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Propagation and amplitude correlation of pairs of intense pulses interacting
with a double-A system
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The propagation of intense laser pulses through a four-level atomic system in a doableme is exam-
ined. Under conditions of adiabatic perturbation of the atomic quantum state, paired pulses with arbitrary
shapes establish a correlation between their amplitudes and reach a quasiform-stable regime of propagation.
The amplitude correlation is a feature of pulse matching, while the propagation presents the same properties as
the so-called adiabatons, predicted and observed in sihggstems. We show that in the doublescheme
the phenomena of pulse matching and adiabaton-type propagation are associated with two distinct propagation
normal modes[S1050-294@6)07212-5

PACS numbg(s): 42.50.Gy, 42.25.Bs, 42.50.Hz, 42.50.Md

[. INTRODUCTION stable pulses can have arbitrary shape, determined by the
initial pulse shapes and by the preparation conditions of the
A A-type atomic medium can be pumped, by a pair ofmedium. As pointed out ifi13], pulse matching originates

strong resonant electromagnetic fields, into a coherent supeby the selective absorption of a well-defined superposition of
position of the lower-energy states, where the atomic poputhe two applied laser fields interacting with the coherently
lation is trapped because of destructive interferences betwegmepared A system, while the orthogonal superposition
two different absorption paths. This phenomenon, known apropagates without attenuation. The propagation of those
coherent population trappin@PT) [1], leads to the suppres- field superpositions, termed as “dressed fields,” has been
sion of the total absorption of the resonant fields and renderdiscussed in14,15, as well. Matched fields represent a
the atomic system transparent, even with most populatiosteady state solution to the problem of the propagation of a
remaining in the lower-energy states. This type of cancellapair of time-dependent fields through /& system. This
tion of the absorption is currently termed electromag-steady state is stable against small fluctuations of the inten-
netically-induced transparen€iIT). In A systems, the EIT sity and phase-difference of the two fields, as explicitly
is obtained as a direct consequence of the coherent trappinghown in[17—19. The propagation of matched pulses in the
In general, the EIT is produced by quantum coherences anabsence of initial coherent preparation has been investigated
interferences and can be achieved in different multilevel sysin [13,20. It has been shown that the preparation of the
tems, includingV-type systems where the CPT does not oc-atoms is performed by the leading edge of the applied pulses,

cur [2]. if sufficiently intense, through the CPT process, so that the
EIT has attracted much interest for its application to theatomic medium results transparent to the pulse trailing edge.
amplification without inversiofAWI) [3,4] and several au- In [21], new form-stable pulses, named adiabatons, have

thors have focused their attention on the implications of thébeen predicted under specific conditions of adiabatic excita-
EIT on the total transmission of resonant ligh{. Disper-  tion of a A system. The adiabatons develop as a pair of
sion propertie$6] and spatial consequendés-9] of the EIT  complementary pulses interacting with two different transi-
have also been investigated, as well as applications to nortions and propagate with reduced group velocity. The invari-
linear optics[10]. In [11], the analysis of the phenomena of ance properties of this type of pulse have been discussed and
CPT, EIT, and AWI has been extended to autoionizing transpecified in22] and their essential features described experi-
sitions. mentally in[7]. The formation of the adiabatons is under-
The absorption and dispersion features of the EIT haveatood in terms of adiabatic following of the instantaneous
important consequences on the interaction of time-dependenbnabsorbing CPT superposition and is related to the process
electromagnetic fields with an atomic medium and differentof stimulated Raman adiabatic pass&§&IRAP) [23].
aspects of the propagation of pulsed excitations through Interesting propagation features have also been predicted
three-level systems have been discussed in several theorefidr four-component fields interacting, in strong-coupling—
cal paperd12-22. In [12], the process of pulse matching weak-probe configurations, with four-level atomic systems.
has been predicted as a result of the nonlinear interaction @s shown in[24,25, these systems can be prepared coher-
two laser pulses with a system, with the coherence be- ently, by applying a pair of coupling pulses to two different
tween the lower-energy states fixed by an external preparatomic transitions, so that paired probe pulses, coupled to
tion. This process generates a correlation between the Fowother transitions, experience shape matching and propagate
rier components of the two pulses, and hence a shapeithout losses. Different configurations of interaction, such
matching of their temporal profiles. After the correlation is as the doublek [24] and the doublé/ [25], lead to the trans-
established, the matched pulses propagate without losses apdrency of the four-level medium for weak probe fields. In
without group velocity reduction and dispersion. These[26], the refractive properties of the coupling-probe double-
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A system, associated to the process of pulse matching, have
been investigated.

In this work, we report on additional properties of the
dynamics of the doublé- system, when all of the driving-
field components have a high intensity. We focus on the case
of adiabatic perturbation of the initial coherent atomic state
and use, to describe the system under these conditions, the
dressed-basis representation introducefR2. We demon-
strate, both analytically and numerically, that the adiabatons 1>
originate also in four-level systems and evidence the corre-
lation that, in such systems, is established between the am-
plitudes of these pulses. Under adiabatic conditions, the field

(@)

propagation is governed by two spatial normal modes. One ® Ip>

of these modes, mainly absorptive and associated to the tran- Q

sient regime of pulse matching, is characterized by a short Q o
extinction length. Its absorption determines the establishment y o g
of a correlation between the amplitudes of pulses acting on c
different transitions. The second mode, essentially dispersive ¥ X

and traveling with reduced group velocity and very small 1A INA>

losses, describes the propagation of pairs of adiabatons. Our FIG. 1. DoubleA system in thea) bare-state an¢b) dressed-

analysis clarifies that pulse matching and adiabatons repretate bases.

