v=v, such thatp,(v,)=R. At these values o= ,(R . .
the slfngle Sturmian /iLs proportional to one of the ggjia)batic hCon5|der three particles of masses, My, a_nd ”?B.a”d
functions ¢ ,(R,Q). Because there may be many points of Charges= Zhl’ _ﬁz' andZs, respectively. For simplicity we
stationary phase, the integral evaluates to a sum @gweith suppose that all of th&; are positive. The set of Jacobi

amplitudes that depend upon the path through the points O(}oordlnates gseq by Feadi] are chosen, namelys » and
stationary phase. For small values Rfthere is only one 123 shown in Fig. 1. Corresponding to these coordinates

point of stationary phase corresponding to the initial adia-there are the reduced masseg,=mm,/(m;+m,) and

batic channel, but for real valueR larger than a certain M123~ Ma(m; +my)/ (M +m,+my). The hyper-radiug is
specific value, a second point of stationary phase appeaFQen defined as
corresponding to population of a new adiabatic channel. This

process continues with new channels appearing at succes-

sively larger values of redR. At infinite R the successive

appearance of adiabatic channels gives a complete row of thghe remaining five hyperangular coordinates are denoted by
Jost matrix. These approximate Jost matrix elements are usétl. The exact specification of these coordinates is not needed
in Sec. IV C to obtain the hidden-crossing expression for théhere. Alternative sets are discussed, for example, by Zhou
S matrix. A simple interpretation of the hidden-crossing and Lin[24]. The hyperangles can be taken to be the spheri-
equations using the Landau-Zener model is also given. leal coordinates, andfi, 3, and the angler defined as

W(R,Q)~fAn(u)sn(v;Q)R“ZzV(KR)vdy, 1.3

R?= 1ot S0+ pa2 4 325 2.1
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B. The angle-Sturmian bases

The angle-Sturmian basiS,(v;()) replaces the coeffi-
cient R of the scaled potential @(€2) with an eigenvalue
pn(v) when the operatorA?+2RC(Q) is set equal to
v?>—1/4 to yield the eigenvalue equation

[A%+2pn(v)C(Q)]1S(1;Q) =[v? = L4]S,(v;Q). (2.8)

The eigenfunctions are orthogonal with the wei@tK2),
f Sy (v;Q)C(Q)S(v;Q)dQ =0, n’#n. (2.9

When n’=n these functions may also be normalized for
most values o,

1 —2J S (1:Q)C(Q)S,(r;Q)dQ=1,  (2.10

FIG. 1. Coordinates of three particles.
but, becaus€ () may change sign in the domain of inte-
My 1o gration, this is not assured since the normalization integral
o (2.2 may vanish. The integral can vanish only at isolated values
1231123 of v, and since we employ arbitrary complex valueswof
. ) . . these points may be easily avoided by analytic continuation.
The reduced wave functiolf (R,() is written in terms of Also, the eigenvaluep,(») may be complex even when

tane=

the standard wave functiog, v>—1/4 is real and standard theorerfis4,15 of Sturm-
Liouville theory may not apply to the set of functions
¥ (R,0)=R>%(sina)(cosy) (R, Q), (2.3 S,(v;Q). This is of little importance in our work, since the
eigenvalues are analytically continued to arbitrary complex
so that the Schdinger equation becomég4] values ofv.

Notice in Eq. (2.8) that, for values ofv such that
pn(v) =0, the angle-Sturmian functid®,(»;{)) satisfies the
—2E}W(R,Q):0, (2.4  equation for hyperspherical harmonics. Because of the usual
boundary conditions on angular functions, this can only hap-
pen whenv is a particular integer, which we denote by
where An+ 2. The corresponding eigenfuncti®q(\ ,+2,Q) is just
the hyperspherical harmonfqn(Q). Except for degenerate

-, -, eigenvalues, none of the other (A ,+2)’s with n’ #n van-
A= — 7 ‘s 12 ish atv,,=\,+ 2, although they vanish at their own particu-

#  A2+2RC(Q)
TR R

WJF co§a+m) —1/4, (2.9 lar values ofy, =\, +2.

This vanishing of one of the Sturmian eigenvalues at its
and whereC(Q) is given in terms of the interaction potential charaqtenstlc value 05 plays a key role in deterr_nmmg _the
energyV(R,Q)=C(Q)/R of the three particles. behavior of the funct!onIf(R,Q) nearR=0. We will see in

Sec. lll that the functiomb (v,€}) has a factor X/,,(v) which
represents a simple pole at=\,+2. The contour around
the pole is taken to select the condensation chanpelln

is framework the condensation channels are hyperspherical
armonics, as they are in R¢6].

For two electrons outside a closed shell with=2,=1
and Z;=Z, an alternative set of hyperanglés, r,, and
a=arctanf,/r;), also denoted collectively by}, is more
standard5]. In these coordinates, the scaled potential has th

explicit form
P Note that the integrals in Eq&.9) and(2.10 are defined
without taking the complex conjugate & (v;Q). This is
cQ)= Z Z + 1 2.6 necessary in order that inner products analytically continue

off the real axis. To represent this aspect more formally,
we define the Sturmian state vectofS(v)) as
S(v;Q)=(Q|S(v)) and the dual(S(v)| as (S(v)|Q)
=S(»;Q)). When computing real physical quantities using
the wave function? (R; (1), it is still necessary to define the

7 13 1 dual of |¥) in terms of its compl ' i
2| B plex conjugate, i.e.,
A 922 coda Tsita) YA G0 (gRQ)=T(RQ)*

cosy  sina  \[1—sin2a cosdy,’

where #,,=F,-f,, and the operatoA? is given by

|2



548 J. H. MACEK AND S. YU. OVCHINNIKOV 54

ues of H at complex values oR. Notice that surfaces
Excitation corresponding to different sheets are joined at square root
branch points and associated branch cuts.

The surface defines a single functieo(R) for all R. Cor-
responding to this function there is the universal adiabatic
eigenfunctione(R; ), also defined for all compleR. The
standard hyperspherical adiabatic eigenfunctions are differ-

Rele(R)] o _ ’ ent branches of this function for real values Rf Since
z Elastic Scattering e(R)R? is defined for allR, the equation
2e(p)p?=1v>—1/4 (2.13
Im R Re B may be solved to find its rootg,(v). These are just the

Sturmian eigenvalues of E¢2.8). The corresponding Stur-

FIG. 2. Plot of Rge(R)] vs complexyR for the 1S symmetry ~ Mian eigenfunctionss,(»;(2) are, aside from normalization

of H™. This plot is one possible representation of the Riemanrconstants, just the adiabatic functiopg¢R;(}) evaluated at
surface for the functior(R). The data used to construct the sur- R=p,(v):

face are taken from the computations of Héf)].
Sn(v;Q)=N() @(pn(v); Q). (2.14

) ) ) i i To determine the normalization constant, differentiate Eq.
The hyperspherical adiabatic basis functigi®;(1) are (2 g) using the orthonormality condition E¢2.9) to obtain
defined as eigenfunctions of the operatdf+2RC(Q)
whereR is held fixed[16], i.e.,

C. Hyperspherical adiabatic bases

—apa“fjv)zf C(Q)sn(v;Q)Zdnz—zyf S, (v:0)2dQ.

