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A representation of three particle wave functions well adapted to computations of low-energy fragmentation
states of systems interacting electrostatically is derived. A basis called an angle-Sturmian basis, is introduced.
Exact wave functions are represented by sums over the angle-Sturmian functions and integrals over the index
of Bessel functions. Equations for the coefficients of the Sturmian functions are derived. Solutions of these
equations are given in the approximation that one Sturmian is employed. Integral representations of the
approximate three-particle wave functions are obtained. Evaluation of the integral for large hyper-radiusR
gives the hidden-crossing theory, familiar from representations of ion-atom interactions at low energy. It is
shown that ionization components emerge simply only for complex values ofR. Such components conform to
Wannier’s threshold law.@S1050-2947~96!04707-5#

PACS number~s!: 34.10.1x, 32.80.Cy

I. INTRODUCTION

The collective motion of three charged particles is funda-
mental to atomic dynamics when two electrons are outside of
valence shells, either in doubly excited or in continuum
states. In the latter case, correlated motion of two electrons
produces many observable effects, of which Wannier’s
threshold law is the most studied. The continuum correla-
tions were first treated classically by Wannier@1#, and quan-
tally by Rau@2# and Peterkop@3#. Feagin@4# gave a general
theory of the threshold law for particles of arbitrary mass and
charge.

A fairly complete picture of the physical process has been
given by Fano@5#. A Schrödinger wave representing two
electrons starts from a region where both electrons are close
to the ionic core and propagates outward through a region,
called by Wannier the Coulomb zone, where the wave
branches into alternative channels. A portion of the wave
representing each channel separates off at distances of the
order of the mean radius to the channel wave function. Chan-
nels with increasing principal quantum numbernP are popu-
lated at successively higher values of the mean distance of
both electrons from the ionic core. This process continues
until a region is reached where both electrons are effectively
free. The ‘‘Wannier ridge,’’ i.e., a region in coordinate space
where the two-electron potential has a local saddle point,
plays a key role in this evolution. Essentially, only that part
of the wave which starts on the ridge evolves into a wave
representing two free electrons.

Attempts to incorporate these insights into quantitative
calculations have just begun. Bohn@6# has employed direct
solutions of coupled equations in a hyperspherical harmonic
basis to compute eigenchannels of the wave motion. The
eigenchannels support the basic picture postulated in Ref.@5#
but ionization cross sections were not extracted. Kato and
Watanabe@7# did extract ionization cross sections using the

hyperspherical close coupling method with 100–200 basis
states to compute wave functions which were fitted to waves
representing two free electrons at distances where the
nP'10 channels separate off. They obtain good values for
ionization cross sections when the electrons escape with a
combined energy in excess of'1.5 eV, but do not get the
Wannier threshold behavior for lower energies. The conver-
gent close-coupling calculations@8# and the pseudostate cal-
culations@9# employ independent particle basis states and do
not reproduce the Wannier threshold law in this energy re-
gion; indeed, they appear to fail at higher energies of the
order of 3 eV above threshold@7#. Crothers@10# adapted the
wave functions of Refs.@2,3# to direct calculation of the
ionization matrix element and thereby reproduced the Wan-
nier threshold law. These calculations gave the firstab initio
value of the constant multiplying the Wannier power law.

Despite the progress outlined above, theory remains in-
complete since the correlations discussed by Wannier are
difficult to incorporate into standard atomic theory@11#. In
addition, large basis set calculations are poorly adapted to
elucidating underlying physical pictures. They are required
in conventional calculations in order to represent two dis-
similar but equally important motions.

One type of motion consists of propagation on the ridge
where the potential is fairly flat and the motion is that of
nearly free particles within the corresponding region. A sec-
ond type is propagation in the valleys of the potential, where
the motion represents one bound electron and one moving
outward in a screened potential. Smoothly matching these
two motions so that the branching into the valleys and con-
tinuation on the ridge are both accurately described is a de-
manding task for conventional approaches. The purpose of
this paper is to describe a mathematical framework that de-
scribes both motions and readily incorporates the basic
physical picture of Ref.@5#.

The framework developed here employs two ingredients,
namely, a type of Laplace transform to describe the motion
in the hyper-radial coordinateR, and a set of basis functions
in the hyperanglesV. Together, these two innovations de-
scribe a set of ‘‘channels’’ such that the outgoing hyper-
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radial wave is the same in all channels. These are not the
physical channels, but such channels emerge naturally upon
evaluating the complete wave function asymptotically.

A second purpose is to assess the usefulness of this frame-
work based upon approximate solutions of the exact repre-
sentation that we have constructed. A preliminary report was
presented in Ref.@12# but no details of the underlying frame-
work were given. The approximate theory is identical to the
hidden-crossing theory familiar from ion-atom collisions,
which was used, without justification but with some success,
for ionization of atomic hydrogen by electron impact. The
physical picture of Schro¨dinger wave evolution along the
potential ridge emerges in this theory, as does a relatively
simple, although approximate, quantitative expression for
excitation and ionization cross sections. This paper shows
the fundamental basis for extension of the hidden-crossing
theory to electron impact and to the correlated motion of
three charged particles of arbitrary mass and charge gener-
ally. Atomic units are used throughout.

Hyperspherical coordinates are basic to the theory that
will be developed. These coordinates are now commonly
used to describe correlated states of two-electron atomic spe-
cies @5# and are briefly reviewed in Sec. II A. In these coor-
dinates the electrostatic potentialV(R,V) factors into a part
C(V) that depends only upon the hyperangles and an overall
scale factor 1/R so thatV(R,V)5C(V)/R. This factoring is
essential for the representation that we devise. The function
C(V) will be called the scaled potential.

The scaled potential has a broad region which is fairly flat
over large angular ranges. In this region the hyper-radial mo-
tion is locally that of free particles represented by Bessel
functionsZn(KR), whereK

252E andn is an index. They
are solutions of the hyper-radial Schro¨dinger equation with
an effective potential (n221/4)/2R2. Conventionally,
boundary conditions at the limits of the angular ranges are
used to select integer values for the indexn. ButC(V) is not
flat at the edges of the angular region; on the contrary, this is
where the sharp structures of the potential are located. For
this reason, the indexn is not limited to integer values;
rather, it can take on any complex value.

It is also necessary to represent motion in the valleys of
the potential. The wave functions in this region look very
different from those on the ridge. Fortunately, a mathemati-
cal method for representing any arbitrary function ofR in
terms of Bessel functions of fixed energyK2/2 is known,
namely, the Kontorovich-Lebedev transform@13#. We use
this transform to represent exact wave functionsC(R,V) at
total energyE5K2/2 in the form

C~R,V!5E
c
F~n,V!R1/2Zn~KR!ndn, ~1.1!

wherec denotes a contour in then plane that depends upon
boundary conditions.

Equation~1.1! differs from the usual Fourier-Bessel trans-
form in that the integration is over the indexn of the Bessel
function rather than its argument. This is appropriate, since
the transform is introduced to separate angular and radial
motion andn2 is a separation constant for a six-dimensional
Laplacian separated intoV andR variables. Such transforms
are usually employed when the partial differential equations

are separable but the boundary conditions are not. Here we
show that they can be used even when the Schro¨dinger equa-
tion is not separable.

Exact solutions are obtained by integrating over the sepa-
ration constant. For systems with Hamiltonians that separate
into hyperspherical coordinates, as for particles interacting
via r22 potentials, the coefficientsF(n,V) are eigenfunc-
tions ofV-dependent operators at a single value ofn. In this
case, the integral transform is employed to satisfy boundary
conditions. For particles interacting via Coulomb interac-
tions, theF(n,V) are eigenfunctions ofV-dependent opera-
tors at many values ofn. In this case, the transform is needed
to represent dynamics, and Eq.~1.1! may be considered a
dynamical separation of variables.

The coefficientsF(n,V) are expanded in appropriate ba-
sis sets. The introduction in Sec. II B of a different basis set
is the main innovation reported here. The basis functions
Sn(n;V) are chosen so that at values ofR5rn(n),
where rn(n) are the eigenvalues, the products
Sn(n;V)R1/2Zn(KR) are solutions of the Schro¨dinger equa-
tion

lim
R→rn~n!

@H~R,V!2E#Sn~n;V!R1/2Zn~KR!50. ~1.2!

The basis functions are solutions of equations where the co-
efficient ofC(V) is the eigenvalue. It is now conventional in
physics to call basis functions using the coefficient of the
potential in the Schro¨dinger equation as an eigenvalue a
Sturmian basis@14,15#.

Sturmian functions were originally introduced in atomic
physics to obtain a complete, square integrable basis set
adapted to the central Coulomb potential2Z/r . The set is
generated by fixing the energyE at some negative value and
usingZ as an eigenvalue. The functions are square integrable
and orthonormal with respect to the weight function 1/r .
This square integrable set is still used today to represent
continuum functions of positive energy. Such bases describe
general Schro¨dinger functions in regions where the potentials
are strong and similar in shape to the Coulomb potential, but
do not represent continuum functions at all well outside this
limited region.

