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The propagation of intense laser pulses through a four-level atomic system in a double-L scheme is exam-
ined. Under conditions of adiabatic perturbation of the atomic quantum state, paired pulses with arbitrary
shapes establish a correlation between their amplitudes and reach a quasiform-stable regime of propagation.
The amplitude correlation is a feature of pulse matching, while the propagation presents the same properties as
the so-called adiabatons, predicted and observed in single-L systems. We show that in the double-L scheme
the phenomena of pulse matching and adiabaton-type propagation are associated with two distinct propagation
normal modes.@S1050-2947~96!07212-5#

PACS number~s!: 42.50.Gy, 42.25.Bs, 42.50.Hz, 42.50.Md

I. INTRODUCTION

A L-type atomic medium can be pumped, by a pair of
strong resonant electromagnetic fields, into a coherent super-
position of the lower-energy states, where the atomic popu-
lation is trapped because of destructive interferences between
two different absorption paths. This phenomenon, known as
coherent population trapping~CPT! @1#, leads to the suppres-
sion of the total absorption of the resonant fields and renders
the atomic system transparent, even with most population
remaining in the lower-energy states. This type of cancella-
tion of the absorption is currently termed electromag-
netically-induced transparency~EIT!. In L systems, the EIT
is obtained as a direct consequence of the coherent trapping.
In general, the EIT is produced by quantum coherences and
interferences and can be achieved in different multilevel sys-
tems, includingV-type systems where the CPT does not oc-
cur @2#.

EIT has attracted much interest for its application to the
amplification without inversion~AWI ! @3,4# and several au-
thors have focused their attention on the implications of the
EIT on the total transmission of resonant light@5#. Disper-
sion properties@6# and spatial consequences@7–9# of the EIT
have also been investigated, as well as applications to non-
linear optics@10#. In @11#, the analysis of the phenomena of
CPT, EIT, and AWI has been extended to autoionizing tran-
sitions.

The absorption and dispersion features of the EIT have
important consequences on the interaction of time-dependent
electromagnetic fields with an atomic medium and different
aspects of the propagation of pulsed excitations through
three-level systems have been discussed in several theoreti-
cal papers@12–22#. In @12#, the process of pulse matching
has been predicted as a result of the nonlinear interaction of
two laser pulses with aL system, with the coherence be-
tween the lower-energy states fixed by an external prepara-
tion. This process generates a correlation between the Fou-
rier components of the two pulses, and hence a shape
matching of their temporal profiles. After the correlation is
established, the matched pulses propagate without losses and
without group velocity reduction and dispersion. These

stable pulses can have arbitrary shape, determined by the
initial pulse shapes and by the preparation conditions of the
medium. As pointed out in@13#, pulse matching originates
by the selective absorption of a well-defined superposition of
the two applied laser fields interacting with the coherently
preparedL system, while the orthogonal superposition
propagates without attenuation. The propagation of those
field superpositions, termed as ‘‘dressed fields,’’ has been
discussed in@14,15#, as well. Matched fields represent a
steady state solution to the problem of the propagation of a
pair of time-dependent fields through aL system. This
steady state is stable against small fluctuations of the inten-
sity and phase-difference of the two fields, as explicitly
shown in@17–19#. The propagation of matched pulses in the
absence of initial coherent preparation has been investigated
in @13,20#. It has been shown that the preparation of the
atoms is performed by the leading edge of the applied pulses,
if sufficiently intense, through the CPT process, so that the
atomic medium results transparent to the pulse trailing edge.

In @21#, new form-stable pulses, named adiabatons, have
been predicted under specific conditions of adiabatic excita-
tion of a L system. The adiabatons develop as a pair of
complementary pulses interacting with two different transi-
tions and propagate with reduced group velocity. The invari-
ance properties of this type of pulse have been discussed and
specified in@22# and their essential features described experi-
mentally in @7#. The formation of the adiabatons is under-
stood in terms of adiabatic following of the instantaneous
nonabsorbing CPT superposition and is related to the process
of stimulated Raman adiabatic passage~STIRAP! @23#.

Interesting propagation features have also been predicted
for four-component fields interacting, in strong-coupling–
weak-probe configurations, with four-level atomic systems.
As shown in@24,25#, these systems can be prepared coher-
ently, by applying a pair of coupling pulses to two different
atomic transitions, so that paired probe pulses, coupled to
other transitions, experience shape matching and propagate
without losses. Different configurations of interaction, such
as the double-L @24# and the double-V @25#, lead to the trans-
parency of the four-level medium for weak probe fields. In
@26#, the refractive properties of the coupling-probe double-
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L system, associated to the process of pulse matching, have
been investigated.

In this work, we report on additional properties of the
dynamics of the double-L system, when all of the driving-
field components have a high intensity. We focus on the case
of adiabatic perturbation of the initial coherent atomic state
and use, to describe the system under these conditions, the
dressed-basis representation introduced in@22#. We demon-
strate, both analytically and numerically, that the adiabatons
originate also in four-level systems and evidence the corre-
lation that, in such systems, is established between the am-
plitudes of these pulses. Under adiabatic conditions, the field
propagation is governed by two spatial normal modes. One
of these modes, mainly absorptive and associated to the tran-
sient regime of pulse matching, is characterized by a short
extinction length. Its absorption determines the establishment
of a correlation between the amplitudes of pulses acting on
different transitions. The second mode, essentially dispersive
and traveling with reduced group velocity and very small
losses, describes the propagation of pairs of adiabatons. Our
analysis clarifies that pulse matching and adiabatons repre-
sent two distinct transient phases towards the stationary state
of the atom-field system, which is represented by matched
fields and coherently trapped atoms. New effects of mutual
interaction between the different field components and inter-
play between the process of pulse matching and the forma-
tion of the adiabatons are predicted.