(2.19

The adiabatic functions are taken to bg real for rIéqIFor Using Egs.(2.12, (2.10, and(2.14 in Eq. (2.15 gives
both real and compleR they are normalized according to

[A%+2RC(Q)]e(R;Q)=2¢ ,(RIR?p(R;Q).  (2.1)

dpn(v
, Pol®) N2, (2.16
f »(R;Q)%dQ=1. (2.12 v
. . . or
These basis functions concentrate in the valleys of the poten-
tial V for largeR where they become bound state wave func- apn(v)
tions of one-electron atomic speciglb]. Accordingly, a fi- N(v)=\/— Sy (2.17)

nite number of these functions can represent excited states,

but not states where both electrons are in the continuum, i.e., jyst as there is a single multivalued functiofR) with

the hydrogen atom is ionized. Alternatively, Sturmian eigen-gifferent branches, so too is there a single multivalued func-
functions are suitable for ionization, as will be shown in Sec.jon p() with different brancheg, (). This proves useful

V. for the approximate evaluation of integrals ouwegiven in

Sec. Il
D. Relation between Sturmian and adiabatic bases

It is necessary to connect the Sturmian and physical chan- lll. THE ANGLE-STURMIAN EXPANSION

nels at largeR. This is done via the connection between Near the poinR= p,(v) we have that, to first approxima-
Sturmian and hyperspherical adiabatic functions. These iﬂon the solution of ﬁ?e Schdinger equéltion is

turn connect with the physical excitation channels as dis-

cussed in Ref(16]. The connection with the ionization chan- V(R:Q)~RY2Z (KR)S,(v;Q), (3.0

nels of Watanab¢l11l] is more subtle and is developed in

Sec. V. whereRY?Z (KR) is a solution of the hyper-radial equation
The angle Sturmians relate to the hyperspherical adiabatic

basis according to Demkov’s constructiph7]. This con- d®>  -1/4 k2|27 (KR)=0 3.0

struction considers that the adiabatic eigenvalygR) cor- drRZ2  R? + {KR)=0, 32

respond to different branches of the same functidqiv)

which is single valued on a multisheeted Riemann surfaceandK?=2E. It is apparent thaZ ,(KR) is a Bessel function.
Surfaces corresponding to different eigenvalues are corNow this approximate solution does not hold away from the
nected at branch points. Near a branch p&iptthe energy  point R=p,(v); thus to get a representation ¥f(R,()) for
function has the forne (R)~ VR—R,, i.e., the branch points all R, we write

are square root branch points. For functions with only square

root branch points, the appropriate Riemann surface can be _ , ’ 1/2 r o,
constructed by plotting Re(R)] vs R. Figure 2 shows the PR ?’ JcAn(V S (v RTZ, (KR)w7dwY,
surface employed in Ref12] for the 1S adiabatic eigenval- (3.3
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where the integral goes over a contauin the complexy 1 2(v+1)

. - 1 (
plane such that-©<p?—1/4<o andv? is real. More gen-  An(¥)= (V)Z; [M™(v+ 1) law| — g An(v+1)
eral contours may be used; however, the present contour suf- mn

fices for our purposes.

As will be demonstrated later in this section, the coeffi- - M:,,n,(v+ Dpn(v+1)A(v+2)
cientsA,(v) include a factor I,(v) which has a pole at n’
v=MA,+2. The residue at the pole is just proportional to

1/2 ;
R Z)‘n”(KR)f*n*Z(Q)ﬂ The contour arouhd the pole is which is seen to have the factorp}(v). This factor selects
chosen so that the residue selects the dominant channel N§&E channel neaR=0. called a “condensation channel” in

R~0. This property is central to the general formulation, butpe¢. [27], through its singularity b=\, + 2.

is not used directly in the approximate calculations reported Equat'ions(3.3) and (3.7) are the bansic equations of the

in Sec. IV. _ _ L hyperspherical Sturmian theory. That they are necessary as
Substituting the expansion E(B.3) into the Schrdinger e a5 sufficient is shown in Appendix A. In the next sec-

equation Eq(2.4), using the definitions of the Sturmians Ed. tjon an approximate solution to these equations is derived.
(2.8) together with the recurrence relation

(3.9

2v IV. APPROXIMATE WAVE FUNCTIONS
ﬁzV(KR)ZZWl(KR)+Z"_1(KR)' (34 AND THEIR ASYMPTOTIC BEHAVIOR
. A. One-Sturmian approximations
gives
The simplest approximation consists of truncating the
Sturmian expansion in E¢3.3) to just one term. As is usual
2 fch(Q)[(Zle)Anr(V)Sqr(V’Q) for truncations of sums to a few terms, the one-Sturmian
n oe approximation is justified onlya posteriori Since only one
—pn(v—D)A, (v—1)S,(v—1;Q) Sturmian is used, it is convenient to omit the inderxcept
where it is needed for clarity.
—pn (v DA (v+1)Sy (v +1:Q)]Z,(KR)=0. A second approximation consists of evaluating the matrix
(3.5 element
A sufficientcondition for this equation to hold is that the , ,
coefficient ofZ,(KR) vanishes for all values of: M(v,v ):_f S(r;Q2)2C(Q)S(»;0)dQ - (4.1)
> CQ)[(20/K) Ay (v) Sy (7;Q) by expandingS(v';€)) about the point’ = v and taking the
n’ lowest-order term, which equals unity. The next-order term
—pn(v—1)A,(r—1)S, (r—1;0Q) vanishes owing to the normalization condition Eg.10.

Thus we neglect terms of order(— v)? so thatM *(v) is
—pn (VDA (v+1)Sy(v+1;Q)]=0. (3.6  given by

Projecting onto the functiorS,(v;Q)) gives the set of .
coupled difference equations for the coefficieAg v), M= (v)~1. (4.2

2y . . . . -
N V)zz [M;n,(v)pn,(erl)An,(erl) With these approximations, the equation for the coefficients
n/

A(v) becomes

+M, 0 (Wpn(v=DAN(r=1)], (3.7

2
where A(V+l)p(v+1)+A(v—l)p(v—1)=%A(V). 4.3

Min,(v)= - f S, (v;Q)2C(Q)S,(v=1;Q)dQ. (3.8 SettingB(v) =A(v)p(v) gives the more suggestive equation

Equation(3.7) represents a set of coupled difference equa- v
tions for the coefficienté,(»). Techniques for solving such B(v+1)+B(v—1)=——B(v). (4.9
. . Kp(v)

equations have been reviewed by Brdas.

