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Some generalizations are effected here of the work of Heilmann and Lieb@Phys. Rev. A52, 3628~1995!#,
who summed the squares of all the normalized bound-state wave functions for the hydrogen atom. One of their
main results is shown to be equivalent to a spatial generalization of Kato’s theorem. Their asymptotic evalu-
ation of the above sum for larger is used to obtain a property of the bound-state Slater sum in the high-
temperature limit. The corresponding momentum space density is also briefly discussed.
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PACS number~s!: 03.65.Ge

Motivated by the recent study of Heilmann and Lieb@1#
~HL!, we consider here the electron density for a bare Cou-
lomb field. This is defined in terms of the hydrogenic bound-
state wave functionscnlm~r !, normalized such that

E cnlm~r !cnlm* ~r !dr51 ~1!
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Following the pioneering work of Feynman, Metropolis, and
Teller @2#, who introduced temperature effects into the
Thomas-Fermi theory, the simplest density-functional theory
to be referred to again briefly below, we shall generalize the
work of HL to embrace the bound-state~only! Slater sum
Sb(r ,b):
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cnlm~r !cnlm* ~r !exp~2ben!,

b5~kBT!21, ~3!

where en are the hydrogenic levels2Z2/2n2 in units of
e2/a0 , with a0 the Bohr radius\2/me2. Following @1#, we
shall often scale from the case of hydrogen whereZ51. In
the context of the Slater sum, which is seen from Eq.~3! to
involve the Boltzmann factor exp~2ben!, it is known from
the work of March and Murray@3# that the Fermi-Dirac sta-

tistics @2# can be obtained from the Boltzmann form, albeit
by a somewhat complicated transform procedure.

Returning now to the electron density defined in Eq.~2!,
the present author@4# has obtained the spatial generalization
of Kato’s theorem@5# for an arbitrary number of closed
shellsN as

]rN~r !

]r
522rNs~r !, a05Z51, ~4!

whererNs(r ) is the s-state~l50! contribution to the total
electron densityrN(r ). This result~4!, in the limit in which
the number of closed shellsN tends to infinity, can readily
be seen to be equivalent to Eq.~2.12! of HL, when their Eqs.
~1.24! and ~1.25! are also used with the orbital angular mo-
mentum quantum numberl set equal to zero.

One of the achievements of the study of HL is to evaluate
r`(r ) asymptotically for larger as

r`~r !5Ar23/2, A521/2~3p2!21, r→`, ~5!

where the constantA is precisely equal to the Thomas-Fermi
constant in the form ofr`(r ) at, however, smallr . Using Eq.
~4!, one finds immediately for thes-state densityr`s(r ),

r`s~r !5 3
4Ar

25/2, r→`. ~6!

For any finite numberN of closed shells,rN(r ) andrNs(r )
fall off exponentially, with the rate of falloff dominated by
the factor exp~22r /N! at sufficiently large distances from
the nucleus. HL determine the maximum value ofr`(r ) as
r`~r50!.0.383, which is, of course, solely due to thes
states. The generalized Kato theorem tells us that, since
r`s(r ).0, ]r`(r )/]r is negative for all finiter and this is
also true for an arbitrary number of closed shellsN from Eq.
~4!.
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Let us turn next to the bound-state Slater sumSb(r ,b)
defined in Eq.~3! ~see also@6#!. March and Murray@3# ~see
also @7#! derived the differential equation relating the Slater
sum Sb(r ,b) to its s-state ~l50! componentSbO(r ,b) as
~settingZ51!
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and this is equal to22Sb0(r ,b) from the spatial generaliza-
tion ~4! of Kato’s theorem. Independently, Pfalzner, Leh-
mann, and March@8# ~see also@9#! and Cooper@7# have
derived a third-order differential equation satisfied by the
Slater sum for the bare Coulomb problem, namely~again
with Z51!,
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Now let us employ the definition~3! to form the derivatives
on the right-hand side~rhs! of Eq. ~8!, e.g.,
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Because of the separability of the individual terms in the
summation on the rhs of Eq.~9!, the r derivative and the
b→0 limit are interchangeable. One can rewrite Eq.~8! as
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Using the large-r form ~5! in Eq. ~10! yields, toO(r23/2),
after a short calculation,
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with only the last two terms on the rhs of Eq.~10! contrib-
uting to O(r23/2). Evidently, using the HL form~2.1! of
r`(r ), one can obtain further terms in the large-r result~11!.

Since Kato’s generalized theorem gives]Sb/]r522SbO ,
we also obtain from Eq.~11!, to leading order at larger ,
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But
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Thus one has the summation in Eq.~14! for large r as
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whereas from Eq.~6! above
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Finally, we turn to the momentum densityn(p) for an
arbitrary number of closed shellsN. Fock @10# was the first
to obtain this density for themth closed shell in a bare Cou-
lomb field as

nm~p!516pm
5m2/p2~pm

2 1p2!4, pm5Z/m. ~17!

Summing this overN closed shells yields
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First considerp50, i.e.,
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For the number of closed shellsN@1 this tends to~8/3p2Z3!
N6, which is simply the result of replacing the discrete sum-
mation(m5 by an integration.

The term ofO(p2) can also be calculated exactly for ar-
bitraryN, to yield
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Them7 sum is again calculable for arbitraryN to yield
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which readily gives back the integral limit 2N3/p2Z5 in the
limit of very largeN.

In the opposite extreme of large momentump, one readily
finds from Eqs.~17! and ~18!

nN~p!5
16Z5
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m3 . ~22!

In the limit N→`, the summation yields the Riemannz
function, evaluated at argument 3 and having the value

1.202 06. Thus, some generalizations can be effected follow-
ing the elegant study of HL, the electron density here being
considered in some cases for an arbitrary number of closed
shells both inr andp spaces.

A stimulating visit to Liverpool University provided the
opportunity to bring this work to fruition and the writer
wishes to thank Professor D. J. Bacon for making facilities
available and for generous hospitality.

@1# O. J. Heilmann and E. H. Lieb, Phys. Rev. A52, 3628~1995!.
@2# R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev.75,

1561 ~1949!.
@3# N. H. March and A. M. Murray, Phys. Rev.120, 830 ~1960!.
@4# N. H. March, Phys. Rev. A33, 88 ~1986!.
@5# T. Kato, Commun. Pure Appl. Math.10, 151 ~1957!.
@6# N. H. March, Phys. Lett.111A, 47 ~1985!.

@7# I. L. Cooper, Phys. Rev. A50, 1040~1994!.
@8# S. Pfalzner, H. Lehmann, and N. H. March, J. Math. Chem.16,

9 ~1994!.
@9# C. Amovilli and N. H. March, Phys. Chem. Liq.30, 135

~1995!.
@10# See, for example, R. M. May, Phys. Rev.136, A669 ~1964!.

54 5417BRIEF REPORTS