sent two distinct transient phases towards the stationary state

of the atom-field system, which is represented by matchedhon lower state, driven by circularly polarized laser fields:

fields and coherently trapped atoms. New effects of mutuathemg=1 andmg= —1 Zeeman substates of the lower state

interaction between the different field components and interare coupled to then-=0 substate of either upper state by

play between the process of pulse matching and the formaesonaniz~ ando™ field components, respectively.

tion of the adiabatons are predicted. We describe the electromagnetic fields through the space-

The organization of the paper is as follows: In Sec. Il wetime—dependent Rabi frequencieg.(z,t)=d.E.(z,t)/#,

derive the Maxwell-Bloch equations for the doullesystem  B.(z,t) =d.E»(z,t)/%, ap(z,t) =dpEp(z,1) /7, and

in the basis of the adiabatic dressed states. In Sec. Ill thes@,(z,t)=d,E ,(zt)/%, where E;j(zt), for i=c,p and

equations are solved under quasiadiabatic conditions, in=1,2, is the slowly-varying envelope of the field compo-

terms of propagation normal modes. The normal-mode soluaent interacting with the transition|j)—|i) and

tion is discussed in Sec. IV, where numerical simulationsd; = (3%¢°I'/80»7)Y?is the dipole moment matrix element of

that support and extend the analytical description are alsthe symmetric transitions from the lower states to the upper

presented. state|i). The Maxwell-Bloch equations of the doublesys-
tem in the basis of the bare atom are written explicitly in

L. THE FOUR-LEVEL SYSTEM IN THE ADIABATIC [27]. Here we introduce the basis change to the dressed states

DRESSED STATE BASIS INA) and|A),
A four-level system in the doubld- configuration is INAY— Bel1)— acl2) 19
shown in the diagram of Fig.(&). The interaction scheme is |ac|2+ |ﬁc|2,

composed by two\ subsystems that share the lower-energy
states |1) and |2). For simplicity, the dipole allowed

|1)—[i) and|2)—]i) transitions {=c,p) of both A sub- _adD+Bdl2)
N ; |A) . (1b)
systems are supposed symmetric, i.e., with equal frequency, V] ac®+|Be?

dipole moment, and spontaneous emission rate. We describe
the interaction of this system with slowly-varying four- If we considera,,8,=0, then the system in Fig.(d is
component fields and assume that each component is onfgduced to the\ system composed by the sta&$, |2), and
coupled to one of the allowed transitions and has its carriefc): the state NA) represents the nonabsorbing CPT super-
frequency exactly resonant with the transition frequency. Weposition [1] associated to this system, whila) is the ab-
disregard the transverse distribution of the fields and the insorbing orthogonal superposition. When the fields and
homogeneous broadening of the medium. These assumptiofs are time dependent, unless they have matched time-
allow us to obtain a straightforward analytical description ofprofiles,[NA) and|A) are explicit functions of the time, as
the spatio-temporal evolution of the system. well. The field components,, and 8, could be chosen as
We indicate the angular frequency of the transitions to thecoefficients of the superpositions in Ed$) in the place of
upper statgi) (i=c,p) asw; and the natural decay rate of a. andf.: the following analysis is independent of such a
liy asT;. The population ofli) is supposed to decay by choice.
spontaneous emission intd) and |2) with equal rates, We describe the spatio-temporal evolution of the atom-
given by I';/2. Nonradiative decays of the lower states arefield system in the moving frame of the coordinatesz and
neglected. A symmetric doubl&- system is provided, for 7=t—2z/c. Under exact resonance conditions, it follows from
instance, by twdc=1—F=1 atomic transitions with com- the Maxwell-Bloch equations that, if all field components are
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in phase at the entry surface of the medium, and the initialgp . - - o

atomic polarization isr/2 out of phase with respect to the — === YpPpa~ 12y (ppp=pan) ~1Q¢ ppctiQp pana),
field, then the phase of the field, as well as that of the atomic (4d)
variables, remains unchanged during the interaction. Thus, in

the following, we can assume the Rabi frequencigs f9ppc

Be, ap, and,6’ real for anyr and{. We define the new field 97 = YocPpc~ IQppC(NA) |Qp PeA— |Qc PpA> (4¢
variablesQ (g 7) and Q. p (£,7), with dimensions of fre-
guencies, as

MZQ_(P NAYNA) ~ PaA) 1O penay QS poina

0L (L =L+ BAL T, (29 or e TN PN e R
+iQ5 ppa, (4)

Bc({, 'T) ac(g ) —ad, 'T) ,Bc(g ) Ipec
Qc (¢,n= Q;z(g,T) ) (2b) a7 = _rcpcc_2|Qc PcA (49)
0
Qr p(,7)= wol &) epll, T):f:)(g TBp(& T), (20 %=—Fpppp_2i(Q;;Pp(NA)+Q;PpA), (4h)
Bdéﬂa(&ﬂ ao(£,7) Bo({,7) Ipamna Lo Tp 0 o — 20

Q,(Ln)= d T o) g, =g Pect 5 PppT 2120 ppina = 20 pay -
QL&) .
(4i)