The general solution of these equations is beyond the
scope of this report. One aspect of such solutions is impor- If p(v) is independent of, the difference equations are
tant, namely, the selection of the condensation channel. Equst the recurrence relations for Bessel functions, B).
(3.7) may be solved by using an asymptotic solution for largeThe asymptotic expansion for incoming wave Bessel func-
v to obtainA,(v+1) andA,(v+2). The recurrence relation tions is given in Appendix B using formulas of Abramowitz
Eq. (3.7) then givesA,(v) and Steguri26],



550 J. H. MACEK AND S. YU. OVCHINNIKOV 54

will see that it applies to a wide range of dynamical pro-

VK2 =12/ p? cesses.

v ]j,

xXexpi f arccos —
vo Kp

14
—iVKZpZ— 12 +i voarcco% K—Z) } (4.5

2 1 Although this function involves several approximations, we
1/214(2) ~Al—

A
dv' +imw/4 B. Asymptotic form of one-Sturmian wave functions

For largeR the expression Eq4.7) becomes

1

2 1
‘I’(R’Q)NFLP(V) VKZ=22Ip(v)?

Now p in Eq. (4.4) is not actually a constant, but an approxi-

mate expression foB(») is obtained by retaining Ed4.5) _ S(v;Q)
but with p replaced byp(v), XeXF['X(V)L{/KZ_:VZ/RZ vdy, (4.9
B(v)~ \E%
T2 = 2l p(0)? where
e v’ , T v v i
Xex;{lfvoarcco%—}(p(y,) dv'+i X(V):J'VO arCCO%Kp(V') —arcco%ﬁ) dy’

14
—i\/sz(vo)z—vgﬂvoarcco% ° )

Kp(vo)

14
’ +K2RZ— 12— Voarcco£ K_OR> —KZp(vg)2— v}
(4.9

14
where the lower limitvg is to be determined. This approxi- + VoarCCO% Kp(io))- (4.9
mation for B(v) also follows from the methods of Braun
[25]. The derivation given here is simpler, but essentially
equivalent. Of course we could have used any of the various
Bessel functions, i.e., incoming, outgoing, or standing wave
Bessel functions, since they all satisfy the recurrence relation
Eq. (3.4). Also note that, because approximatigds?) and
(4.6) become exact alg’|—, Eq. (4.6) determines bound-
ary conditions employed when Ed4.3) or Eq. (3.7) is (4.10
solved exactly.

The Bessel functionZ,(KR) have not yet been chosen becomes large and the stationary phase approximg#gh
since the boundary conditions have not been specified. Nomay be used to evaluat¥ (R;(}) asymptotically. Clearly,
mally, one chooses functions which are regular at the origirihe points of stationary phase,, defined by the condition
to obtain solutions¥(R,(}) that are regular at the origin.

The physics is better exhibited by choosing solutions which ax(v)
are purely outgoing waves at large but are irregular at the =

For large values oR the term

—fvarcco v—l dv’' =RK?—1%/R?— v arcco 2
KR KR

0, 4.11

origin. This choice, together with E¢4.6), means that we v

seek elements of the Jost matdi, rather than elements of ) )

the scattering matrix. The advantages of Jost matrices fd?ccur at values ob=w,(R), j= 1,2, ..., given by
atomic processes have been emphasized by Fano and Rau

[27,2§. p(v,)=R, (4.12

The final result for the one-Sturmian approximation to the

exact wave function is where

2
TR~ \[;exf{_i VKZp(vo)* =5 v, (R~ 1/4=2¢ ,(R)R?, (4.13

+i voarcco€ Yo +imla gndaﬂ(R) is one of the adiabatic _eigenvalues. Further defin-
Kp(vo) ing the wave vectoK ,(R) according to
% fcp(v) K= 121 p(v)2 K2(R)=K?— — _g2—Ya 2 5. (R 22
p w p(v,) R Iz R( ’ .
4.1

Rl/ZH (Vl)

xexp{if arcco%ﬁ)dv’
"0 we have for the stationary phase approximationVtR, ()
X(KR)S(v; Q) vdy. 4.7 the result
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2 v 1 R R
~exp —i N e T Ji ~lim ex iJ K, (R’ dR’—f Kou(R)AR'|.
U (R,Q)~exp(— i m/4) W; o KR = lim ,%15 p( . W(R) 0u(R")
P (v) 172 (4.21)
77( 25 yyﬂ> exdix(v,)1S(v,; Q). The S matrix is computed by forming

En[(\]‘)‘l]m‘];“#. With the asymptotic expression of Eg.
(419 (4.18 this is equivalent to the standard hidden-crossing ex-

It remains to put this result into standard form. To thatpre55|or[30]

end we note that

R
S,.=| > ex iJ"KR'dR'
Px(v) 1 v, dp(v) 4.16 ” Pzﬁt%s ;{ Ri (R ”
v* KR p(v,)* v b ' R, R
" n xexp(—if KOM(R’)dR’—iJ KOi(R’)dR’),
Appendix A shows that the phaggv,) is given by
. (4.22
X[Vﬂ(R)]=JROKM(R,)dR" (417 where the sum is over all allowed paths that connect the

adiabatic staté at largeR; with the adiabatic statg at large
whereR, is a relatively small value oR corresponding to R, . The paths are taken by integrating inward towards small
K.(Ro) =0, anda represents an adiabatic label that may dif-R using the negative branch &(R), initially on the ith
fer from the labelu appropriate at larglR. The labela  sheet of the Riemann surface ofR), then outward from
specifies the branch of the functiar(R) at smallR and  smallR using the positive branch ¢¢(R) along a path that
depends implicitly upon the Sturmian label Equivalently, —€nds up on theuth sheet. The sum is over all such paths.
it specifies the branch of the functign(v) at v=X, +2 When there is only one path, the probability for a transition

through Eq.(2.13. This branch is identical with the branch '—# 1S Just

selected by the pole atz)\na+2 when the integral in Eq. R

(4.7) is evaluated exactly. P(E)=exr{ —2ImJ' MK(R’)d R’}. (4.23
Taking into account Eq(2.14 and substituting Egs. R

(4.17) and (4.16 into Eqg. (4.195 gives the final result, aside

from an unimportant overall multiplicative constant, Equation (4.23 is the basic equation of the hidden-

crossing theory of ion-atom collisio48], where the theory

1 employs a semiclassical approximation for internuclear mo-
VRO~ D, tion at the_ outset. In contrast, 'ghe present theory employs no
paths u /K ,(R) such semiclassical approximation; rather, the WKB form Eq.
R (4.18 emerges upon evaluating the approximate wave func-
Xex;{ if KM(R’)dR’)goM(R;Q), tion using the _m_ethod of stationary phase, which is always
Cng correct for sufficiently largeR.

Figure 3a) illustrates Eq.(4.23 schematically for the
R—o0, (4.18  Landau-Zener model. In this case the adiabatic eigenvalues
are just the two branches of the function
e(R)=b?R?+HZ, whereb and H, are constants of the
model. Integrating along the real axis gives the semiclassical
Jost matrix element, , for elastic scattering, while integrat-
ing along a path around the branch point gives the Jost ma-
trix J; , for excitation. It must be stressed that in Egs.
(4.17 through(4.23 is an integration variable which need
not be interpreted as a physical coordinate; rather, it is iden-
tified with the Sturmian eigenvalug(v) in Egs.(C7) and
For large values oR the adiabatic eigenvalue,(R) has  (C8). Jost matrix elemem;i‘{2 ansz1 are obtained by simi-

In Eqg. (4.18, c,, denotes a contour that connects
¢a(Ro; Q) at smallR, with ¢ ,(R;(2) at largeR and the sum
over paths goes over all such conto(iB§]. Note that the
phase ofp,(R;()) may depend upon the path. For example,
¢, (R Q)——¢,(R;Q) upon two turns around a branch
point.