The organization of the paper is as follows: In Sec. II we
derive the Maxwell-Bloch equations for the double-L system
in the basis of the adiabatic dressed states. In Sec. III these
equations are solved under quasiadiabatic conditions, in
terms of propagation normal modes. The normal-mode solu-
tion is discussed in Sec. IV, where numerical simulations
that support and extend the analytical description are also
presented.

II. THE FOUR-LEVEL SYSTEM IN THE ADIABATIC
DRESSED STATE BASIS

A four-level system in the double-L configuration is
shown in the diagram of Fig. 1~a!. The interaction scheme is
composed by twoL subsystems that share the lower-energy
states u1& and u2&. For simplicity, the dipole allowed
u1&→u i & and u2&→u i & transitions (i5c,p) of both L sub-
systems are supposed symmetric, i.e., with equal frequency,
dipole moment, and spontaneous emission rate. We describe
the interaction of this system with slowly-varying four-
component fields and assume that each component is only
coupled to one of the allowed transitions and has its carrier
frequency exactly resonant with the transition frequency. We
disregard the transverse distribution of the fields and the in-
homogeneous broadening of the medium. These assumptions
allow us to obtain a straightforward analytical description of
the spatio-temporal evolution of the system.

We indicate the angular frequency of the transitions to the
upper stateu i & ( i5c,p) asv i and the natural decay rate of
u i & as G i . The population ofu i & is supposed to decay by
spontaneous emission intou1& and u2& with equal rates,
given by G i /2. Nonradiative decays of the lower states are
neglected. A symmetric double-L system is provided, for
instance, by twoF51→F51 atomic transitions with com-

mon lower state, driven by circularly polarized laser fields:
themF51 andmF521 Zeeman substates of the lower state
are coupled to themF50 substate of either upper state by
resonants2 ands1 field components, respectively.

We describe the electromagnetic fields through the space-
time–dependent Rabi frequenciesac(z,t)5dcEc1(z,t)/\,
bc(z,t)5dcEc2(z,t)/\, ap(z,t)5dpEp1(z,t)/\, and
bp(z,t)5dpEp2(z,t)/\, where Ei j (z,t), for i5c,p and
j51,2, is the slowly-varying envelope of the field compo-
nent interacting with the transition u j &→u i & and
di5(3\c3G i /8v i

3)1/2 is the dipole moment matrix element of
the symmetric transitions from the lower states to the upper
stateu i &. The Maxwell-Bloch equations of the double-L sys-
tem in the basis of the bare atom are written explicitly in
@27#. Here we introduce the basis change to the dressed states
uNA& and uA&,

uNA&5
bcu1&2acu2&

Auacu21ubcu2
, ~1a!

uA&5
acu1&1bcu2&

Auacu21ubcu2
. ~1b!

If we considerap ,bp[0, then the system in Fig. 1~a! is
reduced to theL system composed by the statesu1&, u2&, and
uc&: the stateuNA& represents the nonabsorbing CPT super-
position @1# associated to this system, whileuA& is the ab-
sorbing orthogonal superposition. When the fieldsac and
bc are time dependent, unless they have matched time-
profiles, uNA& and uA& are explicit functions of the time, as
well. The field componentsap andbp could be chosen as
coefficients of the superpositions in Eqs.~1! in the place of
ac andbc : the following analysis is independent of such a
choice.

We describe the spatio-temporal evolution of the atom-
field system in the moving frame of the coordinatesz5z and
t5t2z/c. Under exact resonance conditions, it follows from
the Maxwell-Bloch equations that, if all field components are

FIG. 1. Double-L system in the~a! bare-state and~b! dressed-
state bases.
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in phase at the entry surface of the medium, and the initial
atomic polarization isp/2 out of phase with respect to the
field, then the phase of the field, as well as that of the atomic
variables, remains unchanged during the interaction. Thus, in
the following, we can assume the Rabi frequenciesac ,
bc , ap , andbp real for anyt andz. We define the new field
variablesVc

6(z,t) and Vp
6(z,t), with dimensions of fre-

quencies, as

Vc
1~z,t!5Aac

2~z,t!1bc
2~z,t!, ~2a!

Vc
2~z,t!5

bc~z,t!
]

]t
ac~z,t!2ac~z,t!

]

]t
bc~z,t!

Vc
12~z,t!

, ~2b!

Vp
1~z,t!5

ac~z,t!ap~z,t!1bc~z,t!bp~z,t!

Vc
1~z,t!

, ~2c!

Vp
2~z,t!5

bc~z,t!ap~z,t!2ac~z,t!bp~z,t!

Vc
1~z,t!

. ~2d!

A pair of field variables of the form ofVc
6 has been intro-

duced in@22# to describe the atom dynamics and the loss-
free propagation of laser fields in a three-levelL scheme
under STIRAP conditions. In terms ofVc

6 and Vp
6 , the

original Rabi frequencies are expressed by

ac~z,t!5Vc
1~z,t!sinF E

2`

t

Vc
2~z,t8!dt81constG , ~3a!

bc~z,t!5Vc
1~z,t!cosF E

2`

t

Vc
2~z,t8!dt81constG , ~3b!

ap~z,t!5
ac~z,t!Vp

1~z,t!1bc~z,t!Vp
2~z,t!

Vc
1~z,t!

, ~3c!

bp~z,t!5
bc~z,t!Vp

1~z,t!2ac~z,t!Vp
2~z,t!

Vc
1~z,t!

. ~3d!

Equations~3a! and~3b! are easily obtained from the relation
Vc

25(d/dt)@arctan(ac /bc)#, with the condition
limt→2`arctan@ac(z,t)/bc(z,t)#5const.