A pair of field variables of the form o), has been intro-
IPan _ L'e

duced in[22] to describe the atom dynamics and the loss-

r
-p ; + +
S Pcct 5 PppT 21(Q¢ peat Oy ppa)
free propagation of laser fields in a three-levelscheme T2 ot 27PP ©re PP

under STIRAP conditions. In terms dd; and Q,, the +207 panay s 4))
original Rabi frequencies are expressed by
with

ac(é,T)=Q:(§,T)SiF{ f_ Qc_(f-T’)dT’vLcons}, (33 I
')’c:?v (53)

,80(5,7-)=Q§(§,T)C03{fT Qc(g,q-f)dr%consﬁ, (3b) r,
_OC ‘)/p:?! (Sb)

a(gﬂ:a44ﬂ9H4ﬂ+BdLﬂQ;@J) - .

ps QL (¢, 7) ’ Ype=5 (Tt Tp). (50

Bo(¢ T):ﬁc(g'T)Q (5 7) a1, (4 T) (39 Here all terms proportional to the field variafe; arise

e QL) from the explicit dependence dRNA) and|A) on time (cf.

the equations derived {122] for the singleA systen) Equa-

Equat|ons(3a) and (3b) are easily obtained from the relation tions (4) hold for real fields. We notice th&; andQ), can

Q. =(d/d7)[arctan@./B;)],  with  the  condition e consistently considered real if thieh densny matrix el-
IlmTq,warctarﬁac(g“ /B¢, 7)]=const. ements, withi=A,NA and j=c,p, are considered purely
In the basis of the dressed states defined in Egsthe  imaginary and the other elements real.
equations for the elements of the density majsixn the Equationg4) must be solved in a self-consistent way with

interaction picture read, under exact resonance conditions,the Maxwell equations that, in the slowly varying envelope
approximation and in terms of the field variabl®s and

IPe(NA) _ - o - O, are
e — YcPc(NA) Qc pcA_lﬂp Ppc+ |Q;—PA(NA) ) p
(48) AN
g~ KePens (6a)
apCA . + — . +
o7 == YePca— 1 Q¢ (pec—pan) + Q¢ pc(NA)_lﬂp Ppc 90 d(p
c . c(NA)
(4b) =ik —( ) (6b)
a Cor\ QJ
IPp(NA) _ + -
2 — YpPpna) ~ 1 (Ppp= P(NA( NA)+|‘Qp PA(NA) » iy . Q,
T a__'KpPpA'HKcFPc(NA)v (60)
(40) ¢ c
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&QF: Q; lll. PULSE PROPAGATION UNDER QUASIADIABATIC
_:iKppp(NA)_iKc_+pC(NA) y (Gd) CONDITIONS
al Q;

We now describe the transient dynamics of the atom-field
system under conditions of weak coupling of the state
where the coupling coefficient;, fori=c,p, is given by INA) to the upper states, i.e., féf; andQ, much weaker
than Q and Q). When this requirement is satisfied, the
8ma;N|di|2 evolution of the stat¢NA) is quasiadiabati15]. We con-
Ki = 7 sider, for any positiorf, the statdNA) fully occupied at the
ch initial time, as an effect of a coherent preparation of the
atomic sample. In fact, the double-system can be prepared
. . . into any superposition of the lower-energy bare states b
with N the atomic density. means {)f th% appplication of a pair of sufggiently long andy

Formally, Egs.(4) and (6) describe a four-level system . t tched bul ith litude ratio. to eith
driven by the fields2? and Q7 . As sketched in Fig. (b), Xiﬂzzyrggﬁifo zpj]"ses' With proper amplitude ratio, fo erther

Q¢ andQ couple the state suﬁperpositid}h) to the upper From Egs.(4) and (6) we can see that, with all the popu-
stategc) and|p), respectively(d; couplesNA) to |p), and |ation initially in [NA), Q. and(), remain small during the
Q¢ connects|NA) and |A). Some interesting conclusions interaction, if they are both small at the entry into the me-
can be directly drawn from the scheme in Figb)l Let us  giuym, in ¢=0. For |Qg|,|Q;|<|QC+|,|Q;|, the atomic
observe that, when the original fields. and B. have  popylation always remains, at first order, in the s{até)

matched time profiles, i.e., have the same time dependencg,q the coherences between initially empty states are never
and only differ from each other by a constant scaling factorgyited

then the transformed field is identically equal to zero. On
the other hand(}, vanishes wherw, and g, are, at any pinaNa (L T) =1, (99

time, in the same ratio ag, and 8.,
pAA(g’T):pCc(giT):ppp(é/!T)zo’ (9b)

Peal{,7)=ppa({,7)=ppc({,7)=0. (90)

Under these conditions, the equations of motion for the re-
maining atomic variables become

a'p(guT) :ac(guT)
Bp(&7)  Be(&,7)’

®)

When e« and 8. have matched profiles, so that their ratio is
independent 01_‘ time, this equation gstablishes theﬁ condition —pena (LT =— %P:;(NA)(LT)JFiQ:PA(NA)(LT),
of pulse matching foer, and 8, . Provided that botlf) ;. and T

), are equal to zero, the state superpositid) is decou- (109
pled from the fields. Then, if the atomic system is coherently

prepared in|[NA), all the population remains there indefi- —Pp<NA)(§yT)=—YpPp<NA>(§yT)+iQE(§,T)

nitely, while the transformed field@, and() interact with T

the remaining empty states and propagate freely. The conser- + iQ;PA(NA)(é“, 7, (10b)

vation of O, and (), corresponds, in the bare-state repre-
sentation, to the stable propagation of two pairs of matched

pulses, whose amplitudes satisfy the correlation condition E_pA(NA)(g,T)ziQépc(NA)(g,q-)+iQ;pp(NA)(§,r)
given in Eq.(8). Thus, in the dressed state basis it is imme-
diately seen that pairs of arbitrarily strong and arbitrarily +Q-(L,7). (100

shaped pulses, with matched profiles and correlated ampli-
tudes, maintain the atomic population coherently trapped in #oreover, at first order, the driving terms on the left-hand

nonabsorbing state. Atoms in the coherent trapping superpgide of Eqs(6a) and (6¢c) vanish, so that the field®@_, and
sition [NA) and matched pulses correspond to a stationarn; are conserved along,

state of the atom-field systef28].