C. The hidden-crossing theory

the form lar computations where the paths start on the second surface.
The S-matrix element for excitation in the Landau-Zener
eu(R)=8,(2) = Q(®)/R+- -, (419 model emerges upon forming
whereQ,, is an asymptotic effective charge in the¢h chan- 2
nel. The Jost matrix element is extracted by defining the Si= 2 [(J*)*l]la\];z_ (4.24)
a=1 R

asymptotic wave vectdK,,(R),

KSM:K2—28M(OO)+2Q#(OC)/R_ (4.20  This formula is represented in Fig.(I8. The term with

a=1 in Eq. (4.29 is given by integrating inward to the
It then follows from Eq.(4.18 and the definition of the Jost classical turning point using the negative branch of
matrix J* that K1(R)=V2(E—¢4), and then outward using the positive
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Excitation

R
iRk
MR

N
iR

N
NS

FIG. 4. (a) Plot of Rén(R)]=1//—2¢(R) vs VR and(b) plot
of Rgn,(R)] vs complex R showing the absence of branch
points for e,4(R). The integration path fronR, to Ry and to
R—o is also shown in(a). After replacement ofg(R) by
£asfR), the path fronR to = is deformed to return t&, and then
to R—o0 along the real axis. The integral froR, to R— gives
the Wannier threshold law.

Their computer codes were used in REEZ] to compute
complete Riemann surfaces 80,1 andL =0,1,2,3 states
of H ™. Figure 2 shows a plot of tht&S R ¢(R)] vs R for
the H™ system. This plot shows the basic structure of the
function e(R), namely, along the real axis the different po-
tential energy curves,(R) are apparent. These eigenvalues
re seen to be different branches of a single funcsi@R).
he different sheets are connected at square root branch

FIG. 3. Plot illustrating the hidden-crossing theory for the
Landau-Zener modela) Integration along the real axis describes
elastic scattering and integration around the square root bran
point gives the excitation Jost matrix eleme(id. Plot showing the . . .
paths of integration used to obtain the excitatf®matrix element. points, but no pattern for the branch points is apparent.

Semiclassically, the dashed curve corresponds to excitation on the Figure 48 shows "?‘ plot of the related function
inward part of the classical trajectory for the collective coordinate"(R)=1/V—2&(R). In this plot one can see the start of a
R, and the solid curve to excitation on the outward part. series of branch points that connect tive 1 sheet to sheets

corresponding to higher-lying states of atomic hydrogen

branch ofK,(R), going clockwise around the branch point (plus an unbound electrpnFor sufficie_ntly large IR, the
to get to the second sheésolid curve. The term with syrface becomes r_emar_kably flat. Th|.s cqrrespo.nds to a re-
a=2 corresponds to integrating inward using the negativedion wherg the ad|abat|c' wave funct|or) is conf[ned to the
branch ofK,, going counterclockwise around the branchSaddle point of C(Q2) in the Wannier configuration
point to the turning point of the second surface, and outwardi1= ~ "2 Taking the hyperangle to be=arctan(,/r,) and
using the positive branch oK,=\2(E—s,(R) (dotted letting #,, denote the angle between the position vectors, one
curve. The excitation matrix element is the coherent sum 01has
the contributions corresponding to the two paths. 5 5

Equation(4.23 is suitable for transitions between adia- A2~ — ’?__4 J +
batic eigenstates, e.g., for excitation of atomic hydrogen by da® 0052 T— 612 9615’
electron impact, but the probability for ionization is not ap-
parent. In this connection, recall that asymptotic evaluation 1 1
of integral expressions E@4.7) on the reaR axis may miss C(Q)=—=Co= Fkala— ml4)%— 5 Ko( 012~ )i
some components owing to Stokes' phenomena. This hap- (5.2)
pens with ionization. The missing ionization components are
identified by examining the asymptotic function at complex,ynere
R. Evaluation of these components leads to Wannier's
threshold law.

(5.9

47-1 1-127 1

Com=——, ky="——or, Kky=—.
2 V2 " a2

To identify ionization, it is necessary to examine the Near the potential saddle and for {fR sufficiently large,
structure of the Riemann surface fefR) in more detail. the wave functions are just those of uncoupled harmonic
This is now possible owing to advances in computationabscillators[21]. For the lowest state otS symmetry, the
techniques pioneered by Bottcher and co-worf@s,32.  function ¢(R;Q) is

(5.3
V. WANNIER'S THRESHOLD LAW
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(paS)(R'Q)meXdiaa\/ﬁ(a_77/4)2] from Ri_ inw_ard, .encircling the b_ranch point in the counter-
clockwise direction on the way in to reach the second sheet,
xex] —agVR(61,— m)2], (5.4  and then outward from the turning poiRY, on the second
sheet taR— o through the harmonic oscillator region. These
where two amplitudes are summed coherently to get the ionization
amplitude. We choosk; equal toR,,, a value of the order of
a. = v12Z-1 a :i. (5.5) the real part of the coordinate of the first branch point. The
o242 ’ 842 exact value oRy, is unimportant and is chosen for numerical
convenience.
On the real axis the functiop,s(R;Q) of Eq. (5.4 is Taking account of the appropriate branchkdiR) as dis-

2

unbounded ine and does not satisfy appropriate boundarycussed above gives the ionization probability

conditions ata=0 and #/2; thus it does not represent the

adiabatic eigenfunction. For sufficiently large iR, how- _(Ro (=

ever, the function is exponentially damped and vanishingly P(E)= exp( —i fR K(R")AR' +i fR K(R')dR')

small at the end points of the range @f It is this feature b 0

that accounts for the flat region, appropriately called the har- (R (>

monic oscillator region, seen in Fig(a}. Along the real axis —ex;{ —IJ 0K(R')0|R'+|f ,K(R’)dR')

the functione(R;()) represents the Rydberg states of atomic Ro 0

hydrogen for sufficiently largeR. The Rydberg region is (5.9
separated from the harmonic oscillator region by a series of

branch points, called the top-of-barrier branch points. ThesahereK(R) is now always positive on the real axis. In the
branch points play an important role in the theory of ioniza-first term, the integral fronR,, to R, goes along the real axis

tion of hydrogen by both electron and proton impact. and the integral froniR, to infinty goes clockwise around the
The asymptotic adiabatic eigenvalueg,(R) for suffi-  branch point and to infinity through the harmonic oscillator

ciently large Im/R are just those of uncoupled harmonic region. In the second term, the integral frd®g to R} goes