In the basis of the dressed states defined in Eqs.~1!, the
equations for the elements of the density matrixr in the
interaction picture read, under exact resonance conditions,

]rc~NA!

]t
52gcrc~NA!2Vc

2rcA2 iVp
2rpc1 iVc

1rA~NA! ,

~4a!

]rcA
]t

52gcrcA2 iVc
1~rcc2rAA!1Vc

2rc~NA!2 iVp
1rpc ,

~4b!

]rp~NA!

]t
52gprp~NA!2 iVp

2~rpp2r~NA!~NA!!1 iVp
1rA~NA! ,

~4c!

]rpA

]t
52gprpA2 iVp

1~rpp2rAA!2 iVc
1rpc1 iVp

2rA~NA! ,

~4d!

]rpc

]t
52gpcrpc2 iVp

2rc~NA!2 iVp
1rcA2 iVc

1rpA , ~4e!

]rA~NA!

]t
5Vc

2~r~NA!~NA!2rAA!1 iVc
1rc~NA!1 iVp

1rp~NA!

1 iVp
2rpA , ~4f!

]rcc
]t

52Gcrcc22iVc
1rcA , ~4g!

]rpp

]t
52Gprpp22i ~Vp

2rp~NA!1Vp
1rpA!, ~4h!

]r~NA!~NA!

]t
5

Gc

2
rcc1

Gp

2
rpp12iVp

2rp~NA!22Vc
2rA~NA! ,

~4i!

]rAA
]t

5
Gc

2
rcc1

Gp

2
rpp12i ~Vc

1rcA1Vp
1rpA!

12Vc
2rA~NA! , ~4j!

with

gc5
Gc

2
, ~5a!

gp5
Gp

2
, ~5b!

gpc5
1

2
~Gc1Gp!. ~5c!

Here all terms proportional to the field variableVc
2 arise

from the explicit dependence ofuNA& and uA& on time ~cf.
the equations derived in@22# for the single-L system!. Equa-
tions ~4! hold for real fields. We notice thatVc

6 andVp
6 can

be consistently considered real if thei j th density matrix el-
ements, withi5A,NA and j5c,p, are considered purely
imaginary and the other elements real.

Equations~4! must be solved in a self-consistent way with
the Maxwell equations that, in the slowly varying envelope
approximation and in terms of the field variablesVc

6 and
Vp

6 , are

]Vc
1

]z
5 ikcrcA , ~6a!

]Vc
2

]z
5 ikc

]

]t S rc~NA!

Vc
1 D , ~6b!

]Vp
1

]z
5 ikprpA1 ikc

Vp
2

Vc
1 rc~NA! , ~6c!
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]Vp
2

]z
5 ikprp~NA!2 ikc

Vp
1

Vc
1 rc~NA! , ~6d!

where the coupling coefficientk i , for i5c,p, is given by

k i5
8pv iNudi u2

c\
, ~7!

with N the atomic density.
Formally, Eqs.~4! and ~6! describe a four-level system

driven by the fieldsVc
6 andVp

6 . As sketched in Fig. 1~b!,
Vc

1 andVp
1 couple the state superpositionuA& to the upper

statesuc& andup&, respectively,Vp
2 couplesuNA& to up&, and

Vc
2 connectsuNA& and uA&. Some interesting conclusions

can be directly drawn from the scheme in Fig. 1~b!. Let us
observe that, when the original fieldsac and bc have
matched time profiles, i.e., have the same time dependence
and only differ from each other by a constant scaling factor,
then the transformed fieldVc

2 is identically equal to zero. On
the other hand,Vp

2 vanishes whenap and bp are, at any
time, in the same ratio asac andbc ,

ap~z,t!

bp~z,t!
5

ac~z,t!

bc~z,t!
. ~8!

Whenac andbc have matched profiles, so that their ratio is
independent of time, this equation establishes the condition
of pulse matching forap andbp . Provided that bothVc

2 and
Vp

2 are equal to zero, the state superpositionuNA& is decou-
pled from the fields. Then, if the atomic system is coherently
prepared inuNA&, all the population remains there indefi-
nitely, while the transformed fieldsVc

1 andVp
1 interact with

the remaining empty states and propagate freely. The conser-
vation of Vc

1 andVp
1 corresponds, in the bare-state repre-

sentation, to the stable propagation of two pairs of matched
pulses, whose amplitudes satisfy the correlation condition
given in Eq.~8!. Thus, in the dressed state basis it is imme-
diately seen that pairs of arbitrarily strong and arbitrarily
shaped pulses, with matched profiles and correlated ampli-
tudes, maintain the atomic population coherently trapped in a
nonabsorbing state. Atoms in the coherent trapping superpo-
sition uNA& and matched pulses correspond to a stationary
state of the atom-field system@28#.

The application of the fieldsVc
2 and Vp

2 represents a
perturbation to the stationary state described above. In this
work, the spatio-temporal dynamics of the system is exam-
ined in the hypothesis of weak perturbations. This assump-
tion does not require, in general, that the original fieldsac ,
bc , ap , andbp are weak, since bothVc

2 andVp
2 can be

rendered small by properly choosing the relative amplitudes
of those fields. As shown in the following, with strong origi-
nal fields new nonlinear phenomena arise in the transient
dynamics of the four-level system, not observed in strong-
coupling–weak-probe configurations as those considered in
Refs.@24–26#.