It is now recognized that square integrability is not the
key feature of Sturmian bases and bases for any central po-
tentialU(r ), whereE is fixed at a positive value set by the
particle energy@15#, are defined. These bases satisfy outgo-
ing wave rather than bound state asymptotic conditions and
represent the physical functions accurately both where the
potential is strong and where it is weak. Indeed, they are
chosen to have correct outgoing wave asymptotic conditions
in regions where the potential is not just weak, but vanishing.

Two key properties emerge from these developments of
Sturmian theory. First, it is orthonormality with respect to
the weight functionU(r ) that accounts for the set’s effec-
tiveness in representing arbitrary functions in the limited re-
gion of space where the potential is most significant. Square
integrability is only a numerical convenience of little funda-
mental value when it is not in accord with physical require-
ments. Second, functions obtained at a value of the param-
eterE, no matter whetherE is positive, negative, or even
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complex, are mathematically well defined and can be ex-
ploited to represent wave motion that depends upon this pa-
rameter.

These considerations apply to our representation of the
functionF(n,V). By using functions orthonormal with re-
spect to the weight functionC(V) we efficiently represent
F(n,V) in the potential valleys where one of the electrons is
confined. By using angular functionsSn(n;V) with the index
n set by the Bessel functionZn(KR), we also insure that the
representation is locally accurate in regions where the poten-
tial plays only a minor role, e.g., where it is nearly constant.
For these reasons, we call the functionsS(n;V) angle Stur-
mians.

The angle Sturmians, which describe angular motion, also
introduce a feature not shared by the more familiar radial
Sturmians. We can consider that the setSn(n;V) defines a
set of ‘‘channel’’ functions. Exact solutionsF(n,V) require
superpositions of the channel functions. These superpositions
are represented by angle-Sturmian expansions introduced in
Sec. III. With this set of channel functions the radial motion,
represented by the Bessel functionZn(KR) in the
Kontorovich-Lebedev transform, is the same in all channels.
Integration over the indexn and summation over the angle-
Sturmian channelsn yieldsC(R,V).

The Sturmians do not represent asymptotic channels, and
it is necessary to connect these channels with the physical
channels at large distances. It is shown in Sec. II D that
Sturmian functions are related to adiabatic eigenfunctions
wm(R;V) @16# according to Demkov’s construction@17#.
Adiabatic bases are briefly reviewed in Sec. II C.

Because the Sturmian functions give exact solutions at a
point, we anticipate that different modesn are not strongly
coupled, thus one-Sturmian approximations are introduced in
Sec. IV A. Integral expressions for the corresponding wave
functions

C~R,V!'E
c
An~n!Sn~n;V!R1/2Zn~KR!ndn, ~1.3!

whereAn(n) are expansion coefficients, are also obtained.
The physical content of Eq.~1.3! emerges upon evaluat-

ing the integral in the stationary phase approximation, valid
for largeR. In this approximation, discussed in Sec. IV B,
contributions to the integral are dominated by values of
n5nm such thatrn(nm)5R. At these values ofn5nm(R)
the single Sturmian is proportional to one of the adiabatic
functionswm(R,V). Because there may be many points of
stationary phase, the integral evaluates to a sum overm with
amplitudes that depend upon the path through the points of
stationary phase. For small values ofR there is only one
point of stationary phase corresponding to the initial adia-
batic channel, but for real valuesR larger than a certain
specific value, a second point of stationary phase appears
corresponding to population of a new adiabatic channel. This
process continues with new channels appearing at succes-
sively larger values of realR. At infinite R the successive
appearance of adiabatic channels gives a complete row of the
Jost matrix. These approximate Jost matrix elements are used
in Sec. IV C to obtain the hidden-crossing expression for the
S matrix. A simple interpretation of the hidden-crossing
equations using the Landau-Zener model is also given. In

order to stress the connection with the earlier formulation
@18# of hidden-crossing theory, adiabatic energy eigenvalues
are denoted by«m(R) rather thanUm(R), which is conven-
tional in the hyperspherical adiabatic representation@5#.

The stationary phase approximation corresponds to as-
ymptotic evaluation of the approximate one-Sturmian wave
function. As is common for such evaluations, the complete
asymptotic representation does not emerge for realR
@19,20#. When the wave function is evaluated asymptotically
for realR, only excitation channels appear. To extract ion-
ization channels by the method of stationary phase, it is con-
venient to consider wave functions for complex values of
R. For sufficiently large values of ImR, a single ionization
channel appears. For larger values of ImR more ionization
channels appear. Finally, whenR is purely imaginary, a
complete set of ionization channels emerge. The change of
asymptotic form with increasing ImR represents a type of
Stokes’ phenomena where the analytic form of the asymp-
totic wave function changes asR is carried around a circle in
the complex plane. Such behavior is known for solutions of
coupled ordinary differential equations@19#; here it emerges
for approximate solutions of partial differential equations.
The ionization channels are just those of the adiabatic Wan-
nier theory@11,21,22#, as shown in Sec. V where the Wan-
nier threshold law is derived.

That only excitation channels appear asymptotically for
realR appears related to the distinction between complete-
ness and asymptotic completeness in the theory of rearrange-
ment reactions@23#. A basis set may be mathematically com-
plete everywhere, yet not represent physical channels
asymptotically. Rather, alternative complete sets satisfying
different boundary conditions are needed. For ionization of
atomic hydrogen by electron impact, the Kummer functions
discussed by Watanabe@11# are the alternative set. In the
present work, this set emerges most simply at complexR.
Because the ionization channels are central to a complete
theory of correlated electron motion, a rigorous mathemati-
cal derivation of the ionization channels for realR is given in
an Appendix. Concluding remarks are given in Sec. VI.

II. HYPERSPHERICAL COORDINATES
AND BASIS FUNCTIONS

A. Hyperspherical coordinates

Consider three particles of massesm1 , m2 , andm3 and
charges2Z1 , 2Z2 , andZ3 , respectively. For simplicity we
suppose that all of theZi are positive. The set of Jacobi
coordinates used by Feagin@4# are chosen, namely,r1,2 and
r12,3 shown in Fig. 1. Corresponding to these coordinates
there are the reduced massesm125m1m2 /(m11m2) and
m12,35m3(m11m2)/(m11m21m3). The hyper-radiusR is
then defined as

R25m12r 12
2 1m12,3r 12,3

2 . ~2.1!

The remaining five hyperangular coordinates are denoted by
V. The exact specification of these coordinates is not needed
here. Alternative sets are discussed, for example, by Zhou
and Lin @24#. The hyperangles can be taken to be the spheri-
cal coordinatesr̂12 and r̂12,3, and the anglea defined as
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tana5A m12

m12,3

r 12
r 12,3

. ~2.2!

The reduced wave functionC(R,V) is written in terms of
the standard wave functionc,

C~R,V!5R5/2~sina!~cosa!c~R,V!, ~2.3!

so that the Schro¨dinger equation becomes@24#

F2
]2

]R2 1
L212RC~V!

R2 22EGC~R,V!50, ~2.4!

where

L25S 2
]2

]a2 1
l
→

12,3
2

cos2a
1

l
→

12
2

sin2a
D 21/4, ~2.5!

and whereC(V) is given in terms of the interaction potential
energyV(R,V)[C(V)/R of the three particles.

For two electrons outside a closed shell withZ15Z251
and Z35Z, an alternative set of hyperanglesr̂1 , r̂2 , and
a5arctan(r2 /r1), also denoted collectively byV, is more
standard@5#. In these coordinates, the scaled potential has the
explicit form

C~V!52
Z

cosa
2

Z

sina
1

1

A12sin2a cosu12
, ~2.6!

whereu125 r̂1–r̂2 , and the operatorL2 is given by

L25S 2
]2

]a2 1
l2
2

cos2a
1

l1
2

sin2a D 21/4. ~2.7!

B. The angle-Sturmian bases

The angle-Sturmian basisSn(n;V) replaces the coeffi-
cient R of the scaled potential 2C(V) with an eigenvalue
rn(n) when the operatorL212RC(V) is set equal to
n221/4 to yield the eigenvalue equation

@L212rn~n!C~V!#Sn~n;V!5@n221/4#Sn~n;V!. ~2.8!

The eigenfunctions are orthogonal with the weightC(V),

E Sn8~n;V!C~V!Sn~n;V!dV50, n8Þn. ~2.9!

When n85n these functions may also be normalized for
most values ofn,

22E Sn~n;V!C~V!Sn~n;V!dV51, ~2.10!

but, becauseC(V) may change sign in the domain of inte-
gration, this is not assured since the normalization integral
may vanish. The integral can vanish only at isolated values
of n, and since we employ arbitrary complex values ofn,
these points may be easily avoided by analytic continuation.
Also, the eigenvaluesrn(n) may be complex even when
n221/4 is real and standard theorems@14,15# of Sturm-
Liouville theory may not apply to the set of functions
Sn(n;V). This is of little importance in our work, since the
eigenvalues are analytically continued to arbitrary complex
values ofn.