oscillators, counterclockwise around the branch point to the turning

point Ry on the second sheet and the integral fr&f to
infinity goes counterclockwise around the branch point to
infinity through the harmonic oscillator region.
Equation(5.9) is the basic equation used to compute ab-
Cy=—(2n,+1+1)2"Y4 C,=(2n,+ 1)2754 1271, solute values. of th(_a ionization probability. The Wannier
(5.7 threshold law is obtained by further noting that at some value
of complexR, calledRq, in the harmonic oscillator region,
n, andn, are harmonic oscillator quantum numbers, el  ¢(R) and the associateld(R) can be replaced by their as-
the projection of the total angular momentumon an axis  ymptotic valuese,(R) and K,q(R) with negligible error.
parallel tor,,. Higher-order terms in the series EG.6)  Then, sincee,,(R) has no branch points, integrals from
represent anharmonic corrections. The series is asymptotiR, to infinity are evaluated along a path that returnfp
since the wave functions corresponding to any finite humbeand goes to infinity along the real axis, as illustrated in Fig.
of terms satisfy the boundary conditions @=0 and w/2  4(b). The ionization probability becomes
only approximately, in the sense that

£as(R)=—Co/R—(Cy,+iC1)/R¥*+O(R™?), (5.6)

where

P(E)=Pinel E)Pasy(E), 51
exy] — a,ImyR(m/4)2]~0. (5.9 (E) (E)PasfE) (5.10

The wave functions in the harmonic oscillator region rep-Where
resent waves that propagate outward from the saddle point.
Consequently, the adiabatic channel functions represent ion- Pinel E) =
ization for ImR sufficiently large. The appearance of ioniza-
tion channels for sufficiently large IRrelates to the Stokes’ R
phenomend19] alluded to earlier. The asymptotic expres- +if Q[K(R’)—KaSy(R’)]dR’)
sion Eqg.(4.19 for the function defined by the integral rep- Ro
resentation in Eq(4.7) describes excitation on the real axis. )
For ImyR sufficiently large the asymptotic expression Eq. —exr( —i fRO[K(R’)JrKaSy(R’)]dR’
(4.7) represents ionization. Ry,

The ionizationS-matrix element is computed in the same o
manner as the excitation amplitude for the Landau-Zener ex- +iJ Q[K(R’)— K y(R’)]dR’)
ample[see Fig. &)]. Computing Eq(4.15 along a path that R} as
starts atR; on the real axis, goes inward to the classical
turning radiusRy, and then outward along a path that circlesgnd
the branch point in the clockwise direction and Re—o
through the harmonic oscillator region gives one amplitude
for ionization. A second amplitude is obtained by integrating Pasf(E)=

Ro
exp{ =i JR [K(R")+Kas(R) AR

2

(5.1)

2

(5.12

exp{ i fwKas)(R’)dR’)
Ry
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Because the integrals in E(p.11) are over finite coordi-
nate rangesP;,e(E) is an analytic function oE. Further-
more, becaus& (Rqg) — K (Rg) is small, Pi,ne(E) is also
insensitive toRq for |Ro|> 20 a.u. The insensitivity to the

J. H. MACEK AND S. YU. OVCHINNIKOV

whereRge=4C,/E=4Ryy.

Taking account of the three factors in the ionization prob-
ability, namely, PiyneE), Pas(E), and ¢,q(Re,Qg)
gives the cross section for a particular partial wavend

matching radius is an essential feature of matching the ionspin S:

ization component at complex, rather than ré&alValues of

|IRg| between 20 and 40 a.u. are used in the computation of

Pinner(E)-

The second factoP,.(E) is the main focus of this sec-
tion since it gives Wannier's threshold law. This factor
emerges from ouab initio theory and, when combined with
PinnedE), gives absolute cross sections with no fitting pa-
rameters.

For sufficiently largeR, we may approximate

Cc
IM[Kasf R~ amg_ (5.13

where Ko(R)?2=2(E+Cy/R). The corresponding approxi-
mation forP,.(E) is obtained by substituting E¢5.13) into
Eq. (4.23 and evaluating the elementary integral. Using

RbR'SIZKO(R/)
1+ V1T ERIC,
—In| ——
1+ VJV1+ER,/Cy

R 1

dR’

I|

(5.19

we find

» [2
|mf Kag(R)AR' =—Cy\/=InVE
c\/2| \/CO \/E Co
+C; C—On R—b+ +R—b .

(5.19

Equation (5.9) gives the probability for populating the
state ¢, R; (1) at some value oR much larger than the
Wannier radiufRyy=Cy/E. To complete the computation of
the cross section, note that the position coordin&e#
®asR,{2) go over to the corresponding coordinates of
the electron wave vectolks; andk, [10]. The magnitude of
R, however, does not extrapolate to the corresponding coo
dinate K= \/k21+ k2: rather, we may use Ed5.14 to ex-
trapolateR from the Coulomb zon&k<Ry, to the far zone
R>Ry .

Any power of R may be written

_\2CdR
RoR B2y IR

for R and R, less thanRy,. Extrapolation toR>R,, for
E>0 is accomplished by replacing C3/R by
2(E+Cy/R)=Ky(R)? in Eq. (5.16 and using Eq(5.14) to
obtain

(R/IRp)2= ex;{ a (5.16

(RIR,)*—(Re/Ry)?, ER—®, E—0, (5.17)

I(_S)_2E+1(2L+1)P|nner(E)Pa3)(E)
% [ ow(Re. 00 d0, 519
where dQEzdaEAdﬁldIQZA and tamvg=k,/k;. To perform

the integral ovek, andk, note that the wave functions in
these coordinates can be taken to be real. In this case the
integral overkl and k2 just equals unity since the functions
are normalized to unity. In contrast, the function of the
“mock” angle a is complex with a squared magnitude that
is independent oz, but is normalized so that the integral
over the square of the wave function is unity. For states with
n,=0, this means that the normalization constant for the
function of & in Eq. (5.4) is N=RY84/-i2a,/x. The dif-
ferential cross sectiodo/dag is therefore independent of
ag . Such distributions are characteristic of the Wannier as-
ymptotic theory, but represent a limitation of expansions
abouta= /4.

Peterkop and Liepinsh35] have developed expressions
for the asymptotic functions that are not limited to the region
near a~ /4. The numerical functions that they obtain are
found to be essentially identical to the simple harmonic os-
cillator solutions of Refs[2,3] except that their squared
magnitude is proportional to sin2 Read[36] confirms the
conclusions of Ref[35] (see alsd37]) but finds small de-
partures from sin2. These small departures are ignored here
and we take

dO‘_dO’

—= sin2ag .
daE E

ag=ml4

(5.19

daE

To obtain the cross section, the squared magnitude is in-
tegrated over . This then gives a factor

/2
f |o(Re ,Qg)|?sin2agdag=RY*2a, I+
0

— 201/4(a /’/T) 1/2E— 1/4_
(5.20

Substituting Eqs(5.20 into Eq.(5.18 gives the desired ex-
pression foro{®:

r_

o9 =

(2L+1)Pinel E)2C %@, /)12

2E+1

X (\CoIRy+ VE+ Coy/Ry) ~2C1\ZCoE W,
(5.21)

where gf,‘\‘,’z C,V2/Cy—1/4; n,=0 differs from the correct
Wannier exponent,= \/2021/CO+ 1/16—1/4 by about 2%
for Z=1. Recall thatP,.(E) includes nonanalytic terms
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the numerical calculation oP;,,.(E) has been employed.
The convergence of the calculations is good, and earlier and
present results agree within 0.1%.