III. PULSE PROPAGATION UNDER QUASIADIABATIC
CONDITIONS

We now describe the transient dynamics of the atom-field
system under conditions of weak coupling of the state
uNA& to the upper states, i.e., forVc

2 andVp
2 much weaker

thanVc
1 andVp

1 . When this requirement is satisfied, the
evolution of the stateuNA& is quasiadiabatic@15#. We con-
sider, for any positionz, the stateuNA& fully occupied at the
initial time, as an effect of a coherent preparation of the
atomic sample. In fact, the double-L system can be prepared
into any superposition of the lower-energy bare states by
means of the application of a pair of sufficiently long and
intense matched pulses, with proper amplitude ratio, to either
L subsystem@20,24#.

From Eqs.~4! and~6! we can see that, with all the popu-
lation initially in uNA&, Vc

2 andVp
2 remain small during the

interaction, if they are both small at the entry into the me-
dium, in z50. For uVc

2u,uVp
2u!uVc

1u,uVp
1u, the atomic

population always remains, at first order, in the stateuNA&
and the coherences between initially empty states are never
excited,

r~NA!~NA!~z,t!51 , ~9a!

rAA~z,t!5rcc~z,t!5rpp~z,t!50 , ~9b!

rcA~z,t!5rpA~z,t!5rpc~z,t!50 . ~9c!

Under these conditions, the equations of motion for the re-
maining atomic variables become

]

]t
rc~NA!~z,t!52gcrc~NA!~z,t!1 iVc

1rA~NA!~z,t!,

~10a!

]

]t
rp~NA!~z,t!52gprp~NA!~z,t!1 iVp

2~z,t!

1 iVp
1rA~NA!~z,t!, ~10b!

]

]t
rA~NA!~z,t!5 iVc

1rc~NA!~z,t!1 iVp
1rp~NA!~z,t!

1Vc
2~z,t!. ~10c!

Moreover, at first order, the driving terms on the left-hand
side of Eqs.~6a! and ~6c! vanish, so that the fieldsVc

1 and
Vp

1 are conserved alongz,

Vc
1~z,t!5Vc

1~0,t!, ~11a!

Vp
1~z,t!5Vp

1~0,t!. ~11b!

We further assume that the decay ratesgc andgp are suffi-
ciently large that the coherencesrc(NA) andrp(NA) instanta-
neously follow the evolution of the fields. This adiabaticity
hypothesis simplifies the analysis but does not change, in
substance, the results presented in the following. By elimi-
nating rc(NA) and rp(NA) from Eqs. ~10a! and ~10b!, and
substituting them in Eqs.~10c!, ~6b!, and~6d!, the Maxwell-
Bloch equations are reduced to
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]

]t
rA~NA!~z,t!52FVc

12~0,t!

gc
1

Vp
12~0,t!

gp
GrA~NA!~z,t!

1Vc
2~z,t!2

Vp
1~0,t!

gp
Vp

2~z,t!, ~12a!

]

]z
Vc

2~z,t!52
kc

gc

]

]t
rA~NA!~z,t!, ~12b!

]

]z
Vp

2~z,t!52
kp

gp
Vp

2~z,t!

1S kc

gc
2

kp

gp
DVp

1~0,t!rA~NA!~z,t!.

~12c!

By choosing the amplitudes of the incident fieldsVc
1 and

Vp
1 as constants, Eqs.~12! become a set of linear differential

equations with constant coefficients, easily solved analyti-
cally in the frequency domain. This particular case allows us
to determine the basic mechanisms underlying the evolution
of the system.

By Fourier-transforming Eq.~12a! with respect tot, we
obtain

r̂A~NA!~z,v!5
1

Gc81Gp82 iv
F V̂c

2~z,v!2
Vp

1

gp
V̂p

2~z,v!G ,
~13!

where the Fourier-transformed variables are marked by a cir-
cumflex accent and the effective decay ratesG i85V i

12/g i ,
with i5c,p, are introduced. By substitution of Eq.~13!, the
propagation equations forV̂c

2 andV̂p
2 become

]

]z
V̂c

2~z,v!52A~v!V̂c
2~z,v!2B~v!V̂p

2~z,v!, ~14a!

]

]z
V̂p

2~z,v!52C~v!V̂c
2~z,v!2D~v!V̂p

2~z,v!, ~14b!

with

A~v!5hc
B
v22 iv~Gc81Gp8!

v21~Gc81Gp8!2
, ~15a!

B~v!52hc
B
v22 iv~Gc81Gp8!

v21~Gc81Gp8!2
Vp

1

gp
, ~15b!

C~v!5~hp
B2hc

B!
Gc81Gp81 iv

v21~Gc81Gp8!2
Vp

1 , ~15c!

D~v!5
~hp

BGc81hc
BGp8!~Gc81Gp8!1v2hp

B2 iv~hp
B2hc

B!Gp8

v21~Gc81Gp8!2
,

~15d!

whereh i
B5k i /g i , for i5c,p, denotes the Beer’s absorption

coefficient of the symmetric transitions from the lower states
to the upper stateu i &. We notice that, ifVp

1 is equal to zero,
or very small with respect toVc

1 and to the upper state decay

rates, then the coefficientsB andC vanish and the evolution
of V̂c

2 and V̂p
2 is diagonal. Thus, only for large values of

Vp
1 a mutual interaction between the perturbation fields

Vc
2 andVp

2 is produced. This interaction will be discussed
in the next section.

The solutions to Eqs.~14! are combinations of two normal
modes exp$2h1z% and exp$2h2z%,

V̂c
2~z,v!5a1~v!e2h1~v!z1a2~v!e2h2~v!z, ~16a!

V̂p
2~z,v!5b1~v!e2h1~v!z1b2~v!e2h2~v!z, ~16b!

with the propagation coefficientsh1 and h2 satisfying the
condition

h22~A1D !h1AD2BC50 . ~17!