The application of the field€); and Q, represents a QL 7=07(0,7), (113
perturbation to the stationary state described above. In this
work, the spatio-temporal dynamics of the system is exam- Q;(g,T):Q;(o,T)_ (11b

ined in the hypothesis of weak perturbations. This assump-

tion does not require, in general, that the original fiedds ~ We further assume that the decay rajgsand y,, are suffi-

Bc, @p, and B, are weak, since botkl; and(}, can be ciently large that the coherencpgna) andpyna instanta-
rendered small by properly choosing the relative amplitudeseously follow the evolution of the fields. This adiabaticity
of those fields. As shown in the following, with strong origi- hypothesis simplifies the analysis but does not change, in
nal fields new nonlinear phenomena arise in the transiergubstance, the results presented in the following. By elimi-
dynamics of the four-level system, not observed in strongnating p.na and ppna from Egs. (108 and (10b), and
coupling—weak-probe configurations as those considered isubstituting them in Eqg10c¢), (6b), and(6d), the Maxwell-
Refs.[24-28. Bloch equations are reduced to
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Q%07 Q%07
+

Jd
E_PA(NA)(&T):— e 7 pana)(LsT)
_ 0,07
+Qc ({7 ———Q, (1), (129
Yp
J _ Ke d
&_gﬂc(ng)__Zz_pA(NA)(g!T)l (12b)
697 B Kp(r
(9_5 p(ng)__,y_p p(ng)
+(ﬁ—ﬁ)ﬂ*<0> (¢.7)
e 7o) P T PaNA (L T).
(129

By choosing the amplitudes of the incident fielfls” and
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rates, then the coefficienB andC vanish and the evolution
of (; and (), is diagonal. Thus, only for large values of
Q; a mutual interaction between the perturbation fields
Q¢ and(}, is produced. This interaction will be discussed
in the next section.

The solutions to Eq414) are combinations of two normal

modes exp— 7.} and exp— 7.},
O (Lo)=a(w)e” M@+ ay(w)e ¢, (169
O (£, 0)=Dbs(w)e” i+ by(w)e™ 2@, (16h)

with the propagation coefficientg; and 7, satisfying the
condition

7°—(A+D)np+AD—BC=0. (17)

The coefficients; andb; (i =1,2) are determined by impos-

Q) as constants, Eq&l2) become a set of linear differential N9 that{; and €, satisty Egs.(14) with the boundary
equations with constant coefficients, easily solved analyticonditions assigned ig=0. _ _
cally in the frequency domain. This particular case allows us BY solving Eq.(17), we obtain the following expressions
to determine the basic mechanisms underlying the evolutiofPr 71 and 7,:

of the system.

By Fourier-transforming Eq(12a with respect tor, we

obtain
Q.
_Qp (g,w) il

) 1 .
PA(NA)(é,w)Zw—,_m Q. (o) — 7o
" (13

1
m=5[A+D+(A+D)’~4(AD-BC)], (18a

1 2
7=5[A+D— JV(A+D)2—4(AD-BC)]. (18b

We assume that all the relevant Fourier frequencies are suf-

where the Fourier-transformed variables are marked by a cifficiently small, such thatw|<T'[. At first order inw/T'[,

cumflex accent and the effective decay rafgs=Q; %/,

with i=c,p, are introduced. By substitution of E(L3), the

propagation equations fcﬁ‘:g and(}, become

Jd - ~ N
&—gﬂé(&wF—A(w)ﬂé(s“,w)—B(w)ﬂ,j(é“,w), (143
0 - N “
&—gﬂg(é,w)I—C(w)QE(J,w)—D(w)QE(Lw), (14b
with
2 H ! !
@ —io(I'c+Tp)
A(w)_nc w2+(1'*(l;+1'*';)2 ’ (153)
2 H ! ! +
__ e ielctly) Oy
B(w)_ 7c w2+(ré+ré)2 ,yp ’ (15b)
g g letlptio
C(w)=(ﬂp—ﬂc)mﬂp : (159
(7pT e+ el (T 4T o) + w0l —iw(nh— 79)T}
D(w)=

w?+(C+T))? ’
(159

the propagation coefficients are given by

1l iw o ( 0} )2 (193

e {1 U ry) |
o o2 19b
2= u2 l—vé ’ ( )

where the lengthl; and the velocity parameters; and u,
are introduced as

rp+Ie¢

L= BT (209
! U?Fc+77?rp
(Tp+TO? [ 75 nE)
U= | o+ =r (20D
! (775_77(?)2 l_‘p 1—‘I(:
r, T
p c
U,=—2+ S (200
S