Notice in Eq. ~2.8! that, for values ofn such that
rn(n)50, the angle-Sturmian functionSn(n;V) satisfies the
equation for hyperspherical harmonics. Because of the usual
boundary conditions on angular functions, this can only hap-
pen whenn is a particular integer, which we denote by
ln12. The corresponding eigenfunctionSn(ln12,V) is just
the hyperspherical harmonicf ln

(V). Except for degenerate

eigenvalues, none of the otherrn8(ln12)’s with n8Þn van-
ish atnn85ln12, although they vanish at their own particu-
lar values ofnn85ln812.

This vanishing of one of the Sturmian eigenvalues at its
characteristic value ofn plays a key role in determining the
behavior of the functionC(R,V) nearR50. We will see in
Sec. III that the functionF(n,V) has a factor 1/rn(n) which
represents a simple pole atn5ln12. The contour around
the pole is taken to select the condensation channelna . In
this framework the condensation channels are hyperspherical
harmonics, as they are in Ref.@6#.

Note that the integrals in Eqs.~2.9! and~2.10! are defined
without taking the complex conjugate ofSn(n;V). This is
necessary in order that inner products analytically continue
off the real axis. To represent this aspect more formally,
we define the Sturmian state vectoruS(n)& as
S(n;V)5^VuS(n)& and the dual ^S(n)u as ^S(n)uV&
5S(n;V). When computing real physical quantities using
the wave functionC(R;V), it is still necessary to define the
dual of uC& in terms of its complex conjugate, i.e.,
^CuR,V&5C(R,V)* .

FIG. 1. Coordinates of three particles.
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C. Hyperspherical adiabatic bases

The hyperspherical adiabatic basis functionsw(R;V) are
defined as eigenfunctions of the operatorL212RC(V)
whereR is held fixed@16#, i.e.,

@L212RC~V!#w~R;V!52«m~R!R2w~R;V!. ~2.11!

The adiabatic functions are taken to be real for realR. For
both real and complexR they are normalized according to

E w~R;V!2dV51. ~2.12!

These basis functions concentrate in the valleys of the poten-
tial V for largeR where they become bound state wave func-
tions of one-electron atomic species@16#. Accordingly, a fi-
nite number of these functions can represent excited states,
but not states where both electrons are in the continuum, i.e.,
the hydrogen atom is ionized. Alternatively, Sturmian eigen-
functions are suitable for ionization, as will be shown in Sec.
V.

D. Relation between Sturmian and adiabatic bases

It is necessary to connect the Sturmian and physical chan-
nels at largeR. This is done via the connection between
Sturmian and hyperspherical adiabatic functions. These in
turn connect with the physical excitation channels as dis-
cussed in Ref.@16#. The connection with the ionization chan-
nels of Watanabe@11# is more subtle and is developed in
Sec. V.

The angle Sturmians relate to the hyperspherical adiabatic
basis according to Demkov’s construction@17#. This con-
struction considers that the adiabatic eigenvalues«m(R) cor-
respond to different branches of the same function«(R)
which is single valued on a multisheeted Riemann surface.
Surfaces corresponding to different eigenvalues are con-
nected at branch points. Near a branch pointRb the energy
function has the form«(R)'AR2Rb, i.e., the branch points
are square root branch points. For functions with only square
root branch points, the appropriate Riemann surface can be
constructed by plotting Re@«(R)# vs R. Figure 2 shows the
surface employed in Ref.@12# for the 1S adiabatic eigenval-

ues of H2 at complex values ofR. Notice that surfaces
corresponding to different sheets are joined at square root
branch points and associated branch cuts.

The surface defines a single function«(R) for all R. Cor-
responding to this function there is the universal adiabatic
eigenfunctionw(R;V), also defined for all complexR. The
standard hyperspherical adiabatic eigenfunctions are differ-
ent branches of this function for real values ofR. Since
«(R)R2 is defined for allR, the equation

2«~r!r25n221/4 ~2.13!

may be solved to find its rootsrn(n). These are just the
Sturmian eigenvalues of Eq.~2.8!. The corresponding Stur-
mian eigenfunctionsSn(n;V) are, aside from normalization
constants, just the adiabatic functionsw(R;V) evaluated at
R5rn(n):

Sn~n;V!5N~n!w„rn~n!;V…. ~2.14!

To determine the normalization constant, differentiate Eq.
~2.8! using the orthonormality condition Eq.~2.9! to obtain

2
]rn~n!

]n
2E C~V!Sn~n;V!2dV522nE Sn~n;V!2dV.

~2.15!

Using Eqs.~2.12!, ~2.10!, and~2.14! in Eq. ~2.15! gives

]rn~n!

]n
522nN~n!2, ~2.16!

or

N~n!5A2
]rn~n!

2n]n
. ~2.17!

Just as there is a single multivalued function«(R) with
different branches, so too is there a single multivalued func-
tion r(n) with different branchesrn(n). This proves useful
for the approximate evaluation of integrals overn given in
Sec. III.

III. THE ANGLE-STURMIAN EXPANSION

Near the pointR5rn(n) we have that, to first approxima-
tion, the solution of the Schro¨dinger equation is

C~R;V!'R1/2Zn~KR!Sn~n;V!, ~3.1!

whereR1/2Zn(KR) is a solution of the hyper-radial equation

S d2

dR2
2

n221/4

R2 1K2DR1/2Zn~KR!50, ~3.2!

andK252E. It is apparent thatZn(KR) is a Bessel function.
Now this approximate solution does not hold away from the
pointR5rn(n); thus to get a representation ofC(R,V) for
all R, we write

C~R,V!5(
n8

E
c
An~n8!Sn8~n8;V!R1/2Zn8~KR!n8dn8,

~3.3!

FIG. 2. Plot of Re@«(R)# vs complexAR for the 1S symmetry
of H2. This plot is one possible representation of the Riemann
surface for the function«(R). The data used to construct the sur-
face are taken from the computations of Ref.@12#.
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where the integral goes over a contourc in the complexn
plane such that2`,n221/4,` andn2 is real. More gen-
eral contours may be used; however, the present contour suf-
fices for our purposes.

As will be demonstrated later in this section, the coeffi-
cientsAn(n) include a factor 1/rn(n) which has a pole at
n5ln12. The residue at the pole is just proportional to
R1/2Zln12(KR) f ln12(V). The contour around the pole is
chosen so that the residue selects the dominant channel near
R'0. This property is central to the general formulation, but
is not used directly in the approximate calculations reported
in Sec. IV.

Substituting the expansion Eq.~3.3! into the Schro¨dinger
equation Eq.~2.4!, using the definitions of the Sturmians Eq.
~2.8! together with the recurrence relation

2n

KR
Zn~KR!5Zn11~KR!1Zn21~KR!, ~3.4!

gives

(
n8

E
c
dnC~V!@~2n/K !An8~n!Sn8~n,V!

2rn~n21!An8~n21!Sn8~n21;V!

2rn8~n11!An8~n11!Sn8~n11;V!#Zn~KR!50.

~3.5!

A sufficientcondition for this equation to hold is that the
coefficient ofZn(KR) vanishes for all values ofn:

(
n8

C~V!@~2n/K !An8~n!Sn8~n;V!

2rn~n21!An8~n21!Sn8~n21;V!

2rn8~n11!An8~n11!Sn8~n11;V!#50. ~3.6!

Projecting onto the functionSn(n;V) gives the set of
coupled difference equations for the coefficientsAn(n),

2n

K
An~n!5(

n8
@Mn,n8

1
~n!rn8~n11!An8~n11!

1Mn,n8
2

~n!rn8~n21!An8~n21!#, ~3.7!

where

Mn,n8
6

~n!52E Sn~n;V!2C~V!Sn8~n61;V!dV. ~3.8!

Equation~3.7! represents a set of coupled difference equa-
tions for the coefficientsAn(n). Techniques for solving such
equations have been reviewed by Braun@25#.

The general solution of these equations is beyond the
scope of this report. One aspect of such solutions is impor-
tant, namely, the selection of the condensation channel. Eq.
~3.7! may be solved by using an asymptotic solution for large
n to obtainAn(n11) andAn(n12). The recurrence relation
Eq. ~3.7! then givesAn(n)

An~n!5
1

rn~n!(n9
@M2~n11!21#nn9F2~n11!

K
An9~n11!

2(
n8

Mn9n8
1

~n11!rn8~n11!An8~n12!G ~3.9!

which is seen to have the factor 1/rn(n). This factor selects
the channel nearR50, called a ‘‘condensation channel’’ in
Ref. @27#, through its singularity atn5ln12.

Equations~3.3! and ~3.7! are the basic equations of the
hyperspherical Sturmian theory. That they are necessary as
well as sufficient is shown in Appendix A. In the next sec-
tion an approximate solution to these equations is derived.

IV. APPROXIMATE WAVE FUNCTIONS
AND THEIR ASYMPTOTIC BEHAVIOR

A. One-Sturmian approximations

The simplest approximation consists of truncating the
Sturmian expansion in Eq.~3.3! to just one term. As is usual
for truncations of sums to a few terms, the one-Sturmian
approximation is justified onlya posteriori. Since only one
Sturmian is used, it is convenient to omit the indexn except
where it is needed for clarity.