The coefficientsai andbi ( i51,2) are determined by impos-
ing that V̂c

2 and V̂p
2 satisfy Eqs.~14! with the boundary

conditions assigned inz50.
By solving Eq.~17!, we obtain the following expressions

for h1 andh2:

h15
1

2
@A1D1A~A1D !224~AD2BC!#, ~18a!

h25
1

2
@A1D2A~A1D !224~AD2BC!#. ~18b!

We assume that all the relevant Fourier frequencies are suf-
ficiently small, such thatuvu!Gc8 . At first order inv/Gc8 ,
the propagation coefficients are given by

h1.
1

z1
2
iv

u1
1OF S v

Gc8
D 2G , ~19a!

h2.2
iv

u2
1OF S v

Gc8
D 2G , ~19b!

where the lengthz1 and the velocity parametersu1 andu2
are introduced as

z15
Gp81Gc8

hp
BGc81hc

BGp8
, ~20a!

u15
~Gp81Gc8!2

~hp
B2hc

B!2
S hp

B

Gp8
1

hc
B

Gc8
D , ~20b!

u25
Gp8

hp
B 1

Gc8

hc
B . ~20c!

The real and imaginary parts ofh1 and h2 represent the
absorption and dispersion coefficients, respectively, associ-
ated to the two propagation normal modes. At first order
R$h1% is constant inv and describes a uniform damping,
with characteristic lengthz1, of all Fourier components,
while I$h1% is linear inv and determines the slowing down
of the group velocity: the more Beer’s coefficientshc

B and
hp
B differ from each other, the larger this dispersive term is.

For z@z1 only the second mode survives. At lowest order
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h2 is purely imaginary and linear inv and describes a dis-
persive and shape-invariant propagation. In the laboratory
frame, the group velocityv i associated to thei th mode, for
i51,2, is defined by 1/v i51/c11/ui . The higher-order
terms in the expansions of Eqs.~19! represent nonlinear cor-
rections to the absorption and dispersion coefficients and are
responsible for small effects of group-velocity dispersion and
selective absorption of high-frequency Fourier components.

IV. AMPLITUDE CORRELATION AND FORMATION
OF ADIABATONS

In this section we illustrate the normal-mode solution de-
rived above and show how it accounts for phenomena of
correlation between the amplitudes of the different field

components and for the formation and propagation of adia-
batons. The solution is discussed, in Sec. IV A, in the
dressed-atom representation, i.e., for the fieldsVc

2 and
Vp

2 , and in Sec. IV B for the original fieldsac , bc , ap ,
andbp in the bare-atom representation. The analytical results
obtained in Sec. III only apply for a limited choice of time
distributions of the amplitudes of the input fields, namely,
when the field variablesVc

1 and Vp
1 are independent of

time. An example of time distributions that do not meet this
requirement is considered in Sec. IV C. In that case, the field
evolution is computed numerically, but is still understood in
terms of the mechanisms previously described analytically.

A. Field evolution in the dressed-atom representation

We first use Eqs.~16! to describe the evolution of input
fieldsVc

2(0,t) andVp
2(0,t) of the form shown in Fig. 2~a!:

Vc
2(0,t) is taken equal to zero, so thatVp

2(0,t) represents
the only nonvanishing but small perturbation to the CPT
steady state of the system. The fieldsVc

1 andVp
1 are as-

sumed independent of time. For the assigned boundary con-
ditions, the solution given in Eqs.~16!, transformed back
into the time domain, reads

Vc
2~z,t!52FF ]

]t
Vp

2S 0,t2
z

u1
DexpH 2

z

z1
J

2
]

]t
Vp

2S 0,t2
z

u2
D G , ~21a!

Vp
2~z,t!5Vp

2S 0,t2
z

u1
DexpH 2

z

z1
J 1GF ]

]t
Vp

2S 0,t
2

z

u1
DexpH 2

z

z1
J 2

]

]t
Vp

2S 0,t2
z

u2
D G ,

~21b!

with

F5
hc
B

hp
BGc81hc

BGp8

Vp
1

gp
, ~22a!

G5
hc
B~hp

B2hc
B!Gp8

~hp
BGc81hc

BGp8!2
. ~22b!

This solution is plotted as a function oft, for three different
positionsz, in Figs. 2~b!–2~d!. For strong values ofVp

1 , the
spatial evolution of the perturbation fieldsVc

2 and Vp
2 is

determined by a combination of the two normal modes. This
renders the two fields coupled to each other. For instance, in
the situation examined here, we see from Eqs.~21! and from
Fig. 2 thatVc

2 , initially equal to zero, builds up from the
absorption ofVp

2 during the transient of decay of the first
mode. In general, forz@z1 the ratio between the fields
Vc

2 and Vp
2 becomes independent ofz. In the bare-atom

picture this corresponds, as exemplified in Sec. IV B, to a
correlation between the amplitudes of the different field
components. In Figs. 2~c! and 2~d! the first propagation

FIG. 2. Time dependence of the fieldsVc
2 ~solid curves, left

axes! andVp
2 ~dotted curves, right axes! from Eqs.~21!, for differ-

ent penetration lengths within the medium:~a! zhp
B50, ~b!

zhp
B51, ~c! zhp

B550, and ~d! zhp
B5500. The parameter values

used in the calculation areGc51.03108 s21, Gp59.33107 s21,
kc53.93108 cm21 s21, kp51.53109 cm21 s21. For the fields
Vc

1 andVp
1 the constant valueVc

15Vp
151.413108 s21 has been

assumed. The corresponding extinction length for the first normal
mode isz1hp

B51.51. In ~c! and ~d! the scale on the right axes is
expanded by two orders of magnitude with respect to~a! and ~b!.
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mode is extinguished and the field evolution, purely deter-
mined by the second one, corresponds to a dispersive and
shape-invariant propagation.