The real and imaginary parts af, and 7, represent the
absorption and dispersion coefficients, respectively, associ-
ated to the two propagation normal modes. At first order
R{m4} is constant inw and describes a uniform damping,
with characteristic length?;, of all Fourier components,

wheren®=k;/v;, fori=c,p, denotes the Beer's absorption while Z{7,} is linear inw and determines the slowing down
coefficient of the symmetric transitions from the lower statesof the group velocity: the more Beer’s coefficieny§ and

to the upper statg). We notice that, i{Q; is equal to zero,

77‘3 differ from each other, the larger this dispersive term is.

or very small with respect t@ ! and to the upper state decay For {>¢; only the second mode survives. At lowest order
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- components and for the formation and propagation of adia-
[ - 1.2 batons. The solution is discussed, in Sec. IVA, in the
i A - dressed-atom representation, i.e., for the fiefds and

' Q;, and in Sec. IV B for the original fielda., 8., ap,
- andg, in the bare-atom representation. The analytical results
obtained in Sec. Il only apply for a limited choice of time
distributions of the amplitudes of the input fields, namely,
when the field variable€); and Q, are independent of
time. An example of time distributions that do not meet this
requirement is considered in Sec. IV C. In that case, the field
evolution is computed numerically, but is still understood in
terms of the mechanisms previously described analytically.

(s 00 %

A. Field evolution in the dressed-atom representation

We first use Eqs(16) to describe the evolution of input
fields Q. (0,7) andQ, (0,7) of the form shown in Fig. @):
Q. (0,7) is taken equal to zero, so the¥; (0,7) represents
the only nonvanishing but small perturbation to the CPT
steady state of the system. The fields andQ, are as-
sumed independent of time. For the assigned boundary con-
ditions, the solution given in Eqg16), transformed back

(10* s

QS

"{O. into the time domain, reads
B J { {
(=] — _
Q =—F—=Q ——|exp — —
mf e (&) ]:[37' p(O'T Ul)e p[ 51]
i J Q.10 d 21
Q. (Z,7n=0Q,10 £ ex £ +d aQ_ 0
\T)= T — - - T
p p U 4L ar. P
-0.4 02 00 0.2 04 0.6
1%
T (us) B P e a1
Ul gl orT p U2
FIG. 2. Time dependence of the fieldk, (solid curves, left (21b)
axes andQ, (dotted curves, right axgérom Egs.(21), for differ-
ent penetration lengths within the mediunta) 477?:0, (b) With
{mp=1, (0) {n5=50, and(d) {7;=500. The parameter values
used in the calculation arE.=1.0x10° 7!, T',=9.3x10" s7 %, 5 .
ke=3.9x10° cm™! s71, k,=1.5x10° cm~* s~ 1. For the fields - U Q,
Q/ andQ the constant valu@; =, =1.41x10° s~ * has been F= P N R (223
assumed. The corresponding extinction length for the first normal pee o
mode isglnfj:l.sl. In(c) and (d) the scale on the right axes is 8, B By
expanded by two orders of magnitude with respedtajcand (b). G= 7c( Mo~ ﬂc)rp (22b)

. o o | . (Tt 7T’
7, is purely imaginary and linear im and describes a dis-
persive and shape-invariant propagation. In the Iaboratorqchis solution is plotted as a function ef for three different

frame, the group velocity; associated to theth mode, for - P +
g ) ) - . positions¢, in Figs. 4b)—2(d). For strong values df} ; , the
1=12, is defined by bi=1/c+1/u;. The higher-order spatial evolution of the perturbation field®; and Q, is

terms in the expansions of Eq4.9) represent nonlinear cor- : o .
rections to the absorption and dispersion coefficients and ar%etermmed by a _combmauon of the two normal mpdes. Th|§
enders the two fields coupled to each other. For instance, in

responsible for small effects of group-velocity dispersion an DT :
selective absorption of high-frequency Fourier componentsc]{:hig Slztutﬁg??) ?Xairr?ilt?zjlc; heeJSélwt?) Sz(aeigro&i%zﬁjsr}?ofr:?r;e
. c ! ’

absorption ofQ}; during the transient of decay of the first
mode. In general, forf> ¢, the ratio between the fields
Q. and ), becomes independent ¢t In the bare-atom

In this section we illustrate the normal-mode solution de-picture this corresponds, as exemplified in Sec. IV B, to a
rived above and show how it accounts for phenomena o€orrelation between the amplitudes of the different field
correlation between the amplitudes of the different fieldcomponents. In Figs. () and 2d) the first propagation

IV. AMPLITUDE CORRELATION AND FORMATION
OF ADIABATONS
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mode is extinguished and the field evolution, purely deter- 1014 B
mined by the second one, corresponds to a dispersive and T () (b)

shape-invariant propagation. - a, B, . o,
In the adiabatic limit, when the rate of change of the

perturbation fields is completely negligible with respect to 1.00 7]

Q7 and Qp, Egs. (21) simplify to Q. (¢,7)=0 and i i B,

Q, (£,71)=Q,(0,7)exp{— /). This also applies when the
field Q; is negligibly small. In these cases, f6¥ ¢; both
perturbation field€), and(}, are equal to zero so that, as
shown in Sec. Il, a steady propagation regime with matched
pulses is established. In this sense the exponential decay of
the first normal mode, with characteristic length corre- v
sponds to the spatial transient of pulse matching.
The second mode, corresponding to the last term on the T .
right-hand side of both of Eq921), describes the form-

0.99+ ]

1.01

)

1.00

Oss

stable and delayed propagation typical of the adiabatons, in- > **1+—vb+— ¥+ 1+ F+—a—F—71

troduced in[21] for the A system. As first pointed out in A 1~01ﬂ (@) 1

[22], the invariance of the pulse shapes, in this kind of propa- 3 o o

gation, is an approximate result, which holds when the rel- = T © ) P

evant Fourier frequencies of the perturbation fields are suffi- < ___Q; __O_f

ciently small. In the present analysis, apart from the 5"

condition|Q [,|Q, |<|Q].]Q,], the shape invariance fol- . B 7 B,

lows from the first-order truncation in the expansion of Eqgs.