A second approximation consists of evaluating the matrix
element

M ~n,n8!52E S~n;V!2C~V!S~n8;V!dV ~4.1!

by expandingS(n8;V) about the pointn85n and taking the
lowest-order term, which equals unity. The next-order term
vanishes owing to the normalization condition Eq.~2.10!.
Thus we neglect terms of order (n82n)2 so thatM6(n) is
given by

M6~n!'1. ~4.2!

With these approximations, the equation for the coefficients
A(n) becomes

A~n11!r~n11!1A~n21!r~n21!5
2n

K
A~n!. ~4.3!

SettingB(n)5A(n)r(n) gives the more suggestive equation

B~n11!1B~n21!5
2n

Kr~n!
B~n!. ~4.4!

If r(n) is independent ofn, the difference equations are
just the recurrence relations for Bessel functions, Eq.~3.4!.
The asymptotic expansion for incoming wave Bessel func-
tions is given in Appendix B using formulas of Abramowitz
and Stegun@26#,
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r1/2Hn
~2!~Kr!'A2

p

1

A4 K22n2/r2

3expF i E
n0

n

arccosS n8

Kr D dn81 ip/4

2 iAK2r22n0
21 in0arccosS n0

Kr D G . ~4.5!

Now r in Eq. ~4.4! is not actually a constant, but an approxi-
mate expression forB(n) is obtained by retaining Eq.~4.5!
but with r replaced byr(n),

B~n!'A2

p

1

A4 K22n2/r~n!2

3expF i E
n0

n

arccosS n8

Kr~n8! D dn81 i
p

4

2 iAK2r~n0!
22n0

21 in0arccosS n0
Kr~n0!

D G ,
~4.6!

where the lower limitn0 is to be determined. This approxi-
mation for B(n) also follows from the methods of Braun
@25#. The derivation given here is simpler, but essentially
equivalent. Of course we could have used any of the various
Bessel functions, i.e., incoming, outgoing, or standing wave
Bessel functions, since they all satisfy the recurrence relation
Eq. ~3.4!. Also note that, because approximations~4.2! and
~4.6! become exact asunu→`, Eq. ~4.6! determines bound-
ary conditions employed when Eq.~4.3! or Eq. ~3.7! is
solved exactly.

The Bessel functionsZn(KR) have not yet been chosen
since the boundary conditions have not been specified. Nor-
mally, one chooses functions which are regular at the origin
to obtain solutionsC(R,V) that are regular at the origin.
The physics is better exhibited by choosing solutions which
are purely outgoing waves at largeR, but are irregular at the
origin. This choice, together with Eq.~4.6!, means that we
seek elements of the Jost matrixJfn

1 rather than elements of
the scattering matrix. The advantages of Jost matrices for
atomic processes have been emphasized by Fano and Rau
@27,28#.

The final result for the one-Sturmian approximation to the
exact wave function is

C~R,V!'A2

p
expF2 iAK2r~n0!

22n0
2

1 in0arccosS n0
Kr~n0!

D 1 ip/4G
3E

c

1

r~n!

1

A4 K22n2/r~n!2

3expF i E
n0

n

arccosS n8

Kr~n8! D dn8GR1/2Hn
~1!

3~KR!S~n;V!ndn. ~4.7!

Although this function involves several approximations, we
will see that it applies to a wide range of dynamical pro-
cesses.

B. Asymptotic form of one-Sturmian wave functions

For largeR the expression Eq.~4.7! becomes

C~R,V!'
2

pEc
1

r~n!

1

A4 K22n2/r~n!2

3exp@ ix~n!#
S~n;V!

A4 K22n2/R2
ndn, ~4.8!

where

x~n!5E
n0

n FarccosS n8

Kr~n8! D2arccosS n8

KRD Gdn8

1AK2R22n0
22n0arccosS n0

KRD2AK2r~n0!
22n0

2

1n0arccosS n0
Kr~n0!

D . ~4.9!

For large values ofR the term

2En

arccosS n8

KRDdn85RAK22n2/R22n arccosS n

KRD
~4.10!

becomes large and the stationary phase approximation@29#
may be used to evaluateC(R;V) asymptotically. Clearly,
the points of stationary phasenm , defined by the condition

]x~n!

]n
50, ~4.11!

occur at values ofn5nm(R), j5 1, 2, . . . , given by

r~nm!5R, ~4.12!

where

nm~R!221/452«m~R!R2, ~4.13!

and«m(R) is one of the adiabatic eigenvalues. Further defin-
ing the wave vectorKm(R) according to

Km
2 ~R!5K22

nm
2

r~nm!2
5K22

nm
2

R2 5K222«m~R!2
1/4

R2 ,

~4.14!

we have for the stationary phase approximation toC(R,V)
the result
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C~R,V!'exp~2 ip/4!A2

p(
m

nm

r~nm!

1

Km~R!

3pS ]2x~n!

]2n Un5nmD 21/2

exp@ ix~nm!#S~nm ;V!.

~4.15!

It remains to put this result into standard form. To that
end we note that

]2x~n!

]n2 U
n5nm

5
1

Km~R!

nm

r~nm!2
]r~n!

]n U
n5nm

. ~4.16!

Appendix A shows that the phasex(nm) is given by

x@nm~R!#5E
R0

R

Km~R8!dR8, ~4.17!

whereR0 is a relatively small value ofR corresponding to
Ka(R0)50, anda represents an adiabatic label that may dif-
fer from the labelm appropriate at largeR. The labela
specifies the branch of the function«(R) at smallR and
depends implicitly upon the Sturmian labeln. Equivalently,
it specifies the branch of the functionr(n) at n5lna

12
through Eq.~2.13!. This branch is identical with the branch
selected by the pole atn5lna

12 when the integral in Eq.
~4.7! is evaluated exactly.

Taking into account Eq.~2.14! and substituting Eqs.
~4.17! and ~4.16! into Eq. ~4.15! gives the final result, aside
from an unimportant overall multiplicative constant,

C~R,V!' (
paths

(
m

1

AKm~R!

3expS i E
cnm

R

Km~R8!dR8Dwm~R;V!,

R→`. ~4.18!

In Eq. ~4.18!, cnm denotes a contour that connects
wa(R0 ;V) at smallR0 with wm(R;V) at largeR and the sum
over paths goes over all such contours@30#. Note that the
phase offm(R;V) may depend upon the path. For example,
fm(R;V)→2fm(R;V) upon two turns around a branch
point.

C. The hidden-crossing theory

For large values ofR the adiabatic eigenvalue«m(R) has
the form

«m~R!5«m~`!2Qm~`!/R1•••, ~4.19!

whereQm is an asymptotic effective charge in themth chan-
nel. The Jost matrix element is extracted by defining the
asymptotic wave vectorK0m(R),

K0m
2 5K222«m~`!12Qm~`!/R. ~4.20!

It then follows from Eq.~4.18! and the definition of the Jost
matrix J6 that

Jnm
1 ' lim

R→`
(
paths

expS i E
cnm

R

Km~R8!dR82ER

K0m~R8!dR8D .
~4.21!

The S matrix is computed by forming
(n@(J

2)21# inJnm
1 . With the asymptotic expression of Eq.

~4.18! this is equivalent to the standard hidden-crossing ex-
pression@30#

Sim5F (
paths

expS i E
Ri

Rm
K~R8!dR8D G

3expS 2 i ERm
K0m~R8!dR82 i ERi

K0i~R8!dR8D ,
~4.22!

where the sum is over all allowed paths that connect the
adiabatic statei at largeRi with the adiabatic statem at large
Rm . The paths are taken by integrating inward towards small
R using the negative branch ofK(R), initially on the i th
sheet of the Riemann surface of«(R), then outward from
smallR using the positive branch ofK(R) along a path that
ends up on themth sheet. The sum is over all such paths.
When there is only one path, the probability for a transition
i→m is just

P~E!5expF22ImE
Ri

Rm
K~R8!dR8G . ~4.23!

Equation ~4.23! is the basic equation of the hidden-
crossing theory of ion-atom collisions@18#, where the theory
employs a semiclassical approximation for internuclear mo-
tion at the outset. In contrast, the present theory employs no
such semiclassical approximation; rather, the WKB form Eq.
~4.18! emerges upon evaluating the approximate wave func-
tion using the method of stationary phase, which is always
correct for sufficiently largeR.

Figure 3~a! illustrates Eq.~4.23! schematically for the
Landau-Zener model. In this case the adiabatic eigenvalues
are just the two branches of the function
«(R)5Ab2R21H12

2 whereb andH12 are constants of the
model. Integrating along the real axis gives the semiclassical
Jost matrix elementJ1,1 for elastic scattering, while integrat-
ing along a path around the branch point gives the Jost ma-
trix J1,2 for excitation. It must be stressed thatR8 in Eqs.
~4.17! through ~4.23! is an integration variable which need
not be interpreted as a physical coordinate; rather, it is iden-
tified with the Sturmian eigenvaluer(n) in Eqs. ~C7! and
~C8!. Jost matrix elementsJ2,2

1 andJ2,1
1 are obtained by simi-

lar computations where the paths start on the second surface.
TheS-matrix element for excitation in the Landau-Zener

model emerges upon forming

S125 (
a51

2

@~J2!21#1,aJa,2
1 . ~4.24!