In the adiabatic limit, when the rate of change of the
perturbation fields is completely negligible with respect to
Vc

1 and Vp
1 , Eqs. ~21! simplify to Vc

2(z,t)50 and
Vp

2(z,t)5Vp
2(0,t)exp$2z/z1%. This also applies when the

field Vp
1 is negligibly small. In these cases, forz@z1 both

perturbation fieldsVc
2 andVp

2 are equal to zero so that, as
shown in Sec. II, a steady propagation regime with matched
pulses is established. In this sense the exponential decay of
the first normal mode, with characteristic lengthz1, corre-
sponds to the spatial transient of pulse matching.

The second mode, corresponding to the last term on the
right-hand side of both of Eqs.~21!, describes the form-
stable and delayed propagation typical of the adiabatons, in-
troduced in@21# for the L system. As first pointed out in
@22#, the invariance of the pulse shapes, in this kind of propa-
gation, is an approximate result, which holds when the rel-
evant Fourier frequencies of the perturbation fields are suffi-
ciently small. In the present analysis, apart from the
conditionuVc

2u,uVp
2u!uVc

1u,uVp
1u, the shape invariance fol-

lows from the first-order truncation in the expansion of Eqs.
~19!. Actually, in the propagation of the adiabatons, absorp-
tion and group velocity dispersion are small effects, but not
negligible over very long propagation distances. These ef-
fects cannot be observed within the distances considered in
Fig. 2.

B. Field evolution in the bare-atom representation

From the solution forVc
2 andVp

2 given in Eqs.~21! and
displayed in Fig. 2, by applying the formulas of Eqs.~3!, we
find the corresponding solution for the original fieldsac ,
bc , ap , andbp , shown in Fig. 3. In Fig. 3~a!, the fields
ac andbc in z50 are independent of time and equal to each
other, while, in Fig. 3~b!, ap andbp are given by opposite-
signed modulations superimposed to strong and equal con-
tinuous components: such time distributions for the original
fields correspond to those of Fig. 2~a! for the transformed
fieldsVc

2 andVp
2 , with Vc

1 andVp
1 constant int. Figures

3~c! and 3~d! show that, asVc
2 develops at the expense of

Vp
2 @cf. Fig. 2~b!#, the modulations of the incident fields

ap andbp are transmitted to the initially flat fieldsac and
bc . In Figs. 3~e!–3~h!, the behavior of the fields is shown
after the first propagation mode has died out. From Eqs.~21!
we see that the second mode in the evolution of bothVc

2 and
Vp

2 is described by terms proportional to the time derivative
of Vp

2 evaluated inz50. In the present case, those terms are
of comparable strength and, at any timet, much smaller than
the values assumed byVp

2 in z50. This appears from Figs.
2~c! and 2~d!, where the fieldsVc

2 andVp
2 are shown after

the full absorption of the first mode, when only the contribu-
tion of the second one is present: in those figures the ampli-
tudes ofVc

2 andVp
2 are two orders of magnitude smaller

than the initial amplitude ofVp
2 , in Fig. 2~a!. Nevertheless,

as shown in Fig. 3~e!, the second mode inVc
2 results in a

relatively strong modulation of the fieldsac andbc , depen-
dent onVc

2 through a time integral@cf. Eqs.~3a! and ~3b!#.
On the contrary, the second mode inVp

2 affectsap andbp

very weakly. Thus, forz@z1, Vp
2 is negligible and Eq.~8! is

approximately satisfied. However, that equation does not de-
scribe, here, a condition of shape matching for the fields
ap andbp , as the ratioac /bc is time dependent. Instead, it
is nearly obeyed with ac(z,t)'ap(z,t) and
bc(z,t)'bp(z,t). The conservation ofVc

1 andVp
1 along

z forces the modulations in the field pairsac-bc and ap-
bp to have opposite signs. In the bare-atom representation,
the formation of modulations with complementary ampli-
tudes in the time profiles of the fields is a feature of the
adiabatons@21,22#. The comparison between the curves in
Figs. 3~e! and 3~f! and those in Figs. 3~g! and 3~h! evidences
that, after the absorption of the first mode, such modulations
propagate simultaneously with reduced group velocity,
nearly preserving their shapes for long penetration distances.

The generation of the fieldVc
2 and, in general, the cou-

pling between the two perturbation fields can be regarded as
a phenomenon of nonlinear mixing between the ‘‘pump

FIG. 3. Spatio-temporal evolution of the original fieldsac-bc

~left column! andap-bp ~right column! corresponding to that of the
transformed fieldsVc

2 andVp
2 in Fig. 2. The time profiles of the

fields are shown in~a! and~b! zhp
B50, ~c! and~d! zhp

B51, ~e! and
~f! zhp

B550, and~g! and ~h! zhp
B5500. Exact numerical results

~dotted curves! are shown together with the analytical results~solid
curves!.
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waves’’ Vc
1 and Vp

1 and the ‘‘probe waves’’Vc
2 and

Vp
2 . In the bare-atom picture, a consequence of this mixing

is the possibility to transfer amplitude modulations from one
pair of fields to another. We remind the reader that, in the
consideredF51→F51 interaction scheme, the field com-
ponentsac andbc , as well asap andbp , interacting with
frequency-degenerate transitions from a pair of lower states
to an upper state, must have an opposite circular polarization.
In the situation shown in Figs. 3~a! and 3~b!, ac andbc have
flat time profiles, so that the polarization of the total field at
the frequency of the transitions to the upper stateuc& is con-
stant in time, while the complementary modulations in the
profiles of ap and bp correspond to a modulation in the
polarization of the total field at the frequency of the transi-
tions to the stateup&. Thus, the adiabatons shown in Fig. 3, in
the form of complementary-shaped amplitude modulations in
the field pairsac-bc andap-bp , correspond to ‘‘polarization
adiabatons’’ in the total fields at the two transition frequen-
cies.