(19). Actually, in the propagation of the adiabatons, absorp- o

tion and group velocity dispersion are small effects, but not 1.014 (9) 7 (h)

negligible over very long propagation distances. These ef- i o | o,

fects cannot be observed within the distances considered in °

Flg 2. 1.00_‘<>— —;—G—
B. Field evolution in the bare-atom representation l B, T B

0.99 -

From the solution foK) . andQ; given in Egs.(21) and
displayed in Fig. 2, by applying the formulas of E¢R), we
find the corresponding solution for the original fields,
Be, ap, and By, shown in Fig. 3. In Fig. &), the fields
a. andg. in =0 are independent of time and equal to each FIG. 3. Spatio-temporal evolution of the original fields-3;
other, while, in Fig. &), a, and 8, are given by opposite- (left column anda,-B,, (right column corresponding to that of the
signed modulations superimposed to strong and equal cotransformed field€); and (), in Fig. 2. The time profiles of the
tinuous components: such time distributions for the originalfields are shown iria) and(b) {7;=0, (c) and(d) {75=1, (e) and

I | I T 1
-0.4 -0.2 0.0 0.2 0.4 0.6

T (ps)

| T [ | 4
-0.4 -0.2 0.0 0.2 0.4 0.6

T (us)

fields correspond to those of Fig(a® for the transformed
fieldsQ; andQ, , with Q] andQ, constant inr. Figures

(f) {np=50, and(g) and (h) {7;=500. Exact numerical results
(dotted curvepsare shown together with the analytical resu#slid

3(c) and 3d) show that, af). develops at the expense of curves.
Q, [cf. Fig. 2b)], the modulations of the incident fields
a, and B, are transmitted to the initially flat fields, and
B¢ . In Figs. 3e)—-3(h), the behavior of the fields is shown
after the first propagation mode has died out. From E2{8.

very weakly. Thus, fog> {3, O, is negligible and Eq(8) is
approximately satisfied. However, that equation does not de-
scribe, here, a condition of shape matching for the fields

we see that the second mode in the evolution of fbthand &P andgy, as the rations/f3; is time dependent. Instead, it
_o . . : .. is nearly obeyed with a.({,7)~ay,({,7) and

), is described by terms proportional to the time derivative (£,7)~B(¢,7). The conservation o)’ :;nd(ﬁ alon

of 1, evaluated iny=0. In the present case, those terms areﬁc ' LA c P 9

. ¢ forces the modulations in the field paitg.-8. and a -
of comparable strength and, at any timenmuch smaller than o P
- . . to have opposite signs. In the bare-atom representation,
the values assumed Wy, in {=0. This appears from Figs. Bp PP 9 b

i - - the formation of modulations with complementary ampli-
2(c) and 2d), where the fieldd); and{), are shown after ,qes in the time profiles of the fields is a feature of the

the full absorption of the first mode, when only the Cont“bu'adiabatons[21,22. The comparison between the curves in
tion of the _second one is present: in those fig_ures the ampli:igs' 3e) and 3f) and those in Figs.(8) and 3h) evidences
tudes of(), and(}, are two orders of magnitude smaller that after the absorption of the first mode, such modulations

than the initial amplitude of), , in Fig. 2&). Nevertheless,
as shown in Fig. @), the second mode if}_ results in a
relatively strong modulation of the fieldg, and 8, depen-
dent on{)_ through a time integrdlcf. Egs.(3a) and(3b)].
On the contrary, the second mode(¥y affectsa, and g,

propagate simultaneously with reduced group velocity,
nearly preserving their shapes for long penetration distances.
The generation of the fiel@, and, in general, the cou-
pling between the two perturbation fields can be regarded as
a phenomenon of nonlinear mixing between the “pump
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FIG. 4. Time dependence of the field pairs-8. (left column
and ap-B, (right column in (a) and (b) gngzo, (c) and (d)
{mp=50, and(e) and(f) { 7, =500. Numericaldotted curvesand
analytical(solid curve$results are almost indistinguishable. Param-
eters as in Fig. 3.

FIG. 5. Time profiles of the fielda,, B, (left column, solid and
dotted curves, respective)lyap, and g8, (right column, solid and
dotted curvesfrom the numerical solution of the Maxwell-Bloch
equations, at different penetration lengtte: and (b) (77?=0, (o)
and(d) {»p=50, and(e) and (f) {7p=500.