This formula is represented in Fig. 3~b!. The term with
a51 in Eq. ~4.24! is given by integrating inward to the
classical turning point using the negative branch of
K1(R)5A2(E2«1), and then outward using the positive
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branch ofK1(R), going clockwise around the branch point
to get to the second sheet~solid curve!. The term with
a52 corresponds to integrating inward using the negative
branch ofK1 , going counterclockwise around the branch
point to the turning point of the second surface, and outward
using the positive branch ofK25A2(E2«2(R) ~dotted
curve!. The excitation matrix element is the coherent sum of
the contributions corresponding to the two paths.

Equation~4.23! is suitable for transitions between adia-
batic eigenstates, e.g., for excitation of atomic hydrogen by
electron impact, but the probability for ionization is not ap-
parent. In this connection, recall that asymptotic evaluation
of integral expressions Eq.~4.7! on the realR axis may miss
some components owing to Stokes’ phenomena. This hap-
pens with ionization. The missing ionization components are
identified by examining the asymptotic function at complex
R. Evaluation of these components leads to Wannier’s
threshold law.

V. WANNIER’S THRESHOLD LAW

To identify ionization, it is necessary to examine the
structure of the Riemann surface for«(R) in more detail.
This is now possible owing to advances in computational
techniques pioneered by Bottcher and co-workers@31,32#.

Their computer codes were used in Ref.@12# to compute
complete Riemann surfaces forS50,1 andL50,1,2,3 states
of H2. Figure 2 shows a plot of the1S Re@«(R)# vsAR for
the H2 system. This plot shows the basic structure of the
function «(R), namely, along the real axis the different po-
tential energy curves«m(R) are apparent. These eigenvalues
are seen to be different branches of a single function«(R).
The different sheets are connected at square root branch
points, but no pattern for the branch points is apparent.

Figure 4~a! shows a plot of the related function
n(R)51/A22«(R). In this plot one can see the start of a
series of branch points that connect then51 sheet to sheets
corresponding to higher-lying states of atomic hydrogen
~plus an unbound electron!. For sufficiently large ImR, the
surface becomes remarkably flat. This corresponds to a re-
gion where the adiabatic wave function is confined to the
saddle point of C(V) in the Wannier configuration
r152r2 . Taking the hyperangle to bea5arctan(r2 /r1) and
lettingu12 denote the angle between the position vectors, one
has

L2'2
]2

]a2 24S ]2

]u12
2 1

1

p2u12

]

]u12
D , ~5.1!

C~V!52C02
1

2
ka~a2p/4!22

1

2
ku~u122p!21•••,

~5.2!

where

C05
4Z21

A2
, ka5

1212Z

A2
, ku5

1

4A2
. ~5.3!

Near the potential saddle and for ImAR sufficiently large,
the wave functions are just those of uncoupled harmonic
oscillators @21#. For the lowest state of1S symmetry, the
functionw(R;V) is

FIG. 3. Plot illustrating the hidden-crossing theory for the
Landau-Zener model.~a! Integration along the real axis describes
elastic scattering and integration around the square root branch
point gives the excitation Jost matrix element.~b! Plot showing the
paths of integration used to obtain the excitationS-matrix element.
Semiclassically, the dashed curve corresponds to excitation on the
inward part of the classical trajectory for the collective coordinate
R, and the solid curve to excitation on the outward part.

FIG. 4. ~a! Plot of Re@n(R)#51/A22«(R) vs AR and ~b! plot
of Re@nasy(R)# vs complexAR showing the absence of branch
points for «asy(R). The integration path fromR0 to RQ and to
R→` is also shown in ~a!. After replacement of«(R) by
«asy(R), the path fromRQ to ` is deformed to return toR0 and then
to R→` along the real axis. The integral fromR0 to R→` gives
the Wannier threshold law.
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wasy~R,V!'exp@ iaaAR~a2p/4!2#

3exp@2auAR~u122p!2#, ~5.4!

where

aa5
A12Z21

2A4 2
, au5

1

8A4 2
. ~5.5!

On the real axis the functionwasy(R;V) of Eq. ~5.4! is
unbounded ina and does not satisfy appropriate boundary
conditions ata50 andp/2; thus it does not represent the
adiabatic eigenfunction. For sufficiently large ImAR, how-
ever, the function is exponentially damped and vanishingly
small at the end points of the range ofa. It is this feature
that accounts for the flat region, appropriately called the har-
monic oscillator region, seen in Fig. 4~a!. Along the real axis
the functionw(R;V) represents the Rydberg states of atomic
hydrogen for sufficiently largeR. The Rydberg region is
separated from the harmonic oscillator region by a series of
branch points, called the top-of-barrier branch points. These
branch points play an important role in the theory of ioniza-
tion of hydrogen by both electron and proton impact.

The asymptotic adiabatic eigenvalues«asy(R) for suffi-
ciently large ImAR are just those of uncoupled harmonic
oscillators,

«asy~R!52C0 /R2~C1r1 iC1!/R
3/21O~R22!, ~5.6!

where

C1r52~2nu1I11!221/4, C15~2na11!225/4A12Z21,
~5.7!

na andnu are harmonic oscillator quantum numbers, andI is
the projection of the total angular momentumL on an axis
parallel to r12. Higher-order terms in the series Eq.~5.6!
represent anharmonic corrections. The series is asymptotic,
since the wave functions corresponding to any finite number
of terms satisfy the boundary conditions ata50 andp/2
only approximately, in the sense that

exp@2aaImAR~p/4!2#'0. ~5.8!

The wave functions in the harmonic oscillator region rep-
resent waves that propagate outward from the saddle point.
Consequently, the adiabatic channel functions represent ion-
ization for ImR sufficiently large. The appearance of ioniza-
tion channels for sufficiently large ImR relates to the Stokes’
phenomena@19# alluded to earlier. The asymptotic expres-
sion Eq.~4.15! for the function defined by the integral rep-
resentation in Eq.~4.7! describes excitation on the real axis.
For ImAR sufficiently large the asymptotic expression Eq.
~4.7! represents ionization.

The ionizationS-matrix element is computed in the same
manner as the excitation amplitude for the Landau-Zener ex-
ample@see Fig. 3~b!#. Computing Eq.~4.15! along a path that
starts atRi on the real axis, goes inward to the classical
turning radiusR0 , and then outward along a path that circles
the branch point in the clockwise direction and toR→`
through the harmonic oscillator region gives one amplitude
for ionization. A second amplitude is obtained by integrating

from Ri inward, encircling the branch point in the counter-
clockwise direction on the way in to reach the second sheet,
and then outward from the turning pointR08 on the second
sheet toR→` through the harmonic oscillator region. These
two amplitudes are summed coherently to get the ionization
amplitude. We chooseRi equal toRb , a value of the order of
the real part of the coordinate of the first branch point. The
exact value ofRb is unimportant and is chosen for numerical
convenience.

Taking account of the appropriate branch ofK(R) as dis-
cussed above gives the ionization probability

P~E!5UexpS 2 i E
Rb

R0
K~R8!dR81 i E

R0

`

K~R8!dR8D
2expS 2 i E

Rb

R08K~R8!dR81 i E
R08

`

K~R8!dR8DU2,
~5.9!

whereK(R) is now always positive on the real axis. In the
first term, the integral fromRb to R0 goes along the real axis
and the integral fromR0 to infinty goes clockwise around the
branch point and to infinity through the harmonic oscillator
region. In the second term, the integral fromRb to R08 goes
counterclockwise around the branch point to the turning
point R08 on the second sheet and the integral fromR08 to
infinity goes counterclockwise around the branch point to
infinity through the harmonic oscillator region.

Equation~5.9! is the basic equation used to compute ab-
solute values of the ionization probability. The Wannier
threshold law is obtained by further noting that at some value
of complexR, calledRQ , in the harmonic oscillator region,
«(R) and the associatedK(R) can be replaced by their as-
ymptotic values«asy(R) andKasy(R) with negligible error.
Then, since«asy(R) has no branch points, integrals from
RQ to infinity are evaluated along a path that returns toRb
and goes to infinity along the real axis, as illustrated in Fig.
4~b!. The ionization probability becomes

P~E!5Pinner~E!Pasy~E!, ~5.10!

where

Pinner~E!5UexpS 2 i E
Rb

R0
@K~R8!1Kasy~R8!#dR8

1 i E
R0

RQ
@K~R8!2Kasy~R8!#dR8D

2expS 2 i E
Rb

R08@K~R8!1Kasy~R8!#dR8

1 i E
R08

RQ
@K~R8!2Kasy~R8!#dR8DU2 ~5.11!

and

Pasy~E!5UexpS i E
Rb

`

Kasy~R8!dR8D U2. ~5.12!
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Because the integrals in Eq.~5.11! are over finite coordi-
nate ranges,Pinner(E) is an analytic function ofE. Further-
more, becauseK(RQ)2Kasy(RQ) is small,Pinner(E) is also
insensitive toRQ for uRQu. 20 a.u. The insensitivity to the
matching radius is an essential feature of matching the ion-
ization component at complex, rather than real,R. Values of
uRQu between 20 and 40 a.u. are used in the computation of
Pinner(E).