To check the validity of our approximate analysis, we
have examined the evolution of the input fields shown in
Figs. 3~a! and 3~b!, using the whole set of Maxwell-Bloch
equations. Numerical and analytical solutions, plotted to-
gether in Figs. 3~c!–3~h!, show an excellent agreement.

In Figs. 4~a! and 4~b! different time distributions for the
input fields in the bare-atom picture, still satisfying the con-
ditions Vc

1(0,t)5Vc
1(0,0) and Vp

1(0,t)5Vp
1(0,0), are

shown. With these input fields bothVc
2 andVp

2 result, in

z50, different from zero. Moreover, as the fieldac vanishes
for t→2`, while bc assumes a constant value different
from zero, the nonabsorbing stateuNA& of Eq. ~1a! coin-
cides, at the beginning of the interaction, with the bare
atomic stateu1&. The spatio-temporal evolution of the field
amplitudes, evaluated both analytically and numerically, is
illustrated in Figs. 4~c!–4~f!. As noticed above, the absorp-
tion of the first propagation normal mode establishes a con-
dition of correlation between the field components, in the
form of a constant ratio betweenVc

2 andVp
2 . Also in this

case, such a condition results in a negligibly small amplitude
for Vp

2 , compared to the amplitudes of all original fields, so
that Eq. ~8! is nearly satisfied, forz@z1, with ac(z,t)
'ap(z,t) andbc(z,t)'bp(z,t). Thus, the correlation be-
tween the field amplitudes arising from the extinction of the
first mode leads again to adiabatons with approximately
matched shapes.

C. Propagation of fields with a finite duration

Here we consider, in the bare-atom representation, the
propagation of the input fields shown in Figs. 5~a! and 5~b!.
At the beginning of the interaction the field componentsac
andbc , in Fig. 5~a!, are matched and, apart from their rising
edge, constant in time, whileap andbp , in Fig. 5~b!, have
different time profiles and finite lengths. The analytical re-
sults derived in the preceding section do not apply in this
case, since the variablesVc

1 andVp
1 are time dependent and

FIG. 4. Time dependence of the field pairsac-bc ~left column!
and ap-bp ~right column! in ~a! and ~b! zhp

B50, ~c! and ~d!
zhp

B550, and~e! and~f! zhp
B5500. Numerical~dotted curves! and

analytical~solid curves! results are almost indistinguishable. Param-
eters as in Fig. 3.

FIG. 5. Time profiles of the fieldsac , bc ~left column, solid and
dotted curves, respectively!, ap , andbp ~right column, solid and
dotted curves! from the numerical solution of the Maxwell-Bloch
equations, at different penetration lengths:~a! and ~b! zhp

B50, ~c!
and ~d! zhp

B550, and~e! and ~f! zhp
B5500.
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the conditionuVp
2(0,t)u!uVc

1u,uVp
1u is not strictly fulfilled.

We have calculated the evolution of the fields and the atomic
variables numerically from the Maxwell-Bloch equations,
with the assumption that the atoms have been prepared, for
anyz, in the pure stateuNA&. Parameter values relative to the
double-L system formed by the statesu1&5u5 2S1/2F
51mF51&, u2&5u5 2S1/2F51mF521&, up&5u5 2P3/2F
51mF50&, and uc&5u6 2P3/2F51mF50& of 87Rb atoms
have been assumed:Gc58.933106 s21, Gp53.773107

s21, vc54.531015 s21, vp52.431015 s21, andN51010

cm23, corresponding tokc53.743107 cm21 s21 and
kp55.543108 cm21 s21.

To a certain extent, the situation considered here is similar
to that illustrated in Fig. 3: at the entry into the medium the
field variableVc

2 is equal to zero,ac andbc being identical
to each other, whileVp

2 is different from zero because of the
shape mismatch betweenap andbp . However, an important
difference from the case of Fig. 3 is that here the fieldsap
and bp are taken as pulses with a finite duration, so that
Vp

1 is different from zero only within a certain time interval.
The time profiles of the field components are shown in Figs.
5~c!–5~f!, for different penetration depths within the me-
dium. Also in this case the basic mechanisms pointed out in
our previous analysis govern the evolution of the system.
The absorptive mode in the field propagation is rapidly ex-
tinguished. As a consequence, the mismatch between the
field componentsap and bp is strongly reduced, while
modulations build up in the initially flat profiles ofac and
bc , giving rise to a pair of complementary-shaped adiaba-
tons. This behavior is illustrated in Figs. 5~c! and 5~d! and is
analogous to that shown in Figs. 3~c! and 3~d!. The remain-
ing dispersive mode, whose group velocity is slower than the
velocity c of the light in the nonresonant medium, deter-
mines the further evolution of the generated adiabatons. In
terms of the transformed fields, in the dressed representation,
the adiabatons typically appear, as seen in Figs. 2~c! and
2~d!, as time-dependent structures, localized in time, in the
profiles of the fieldsVc

2 andVp
2 that are, elsewhere, equal to

zero. In the present case, such adiabatons accumulate longer
and longer delay with respect toVp

1 , which has a finite
length alongt and travels at velocityc. Eventually, both
Vc

2 andVp
2 vanish within the whole time interval of inter-

action ofVp
1 . As a consequence, as predicted by the relation

in Eq. ~8!, the original fieldsap and bp become exactly
matched in shape. Moreover, withVc

2 andVp
2 equal to zero,

the fieldsap andbp become proportional to the field vari-
ableVp

1 and travel, likeVp
1 , at velocityc without any fur-

ther absorption or dispersion. On the other hand, the fields
ac andbc , having an infinite length, can support the delayed
propagation of the pair of adiabatons developed on their pro-
files. This situation, with a pair of matched pulses on one
pair of transitions and a pair of adiabatons on the other, is
depicted in Figs. 5~e! and 5~f!. If the fieldsac andbc are
regarded as pulses with long but finite duration, then it turns
out that the adiabatons slip through the entire length of these
pulses and vanish after reaching the falling edge. Thus, fi-
nally, both of the pulse pairsac-bc and ap-bp become
matched and the CPT steady state of the atom-field system,
perturbed by the initial nonzero value of the fieldVp

2 , is
restored.