» + + “ Y —
waves Qc and Q, ar,]d the “probe waves”(), .and_ . (=0, different from zero. Moreover, as the field vanishes
Q. In the bare-atom picture, a consequence of this mixing,, 7——, while 8. assumes a constant value different

is t_he po_ssibility to transfer amplitgde modulations from ON€om zero, the nonabsorbing statd A) of Eq. (1a) coin-
pair of fields to another. We remind the reader that, in the;jjes at the beginning of the interaction, with the bare
considereck=1—F=1 interaction scheme, the field cOm- gi5mic statd1). The spatio-temporal evolution of the field
ponentsa. and B¢, as well asap and By, interacting with  ympjitudes, evaluated both analytically and numerically, is
frequency-degenerate transitions from' a pair of Iower_ Sta‘_temustrated in Figs. 4)—4(f). As noticed above, the absorp-
to an upper state, must have an opposite circular polarizatiogs, of the first propagation normal mode establishes a con-
In the situation shown in Figs(8& and 3b), a; andB. have ition of correlation between the field components, in the

flat time profiles, so that the polarization of the total field aty. -, of a constant ratio betweed~ and Q.- . Also in this
c .

.y - p
the fre_qu_ency of t_he transitions to the upper sta}e_|s CON- " case, such a condition results in a negligibly small amplitude
stant in time, while the complementary modulations in th

e — . . .
. S for QO , compared to the amplitudes of all original fields, so
profiles of «, and B, correspond to a modulation in the P P P g

polarization of the total field at the frequency of the transi-that Eq. (8 is nearly satisfied, forg>¢,, with ac(¢, )

. . L - ~ap(L,7) and Bc({, 1)~ Bp({, 7). Thus, the correlation be-
tions to the statép). Thus, the adiabatons shown in Fig. 3, N tween the field amplitudes arising from the extinction of the

the form of complementary-shaped amplitude modulations st mode leads again to adiabatons with approximately
the field pairsac-B; ande,-B,, correspond to “polarization matched shapes

adiabatons” in the total fields at the two transition frequen-
cies.

To check the validity of our approximate analysis, we
have examined the evolution of the input fields shown in Here we consider, in the bare-atom representation, the
Figs. 3a) and 3b), using the whole set of Maxwell-Bloch propagation of the input fields shown in Figgapand 5b).
equations. Numerical and analytical solutions, plotted to-At the beginning of the interaction the field componeats
gether in Figs. &)—3(h), show an excellent agreement. andp., in Fig. 5a), are matched and, apart from their rising

In Figs. 4a) and 4b) different time distributions for the edge, constant in time, while, and B, in Fig. 5b), have
input fields in the bare-atom picture, still satisfying the con-different time profiles and finite lengths. The analytical re-
ditions 0/ (0,7)=0.(0,0) and Q;(0,7)=Q(0,0), are sults derived in the preceding section do not apply in this
shown. With these input fields bofl; and (), result, in  case, since the variablék, andQ; are time dependent and

C. Propagation of fields with a finite duration



5408 ELENA CERBONESCHI AND ENNIO ARIMONDO 54

the condition|Q, (0,7)|<|Q; ||| is not strictly fulfilled. V. SUMMARY AND CONCLUSIONS
We have calculated the evolution of the fields and the atomic
variables numerically from the Maxwell-Bloch equations,
with the assumption that the atoms have been prepared, f
any{, in the pure stateNA). Parameter values relative to the
doubleA system formed by the statekl)=|52S,,F

We have analyzed the propagation of strong resonant
fields through a doubl@: four-level atomic system. We have
Zhown that the basis of adiabatic dressed states ugex?jin
for the singleA is also convenient to describe the double-
T ) (655, = —1) ) ls®Pa ) SSET, I atbasie s mmedench seen al when bt
=1mg=0), and|c)=|62P4,F=1m:=0) of &Rb atoms :E.’ s than the atomes svstom is yd t')D epT
have been assumed:.=8.93x10° s~!, I'y=3.77x10 Ields, then the atomic system 1S clamped, by » In & co-
51 w,=4.5x105 s 1, wp=2.4% 101 51 and N=10% here_nt su_pe_rp_o_smon of Iower-_energy states. Therefqre, if the
cm~3, corresponding tox.=3.74x10° cm~! s ! and medium is initially prepared in such a superpos_mon_, the
Kp=5.54x 18 em~Ls L. matched fields pr_opagate freely at the spged of light in the
To a certain extent, the situation considered here is similafonresonant medium, and represent a stationary state for the
to that illustrated in Fig. 3: at the entry into the medium the@tom-field system. Under conditions of quasiadiabatic pertur-
field variableQ is equal to zerog, and 8. being identical bation of this steady s_tate, t.he spauo—temporal evolution o_f
to each other, whil€, is different from zero because of the the System has been investigated analytically. Our approxi-

shape mismatch between, and3,. However, an important mate analysis is confirmed by the exact numerical solution of
p . L .

difference from the case of Fig. 3 is that here the fields the Maxwell-Bloch equations. _

and g, are taken as pulses with a finite duration, so that All the dynamics of the system is determined by the evo-

Q7 is different from zero only within a certain time interval. ution of the field variableg); and (), that, in the dressed