The second factorPasy(E) is the main focus of this sec-
tion since it gives Wannier’s threshold law. This factor
emerges from ourab initio theory and, when combined with
Pinner(E), gives absolute cross sections with no fitting pa-
rameters.

For sufficiently largeR0 we may approximate

Im@Kasy~R!#'
C1

R3/2K0~R!
, ~5.13!

whereK0(R)
252(E1C0 /R). The corresponding approxi-

mation forPasy(E) is obtained by substituting Eq.~5.13! into
Eq. ~4.23! and evaluating the elementary integral. Using

E
Rb

R 1

R83/2K0~R8!

dR85A 2

C0
F lnAR

Rb

2 lnS 11A11ER/C0

11A11ERb /C0
D G ,

~5.14!

we find

ImE
Rb

`

Kasy~R8!dR852C1A 2

C0
lnAE

1C1A 2

C0
lnSAC0

Rb
1AE1

C0

Rb
D .

~5.15!

Equation ~5.9! gives the probability for populating the
statewasy(R;V) at some value ofR much larger than the
Wannier radiusRW5C0 /E. To complete the computation of
the cross section, note that the position coordinatesV in
wasy(R,V) go over to the corresponding coordinatesVE of
the electron wave vectorsk1 andk2 @10#. The magnitude of
R, however, does not extrapolate to the corresponding coor-
dinateK5Ak121k2

2; rather, we may use Eq.~5.14! to ex-
trapolateR from the Coulomb zoneR!RW to the far zone
R@RW .

Any power ofR may be written

~R/Rb!
a5expF aERbR A2C0dR8

R83/2A2C0 /R8
G ~5.16!

for R and Rb less thanRW . Extrapolation toR.RW for
E.0 is accomplished by replacing 2C0 /R by
2(E1C0 /R)5K0(R)

2 in Eq. ~5.16! and using Eq.~5.14! to
obtain

~R/Rb!
a→~RE /Rb!

a, ER→`, E→0, ~5.17!

whereRE54C0 /E54RW .
Taking account of the three factors in the ionization prob-

ability, namely, Pinner(E), Pasy(E), and wasy(RE ,VE)
2,

gives the cross section for a particular partial waveL and
spinS:

sL
~S!5

p

2E11
~2L11!Pinner~E!Pasy~E!

3E uwasy~RE ,VE!u2dVE , ~5.18!

where dVE5daEdk̂1dk̂2 and tanaE5k2 /k1 . To perform
the integral overk̂1 and k̂2 note that the wave functions in
these coordinates can be taken to be real. In this case the
integral overk̂1 and k̂2 just equals unity since the functions
are normalized to unity. In contrast, the function of the
‘‘mock’’ angle a is complex with a squared magnitude that
is independent ofaE , but is normalized so that the integral
over the square of the wave function is unity. For states with
na50, this means that the normalization constant for the
function of a in Eq. ~5.4! is N5R1/8 A4 2 i2aa /p. The dif-
ferential cross sectionds/daE is therefore independent of
aE . Such distributions are characteristic of the Wannier as-
ymptotic theory, but represent a limitation of expansions
abouta5p/4.

Peterkop and Liepinsh@35# have developed expressions
for the asymptotic functions that are not limited to the region
neara'p/4. The numerical functions that they obtain are
found to be essentially identical to the simple harmonic os-
cillator solutions of Refs.@2,3# except that their squared
magnitude is proportional to sin2a. Read@36# confirms the
conclusions of Ref.@35# ~see also@37#! but finds small de-
partures from sin2a. These small departures are ignored here
and we take

ds

daE
5

ds

daE
U

aE5p/4

sin2aE . ~5.19!

To obtain the cross section, the squared magnitude is in-
tegrated overaE . This then gives a factor

E
0

p/2

uw~RE ,VE!u2sin2aEdaE5RE
1/4A2aa /p

52C0
1/4~aa /p!1/2E21/4.

~5.20!

Substituting Eqs.~5.20! into Eq. ~5.18! gives the desired ex-
pression forsL

(S):

sL
~S!5

p

2E11
~2L11!Pinner~E!2C0

1/4~aa /p!1/2

3~AC0 /Rb1AE1C0 /R0!
22C1A2/C0EzW

ad
,

~5.21!

where zW
ad5C1A2/C021/4; na50 differs from the correct

Wannier exponentzW5A2C1
2/C011/1621/4 by about 2%

for Z51. Recall thatPasy(E) includes nonanalytic terms
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such asAE. For convenience we have included these terms
with Pinner(E) in our calculations.

Equations~5.18! and ~5.21! were used in Ref.@12# to
compute the ionization cross sections for electron impact on
atomic hydrogen for singlet and triplet states withL50 and
1. No top-of-barrier branch point connects the incident chan-
nel with the first harmonic oscillator state for higher values
of L, but the 1D and 3F states are indirectly connected
through couplings atR50 @38#. Letting l 1 and l 2 denote
the single-electron orbital angular momentum quantum num-
bers, one has that the initial (l 1 ,l 2)5(0,2)1D channel
mixes with the (1,1) channel since the eigenvalues are de-
generate. The~1,1! channel does have a top-of-barrier branch
point so that the harmonic oscillator region is reached by a
transition nearR50 followed by a transition to the harmonic
oscillator region. In this casePinner becomes

Pinner~E!5p~E!UexpS i E
Rb

RQ
@K~R8!2Kasy~R8!#dR8D U2,

~5.22!

wherep(E) is the probability for transitions from the inci-
dent ~0,2! channel to the~1,1! channel. The probability
p(E) was computed by solving the hyperspherical two-
channel equations approximately nearR50 as reported in
Ref. @12#. The calculations shown in Fig. 5 differ from those
of Ref. @12# only in that a larger number of mesh points for

the numerical calculation ofPinner(E) has been employed.
The convergence of the calculations is good, and earlier and
present results agree within 0.1%.

As a check on the accuracy of the hidden-crossing theory,
we have computed the total excitation cross section for ex-
citing atomic hydrogen to thenP52 states. Results of the
hidden-crossing theory for the singlet and triplet partial wave
are compared with the calculations of Wang and Callaway
@33# in Table I for an incident energy of 0.405 a.u. The
hidden-crossing theory results are larger than the essentially
exact numerical results by about 10%. This is surprisingly
good agreement for a theory which employs only one Stur-
mian. We surmise that 10% represents the accuracy of the
hidden-crossing theory for dynamics related to the inner re-
gion.

Figure 5 comparess(E)/E vs E measured by Shah, El-
liot, and Gilbody@34# with the present hidden-crossing cal-
culations, the hyperspherical close-coupling calculations@7#,
the pseudostate calculations@9#, and preliminary results@7#
of the convergent close-coupling theory@8#. As expected, the
present theory~solid curve! is superior to other methods in
the threshold region,E,0.05 a.u., since only it obtains a
Wannier-type threshold law. The calculations exceed the
measurements by 15% in this region, but agree well at higher
energies. The hyperspherical close-coupling method matches
onto an approximate wave function that should lead to an
E3/2 threshold law and the calculations~solid circles! seem to
have this behavior forE<0.05 a.u., but are in good agree-
ment with the data for higher energies. Both the convergent
close-coupling and the pseudostate calculations have unex-
plained increases nearE50. It may be that these methods,
which use square integrable basis states to represent ioniza-
tion components, include some of the high Rydberg states in
the ionization component. It is noteworthy that, despite the
considerable difference in the methods used, all of the calcu-
lations obtain fairly accurate absolute cross sections above
E50.2 a.u. It would be valuable to have available corre-
sponding calculations of the spin asymmetry, since this
quantity is insensitive to the Wannier threshold power law.
Calculations not designed to get the threshold law might still
obtain accurate spin asymmetries.

Equation ~5.18! is obtained when the one-Sturmian ap-
proximation for the wave function in the inner region is fitted
onto an asymptotic, one-Sturmian wave function at
R5RQ . The slight difference between the adiabatic and ex-
act Wannier index represents a limitation of the one-
Sturmian asymptotic approximation Eq.~4.7! for
uRu.uRQu. This approximation may still be quite accurate
for other regions ofR, in particular, for values ofR in the
reaction or inner zone. StandardR-matrix theory would usu-
ally be employed to match the one-Sturmian inner function

FIG. 5. Plot ofs(E)/E for electron impact on atomic hydrogen.
Open circles are the measurements of Ref.@34#, filled circles are the
hyperspherical close-coupling calculations of Ref.@7#, crosses are
the pseudostate calculations of Ref.@9#, filled triangles are prelimi-
nary convergent close-coupling results quoted in Ref.@7#, the solid
curve is the hidden-crossing theory, and the dashed curve is the
hidden-crossing theory including the diabatic Wannier index.