As a check on the accuracy of the hidden-crossing theory,
we have computed the total excitation cross section for ex-
citing atomic hydrogen to thep=2 states. Results of the
hidden-crossing theory for the singlet and triplet partial wave
are compared with the calculations of Wang and Callaway
+ > o [33] in Table | for an incident energy of 0.405 a.u. The
s hidden-crossing theory results are larger than the essentially
exact numerical results by about 10%. This is surprisingly
good agreement for a theory which employs only one Stur-
. mian. We surmise that 10% represents the accuracy of the
05 OH sz 0f3 0.4 hidden-crossing theory for dynamics related to the inner re-
gion.

Figure 5 compares(E)/E vs E measured by Shah, El-
liot, and Gilbody[34] with the present hidden-crossing cal-
culations, the hyperspherical close-coupling calculat{ahs

2.5 T T T

-~
-
PP 00 S Ty
0 o OO~
] .Ooods

o/E (naoz/a.u.)
&
T
*

E (a.u.)

FIG. 5. Plot ofa(E)/E for electron impact on atomic hydrogen.

Open circles are the measurements of R&4], filled circles are the . T
hyperspherical close-coupling calculations of R&f, crosses are the pseudostate calculatiof, and preliminary resultg7]

the pseudostate calculations of R, filled triangles are prefimi-  ©f the convergent close-coupling the¢8j. As expected, the
nary convergent close-coupling results quoted in R&f.the solid ~ Present theorysolid curve is superior to other methods in
curve is the hidden-crossing theory, and the dashed curve is tH&€ threshold regionE<0.05 a.u., since only it obtains a
hidden-crossing theory including the diabatic Wannier index. Wannier-type threshold law. The calculations exceed the
measurements by 15% in this region, but agree well at higher
such as/E. For convenience we have included these termgnergies. The hyperspherical close-coupling method matches
with Pje(E) in our calculations. onto an approximate wave function that should lead to an
Equations(5.18 and (5.2) were used in Ref[12] to ~ E¥?threshold law and the calculatiofsolid circle$ seem to
compute the ionization cross sections for electron impact ohave this behavior foE<0.05 a.u., but are in good agree-
atomic hydrogen for singlet and triplet states witk-0 and ~ ment with the data for higher energies. Both the convergent
1. No top-of-barrier branch point connects the incident chanclose-coupling and the pseudostate calculations have unex-
nel with the first harmonic oscillator state for higher valuesplained increases ne&=0. It may be that these methods,
of L, but the 'D and 3F states are indirectly connected Which use square integrable basis states to represent ioniza-
through couplings aR=0 [38]. Letting /; and/, denote  tion components, include some of the high Rydberg states in
the single-electron orbital angular momentum quantum numthe ionization component. It is noteworthy that, despite the
bers, one has that the initial/{,/,)=(0,2)!D channel considerable difference in the methods used, all of the calcu-
mixes with the (1,1) channel since the eigenvalues are ddations obtain fairly accurate absolute cross sections above
generate. Thél,1) channel does have a top-of-barrier branchE=0.2 a.u. It would be valuable to have available corre-
point so that the harmonic oscillator region is reached by gponding calculations of the spin asymmetry, since this

transition neaR=0 followed by a transition to the harmonic guantity is insensitive to the Wannier threshold power law.
oscillator region. In this cask;e, becomes Calculations not designed to get the threshold law might still

obtain accurate spin asymmetries.
Equation(5.18 is obtained when the one-Sturmian ap-
' proximation for the wave function in the inner region is fitted
onto an asymptotic, one-Sturmian wave function at
(5.22 R=Rq. The slight difference between the adiabatic and ex-
wherep(E) is the probability for transitions from the inci- act Wannier index represents a limitation of the one-
dent (0,2 channel to the(1,1) channel. The probability Sturmian asymptotic approximation Eq.(4.7) for
p(E) was computed by solving the hyperspherical two-|R|>|Rg|. This approximation may still be quite accurate
channel equations approximately nd&=0 as reported in for other regions oR, in particular, for values oR in the
Ref.[12]. The calculations shown in Fig. 5 differ from those reaction or inner zone. Standardmatrix theory would usu-
of Ref.[12] only in that a larger number of mesh points for ally be employed to match the one-Sturmian inner function

2
Pinne( E) =p(E)

ex;{ifRQ[K(R’)—KaS)(R’)]dR’)
Rp

TABLE |. Comparison of partial cross sections in unitsm3 for excitation of then=2 states of atomic
hydrogen by electron impact at an energy of 0.405 a.u. Exact réaulise the direct numerical calculations
of Wang and Callaway33] and present resuli$) are obtained using the hidden-crossing theory.