V. SUMMARY AND CONCLUSIONS

We have analyzed the propagation of strong resonant
fields through a double-L four-level atomic system. We have
shown that the basis of adiabatic dressed states used in@22#
for the single-L is also convenient to describe the double-
L system. In that basis it is immediately seen that, when both
pairs of allowed transitions are driven by a pair of matched
fields, then the atomic system is clamped, by CPT, in a co-
herent superposition of lower-energy states. Therefore, if the
medium is initially prepared in such a superposition, the
matched fields propagate freely at the speed of light in the
nonresonant medium, and represent a stationary state for the
atom-field system. Under conditions of quasiadiabatic pertur-
bation of this steady state, the spatio-temporal evolution of
the system has been investigated analytically. Our approxi-
mate analysis is confirmed by the exact numerical solution of
the Maxwell-Bloch equations.

All the dynamics of the system is determined by the evo-
lution of the field variablesVc

2 andVp
2 that, in the dressed

basis, represent the weak couplings of the CPT state. A per-
turbation approach has been used to linearize the propagation
equations of such field components. Those equations are eas-
ily solved in terms of two normal modes. One of these
modes, which corresponds, in the adiabatic limit, to the tran-
sient of pulse matching, is mainly absorptive and is extin-
guished after a relatively short penetration length of the
fields inside the medium. The second mode survives the first
one, because its absorption losses are very small. It describes
a quasiform-stable and dispersive propagation, typical of the
adiabatons and, in general, of EIT.

It may be supposed that an experimental realization of
pulse propagation in media with very-many absorption
lengths could be complicated due to the transverse distribu-
tion of the fields, which has been ignored throughout this
work. Note, however, that the superpositionuNA& is not
dipole-connected to the excited states. As a consequence,
when the population is trapped inuNA&, saturation effects
caused by the intensity-dependent atomic susceptibility,
which usually arise with intense laser fields tuned near tran-
sition resonances, are eliminated@8#. Thus, the coherent trap-
ping allows laser beams with a transverse spatial structure to
propagate without distortions. In effect, an experimental
demonstration that the CPT can be used for suppressing op-
tical self-focusing and defocusing has been given in@8#.
Moreover, high quality beam propagation in a CPT configu-
ration has been reported in@7#. Nonlinear effects like bleach-
ing and self-focusing may be important in the phase of
preparation of the stateuNA&. Different methods of prepara-
tion are required, depending on the initial conditions of the
atomic medium. If the population lies initially in an incoher-
ent superposition of both statesu1& and u2&, then the prepa-
ration is achieved by optical pumping@24#. In this case, non-
linear distortions of the preparing fields can be minimized by
rendering the characteristic time for the preparation of the
superpositionuNA& as short as possible, that is, by choosing
very fast relaxation rates for the upper states. On the other
hand, if all atoms are initially in a unique ground state, then
the coherent trapping can be attained by employing the tech-
nique of the stimulated Raman adiabatic passage. In Refs.
@7,8#, it has been shown that, under STIRAP conditions, the
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phase of preparation of the trapping state does not modify
the transverse profile of the propagating pulses. A complete
analysis of the different processes that occur during the tran-
sient of preparation, taking into account the transverse distri-
butions of the fields, is still needed.

In conclusion, we have obtained an approximate propaga-
tion law for time-dependent fields interacting with double-
L systems, under quasiadiabatic conditions. It includes and
generalizes the description of the process of pulse matching
and of the propagation of the adiabatons. Both of these phe-
nomena have been individually studied inL systems, in sev-
eral papers@12,13,16,19,21,22#. Our propagation law, ex-
pressed by Eqs.~14!, can be easily adapted to a single-L
system, by equating the proper field variables, along with the
corresponding coupling coefficients, to zero: in this way
most results derived in those papers are recovered. For in-
stance, the well-known features of the pulse matching in the
propagation of a pair of weak pulses, sayap and bp ,
through aL system externally prepared in a coherent super-
position of lower states@13,16#, can be obtained from Eqs.
~14! if ac andbc are regarded as constant coefficients, i.e.,
Vc

2 is considered identically equal to zero, and ifkc is also
taken equal to zero. On the other hand, if we consider

Vp
1 ,Vp

2[0 andkp50, we obtain, for the propagation of
adiabatons through aL system, the same description as in
Ref. @22#.

Our analysis predicts correlation phenomena, peculiar of
the double-L system, arising from the interaction between
the different field components. These phenomena take place
because the evolution of the field couplings is determined by
a combination of the ‘‘pulse-matching mode’’ and the
‘‘adiabaton-type mode.’’

Finally, it has been pointed out that, as concerns the po-
larization dynamics, the four-level schemes are more flexible
and versatile than the three-level ones. The examples illus-
trated in Figs. 3 and 5 show that, in the double-L configu-
ration, it is possible to generate a quasiform-stable modula-
tion in the polarization of the total field at one transition
frequency, by modulating the polarization of the total field at
another frequency. This effect cannot be achieved in a
single-L scheme.
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