TABLE I. Comparison of partial cross sections in units ofpa0
2 for excitation of then52 states of atomic

hydrogen by electron impact at an energy of 0.405 a.u. Exact results~a! are the direct numerical calculations
of Wang and Callaway@33# and present results~b! are obtained using the hidden-crossing theory.

Method 1S 1P 3P

~a! Exact 0.085 0.0554 0.099
~b! Hidden crossing 0.091 0.060 0.110
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to the correct asymptotic function atR5RQ . Alternatively,
the inner and asymptotic functions can be matched using
Feynman’s propagator@21#. This latter procedure has been
employed by Kazansky and Ostrovsky@22# and is more con-
venient for our purposes, since the propagator corresponding
to Rau @2# and Peterkop’s@3,4,39# asymptotic functions is
known @22,40–42#.

This matching procedure for an arbitrary inner function
has been discussed by Kazansky and Ostrovsky@43# and is
readily employed in the present case to propagate the ioniza-
tion wave function fromRQ to infiniteR. When the Wannier
propagator is used, the exact Wannier indexzW51.127 is
obtained. When the propagator is approximated by just one
harmonic oscillator function, as implied by Eq.~5.18!, the
adiabatic valuezW

ad51.104 emerges@11#. For E50.01 a.u.
the adiabatic cross section is in error by greater than 10%;
thus to describe the region from 0 to 0.01 a.u., it is necessary
to employ the full Wannier propagator. Because both the
propagator and the one-Sturmian function atRQ are Gauss-
ians in the variablesa andu, this implies that the asymptotic
function in the regionR.RQ is also a Gaussian. In this case
the asymptotic functionF(RE ,V) follows from solutions
given by Rau@2#, Peterkop@3#, Klar and Schlect@39#, Wa-
tanabe@11#, Kazansky and Ostrovsky@22#, and Jakubassa-
Amundsen and Macek@40,41#.

All of these solutions may be understood by defining a
time variablet according todt5dR/K0(R) and using the,
now time-dependent, harmonic approximation Eq.~5.2! for
the potentialV5R(t)C(V). The second-order-in-R Schrö-
dinger equation is cast into the form of a first-order time-
dependent Schro¨dinger equation using standard manipula-
tions @21#. The solutions of these equations include a time-
dependent normalization that can be put into the hidden-
crossing form

N~ t !5expS 2 i E t

« asy
di @R~ t8!#dt8 D , ~5.23!

where«asy
di (R) is an asymptotic diabatic energy eigenvalue.

Its imaginary part is given by

Im@«di~R!#5zWAC0

2
R23/2, ~5.24!

which has the sameR23/2 form as the adiabatic value, but
differs in the coefficient. Use of Eq.~5.24! in Eqs.~5.23! and
~5.13! gives the exact Wannier index@21#. Recalling that the
normalization of the adiabatic function incorporates a factor
of R1/8, we have for the corresponding expression for
ln@Pinner(E)# the result

ln@Pinner~E!#522ImE
R0

RQFK~R!2Kasy
di ~R!

1
1

8

A2C0

R3/2K0~R!
GdR, ~5.25!

whereK (di)(R)5AK22« asy
(di)(R) and where Eq.~5.16! has

been used. The quantityPinner(E) remains insensitive to
RQ since the integrand in Eq.~5.25! is small atRQ .

Our diabatic cross section divided byE is shown as a
dashed line in Fig. 5. The diabatic cross section is lower than
the adiabatic one over the whole energy range and is in better
accord with the experimental data. Even though the magni-
tude agrees with the measured values within our expected
error of 10%, the disagreement forE,0.1 a.u. may still be
significant. The computeds/E maximizes atE'0.03 a.u.,
but if we assume thatPinner(E) is independent ofE, then
s/E maximizes atE50.065 a.u., and is presumably fairly
flat near the maxima. This is in better accord with the data;
thus the fairly rapid variation that we find forE,0.05 a.u.
may be incorrect. This rapid variation stems fromAE cor-
rections toPasy(E) for the

1P state. Rapid variations of the
spin asymmetry in the threshold region have been noted by
Lubell @44#, but the variations that we find are not in accord
with measurements@12#. They can only be fitted with our
asymptotic form by assuming that the coefficient of theAE
term in ln@Pinner(E)# is positive, in disagreement with our
computations. This point needs further investigation.

The matching procedure has been employed in Ref.@43#,
although these authors identify the ionization component by
using an ‘‘inner’’ wave function on the real axis. The present
work differs in that the ionization component is identified via
the Stokes’ phenomena, where that component becomes ap-
parent only for complexR. For this reason, the ionization
component is a simple Gaussian that matches smoothly onto
the Gaussian for largeR. In contrast, a simple Gaussian
component does not emerge when the matching is done on
the real axis, and many harmonic oscillator states must be
used to match inner and outer solutions. For this reason the
Wannier threshold law in Ref.@43# is found to hold only for
quite small values ofE. In contrast, the calculations reported
in Ref. @12# appear to match the experimental data over a 9
eV energy interval, a result previously obtained only by clas-
sical calculations for a model system@45#.

We have noted that the electron distribution implied by
Eq. ~5.18! is uniform in aE5arctan(k2 /k1), whereas the ac-
cepted distribution is uniform inEi , i51,2, for fixedE.
Crothers@10# and Watanabe@11# argue that the uniform dis-
tribution in aE is consistent with the uniform distribution in
Ei , but such equivalence disagrees with conclusions of other
workers@35,36,46#. Peterkop and Liepinsh’s@35# derivation
of the uniform distribution inEi requires wave functions for
R.RQ that go beyond the harmonic oscillator approxima-
tion employed in the present analysis. Just how the accepted
distribution emerges in the Sturmian theory is a subject for
future research.

VI. CONCLUSIONS

A theory for three particles interacting via the Coulomb
interaction has been developed. It employs an integral trans-
form and an expansion in angle-Sturmian functions. Integral
representations of approximate, one-Sturmian wave func-
tions are obtained. The hyperspherical hidden-crossing ex-
pression Eq.~4.23! emerges when the approximate function
is evaluated asymptotically. The approximate function exhib-
its Stokes’ phenomena such that the small ionization compo-
nent is readily identified only for complex values of the
hyper-radius. The small ionization component, thus obtained,
conforms to the Wannier threshold law.
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The approximate one-Sturmian wave function incorpo-
rates the picture of electron-electron correlations proposed
by Fano@5#. A wave propagating from small values of the
hyper-radius branches into successive excitation channels at
successively larger hyper-radiiR. Simple expressions for
Jost matrix elements that represent the amplitudes for
branching into excitation channels are obtained. Wave
propagation near the ‘‘top of the barrier’’ plays a key role in
the branching into different excitation channels. This role is
represented mathematically by integration around ‘‘top-of-
barrier’’ branch points that connect initial channels to exci-
tation channels. A portion of the wave remains on the ‘‘Wan-
nier ridge’’ at infinite R, representing ionization. This
portion is mathematically separated from the excitation chan-
nels and emerges upon considering the asymptotic wave
function for complexR. Comparisons with more exact con-
ventional calculations indicate that this approximate theory is
accurate to within approximately 10% for excitation of the
nP52 level of atomic hydrogen by electron impact. Agree-
ment of calculated and measured ionization cross sections
indicates a similar accuracy for ionization.
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APPENDIX A: ALTERNATIVE FORMS
OF THE KONTOROVICH-LEBEDEV TRANSFORM

The Kontorovich-Lebedev transformf̃ (x) of a function
f (x) is @13#

f ~x!52
1

2E2 i`

i`

Jt~x! f̃ ~ t !tdt, ~A1!

where

f̃ ~ t !5E
0

`

f ~v !Ht
~2!~v !v21dv. ~A2!

Using the relations@26#

Ht
~2!~v !5 icsc~ tp!@J2t~v !2eitpJt~v !# ~A3!

and

H2t
~2!~x!5e2 i tpHt

~2!~x! ~A4!

and some elementary algebra, we write these equations in the
form

f ~x!52
1

2E2 i`

i`

Ht
~2!~x! f̃ 8~ t !tdt, ~A5!

where

f̃ 8~ t !5E
0

`

Jt~v ! f ~v !v21dv. ~A6!

Equations ~A5! and ~A6! imply that if f (x)50, then
f̃ 8(t)50. This, together with the identityHt

(1)(2x)
52exp@2itp#Ht

(2)(x), shows that Eq.~3.6! is both a neces-
sary and sufficient condition for Eq.~3.5! to hold.

APPENDIX B: ASYMPTOTIC FORM
OF BESSEL FUNCTIONS

The asymptotic approximations used to obtain the hidden-
crossing theory from the more fundamental integral repre-
sentation of the two-electron wave function that we have
developed rely heavily upon asymptotic expressions for
Bessel functions of arbitrary complex index. In this appendix
we verify that the asymptotic expressions are used only
within their region of validity.