Method S p 3p

(a) Exact 0.085 0.0554 0.099
(b) Hidden crossing 0.091 0.060 0.110
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to the correct asymptotic function &=Rq. Alternatively, Our diabatic cross section divided iy is shown as a
the inner and asymptotic functions can be matched usingashed line in Fig. 5. The diabatic cross section is lower than
Feynman'’s propagatd21l]. This latter procedure has been the adiabatic one over the whole energy range and is in better
employed by Kazansky and Ostrovgld2] and is more con- accord with the experimental data. Even though the magni-
venient for our purposes, since the propagator correspondirtgde agrees with the measured values within our expected
to Rau[2] and Peterkop’$3,4,39 asymptotic functions is error of 10%, the disagreement f&<<0.1 a.u. may still be
known[22,40—42. significant. The computed/E maximizes atE~0.03 a.u.,
This matching procedure for an arbitrary inner functionbut if we assume thaP;,,.(E) is independent oE, then
has been discussed by Kazansky and Ostroy4Byand is  ¢/E maximizes atE=0.065 a.u., and is presumably fairly
readily employed in the present case to propagate the ionizdlat near the maxima. This is in better accord with the data;
tion wave function fronRg, to infinite R. When the Wannier thus the fairly rapid variation that we find f&<0.05 a.u.
propagator is used, the exact Wannier indgx=1.127 is may be incorrect. This rapid variation stems fraf& cor-
obtained. When the propagator is approximated by just ongections toP,(E) for the 'P state. Rapid variations of the
harmonic oscillator function, as implied by E(.18, the  spin asymmetry in the threshold region have been noted by
adiabatic value§$§=1.104 emerge$ll]. For E=0.01 a.u. Lubell [44], but the variations that we find are not in accord
the adiabatic cross section is in error by greater than 10%yith measurementgl2]. They can only be fitted with our
thus to describe the region from 0 to 0.01 a.u., it is necessargsymptotic form by assuming that the coefficient of /&
to employ the full Wannier propagator. Because both theerm in IfP;,,.(E)] is positive, in disagreement with our
propagator and the one-Sturmian functiorRgf are Gauss- computations. This point needs further investigation.
ians in the variablea and#é, this implies that the asymptotic The matching procedure has been employed in R,
function in the regiorR> Ry, is also a Gaussian. In this case although these authors identify the ionization component by
the asymptotic functiond(Rg,Q) follows from solutions using an “inner” wave function on the real axis. The present
given by Rau[2], Peterkop[3], Klar and Schlec{39], Wa-  work differs in that the ionization component is identified via
tanabe[11], Kazansky and Ostrovskj22], and Jakubassa- the Stokes' phenomena, where that component becomes ap-
Amundsen and Macel40,41. parent only for compleXR. For this reason, the ionization
All of these solutions may be understood by defining acomponent is a simple Gaussian that matches smoothly onto
time variablet according todt=dR/Ky(R) and using the, the Gaussian for larg®. In contrast, a simple Gaussian
now time-dependent, harmonic approximation Esj2) for ~ component does not emerge when the matching is done on
the potentialV=R(t)C(Q). The second-order-iR Schre  the real axis, and many harmonic oscillator states must be
dinger equation is cast into the form of a first-order time-used to match inner and outer solutions. For this reason the
dependent Schdinger equation using standard manipula-Wannier threshold law in Ref43] is found to hold only for
tions [21]. The solutions of these equations include a time-quite small values oE. In contrast, the calculations reported
dependent normalization that can be put into the hiddenin Ref.[12] appear to match the experimental data over a 9
crossing form eV energy interval, a result previously obtained only by clas-
sical calculations for a model systd@b].
g , , We have noted that the electron distribution implied by
N(t)=ex;{ _'J easf R(t)]dt ) (523 Eq (5.18 is uniform in ag=arctank,/ky), whereas the ac-
cepted distribution is uniform irg;, i=1,2, for fixedE.
wheresg;)(R) is an asymptotic diabatic energy eigenvalue.Crotherg[10] and Watanabgl1] argue that the uniform dis-

Its imaginary part is given by tribution in ag is consistent with the uniform distribution in
E;, but such equivalence disagrees with conclusions of other
, Co workers[35,36,48. Peterkop and Liepinsh’s35] derivation
Im[%(R)]= {w ?R_m, (5.24  of the uniform distribution irE; requires wave functions for

R>Rg that go beyond the harmonic oscillator approxima-

which has the sam&~22 form as the adiabatic value. but tion employed in the present analysis. Just how the accepted
differs in the coefficient. Use of EG5.24) in Egs.(5.23 aﬁd distribution emerges in the Sturmian theory is a subject for

(5.13 gives the exact Wannier indé21]. Recalling that the ~Tuture research.
normalization of the adiabatic function incorporates a factor
of RY8 we have for the corresponding expression for VI. CONCLUSIONS

IN[Paned E) ] the result . . . :
[Pinne(E)] A theory for three particles interacting via the Coulomb

Ro ‘ interaction has been developed. It employs an integral trans-
IN[Pinnel E)]= _2|mf {K(R)— KSL-X( R) form and an expansion in angle-Sturmian functions. Integral
Ro representations of approximate, one-Sturmian wave func-
1 \2C, tions are obtained. The hyperspherical hidden-crossing ex-
+Z WZ_O}dR’ (5.25  Pression Eq(4.23 emerges when the approximate function
8 R¥Ko(R) is evaluated asymptotically. The approximate function exhib-
_ its Stokes’ phenomena such that the small ionization compo-
where K(d')(R):\/Kz—s(aa&R) and where Eq(5.16 has nent is readily identified only for complex values of the
been used. The quantitP;,.e{E) remains insensitive to hyper-radius. The small ionization component, thus obtained,
Rgq since the integrand in E¢5.29 is small atRg . conforms to the Wannier threshold law.



54 HYPERSPHERICAL THEORY OF THREE-PARTICLE ... 557

The approximate one-Sturmian wave function incorpo-and
rates the picture of electron-electron correlations proposed ,
by Fano[5]. A wave propagating from small values of the HZ(x)=e ""H{?)(x) (A4)
hyper-radius branches into successive excitation channels at ) ) )
successively larger hyper-radR. Simple expressions for and some elementary algebra, we write these equations in the
Jost matrix elements that represent the amplitudes foform
branching into excitation channels are obtained. Wave 1 (i=
propagation near the “top of the barrier” plays a key role in f(x)=— _f HEZ)(X)?’(t)tdt, (A5)
the branching into different excitation channels. This role is 2)-i
represented mathematically by integration around “top-of-
barrier” branch points that connect initial channels to exci-Where
tation channels. A portion of the wave remains on the “Wan- .
nier ridge” at infinite R, representing ionization. This T'(t):f Ji(v)f(v)v tdv. (A6)
portion is mathematically separated from the excitation chan- 0
nels and emerges upon considering the asymptotic wave . ) .
function for complexR. Comparisons with more exact con- . EQuations(AS) and (A6) imply that if f(.x)=(‘i), then
ventional calculations indicate that this approximate theory isf’(t)=0. This, together with the identityH{")(—x)
accurate to within approximately 10% for excitation of the = —exf —itmJH{(x), shows that Eq(3.6) is both a neces-
np=2 level of atomic hydrogen by electron impact. Agree-sary and sufficient condition for E¢3.5) to hold.
ment of calculated and measured ionization cross sections
indicates a similar accuracy for ionization. APPENDIX B: ASYMPTOTIC FORM

OF BESSEL FUNCTIONS

—joo
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APPENDIX A: ALTERNATIVE FORMS

OF THE KONTOROVICH-LEBEDEV TRANSEORM This expression is put into an alternate form using the inte-

gral relation
The Kontorovich-Lebedev transfori(x) of a function ,
. v 14 14
f(x) is [13] —J arccos —— |dv’ = VK?R?— 12— varccos —— | .
KR KR
1 (i ~ (B3)
f(x)=—§f - J(x)f(t)tdt, (AL)
mie Using Eq.(B3) in Eq. (B2) gives the desired form,
where 2 1
. H(KR)= \/;@4— e
~ -V
f(t)=f f(v)HP (v)v ~td. (A2)
0 y F{ 'J'V % v’ )d , .7
exg —i | arccos—=|dv' —i—
Using the relation$26] Yo KR 4

H@(0)=iosttm[I ()~ (0)] (A3 +i\/7K2R2—vg—ivoarcco€%”. B4)
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The complex conjugate of this equation gives the asymptotic

form of H?(KR) used in Eq.(4.5. Equation(B1) shows
that it is valid forKR>|v|.

APPENDIX C: EVALUATION OF THE PHASE x(»;)

v'2 0P(V)

X(v,)= f dv’.