The time profiles of the field components are shown in FigsPasis, represent the weak couplings of the CPT state. A per-
5(c)-5(f), for different penetration depths within the me- turbat_|on approach.has been used to linearize the.propagauon
dium. Also in this case the basic mechanisms pointed out igduations of such field components. Those equations are eas-
our previous analysis govern the evolution of the system!y SOlveéd in terms of two normal modes. One of these
The absorptive mode in the field propagation is rapidly ex.modes, which corresponds, in the adiabatic limit, to the tran-
tinguished. As a consequence, the mismatch between tHi€Nt of pulse matching, is mainly absorptive and is extin-
field componentsa, and B, is strongly reduced, while guushgd .after a rela_tlvely short penetration Iength of the
modulations build up in the initially flat profiles af, and fields inside th.e medlum._ The second mode survives the f!rst
B., giving rise to a pair of complementary-shaped adiaba®ne: bepause its absorptlpn Ios;es are very'small. [t describes
tons. This behavior is illustrated in Figsdband §d) and is & quasﬁorm-stabl_e and dispersive propagation, typical of the
analogous to that shown in FigscBand 3d). The remain- 2diabatons and, in general, of EIT. o

ing dispersive mode, whose group velocity is slower than the |t may be supposed that an experimental realization of
velocity ¢ of the light in the nonresonant medium, deter- pulse propagation in _medla with very-many abso_rpupn
mines the further evolution of the generated adiabatons. |Hangths coulq be com.pllcated due tq the transverse dlstnpu-
terms of the transformed fields, in the dressed representatiofion Of the fields, which has been ignored throughout this
the adiabatons typically appear, as seen in Figs) and  Work. Note, however, that the superpositigNA) is not

2(d), as time-dependent structures, localized in time, in théliPole-connected to the excited states. As a consequence,
profiles of the field€)_ andQ, that are, elsewhere, equal to when the population is trapped INA), saturation effects

zero. In the present case, such adiabatons accumulate lon @rgsed by the. |nter_15|ty—dependent atomic susceptibility,
and longer delay with respect ®*, which has a finite hich usually arise with intense laser fields tuned near tran-

length alongr and travels at velogitye. Eventually, both sition resonances, are eliminafe. Thus, the coherent trap-

_ _ X - o ' ping allows laser beams with a transverse spatial structure to
Qc ande+ vanish within the whole time interval of inter- 5570516 without distortions. In effect, an experimental
action of€), . As a consequence, as predicted by the relatioyemonstration that the CPT can be used for suppressing op-
in Eq. (8).- the original f|e|d5ap and B, become exactly tcal self-focusing and defocusing has been given[8h
matched in shape. Moreover, wifh, and(}, equal to zero, Moreover, high quality beam propagation in a CPT configu-
the fieldsa,, and g, become proportional to the field vari- ration has been reported|ifi]. Nonlinear effects like bleach-
ableQ, and travel, likeQ) , at velocityc without any fur- ing and self-focusing may be important in the phase of
ther absorption or dispersion. On the other hand, the fieldpreparation of the statéNA). Different methods of prepara-
ac andB¢, having an infinite length, can support the delayedtion are required, depending on the initial conditions of the
propagation of the pair of adiabatons developed on their proatomic medium. If the population lies initially in an incoher-
files. This situation, with a pair of matched pulses on oneent superposition of both statgk) and|2), then the prepa-
pair of transitions and a pair of adiabatons on the other, isation is achieved by optical pumpifig4]. In this case, non-
depicted in Figs. &) and 5f). If the fields o, and 8. are linear distortions of the preparing fields can be minimized by
regarded as pulses with long but finite duration, then it turngendering the characteristic time for the preparation of the
out that the adiabatons slip through the entire length of thessuperpositioNA) as short as possible, that is, by choosing
pulses and vanish after reaching the falling edge. Thus, fivery fast relaxation rates for the upper states. On the other
nally, both of the pulse pairsy-B. and a,-8, become hand, if all atoms are initially in a unique ground state, then
matched and the CPT steady state of the atom-field systerthe coherent trapping can be attained by employing the tech-
perturbed by the initial nonzero value of the figlt,, is  nique of the stimulated Raman adiabatic passage. In Refs.
restored. [7,8], it has been shown that, under STIRAP conditions, the
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phase of preparation of the trapping state does not modifﬁ; ,Q,=0 and x,=0, we obtain, for the propagation of
the transverse profile of the propagating pulses. A completadiabatons through & system, the same description as in
analysis of the different processes that occur during the trarref. [22].
sient of preparation, taking into account the transverse distri- Our analysis predicts correlation phenomena, peculiar of
butions of the fields, is still needed. the doubleA system, arising from the interaction between
In conclusion, we have obtained an approximate propagahe different field components. These phenomena take place
tion law for time-dependent fields interacting with double- because the evolution of the field couplings is determined by
A systems, under quasiadiabatic conditions. It includes and combination of the “pulse-matching mode” and the
generalizes the description of the process of pulse matchintadiabaton-type mode.”
and of the propagation of the adiabatons. Both of these phe- Finally, it has been pointed out that, as concerns the po-
nomena have been individually studiedAnsystems, in sev- larization dynamics, the four-level schemes are more flexible
eral paperd12,13,16,19,21,22 Our propagation law, ex- and versatile than the three-level ones. The examples illus-
pressed by Eqs14), can be easily adapted to a single- trated in Figs. 3 and 5 show that, in the doullezonfigu-
system, by equating the proper field variables, along with theation, it is possible to generate a quasiform-stable modula-
corresponding coupling coefficients, to zero: in this waytion in the polarization of the total field at one transition
most results derived in those papers are recovered. For ifrequency, by modulating the polarization of the total field at
stance, the well-known features of the pulse matching in th@nother frequency. This effect cannot be achieved in a
propagation of a pair of weak pulses, say and 3, singleAA scheme.
through aA system externally prepared in a coherent super-
position of lower state§13,16], can be obtained from Egs.
(14) if a. and B; are regarded as constant coefficients, i.e.,
Q. is considered identically equal to zero, andkjf is also The authors are pleased to acknowledge stimulating dis-
taken equal to zero. On the other hand, if we considecussions with N. B. Abraham and M. Fleischhauer.
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