Abramowitz and Stegun give, in their Eq.~9.3.3!, the
asymptotic form of Bessel functions

Hn
~1!~n/cosb!5A2

p
A 1

n tanb
exp~ in tanb2 inb2 ip/2!

~0,b,p/2!. ~B1!

SettingKR5n/cosb gives the more familiar form

Hn
~1!~KR!5A2

p

1

A4 K2R22n2
exp@ iAK2R22n2

2 in arccos~n/KR!2 ip/4#. ~B2!

This expression is put into an alternate form using the inte-
gral relation

2En

arccosS n8

KRDdn85AK2R22n22n arccosS n

KRD .
~B3!

Using Eq.~B3! in Eq. ~B2! gives the desired form,

Hn
~1!~KR!5A2

p

1

AR A4 K22n2/R2

3expF2 i E
n0

n

arccosS n8

KRD dn82 i
p

4

1 iAK2R22n0
22 in0arccosS n0

KRD G . ~B4!
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The complex conjugate of this equation gives the asymptotic
form of Hn

(2)(KR) used in Eq.~4.5!. Equation~B1! shows
that it is valid forKR.unu.

APPENDIX C: EVALUATION OF THE PHASE x„nJ…

The phasex(n) of Eq. ~4.9! does not have the form of a
phase integral for arbitrary values ofn. In this appendix we
show that it does have the form of a phase integral for the
specific valuen5nm that emerges in the stationary phase
approximation.

To derive Eq.~4.17!, start with Eq.~4.9!, namely,

x~nm!5Enm
dn8S arccos n8

Kr~n8!
2arccos

n8

KRD1AK2R22n0
2

2n0arccosS n0
KRD2AK2r~n0!

22n0
2

1n0arccosS n0
Kr~n0!

D , ~C1!

and integrate by parts usingr(nm)5R. Then Eq.~C1! be-
comes

x~nm!5E
n0

nm
dn8S n8

AK2r~n8!22n82

2
n82

AK2r~n8!22n82
1

r~n8!

]r~n8!

]n8
2

n8

AK2R22n82
D

1AK2R22n0
22AK2r~n0!

22n0
2. ~C2!

Substitutingn825n822K2r(n8)21K2r(n8)2 in the second
term in large parentheses gives

x~nm!5E
n0

nmAK22
n82

r~n8!2
]r~n8!

]n8
dn81D, ~C3!

where

D5E
n0

nmS n82K2r~n8!
]r~n8!

]n8 D dn8

AK2r~n8!22n82

2E
n0

nm n8dn8

AK2R22n82
1AK2R22n0

22AK2r~n0!
22n0

2.

~C4!

Defining new variables x5K2r(n8)22n82 and
y5K2R22n82and usingr(nm)5R gives

D52
1

2EK2r~n0!22n0
2

K2R22nm
2 dx

Ax
1
1

2EK2R22n0
2

K2R22nm
2 dy

Ay
1AK2R22n0

2

2AK2r~n0!
22n0

250. ~C5!

With D50, Eq. ~C3! becomes

x~nm!5E
n0

nmAK22
n82

r~n8!2
]r~n8!

]n8
dn8. ~C6!

Since 2«@r(n8)#r(n8)25n8221/4 Eq. ~C6! may be rewrit-
ten

x~nm!5E
n0

nmAK222«@r~n8!#2
1/4

r~n8!2
]r~n8!

]n8
dn8.

~C7!

Changing variables of integration fromn8 to r(n8)5R8 and
introducing a subscriptm on «(R8) andK(R8) to indicate
that themth branch of the function is to be used at the upper
limit R5r(nm) gives the desired expression,

x@nm~R!#5E
R0

R

Km~R8!dR8, ~C8!

where

R05r~n0!. ~C9!

The lower limit can now be specified, namely,n0 is cho-
sen so thatK2r(n0)

22n0
250. This implies thatR0 is such

thatK222«a(R0)21/(4R0
2)50 for some indexa of an adia-

batic function. Notice thata depends implicitly upon the
Sturmian indexn and that 2«a(R0)5(n0

221/4)/r(n0)
2. The

index a may differ from the asymptotic indexm since the
integration path from the inner region to the asymptotic re-
gion may encircle branch points, indicating a change of the
adiabatic eigenfunctionaÞm, as in the simple Landau-
Zener model~see Fig. 3!. This manifests a point emphasized
by Fano@27#, namely, ‘‘condensation point’’ basis functions
need not be identical to asymptotic basis functions.

APPENDIX D: EVALUATION OF IONIZATION
COMPONENTS FOR REAL R

Ionization components were identified in Sec. V by con-
sideringC(R,V) for complexR. It was then argued that
these components were present for realR. To justify this
procedure mathematically, we consider a model problem
where C(V) is replaced by the negative definite
C(a,u125p). This model avoids complications related to
unphysical bound states for negative Sturmian eigenvalues
2uru, but has all of the features essential for ionization.
Because this modelC(a) is negative definite, it also satisfies
all of the mathematical requirements of the Sturmian theory,
and has the important feature that, forn2 sufficiently large
and positive, the Sturmian eigenvalues are real and negative.

The one-Sturmian function of Eq.~4.7! is written as a sum
of two terms,

C~R,V!5F1~R,V!1F2~R,V!, ~D1!

where

F1~R,V!5
1

2E2`

n0
2

A~n!S~n;V!Hn
~1!~KR!d~n2!,
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F2~R,V!5
1

2En0
2

`

A~n!S~n;V!Hn
~1!~KR!d~n2!, ~D2!

wheren0 is defined by the equationr(n0)50, and the real
integration variablen2 is used.

Evaluation of the functionF1(R,V) in the stationary
phase approximation yields Eq.~4.18!, where only excitation
channels appear. The integrand ofF2(R,V) has no points of
stationary phase for real positiveR, but has such points for
R real and negative. The corresponding Sturmian eigenfunc-
tions are the real harmonic oscillator functions,

Sasy~n;V!}exp@2A2rasy~n!aa~a2p/4!2#. ~D3!

At points of stationary phaserasy(nm)5R the function is
proportional to exp@2A2Raa(a2p/4)2#, which is also real
for real negativeR. Now if we assumethat this analytic form
is correct asymptotically for real positiveR, with
A2R52 iAR, then we get

Sasy~n;V!}exp@ iARaa~a2p/4!2#, ~D4!

which is the ionization channel function employed in Sec. V.
The corresponding stationary phase expression for
F2(R,V) is

F2~R,V!}exp@ iARaa~a2p/4!2#expF i E
R0

R

K~R8!dR8G ,
~D5!

where K(R)5AK22«(R). This behavior ofF2(R,V) is
similar to Stokes’ phenomena, where an expression that
holds in one region ofR on the circle at infinity is retained in
a wider region. This retention is not always correct, and,
because the emergence of the harmonic oscillator ionization
channels is central to fragmentation, a more rigorous argu-
ment is desirable.

The more rigorous argument proceeds as for Eqs.~5.10!–
~5.12!. The functionF2(R,V) is evaluated by distorting the
contour of integration in Eq.~D5! to go fromn0

2 to infinity
along a path such thatr(n) goes through the harmonic os-
cillator region and the pointn25nQ

2 wherer(nQ)5RQ as in

Fig. 4. This can be done since the contour stays in the har-
monic oscillator region and is not deformed through any sin-
gular points. Recall thatRQ is a complex value ofR located
in the harmonic oscillator region.

For unu.unLu, the functionsr(n), A(n), andS(n,V) are
replaced by their asymptotic valuesrasy(n), Aasy(n), and
Sasy(R,V). We then define the asymptotic functionF2,nL

asy ac-

cording to

F2,nL
asy ~R,V!5E

nL
2

`

Aasy~n!Sasy~n,V!Hn
~1!~KR!d~n2!. ~D6!

For this function withnL5nQ , the integration contour can
be distorted to pass through regions whererasy(n)5R for
real values ofR. Accordingly, Eq.~D6! is evaluated by the
method of stationary phase for realR. At the points of sta-
tionary phase we have

Sasy„nm~R!;V…}exp@ iARaa~a2p/4!2#. ~D7!

This shows that the ionization channels are included in
F2(R,V) for realR, and that they add directly to the exci-
tation components fromF1(R,V).

Notice that this argument follows Eqs.~5.10!–~5.22!
closely. In fact, the complete expression forF2(R,V) is

F2~R,V!5
1

2En0
2

nQ
2

@A~n!S~n,V!2Aasy~n!Sasy~n,V!#Hn
~1!

3~KR!d~n2!1F2,n0
asy ~R,V!

5F2
inner~R,V!1F2,n0

asy ~R,V!. ~D8!

The one-Sturmian approximation includes ionization
channels because the Sturmian function for sufficiently large,
real, positive n2 represents two unbound electrons even
though the function is actually exponentially decreasing. The
important point is that such functions have the analytic struc-
ture appropriate for ionization. The mathematical analysis in
this appendix confirms that Kontorovich-Lebedev transforms
of these functions do indeed represent ionization.
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