L (€8

Since Z[p(v')]p(v')%=v'2—1/4 Eq.(C6) may be rewrit-

ten
The phasey(v) of Eq. (4.9 does not have the form of a

phase integral for arbitrary values of In this appendix we
show that it does have the form of a phase integral for the X(vﬂ)—f \/K2 2¢[p(v')]
that emerges in the stationary phase

specific valuev=v,
approximation.
To derive Eq.(4.17), start with Eq.(4.9), namely,

x(v,)= fyﬂdv

voarcco4 KR) VK2p(v)2— 12

!

!
' arcco?&—y,) - arcco%) +VK?R2— 1§

Vo
KP(VO)), €D

and integrate by parts using»,)=R. Then Eq.(C1) be-
comes

x(v,)= f “dv’
vo

+ voarcco%

V/

JKZp(v )= v'2
v'? 1 ap(v) o
JKZp(rZ—v2p(v) v JKZRZ— 1’2
+VKZRZ= 13— JK2p(vg)?— 1}, (c2)

Substituting v 2= v'2—K2p(v")2+K2p(»')? in the second
term in large parentheses gives

,/ v'2 0P(V)
x(v,)= f - (V) ———dv'+A, (C3

p( ))

where

A=f( —KZp(v')

fvﬂ v'dv’
o KZRZ_VIZ

Defining new variables x=K?p(v')?—»
y=K2R?—'%and usingp(v,) =R gives

dv’

+VK?R2— 13— \JK?p(vg)?— v},
(CH

2 and

1(km2-,2 dx 1 K2R2—v2dy
- _ " 2_
A ZJKZ VO)Z_VO\/— Zf 2R2_,2 \/—+ VK?R Vo

—VK?p(rg)* = 15=0.

With A=0, Eq.(C3) becomes

(CH

1/4 &p( v')

(V)2 v’ v

(C7)

Changing variables of integration fromi to p(»’)=R’ and
introducing a subscripe on ¢(R") and K(R’) to indicate
that thewth branch of the function is to be used at the upper
limit R=p(v,) gives the desired expression,

R
X[V#(R)]:L K.(RDHAR', (C9)

where

Ro=p(vo). (C9

The lower limit can now be specified, namely, is cho-
sen so thaK?p(vo)?— v3=0. This implies thatR, is such
thatkK2—2¢4(Ro) — 1/(4R§) =0 for some indexa of an adia-
batic function. Notice thath depends implicitly upon the
Sturmian inde>n and that 2 4(Rg) = (v5— 1/4)/p(vo)?. The
index a may differ from the asymptotic index since the
integration path from the inner region to the asymptotic re-
gion may encircle branch points, indicating a change of the
adiabatic eigenfunctiora# «, as in the simple Landau-
Zener modelsee Fig. 3 This manifests a point emphasized
by Fano[27], namely, “condensation point” basis functions
need not be identical to asymptotic basis functions.

APPENDIX D: EVALUATION OF IONIZATION
COMPONENTS FOR REAL R

lonization components were identified in Sec. V by con-
sidering ¥ (R,Q) for complexR. It was then argued that
these components were present for rBalTo justify this
procedure mathematically, we consider a model problem
where C({) is replaced by the negative definite
C(a,0:,=m). This model avoids complications related to
unphysical bound states for negative Sturmian eigenvalues
—|p|, but has all of the features essential for ionization.
Because this mod&l(«) is negative definite, it also satisfies
all of the mathematical requirements of the Sturmian theory,
and has the important feature that, fet sufficiently large
and positive, the Sturmian eigenvalues are real and negative.

The one-Sturmian function of E.7) is written as a sum
of two terms,

Y(R,Q)=F1(R,Q)+F,R,Q), (DD

where

Fi(R.Q)= %f_”iA(vwv:ﬂ)Hi“(KR)d(vZ),
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1 (= L ) Fig. 4. This can be done since the contour stays in the har-
Fa(RQ)= EJ A@)S(vQ)HP(KR)A(1?), (D2)  monic oscillator region and is not deformed through any sin-
"o gular points. Recall thaRg is a complex value oR located

in the harmonic oscillator region.
For|v|>|v.|, the functionsp(»), A(v), andS(v,Q) are
Evaluation of the functionF,(R,Q) in the stationary 'ePlaced by their asymptotic valughs(v), Aas( V)S’ and
phase approximation yields E@.18, where only excitation SasR.{2). We then define the asymptotic functi&?) ac-
channels appear. The integrandFaf(R,{2) has no points of cording to
stationary phase for real positi® but has such points for

R real and negative. The corresponding Sturmian eigenfunc- —asy :f ) 2
tions are the real harmonic oscillator functions, FZ"’L(R’Q) Aasf V) Sasf v, )H,“(KR)A(7). (D)

where v, is defined by the equatiop(vy) =0, and the real
integration variable/? is used.

YL

Sasy V: Q)< €xXH — = pas )@u(a— 4] (D3)  For this function withy, = vq, the integration contour can
be distorted to pass through regions whegg(v)=R for
real values ofR. Accordingly, Eq.(D6) is evaluated by the
method of stationary phase for rel At the points of sta-
tionary phase we have

At points of stationary phasp.s(»,)=R the function is
proportional to exp—/— Ra,(«a— m/4)?], which is also real
for real negativeR. Now if we assumehat this analytic form
is correct asymptotically for real positiveR, with

V=R=—1R, then we get Sanfvu(R);: ) exili Ray(a—4)?]. (D7)

. H _ 2
Sasy( Vi) exi R, (a—w/4)?], ©4  This shows that the ionization channels are included in

which is the ionization channel function employed in Sec. V.F2(R.) for realR, and that they add directly to the exci-

The corresponding stationary phase expression fof@tion components frorfry(R,(2).
F,(R,Q) is Notice that this argument follows Eq$5.10—(5.22

closely. In fact, the complete expression f4(R,(}) is

R
FZ(R,Q)ocexp[i\/ﬁaa(a—w/4)2]ex+f K(R’)dR’}, 17,
Ro F2<R,Q>=—f A[A(Y)S(1,0) = Aggf( 1) Sasy v, ) THLY
(D5) 2)45
where K(R)=K?—&(R). This behavior ofF,(R,Q) is X(KR)d(v2)+F§ny()(R,Q)
similar to Stokes’ phenomena, where an expression that _
holds in one region oR on the circle at infinity is retained in =F2™(RQ)+F3 (RQ). (D8)

a wider region. This retention is not always correct, and,
because the emergence of the harmonic oscillator ionization The one-Sturmian approximation includes ionization
channels is central to fragmentation, a more rigorous arguchannels because the Sturmian function for sufficiently large,
ment is desirable. real, positive v’ represents two unbound electrons even
The more rigorous argument proceeds as for E§)40—  though the function is actually exponentially decreasing. The
(5.12. The functionF,(R,}) is evaluated by distorting the important point is that such functions have the analytic struc-
contour of integration in E¢(D5) to go from vj to infinity  ture appropriate for ionization. The mathematical analysis in
along a path such thai(») goes through the harmonic os- this appendix confirms that Kontorovich-Lebedev transforms
cillator region and the poing®= vé wherep(vq)=Rg asin  of these functions do indeed represent ionization.
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